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Abstract
Appropriately considering adjustment costs, this paper develops a robust nonpara-
metric framework to analyse profits, prices and productivity in a dynamic context. 
Dynamic profit change is decomposed into a dynamic Bennet price indicator and a 
dynamic Bennet quantity indicator. The latter is decomposed into explanatory fac-
tors. It is shown to be a superlative indicator for the dynamic Luenberger indicator. 
The application focuses on 1,638 observations of French meat-processing firms for 
the years 2012–2019. Using m-out-of-n bootstrapped data envelopment analysis, we 
obtain robust estimates and confidence intervals. The components of dynamic produc-
tivity growth fluctuate substantially. However, these fluctuations are often statistically 
insignificant.

Keywords: profit, productivity, adjustment cost, data envelopment analysis,
m-out-of-n bootstrap

JEL classification: D24, D25, Q13

1. Introduction

Maximising the wealth of shareholders is the primary long-term economic 
objective of businesses. Profits are frequently used by managers for bench-
marking competitiveness, as they add to wealth. Changes in prices and 
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productivity drive changes in profit. Selling at a higher price and buying 
at a lower price increases profits, ceteris paribus. Productivity gains indi-
cate producing more output using less input, which increases profits, ceteris 
paribus. The fundamental limitation of the usual approach to assess changes 
in profits, prices and productivity is its static assumption that the level 
of all inputs and outputs can be changed instantaneously to the optimum. 
Investment in capital assets is necessary for business survival in the long 
run, for it increases future profits and productivity through expansion of 
production possibilities. Yet, in the short run, it decreases profits and pro-
ductivity because of adjustment costs associated with sluggishly changing 
the level of the capital stock. Forward-looking companies push the com-
petitive envelope through investment, at the temporary expense of profits 
and productivity. The static approach ignores adjustment costs and intertem-
poral linkages, which leads to a misalignment with the long-run objective 
of wealth maximisation. Addressing this problem, the current paper devel-
ops a framework to analyse profits, prices and productivity in a dynamic
context.

The analytical links between profits, prices and productivity are well-
established in the static context. Bennet (1920) shows that any value change 
can be additively decomposed into the sum of price change and quan-
tity change in the context of consumption. By applying this framework to 
the production context, one can decompose static profit change into static 
price change and static productivity (quantity) change (Balk, 1998; Diewert, 
2005). Earlier seminal contributions using such an approach include Kurosawa 
(1975), Eldor and Sudit (1981) and Miller and Rao (1989). There is a rich 
literature on decomposing productivity change into explanatory factors (see 
e.g. Ang and Kerstens, 2017; Balk, Barbero and Zofío, 2020; Brümmer, 
Glauben and Thijssen, 2002; F ̈are et al., 1994; Chambers, F ̈are and Grosskopf, 
1996; Plastina and Lence, 2018; Nishimizu and Page, 1982). As one of the 
components of profit change, productivity change has also been further decom-
posed in the context of profit change. Grifell-Tatjé and Lovell (1999, 2000) 
and Brea-Solís, Casadesus-Masanell and Grifell-Tatjé (2015) further decom-
pose productivity change into technical change and various components of 
efficiency change using ratio-based distance functions and revenue or cost 
functions. Focusing on the Bennet quantity indicator, Balk (1998) does so 
by means of difference-based directional distance functions and profit func-
tions. This decomposition holds if the price-normalised profit functions have a 
quadratic functional form with time-invariant second-order coefficients and 
allocative inefficiency is absent. Ang (2019) develops a general approach 
for decomposing all Bennet-type productivity indicators, which also builds 
on directional distance functions and profit functions, but does not require a 
quadratic functional form and allows for allocative inefficiency.
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Robust nonparametric analysis of dynamic profits, prices and productivity 773

The dynamic theory of the firm appropriately considers adjustment costs.1 
The importance of adjustment costs in intertemporal decision-making has 
already been recognised for decades (see e.g. Treadway, 1969, 1970; Lucas 
Jr, 1967; Rothschild, 1971). The dynamic approach relies on characteris-
ing dynamic distance functions and dynamic economic optimising behaviour. 
The dynamic cost function is dual to the dynamic hyperbolic input distance 
function (Silva and Stefanou, 2007), dynamic radial input distance func-
tion (Ouellette and Yan, 2008; Rungsuriyawiboon and Stefanou, 2007) and 
dynamic input directional distance function (Serra, Oude Lansink and Ste-
fanou, 2011; Silva, Oude Lansink and Stefanou, 2015). Adapting Chambers, 
Chung and F ̈are (1998)’s static framework to a dynamic context, Ang and 
Oude Lansink (2018) and Silva, Stefanou and Oude Lansink (2020) estab-
lish a dual relationship between the dynamic directional distance function 
and the dynamic profit function. Despite these developments, the analyt-
ical links between profits, prices and productivity have not been estab-
lished from the dynamic perspective. In the current paper, we address this
research gap.

The contributions of this paper are threefold. First, we introduce a com-
prehensive adjustment-cost framework for analysing the change in ‘dynamic 
profit’ (annual flow version of intertemporal profit in current-value terms) as 
components of dynamic price change and dynamic productivity change. The 
dynamic Bennet price indicator appears as a novel measure of dynamic price 
change that measures the extent to which changes in market prices of inputs are 
recovered by changes in market prices of outputs and shadow prices of capital
(that is, the increase in the optimal value function when increasing the 
capital stock by one unit). The dynamic Bennet quantity indicator occurs 
as a novel measure of dynamic productivity change that simultaneously 
gauges output growth, net investment growth and input decline. Adapt-
ing Ang (2019)’s static framework to the dynamic context, it is fur-
ther decomposed into dynamic technical change (that is, the shift of the 
adjustment-cost technology), dynamic technical efficiency change (that is, 
the catch-up with the front-runners) and dynamic mix efficiency change 
(that is, the change in ability to correctly allocate the mix of inputs, 
outputs and investments). Overall, this adjustment-cost framework pro-
vides a powerful tool to analyse economic performance and guide the 
resource reallocation required for increasing profits and productivity in the
long run.

Second, we show that the introduced dynamic Bennet quantity indica-
tor (with appropriate price normalisation) is theoretically grounded, in that 
it is a superlative indicator for the dynamic Luenberger indicator proposed 
by Oude Lansink, Stefanou and Serra (2015), in Diewert (1976)’s sense. If 
the dynamic directional distance function can be represented up to the sec-
ond order by a quadratic functional form with time-invariant second-order 

1 This paper uses adjustment-cost theory for modelling dynamic production in line with Silva, Ste-
fanou and Oude Lansink (2020). See Fallah-Fini, Triantis and Johnson (2014) for other approaches 
to dynamic production.
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774 F. Ang and P. J. Kerstens

coefficients and there is dynamic profit-maximising behaviour, then an appro-
priately price-normalised dynamic Bennet quantity indicator is equivalent 
to the dynamic Luenberger indicator. This theoretical result generalises the 
equivalence between the static Bennet quantity indicator and static Luenberger 
indicator shown by Chambers (1996, 2002) and Balk (1998), to the dynamic 
context. To the best of our knowledge, this is the first theoretical equivalence 
demonstrated in the dynamic context.

Third, we illustrate a statistically robust operationalisation of our proposed 
adjustment-cost framework by an application to 1,638 observations of large 
French meat-processing firms for the years 2012–2019. Competitiveness is 
a key issue in the European meat-processing sector. The French setting in 
particular is characterised by high labour costs, strict labour regulation and 
high taxation. The domestic market, which accounts for ca. 75 per cent of 
total revenues, is subjected to a decreasing demand for meat (Atradius, 2018). 
These factors underline the importance of dynamic economic analysis, which 
makes the French meat-processing sector a suitable candidate for a case study. 
The decomposition uses nonparametric data envelopment analysis (DEA), by 
which estimation does not require imposing a functional form. We obtain 
statistically robust estimates and confidence intervals for all components by 
means of the m-out-of-n subsampling bootstrap, recently developed by Simar 
and Wilson (2020). These robust estimates are based on a probabilistic formu-
lation of DEA and ensure consistency. They asymptotically converge to the 
true values and are less susceptible to outliers, thereby overcoming the usual 
deterministic disadvantage of DEA.

The three studies that are the closest to our proposed framework are Ang and 
Oude Lansink (2018), Silva, Stefanou and Oude Lansink (2020: p. 125–128, 
Section 4.3) and Ang (2019). Ang and Oude Lansink (2018) and Silva, Ste-
fanou and Oude Lansink (2020) decompose dynamic profit inefficiency into 
components of dynamic technical inefficiency and dynamic mix inefficiency. 
However, they only focus on contemporaneous dynamic efficiency analysis, 
whereas our paper uses these components as building blocks for intertempo-
ral dynamic productivity analysis. Ang (2019) develops a decomposition of 
the static Bennet quantity indicator into various components. Our paper goes 
beyond Ang’s static framework by using a dynamic perspective that consid-
ers adjustment costs and conceptualising dynamic productivity change as a 
component of dynamic profit change.

2. Theoretical framework

2.1. Preliminaries

Following the exposition and notation of Ang and Oude Lansink (2018) and 
Silva, Stefanou and Oude Lansink (2020: p. 125–128, Section 4.3), we start 
with the preliminaries. Let x𝑡 ∈ ℝ𝑢

+ represent the vector of variable input quan-
tities and y𝑡 ∈ ℝ𝑣

+ the vector of output quantities and capital stock vector 
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Robust nonparametric analysis of dynamic profits, prices and productivity 775

K𝑡 ∈ ℝ𝑓
+ with the corresponding vector of investment quantities I𝑡 ∈ ℝ𝑓 in time 

period t. The adjustment-cost technology set is defined by: 

𝓣𝑡(K𝑡) = {(x𝑡,I𝑡,y𝑡,K𝑡)|(x𝑡,I𝑡) produces y𝑡 given K𝑡}. (1)

We assume that 𝒯𝑡(K𝑡) is closed and convex, inputs and outputs are freely 
disposable, investments are negatively monotonic, the capital stock is reverse 
nested and investment inaction is possible. Investment augments the capital 
stock, which increases future production possibilities. It also comes at the 
expense of production for a given level of input use and requires a higher input 
use to maintain production, which implies that investment is associated with 
contemporaneous adjustment costs. These axiomatic properties also imply that 
the adjustment costs convexly increase with investment. Appendix A provides 
a formal treatment of these axiomatic properties.

Let 𝜹 be the vector of time-invariant depreciation rates for K𝑡. Define the 
corresponding vector of net investments as NI𝑡 = I𝑡 − 𝜹K𝑡. An equivalent 
representation of 𝒯𝑡(K𝑡) is the dynamic directional distance function:

𝐷𝑡(x𝑡,NI𝑡,y𝑡;g) = sup{𝛽 ∈ ℝ ∶ (x𝑡 − 𝛽g𝑥,NI𝑡 + 𝛽g𝐼,y𝑡 + 𝛽g𝑦) ∈ 𝒯𝑡(K𝑡)},
(2)

if (x𝑡 − 𝛽g𝑥,NI𝑡 + 𝛽g𝐼,y𝑡 + 𝛽g𝑦) ∈ 𝒯𝑡(K𝑡) for some 𝛽 and 𝐷𝑡(x𝑡,NI𝑡,y𝑡;
g) = −∞ otherwise. Here, g = (g𝑥,g𝐼,g𝑦) ∈ ℝ𝑢+𝑓+𝑣

+  represents the direc-
tional vector. Equation (2) generalises Chambers, Chung and F ̈are (1998)’s 
formulation of the static directional distance function to the dynamic context. 
It is a measure of dynamic technical inefficiency that simultaneously contracts 
input use and expands output production and net investments along g.

Our behavioural assumption is dynamic profit maximisation. We assume 
that a firm is maximising its current and discounted stream of future profits 
at any base period 𝑡 ∈ [0,+∞[. Let p𝑡 ∈ ℝ𝑣

++ represent the vector of output 
prices, K𝑡0

∈ ℝ𝑓
+ the initial capital stock vector, w𝑡 ∈ ℝ𝑢

++ the vector of vari-

able input prices, c𝑡 ∈ ℝ𝑓
++ the vector of capital input prices and 𝑟 ≥ 0 the 

discount rate. We assume that there is perfect competition in homogeneous fac-
tor markets and output markets, in which the firm is a price taker and updates 
the expectations as the base period changes. All firms are assumed to have 
identical and static expectations on 𝜹 and r. We formulate the dynamic profit 
maximisation problem as:

𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) = sup
y𝑡,x𝑡,I𝑡

∫
+∞

𝑡
[p𝑡y𝑡 −w𝑡x𝑡 − c𝑡K𝑡]𝑒−𝑟𝑡𝑑𝑡 (3a)

s.t.

̇K𝑡 = NI𝑡 with K𝑡 = K𝑡0
(3b)

𝐷𝑡(x𝑡,I𝑡,y𝑡,K𝑡;g) ≥ 0 with 𝑡 ∈ [0,+∞[ (3c)
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776 F. Ang and P. J. Kerstens

We can express the flow version of the dynamic profit function as the prod-
uct between the discount rate and the maximised sum of all future discounted 
profits, 𝑟𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡). As the level of K𝑡 is assumed to be fixed in time 
period t, it is convenient to define it as the difference between the flow version 
of the restricted dynamic profit function and the capital cost in current-value 
terms, 

𝑟𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) = 𝑟 ̄𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) − c𝑡K𝑡, (4)

where 𝑟 ̄𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) is the product between the discount rate and the 
maximised sum of all future discounted, restricted profits. Additionally, 
𝑟 ̄𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) can be written without loss of generality as:

𝑟 ̄𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡) = sup
y𝑡,x𝑡,I𝑡

{p𝑡y𝑡 −w𝑡x𝑡 + ∇𝐾𝓙𝑡(p𝑡,K𝑡,w𝑡,c𝑡)NI𝑡} (5a)

s.t. 𝐷𝑡(x𝑡,NI𝑡,y𝑡;g) ≥ 0, (5b)

whenever it exists. Here, ∇𝐾𝓙𝑡(p𝑡,K𝑡,w𝑡,c𝑡) represents the partial deriva-
tive of 𝒥𝑡(.) with respect to capital. Being the shadow price of capital, it 
indicates how much the optimal value function increases by an incremental 
increase in the capital stock.2 The restricted dynamic profit function 𝑟 ̄𝒥𝑡(.)
indicates the maximum restricted dynamic profit (that is, the flow version of 
maximum intertemporal, restricted profit in current-value terms). Our max-
imisation problem in equation (3a) is expressed in continuous time, which is 
the most general formulation. The current-value formulation in equation (5a) 
is expressed at time t.3

Equations (5a)–(5b) can be written as an unconstrained maximisation 
problem with Lagrange multiplier 𝜆t: 

𝑟 ̄𝒥𝑡(p𝑡,K𝑡,w𝑡,c𝑡)
= sup

y𝑡,x𝑡,I𝑡

{p𝑡y𝑡 −w𝑡x𝑡 + ∇𝐾𝓙𝑡(.)NI𝑡 + 𝜆𝑡𝐷𝑡(x𝑡,NI𝑡,y𝑡;g)} (6)

where 𝜆𝑡 = p𝑡g
𝑦 +w𝑡g

𝑥 + ∇𝐾𝓙𝑡(⋅)g𝐼.
The first-order conditions (FOCs) are:

w𝑡 = 𝜆𝑡∇𝑥𝐷𝑡(⋅), (7a)

∇𝐾𝓙𝑡(⋅) = −𝜆𝑡∇𝐼𝐷𝑡(⋅), (7b)

2 The adjustment costs are reflected by 𝐷𝑡(x𝑡,NI𝑡,y𝑡;g) in the constraints. This approach differs 
from approaches in which adjustment costs are modelled as a function of investment in the 
objective function (see for example Oude Lansink and Stefanou, 1997).

3 Formulating the infinite-horizon maximisation problem is also possible in discrete time, which 
would likewise result in a current-value formulation expressed at time t  (Nemoto and Goto, 1999; 
Nemoto and Goto, 2003).
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Robust nonparametric analysis of dynamic profits, prices and productivity 777

p𝑡 = −𝜆𝑡∇𝑦𝐷𝑡(⋅). (7c)

In what follows, we normalise (shadow) prices as ( ̃w𝑡,∇𝐾
̃𝓙𝑡, p̃𝑡) ≡

(w𝑡
𝜆𝑡

, ∇𝐾𝓙𝑡
𝜆𝑡

, p𝑡
𝜆𝑡

), stack quantities for period s as Q𝑠 ≡ (x𝑠,NI𝑠,y𝑠) and nor-

malised (shadow) prices for period t as P̃𝑡 ≡ ( ̃w𝑡,∇𝐾
̃𝓙𝑡, ̃p𝑡) and denote 

dynamic technical inefficiency by 𝐷𝑡(Q𝑡;g).
Let us now consider the actual (instead of maximum) price-normalised, 

restricted dynamic profit of the firm, in which quantities and (shadow) prices 
are measured in periods s and t, respectively: 

Π(Q𝑠, P̃𝑡) = ̃p𝑡y𝑠 − ̃w𝑡x𝑠 + ∇𝐾
̃𝓙𝑡NI𝑠. (8)

Let Π(Q∗
𝑠, ̃P𝑡) = sup

Q
{Π(Q, P̃𝑡)s.t. 𝐷𝑠(Q;g) ≥ 0} with Q∗

𝑠 the associated 
optimal quantities.

There is a dual relationship between Π(Q∗
𝑠, ̃P𝑡) and 𝐷𝑠(Q𝑠;g). This 

allows analysis of non-negative dynamic profit inefficiency, 𝐷𝑃𝐼𝑠(Q𝑠, P̃𝑡) ≡
Π(Q∗

𝑠, ̃P𝑡) − Π(Q𝑠, P̃𝑡), as the sum of non-negative dynamic techni-
cal inefficiency, 𝐷𝑠(Q𝑠;g), and non-negative dynamic mix inefficiency, 
𝐷𝑀𝐼𝑠(Q𝑠, ̃P𝑡;g):4

𝐷𝑃𝐼𝑠(Q𝑠, ̃P𝑡) ≡ Π(Q∗
𝑠, P̃𝑡) − Π(Q𝑠, ̃P𝑡) = 𝐷𝑠(Q𝑠;g) + 𝐷𝑀𝐼𝑠(Q𝑠, P̃𝑡;g).

(9)

 Here, 𝐷𝑀𝐼𝑠(⋅) indicates the deviation from the dynamic profit-maximising 
point because of an incorrect mix of variable inputs, investments and out-
puts. According to the Law of One Price (LoOP), competitive markets are 
assumed to clear for the same set of equilibrium prices of homogeneous inputs 
and outputs (Isard, 1977), as expressed by equation (3a). In practice, the 
LoOP is usually violated, which results in 𝐷𝑀𝐼𝑠(⋅) > 0. Explanatory fac-
tors, which are also relevant in our application, include market distortions (Lau 
and Yotopoulos, 1971), non-economic objectives (Owusu-Sekyere, Hansson 
and Telezhenko, 2022) and heterogeneous inputs and outputs (Kuosmanen, 
Cherchye and Sipil ̈ainen, 2006).

2.2. Dynamic profit change, dynamic price change and dynamic 
productivity change

This paper introduces the following decomposition of (price-normalised, 
restricted) dynamic profit change, which compares dynamic profit at time 

4 Dynamic mix inefficiency coincides with dynamic allocative inefficiency in the current decompo-
sition framework (Ang, 2019; O’Donnell, 2012).
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778 F. Ang and P. J. Kerstens

t + 1, Π(Q𝑡+1, ̃P𝑡+1), to dynamic profit at time t, Π(Q𝑡, ̃P𝑡): 

Π𝐶(Q𝑡,Q𝑡+1, P̃𝑡, P̃𝑡+1)

≡ Π(Q𝑡+1, ̃P𝑡+1) − Π(Q𝑡, P̃𝑡)

= [1
2

(y𝑡 + y𝑡+1)( ̃p𝑡+1 − p̃𝑡)

− 1
2

(x𝑡 + x𝑡+1)( ̃w𝑡+1 − ̃w𝑡) + 1
2

(NI𝑡 +NI𝑡+1)(∇𝐾
̃𝓙𝑡+1 − ∇𝐾

̃𝓙𝑡)]

+ [1
2

( ̃p𝑡 + ̃p𝑡+1)(y𝑡+1 − y𝑡) − 1
2

( ̃w𝑡 + ̃w𝑡+1)(x𝑡+1 − x𝑡)

+ 1
2

(∇𝐾
̃𝓙𝑡 + ∇𝐾

̃𝓙𝑡+1)(NI𝑡+1 −NI𝑡)]

≡ [𝑃𝑌 𝐶 − 𝑃𝑋𝐶 + 𝑃𝐼𝐶] + [𝑄𝑌 𝐶 − 𝑄𝑋𝐶 + 𝑄𝐼𝐶]

≡ 𝐷𝐵𝐶( ̃P𝑡, ̃P𝑡+1;Q𝑡,Q𝑡+1) + 𝐷𝐵𝐶(Q𝑡,Q𝑡+1; P̃𝑡, P̃𝑡+1)
≡ 𝐷𝐵𝑃𝐶 + 𝐷𝐵𝑄𝐶. (10)

 Extending Balk (1998)’s and Diewert (2005)’s decomposition of static 
profit change to the dynamic context, equation (10) makes explicit that a firm 
can increase its dynamic profit through dynamic Bennet price indicator DBPC
and dynamic Bennet quantity indicator DBQC. Following the terminology of 
Balk (2018), DBPC can be interpreted as a dynamic adaptation of the static 
total price recovery indicator. It assesses the degree to which variable input 
price change PXC is recovered by output price change PYC and change in the 
shadow price of capital PIC. Additionally, DBQC is a dynamic total factor pro-
ductivity indicator, consisting of output quantity change QYC, variable input 
quantity change QXC and net investment quantity change QIC.

Entailing the component QIC, DBQC generalises the static Bennet quan-
tity indicator, QYC − QXC, to the dynamic context. This additional component 
takes into account changes in dynamic productivity by changes in the capital 
stock due to net investments. If the level of gross investment is just enough 
to replace the depreciated capital in both periods (that is, NI𝑙 = I𝑙 − 𝜹K𝑙 = 0
with 𝑙 = {𝑡, 𝑡 + 1}), then QIC equals zero. Thus, QIC measures contributions 
to long-term profitability attributed to changes in the capital stock.5

2.3. Decomposing dynamic productivity change

Adapting Ang (2019)’s static framework to the dynamic context, we exploit 
equations (2), (5a)–(5b) and (9) for a further decomposition of DBQC into 
components of dynamic technical change DTC, dynamic technical efficiency 
change DTEC and dynamic mix efficiency change DMEC: 

𝐷𝐵𝑄𝐶 ≡ 𝐷𝑇 𝐶 + 𝐷𝑇 𝐸𝐶 + 𝐷𝑀𝐸𝐶, where (11a)

5 The dynamic Bennet indicator is intransitive. See Appendix B for a discussion.
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𝐷𝑇 𝐶 ≡ 1
2

{[Π(Q∗
𝑡+1, P̃𝑡) − Π(Q∗

𝑡 , P̃𝑡)] + [Π(Q∗
𝑡+1, P̃𝑡+1) − Π(Q∗

𝑡 , P̃𝑡+1)]}

≡ 1
2

{𝐷𝑇 𝐶𝐿 + 𝐷𝑇 𝐶𝑃}, (11b)

𝐷𝑇 𝐸𝐶 ≡ 𝐷𝑡(Q𝑡;g) − 𝐷𝑡+1(Q𝑡+1;g), (11c)

𝐷𝑀𝐸𝐶 ≡ 1
2

{[𝐷𝑀𝐼𝑡(Q𝑡, P̃𝑡;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡;g)]

+ [𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡+1;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, P̃𝑡+1;g)]}

≡ 1
2

{𝐷𝑀𝐸𝐶𝐿 + 𝐷𝑀𝐸𝐶𝑃}. (11d)

We dually measure dynamic technical change with the dynamic profit-
maximising point on the period-dependent frontier as the relevant reference 
point. Assessing the shift between t and t + 1 for P̃𝑡 yields the Laspeyres-type 
measure of dynamic technical change, 𝐷𝑇 𝐶𝐿 ≡ Π(Q∗

𝑡+1, P̃𝑡) − Π(Q∗
𝑡 , P̃𝑡). 

Doing so for P̃𝑡+1 yields the Paasche-type measure of dynamic technical 
change, 𝐷𝑇 𝐶𝑃 ≡ Π(Q∗

𝑡+1, ̃P𝑡+1) − Π(Q∗
𝑡 , ̃P𝑡+1). Here, DTC is the arithmetic 

average of DTCL and DTCP. If DTC > 0, there is technological progress.6

Additionally, DTEC assesses the extent to which the DMU catches up 
with the frontier along directional vector g. If DTEC > 0, dynamic techni-
cal inefficiency decreases, which indicates a catch-up with the best-practice 
adjustment-cost technology.

Finally, DMEC is the change in ability to correctly allocate the mix of 
variable inputs, outputs and net investments, with regard to the dynamic 
profit-maximising point on the adjustment-cost frontiers of periods t and 
t + 1. Analogously to DTC, we assess DMEC with respect to P̃𝑡 and ̃P𝑡+1, 
which respectively yields the Laspeyres-type measure of dynamic mix effi-
ciency change, 𝐷𝑀𝐸𝐶𝐿 ≡ 𝐷𝑀𝐼𝑡(Q𝑡, P̃𝑡;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, P̃𝑡;g), and 
the Paasche-type measure of dynamic mix efficiency change, 𝐷𝑀𝐸𝐶𝑃 ≡
𝐷𝑀𝐼𝑡(Q𝑡, P̃𝑡+1;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡+1;g). Here, DMEC is the arithmetic 
average of DMECL and DMECP. If DMEC > 0, the ability to correctly allocate 
the mix of variable inputs, outputs and net investments improves over time.

The above does not show a component of dynamic scale efficiency 
change. For completeness, Appendix C shows the decomposition that includes 
dynamic scale efficiency change.

6 Technological regress can be implausible in some settings, as vividly described by the often-
used quote by Kumar and Russell (2002: p. 540): ‘Does knowledge decay? Were ‘blueprints’ 
lost?’ One may restrict DTC to non-negative values, which can be done straightforwardly in prac-
tice by including all observations of preceding periods in the reference technology of the period 
considered.
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780 F. Ang and P. J. Kerstens

2.4. Linking the dynamic Bennet quantity indicator to the dynamic 
Luenberger indicator

We generalise the equivalence of the static Bennet quantity indicator and static 
Luenberger indicator shown by Chambers (1996, 2002) and Balk (1998), to the 
dynamic context. Recently, Oude Lansink, Stefanou and Serra (2015) devel-
oped the dynamic Luenberger indicator by generalising the static Luenberger 
indicator introduced by Chambers, F ̈are and Grosskopf (1996) to the dynamic 
context:7

𝐿𝑡,𝑡+1(Q𝑡,Q𝑡+1;g)

= 1
2

{[𝐷𝑡(Q𝑡;g) − 𝐷𝑡(Q𝑡+1;g)] + [𝐷𝑡+1(Q𝑡;g) − 𝐷𝑡+1(Q𝑡+1;g)]} . (12)

 Here, 𝐿𝑡,𝑡+1(.) is based on the estimation of four dynamic directional dis-
tance functions, as defined in equation (2). Like the dynamic Bennet quantity 
indicator, it rewards output growth and net investment growth and penalises 
variable input growth. A positive value indicates dynamic productivity growth.

Let us assume that the dynamic directional distance functions employed in 
the dynamic Luenberger indicator can be estimated by a quadratic functional 
form: 

𝐷ℎ(Q;g) =

𝑎ℎ
0 +

𝑢
∑
𝑖=1

𝑎ℎ
𝑥𝑖𝑥𝑖 +

𝑣
∑
𝑙=1

𝑎ℎ
𝑦𝑙𝑦𝑙 +

𝑓

∑
𝑗=1

𝑎ℎ
𝑁𝐼𝑗𝑁𝐼𝑗

+ 1
2

𝑢
∑
𝑖=1

𝑢
∑
𝑖′=1

𝑎ℎ
𝑥𝑖𝑥𝑖′ 𝑥𝑖𝑥𝑖′ + 1

2

𝑣
∑
𝑙=1

𝑣
∑
𝑙′=1

𝑎ℎ
𝑦𝑙𝑦𝑙′ 𝑦𝑙𝑦𝑙′

+ 1
2

𝑓

∑
𝑗=1

𝑓

∑
𝑗′=1

𝑎ℎ
𝑁𝐼𝑗𝑁𝐼𝑗′

𝑁𝐼𝑗𝑁𝐼𝑗′ + 1
2

𝑣
∑
𝑙=1

𝑓

∑
𝑗=1

𝑎ℎ
𝑦𝑙𝑁𝐼𝑗

𝑦𝑙𝑁𝐼𝑗

+ 1
2

𝑣
∑
𝑙=1

𝑢
∑
𝑖=1

𝑎ℎ
𝑦𝑙𝑥𝑖

𝑦𝑙𝑥𝑖 + 1
2

𝑓

∑
𝑗=1

𝑢
∑
𝑖=1

𝑎ℎ
𝑁𝐼𝑗𝑥𝑖

𝑁𝐼𝑗𝑥𝑖, (13a)

with the restrictions: 

𝑎ℎ
𝑥𝑖𝑥𝑖′ = 𝑎ℎ

𝑥𝑖′𝑥𝑖
,𝑎ℎ

𝑦𝑙𝑦𝑙′ = 𝑎ℎ
𝑦𝑙′𝑦𝑙

,𝑎ℎ
𝑁𝐼𝑗𝑁𝐼𝑗′

= 𝑎ℎ
𝑁𝐼𝑗′𝑁𝐼𝑗

, (13b)

𝑣
∑
𝑙=1

𝑎ℎ
𝑦𝑙

𝑔𝑦
𝑙 +

𝑓

∑
𝑗=1

𝑎ℎ
𝑁𝐼𝑗

𝑔𝐼
𝑗 −

𝑢
∑
𝑖=1

𝑎ℎ
𝑥𝑖

𝑔𝑥
𝑖 = −1; (13c)

7 Oude Lansink, Stefanou and Serra (2015) propose a dynamic input-oriented Luenberger indicator 
in which g𝑦 = 0𝑦. They also develop a dual dynamic Luenberger indicator based on value func-
tions. Our proposed dynamic Bennet quantity indicator is an empirical indicator not depending 
on value functions.
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−
𝑢

∑
𝑖′=1

𝑎ℎ
𝑥𝑖𝑥𝑖′ 𝑔

𝑥
𝑖′ +

𝑣
∑
𝑙=1

𝑎ℎ
𝑦𝑙𝑥𝑖

𝑔𝑦
𝑙 +

𝑓

∑
𝑗=1

𝑎ℎ
𝑁𝐼𝑗𝑥𝑖

𝑔𝐼
𝑗 = 0; 𝑖 = 1,…,𝑢 (13d)

𝑣
∑
𝑙′=1

𝑎ℎ
𝑦𝑙𝑦𝑙′ 𝑔

𝑦
𝑙′ +

𝑓

∑
𝑗=1

𝑎ℎ
𝑦𝑙𝑁𝐼𝑗

𝑔𝐼
𝑗 −

𝑢
∑
𝑖=1

𝑎ℎ
𝑦𝑙𝑥𝑖

𝑔𝑥
𝑖 = 0; 𝑙 = 1,…,𝑣 (13e)

𝑓

∑
𝑗′=1

𝑎ℎ
𝑁𝐼𝑗𝑁𝐼𝑗′

𝑔𝐼
𝑗′ +

𝑣
∑
𝑙=1

𝑎ℎ
𝑦𝑙𝑁𝐼𝑗

𝑔𝑦
𝑙 −

𝑢
∑
𝑖=1

𝑎ℎ
𝑁𝐼𝑗𝑥𝑖

𝑔𝑥
𝑖 = 0; 𝑗 = 1,…,𝑓 (13f)

The price-normalised dynamic Bennet quantity indicator is a superlative 
indicator for the dynamic Luenberger indicator in Diewert (1976)’s sense:

Proposition 1. If the firm is a dynamic profit maximiser and the dynamic 
directional distance function is quadratic with 𝑎𝑡

𝑥𝑖𝑥𝑖′ = 𝑎𝑡+1
𝑥𝑖𝑥𝑖′  for all i and i′, 

𝑎𝑡
𝑦𝑙𝑦𝑙′ = 𝑎𝑡+1

𝑦𝑙𝑦𝑙′  for all l and l′, and 𝑎𝑡
𝑁𝐼𝑗𝑁𝐼𝑗′

= 𝑎𝑡+1
𝑁𝐼𝑗𝑁𝐼𝑗′

 for all j and j′, then: 

𝐿𝑡,𝑡+1(Q𝑡,Q𝑡+1;g) = 𝐷𝐵𝐶(Q𝑡,Q𝑡+1; ̃P𝑡, ̃P𝑡+1).

Proof. See Appendix D.

3. Data

This paper retrieves data on French meat-processing firms for the period 
2012–2019 from the Orbis (2022) database published by Bureau van Dijk. We 
consider one output, two variable inputs and one quasi-fixed input with the 
corresponding (gross) investment. The output is annual turnover. The variable 
inputs are labour and materials. The quasi-fixed input is the opening value of 
the fixed assets. All variables are expressed in €. We compute implicit quanti-
ties by dividing the monetary values by the respective price indices, taken from 
the public Eurostat (2022) database. The variable on gross investment in fixed 
assets is constructed using the perpetual inventory method (see for example 
Kapelko, Oude Lansink and Stefanou (2015)). It is calculated by subtracting 
the opening value of fixed assets of the current year from the corresponding 
value of the next year, added with the opening value of depreciation of the next 
year. The net investment is equal to the gross investment minus the deprecia-
tion. To obtain a homogeneous sample and ensure computational feasibility of 
the employed m-out-of-n bootstrap, we restrict our analysis to the firms clas-
sified by Orbis (2022) as large or very large. These firms match at least one of 
the following conditions: (i) operating revenue of at least € 10 million, (ii) total 
assets of at least € 10 million, (iii) at least 150 employees or (iv) listed on the 
stock exchange. Firms with a labour productivity below € 100 per employee 
are excluded, as are those with missing values or unrealistic values below € 
1,000. We choose the overall averages of variable inputs, output and gross 
investment as the directional vector. The final data set is an unbalanced panel 
of 1,683 observations, for which we can compute 1,368 annual growth rates. 
Table 1 shows the descriptive statistics. 
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782 F. Ang and P. J. Kerstens

Table 1. Descriptive statistics for French meat-processing firms, 2012–2019

Variable Mean St. Dev. Min Max

Turnover (implicit quantity 
in €)

89,251,580 208,562,700 121,484 2,288,931,000

Labour (implicit quantity 
in €)

10,665,230 26,817,410 38,699 247,161,200

Materials (implicit quantity 
in €)

57,700,520 141,054,400 2,391 1,864,449,000

Depreciation (implicit 
quantity in €)

1,635,295 4,560,109 553 72,876,120

Gross investment (implicit 
quantity in €)

2,103,760 8,148,956 −15,546,580 191,642,400

Price index of turnover 
(dimensionless)

0.999 0.013 0.978 1.023

Price index of wage 
(dimensionless)

1.045 0.035 1.000 1.107

Price index of materials 
(dimensionless)

1.014 0.007 1.000 1.020

Price index of capital 
(dimensionless)

1.017 0.014 1.000 1.046

Having the most comprehensive coverage of worldwide firm-level financial 
data, the Orbis database is suitable for firm-level economic analysis, particu-
larly in the productivity context (Gal, 2013). It has recently been employed to 
this end by, amongst others, Albrizio, Kozluk and Zipperer (2017), Bento and 
Restuccia (2017), Kapelko (2019) and Duval, Hong and Timmer (2020). How-
ever, the Orbis database does not provide detailed information on the quality 
and composition of inputs and outputs. We implicitly assume that a higher-
quality, more expensive good can be represented by a higher implicit quantity 
(Cox and Wohlgenant, 1986). The fact that there is only one aggregate output 
and one aggregate measure for materials may be limiting in the context of our 
application. These aggregations mask the potential heterogeneity in types of 
products sold and animals purchased.

4. Empirical approach

4.1. Dynamic profit change, dynamic price change and dynamic 
productivity change

Equation (10) shows that dynamic profit change Π𝐶(Q𝑡,Q𝑡+1, P̃𝑡, P̃𝑡+1) and 
its decomposition into dynamic price change DBPC and dynamic productiv-
ity change DBQC can be easily computed if quantities and prices are readily 
available. This is the case for x, NI, y, w and p.

Being endogenous, ∇𝐾𝓙𝑡(⋅) necessitates estimation. Following for exam-
ple F ̈are et al. (2005) and Ang and Kerstens (2020), we estimate ∇𝐾𝓙𝑡(⋅)
by fitting a dynamic directional distance function with a quadratic functional 
form in line with Aigner and Chu (1968)’s linear programming procedure 
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Robust nonparametric analysis of dynamic profits, prices and productivity 783

Fig. 1. Histogram with estimated shadow prices of capital. 

and exploiting the dual relationship. The quadratic function is smooth and 
differentiable everywhere and yields linear FOCs retrieved in equations (7). 
It is consistent with the dynamic Bennet quantity indicator approximating 
the dynamic Luenberger indicator, as elucidated in sub-section 2.4. We refer 
to Appendix E for the linear programme yielding ∇𝐾𝓙𝑡(⋅). Figure 1 shows 
a histogram with the estimated shadow prices, which range from 0 to 0.637. 
A higher ∇𝐾𝓙𝑡(⋅) makes investment more valuable for the firm considered. 
The average is 0.381, which means that increasing the capital stock by € 1 is 
expected to increase the present value by on average € 0.381 over the infinite 
time horizon.

The FOCs are satisfied by construction. However, the convexity assumption 
relying on the second-order conditions can still be violated. The associated 
Hessian matrix is not negative semi-definite, as evidenced by the eigenvalues 
[2.593×104, 4.162×10−8, −1.468×102, −1.208×103]. This indicates that 
such a violation may be present for the current sample. As a result, the esti-
mated shadow prices potentially do not yield dynamically profit-maximising 
allocations of variable inputs, outputs and net investments. As a robustness 
check, we run our models using alternative shadow prices that comply with 
the convexity assumption. 

4.2. Decomposing dynamic productivity change

The decomposition of dynamic productivity change requires estimation of 
dynamic profit inefficiency, dynamic technical inefficiency and dynamic 
mix inefficiency. To this end, we use DEA and a dynamic adaptation of 
Varian (1984)’s Weak Axiom of Profit Maximisation (WAPM) as nonparamet-
ric estimators. Neither estimator imposes any functional form, but both are 
susceptible to outliers and disallow distinguishing inefficiency from noise.

While robust measures of static technical inefficiency are well-established 
(see Simar and Wilson (1998); Simar and Wilson (2011) and Simar, Vanhems 

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/50/2/771/6964462 by W

ageningen U
niversity and R

esearch - Library user on 26 M
ay 2023



784 F. Ang and P. J. Kerstens

and Wilson (2012)), Simar and Wilson (2020) only recently showed how to 
apply the m-out-of-n subsampling bootstrap to obtain robust measures of static 
profit inefficiency and static mix inefficiency. Henceforth, we obtain robust 
estimates and confidence intervals for dynamic profit inefficiency. Being com-
puted in an analogous way, the details on dynamic technical inefficiency and 
dynamic mix inefficiency are relegated to Appendix F for conciseness.

Denote 𝐽 𝑏
𝑚 ⊆ {1,…,𝑛} as an index set of size 𝑚 ≤ 𝑛 for bootstrap iteration 

𝑏 = 1,…,𝐵. Simar and Wilson (2020) apply a subsampling bootstrap to Varian 
(1984)’s WAPM, to obtain robust estimates of static profit inefficiency. Adapt-
ing the WAPM to the dynamic context, ∀(Q𝑠, P̃𝑡) ∈ 𝑆𝐽𝑏

𝑚
= {(Q𝑖𝑠, P̃𝑖𝑡)}𝑖∈𝐽𝑏

𝑚
for quantities at time s and prices at time t, we compute dynamic (restricted) 
profit inefficiency (9), where 

Π̂(Q∗
𝑠, ̃P𝑡) ≡ max

𝑖∈𝐽𝑏
𝑚

Π(Q𝑖𝑠, P̃𝑡) (14)

is the maximum (restricted) dynamic profit computed for subsample size 
𝑚 ≤ 𝑛 and Π(Q𝑠, P̃𝑡) is the observed dynamic profit (8) for quantities at time 
s and prices at time t. Let 𝐷𝑃𝐼𝑠(Q𝑠, P̃𝑡) be the full sample estimate with 

m = n. Furthermore, let 𝐷𝑃𝐼
𝑏
𝑠(Q𝑠, P̃𝑡) be a corresponding bootstrap estimate 

𝑏 = 1,…,𝐵 for subsample size m < n obtained by drawing m independent and 
uniform samples without replacement from the data. We can then construct 
100(1 − 𝛼)% confidence intervals 

[𝐷𝑃𝐼
𝐿
𝑠 (⋅),𝐷𝑃𝐼

𝑈
𝑠 (⋅)] = [𝐷𝑃𝐼𝑠(⋅) −

𝜓1−𝛼/2,𝑚

𝑛
,𝐷𝑃𝐼𝑠(⋅) −

𝜓𝛼/2,𝑚

𝑛
] , 

(15)
where 𝜓𝛼/2,𝑚 (𝜓1−𝛼/2,𝑚) is the 𝛼/2 (1 − 𝛼

2 ) percentile of the set 

{𝑚(𝐷𝑃𝐼
𝑏
𝑠(⋅) − 𝐷𝑃𝐼𝑠(⋅))}

𝐵

𝑏=1
 (Simar, Vanhems and Wilson, 2012). Fur-

thermore, bias-corrected estimates can be computed by (Simar, Vanhems and 
Wilson, 2012: Eq.(6.1)): 

𝐷𝑃𝐼
𝐵𝐶
𝑠 (⋅) = 𝐷𝑃𝐼𝑠(⋅) − 𝑚

𝑛
1
𝐵

𝐵
∑
𝑏=1

(𝐷𝑃𝐼
𝑏
𝑠(⋅) − 𝐷𝑃𝐼𝑠(⋅)). (16)

From rearranging equation (9) it follows that bias-corrected estimates of the 
maximum (restricted) dynamic profit can be computed by: 

Π̂𝐵𝐶(Q∗
𝑠, ̃P𝑡) = 𝐷𝑃𝐼

𝐵𝐶
𝑠 (Q𝑠, P̃𝑡) + Π(Q𝑠, P̃𝑡). (17)

Observe that the one-dimensional problem (14) is solved by simple enumer-
ation, while �̂�𝑡(x𝑡,NI𝑡,y𝑡;g) in Appendix F is solved by a linear programme.

Next, dynamic mix inefficiency 𝐷𝑀𝐼𝑠(Q𝑠, P̃𝑡;g) is computed as the resid-
ual from equation (9). Confidence intervals and bias-corrected estimates for 
dynamic mix inefficiency are constructed analogously as before.
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Fig. 2. Average dynamic profit change, dynamic productivity change and dynamic price change over 
time. 

The dynamic profit inefficiency estimator is consistent and converges at 
rate n1, while the dynamic technical inefficiency estimator converges at rate 
𝑛

2
𝑢+𝑣+𝑓+1 . Being the difference between the dynamic profit inefficiency esti-

mator and the dynamic technical inefficiency estimator, the dynamic mix 
inefficiency estimator inherits the slower rate 𝑛

2
𝑢+𝑣+𝑓+1  of the dynamic techni-

cal inefficiency estimator (Simar and Wilson, 2020). Kneip, Simar and Wilson 
(2008: Theorem 3) show that the m-out-of-n subsampling bootstrap is consis-
tent for any m < n. Note that such results on consistency and convergence rate 
are not yet known for scale inefficiency, which is why we restrict the analysis 
to assessing the statistical robustness of dynamic technical change, dynamic 
technical efficiency change and dynamic mix efficiency change. In the main 
results, we choose 𝑚 = 0.7𝑛 for the computation of the bias-corrected esti-
mates and the confidence intervals. A robustness check verifies the results for 
𝑚 = 0.5𝑛 and 𝑚 = 0.9𝑛.

5. Results

5.1. Dynamic profit change, dynamic price change and dynamic 
productivity change

Following equation (10), we first analyse dynamic profit change as compo-
nents of dynamic productivity change and dynamic price change. Figure 2 
shows the annual average values from 2012–2013 to 2018–2019 in percent-
age terms. The dynamic profit increases on average by 0.32 per cent per 

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/50/2/771/6964462 by W

ageningen U
niversity and R

esearch - Library user on 26 M
ay 2023



786 F. Ang and P. J. Kerstens

Fig. 3. Proportion of firms by which DBQC and DBPC between two subsequent years are greater than 
+0.1 per cent, between −0.1 per cent and +0.1 per cent and smaller than −0.1 per cent. 

annum (p.a.). There is on average dynamic profit growth in all periods except 
for 2018–2019, in which there is an average decline of 0.08 per cent. The 
periods 2013–2014 and 2016–2017 stand out, with a dynamic profit growth 
averaging, respectively, 0.67 per cent and 0.64 per cent. This dynamic profit 
growth is mainly driven by dynamic productivity growth and partly offset by 
dynamic price decline. This is most visible in the periods 2013–2014 and 
2014–2015, in which dynamic productivity growth of on average 1.20 per cent 
and 1.34 per cent is offset by dynamic price decline of on average 0.53 per 
cent and 0.84 per cent, respectively. The average dynamic price change and 
dynamic productivity change are, respectively, −0.18 per cent p.a. and +0.50 
per cent p.a. in the studied period.

Figures 3a and b show the proportion of firms for which, respectively, 
DBQC and DBPC between two subsequent years are greater than +0.1 per 
cent, between −0.1 per cent and +0.1 per cent and smaller than −0.1 per 
cent. In 2013–2014, 2014–2015, 2015–2016 and 2017–2018, the majority of 
firms change dynamic productivity by more than +0.1 per cent. However, in 
2013–2014, 2014–2015 and 2015–2016, this is partly offset by a change in 
dynamic price below −0.1 per cent in the majority of firms. In every period, 
only a minority of firms decrease dynamic productivity by more than 0.1 per 
cent p.a. In 2012–2013, 2016–2017, 2017–2018 and 2018–2019, most firms 
do not show a substantial change in dynamic price, by which DBPC ranges 
between −0.1 per cent and +0.1 per cent. 

5.2. Decomposing dynamic productivity change

Table 2 shows summary statistics on DBQC and its components, DTC, DTEC
and DMEC, following equation (11). Observe that DBQC is computed as an 
empirical indicator without bias correction, while DTC, DTEC and DMEC are 
bias-corrected estimates using the m-out-of-n bootstrap. Considering annual 
means, large fluctuations of DTC are offset by DMEC. The average DTC is 
−0.77 per cent p.a. in the studied period and ranges from −24.31 per cent in 
2017–2018 to +17.52 per cent in 2014–2015. We observe the reverse trend 
for DMEC, which is averaging +24.12 per cent and −14.56 per cent in the 
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respective periods. The average DMEC is +1.54 per cent p.a. in the studied 
period. Furthermore, the average DTEC is −0.26 per cent p.a. and shows sub-
stantially less variation over time. It ranges from −3.06 per cent in 2018–2019 
to +1.90 per cent in 2015–2016. The standard deviations reveal a high vari-
ability of DTEC and DMEC and a low variability of DTC in all periods. The 
performance of the dynamic profit-maximising peers on the frontier fluctu-
ates substantially. Over time, the distance to the frontier does not change 
much among laggards in primal terms, while their catch-up to the dynamic 
profit-maximising peers varies considerably.

Figure 4 shows the proportion of firms for which components of dynamic 
productivity increase, stagnate or decrease between two subsequent years. 
Using the m-out-of-n-bootstrap, we compare the [2.5 per cent,97.5 per cent]
confidence intervals of maximum dynamic profit, dynamic technical ineffi-
ciency and dynamic mix efficiency between two subsequent years. This allows 
making the assessment on, respectively, DTC, DTEC and DMEC. As shown in 
equations (11b) and (11d), DTC and DMEC can be analysed from Laspeyres 
and Paasche perspectives. We compare the confidence intervals of Π(Q∗

𝑡 , P̃𝑡)
and Π(Q∗

𝑡+1, ̃P𝑡) (Π(Q∗
𝑡 , ̃P𝑡+1) and Π(Q∗

𝑡+1, P̃𝑡+1)) to assess whether DTCL
(DTCP) is below zero, not significantly different from zero or above zero, at the 
5 per cent significance level. We compare the confidence intervals of 𝐷𝑡(Q𝑡;g)
and 𝐷𝑡+1(Q𝑡+1;g) for assessing DTEC. Finally, we compare the confidence 
intervals of 𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡;g) and 𝐷𝑀𝐼𝑡+1(Q𝑡+1, P̃𝑡;g) (𝐷𝑀𝐼𝑡(Q𝑡, P̃𝑡+1;g)
and 𝐷𝑀𝐼𝑡+1(Q𝑡+1, P̃𝑡+1;g)) for assessing DMECL (DMECP).

Figure 4a shows that DTCL does not differ from zero at the 5 per cent sig-
nificance level for (almost) all firms in 2012–2013, 2013–2014, 2015–2016, 
2016–2017 and 2018–2019. Furthermore, 𝐷𝑇 𝐶𝐿 > 0 for 57 out of 199 
firms in 2014–2015 and 𝐷𝑇 𝐶𝐿 < 0 for 197 out of 198 firms in 2017–2018. 
Figure 4b shows that DTCP does not differ from zero at the 5 per cent sig-
nificance level for the large majority of firms in 2012–2013, 2013–2014, 
2014–2015, 2015–2016, 2016–2017 and 2018–2019. Additionally, 𝐷𝑇 𝐶𝑃 <
0 for 197 out of 198 firms in 2017–2018.

Figure 4c shows that DTEC does not differ from zero at the 5 per cent 
significance level for the large majority of firms in all periods. Furthermore, 
DTEC > 0 for 21 out of 198 firms in 2015–2016, and DTEC < 0 for 57 out of 
199 firms in 2014–2015 and for 67 out of 188 firms in 2018–2019. We thus 
observe that a positive DTCL is offset by negative DTEC in 2014–2015.

Figures 4d–e show that DMECL and DMECP do not differ from zero at the 
5 per cent significance level for (almost) all firms in all years but 2017–2018. 
In 2017–2018, 𝐷𝑀𝐸𝐶𝐿 > 0 for 131 out of 198 firms and 𝐷𝑀𝐸𝐶𝑃 > 0 for 
125 out of 198 firms. Both compensate for the negative DTCL and DTCP for 
almost all firms in that period. 

It is interesting to compare our findings with those of Kapelko (2019), who 
applies a dynamic Luenberger indicator to European food-processing firms 
for the period of 2005–2012, using non-bootstrapped DEA. Kapelko finds 
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Fig. 4. Proportion of firms for which components of dynamic productivity change are positive, zero 
and negative at the 5 per cent significance level. 

on average a slight dynamic productivity decline for Western European meat-
processing firms during that period, with fluctuating underlying components. 
Our results show that the dynamic productivity of French meat-processing 
firms has on average modestly increased, with large yet often not significant 
fluctuating components for the period of 2012–2019. The potential variability 
of components of productivity growth when using DEA has also been pointed 
out by Atkinson, Cornwell and Honerkamp (2003). The m-out-of-n bootstrap 
employed here thus provides an important qualification of the statistical robust-
ness of this variability over time: most fluctuations are statistically insignificant 
in the current sample.
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5.3. Robustness checks

We conduct three robustness checks, which we relegate to Appendix G for 
conciseness. We investigate (i) an alternative specification of ∇𝐾𝓙𝑡(⋅), (ii) 
alternative subsample size m and (iii) the subsample for which the divergence 
between DMEC and 𝐷𝐵𝑄𝐶 − 𝐷𝑇 𝐶 − 𝐷𝑇 𝐸𝐶 is small.

Quantitatively, these robustness checks largely yield similar results. We 
do note that a larger subsample size tends to result in bias-corrected esti-
mates being smaller in absolute terms. This seems especially to be the case 
for extreme values. Overall, the values of these components are similar, as 
confirmed by the Pearson correlation, and lead to similar ranks, as confirmed 
by the Spearman rank correlation. The Li (1996) test shows that the overall 
distributions are similar for DBQC, DTEC and DMEC, but not for DTC, when 
using an alternative subsample size.

Qualitatively, all robustness checks lead to the same conclusions. The 
dynamic profit growth is on average low in the studied period. Dynamic pro-
ductivity growth tends to be accompanied by dynamic price decline and vice 
versa. Overall, there is a modest dynamic productivity growth, which is driven 
by large fluctuations of its underlying components. However, these fluctuations 
are largely statistically insignificant.

6. Conclusions

Appropriately considering adjustment costs, this paper develops a statisti-
cally robust nonparametric framework for analysing dynamic profits, prices 
and productivity. We show that change in ‘dynamic profit’ (annual flow ver-
sion of intertemporal profit in current-value terms) can be expressed as the 
sum of dynamic price change and dynamic productivity change. These novel 
components, respectively, represent a dynamic Bennet price indicator and a 
dynamic Bennet quantity indicator. Adapting Ang (2019)’s static decompo-
sition framework to the dynamic context, the latter is further decomposed 
into components of dynamic technical change, dynamic technical efficiency 
change and dynamic mix efficiency change. The dynamic Bennet quantity 
indicator has theoretical underpinnings. We show that it is a superlative indi-
cator for Oude Lansink, Stefanou and Serra (2015)’s dynamic Luenberger 
indicator in Diewert (1976)’s sense for appropriately normalised prices: if 
the dynamic directional distance function can be represented up to the sec-
ond order by a quadratic functional form with time-invariant second-order 
coefficients and there is dynamic profit-maximising behaviour, then an appro-
priately price-normalised dynamic Bennet quantity indicator is equivalent to 
the dynamic Luenberger indicator.

The potency of our proposed framework is illustrated by an empirical appli-
cation to 1,638 observations of French meat-processing firms for the years 
2012–2019 using DEA. Applying the m-out-of-n bootstrap recently developed 
by Simar and Wilson (2020) permits statistical inference in our nonparametric 
setting.
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The results show that dynamic profit has increased on average by 0.32 per 
cent p.a. in the studied period, which is low. It is driven by a modest dynamic 
productivity growth of on average 0.50 per cent p.a., being partially offset 
by dynamic price decline of on average 0.18 per cent p.a. The decomposi-
tion of dynamic productivity growth reveals that the underlying components 
fluctuate substantially. However, the m-out-of-n bootstrap casts doubt on the 
statistical robustness of these fluctuations. Three robustness checks confirm 
these findings. The results highlight the importance of employing the m-out-
of-n bootstrap beyond the usual deterministic DEA. They also corroborate the 
broader narrative of the productivity slowdown in Europe in recent decades 
(Andrews, Criscuolo and Gal, 2016). The statistical insignificance may partly 
be driven by the aggregate nature of inputs and outputs in the Orbis database. 
An ideal application of our approach would involve data that include a broader 
range of inputs, such as animal inputs in the meat-processing case. We offer 
our advance as a means of guiding future research on dynamic profits, prices 
and productivity.

We have three recommendations for future research. First, the proposed 
adjustment-cost framework could also be estimated using stochastic frontier 
analysis. This requires a suitable specification of a flexible functional form 
and imposition of additional translation property restrictions, which is in prac-
tice challenging (Stefanou, 2020), yet feasible, as shown by Oude Lansink, 
Stefanou and Serra (2015).

Second, we recommend to further investigate theoretical relationships 
between dynamic productivity measures. Such relationships have been demon-
strated for a vast array of static productivity measures. The extension to the 
dynamic setting is especially relevant if economic optimising behaviour needs 
to be modelled as a long-term rather than a short-term endeavour.

Third, our adjustment-cost framework could be adapted to the environmen-
tal context. Despite substantial progress in the understanding of modelling 
environmental bads in a production framework (see for example Coelli, Lauw-
ers and Van Huylenbroeck, 2007; Hoang and Coelli, 2011; Murty, Russell and 
Levkoff, 2012), the focus has predominantly been on flows rather than stocks. 
The field of natural resource economics teaches us that natural resources such 
as forests and soils should be treated as a capital stock with dynamic proper-
ties. As suggested by Ang and Dakpo (2021), modelling this salient feature in 
a production framework would yield novel insights.
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p. 125-128, Section 4.3), we make the following assumptions on the adjustment-cost 
technology:

Axiom 1. (Closedness). 𝒯𝑡(K𝑡) is closed.
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Axiom 2. (Free disposability of inputs and outputs). if (x′
𝑡,−y′

𝑡) ≥ (x𝑡,−y𝑡) then 
(x𝑡,I𝑡,y𝑡) ∈ 𝒯𝑡(K𝑡) ⇒ (x′

𝑡,I𝑡,y′
𝑡) ∈ 𝒯𝑡(K𝑡).

Axiom 3. (Investment Inaction is possible). (x𝑡,0𝑡,y𝑡) ∈ 𝒯𝑡(K𝑡).

Axiom 4. (Negative monotonicity in investments). if I𝑡 ≥ I′
𝑡 then (x𝑡,I𝑡,y𝑡) ∈ 𝒯𝑡(K𝑡) ⇒

(x𝑡,I′
𝑡,y𝑡) ∈ 𝒯𝑡(K𝑡).

Axiom 5. (Reverse nestedness in capital stock). if K′
𝑡 ≥ K𝑡 then 𝒯𝑡(K𝑡) ⊆ 𝒯𝑡(K′

𝑡).

Axiom 6. (Convexity). Technology set 𝒯𝑡(K𝑡) is convex.

Axiom 3 states that production is possible without investment and is consistent with 
periodic observed investment spikes. Axioms 2, 4 and 6 model the adjustment costs asso-
ciated with investment. Investment comes at the expense of production (given the level of 
input use) and requires a higher input use to maintain production. Finally, Axiom 5 models 
that an addition in the capital stock widens the production possibilities.

Appendix B Transitivity

One can render DBQC transitive by choosing (normalised) prices ̄P that are fixed across 
space and over time. In line with Ang (2019), this would yield the dynamic ‘Bennet-
Lowe’ quantity indicator 𝐷𝐵𝐶(Q𝑡,Q𝑡+1; ̄P), which can also be decomposed employ-
ing equation (11). Transitivity allows straightforward interpretation of multilateral and 
-temporal comparisons (O’Donnell, 2012), as 𝐷𝐵𝐶(Qℎ,Q𝑗; ̄P) = 𝐷𝐵𝐶(Qℎ,Q𝑖; ̄P) +
𝐷𝐵𝐶(Q𝑖,Q𝑗; ̄P). The dynamic Bennet quantity indicator is intransitive, but allows equal 
characterisation of observation-specific weights under potentially different market condi-
tions. We refer to Drechsler (1973) and Caves, Christensen and Diewert (1982) for early yet 
pertinent discussions about the trade-off between transitivity and characteristicity. Follow-
ing the reasoning of Ang (2019) in the static context, the dynamic Bennet-Lowe quantity 
indicator can lead to a violation of the identity test in its dual, Π𝐶(Q𝑡,Q𝑡+1, ̃P𝑡, ̃P𝑡+1) −
𝐷𝐵𝐶(Q𝑡,Q𝑡+1; ̄P). This dual thus cannot be regarded as a dynamic total price recovery 
indicator, as an unchanged price can change the dual value. Such a violation does not occur 
in the dynamic Bennet formulations.

Appendix C Dynamic scale efficiency change

Extending Ang (2019)’s framework to the dynamic context, we can define benchmark

adjustment-cost technology  with the same properties as 𝒯𝑡(K𝑡). Usually, 

 is defined with regard to constant returns to scale. Equations (2)–(9) can then also 

be established for . This permits defining two dynamic scale inefficiency measures. 
Dynamic primal scale inefficiency 𝐷𝑃𝑆𝐼𝑡(Q𝑡;g) is defined as: 

Here, 𝐷𝑃𝑆𝐼𝑡(⋅) indicates the deviation from the optimal scale in terms of quantities of 
variable inputs, investments and outputs.

Dynamic dual scale inefficiency 𝐷𝐷𝑆𝐼𝑡(Q∗
𝑡 , ̃P𝑡) is defined as: 

Here, 𝐷𝐷𝑆𝐼𝑡(⋅) also indicates the deviation from the optimal scale, but is measured in 
terms of quantities as well as normalised prices of variable inputs, investments and outputs.

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/50/2/771/6964462 by W

ageningen U
niversity and R

esearch - Library user on 26 M
ay 2023



Robust nonparametric analysis of dynamic profits, prices and productivity 797

Adapting Ang (2019)’s static framework to the dynamic context, we introduce two fur-
ther decompositions of 𝐷𝐵𝑄𝐶(⋅). First, 𝐷𝐵𝑄𝐶(⋅) can be decomposed into components 

of dynamic technical change with regard to the benchmark technology , dynamic 
technical efficiency change DTEC, dynamic primal scale efficiency change DPSEC and 

dynamic mix efficiency change with respect to the benchmark technology :

 

 

𝐷𝑇 𝐸𝐶 ≡ 𝐷𝑡(Q𝑡;g) − 𝐷𝑡+1(Q𝑡+1;g), (C3c)

𝐷𝑃𝑆𝐸𝐶 ≡ 𝐷𝑃𝑆𝐼𝑡(Q𝑡;g) − 𝐷𝑃𝑆𝐼𝑡+1(Q𝑡+1;g) and (C3d)

 

We dually measure dynamic technical change with the dynamic profit-maximising 
point on the period-dependent benchmark frontier as the relevant reference point. 
Assessing the shift between t and t + 1 for ̃P𝑡 yields the Laspeyres-type measure of 

. Doing so for ̃P𝑡+1 yields the Paasche-type measure of 

. Here,  is the arithmetic average of  

and . If , there is technological progress.
In addition, DTEC assesses the extent to which the DMU catches up with the actual 

frontier along directional vector g. If DTEC > 0, dynamic technical inefficiency decreases, 
which thus indicates a catch-up to the best-practice adjustment-cost technology.

Furthermore, DPSEC gauges the change in scale operation, in terms of quantities. If 
DPSEC > 0, the DMU moves closer to the scale operation of the benchmark frontier, in 
terms of quantities.

Finally,  is the change in ability to correctly allocate the mix of variable
inputs, outputs and net investments, with regard to the dynamic profit-maximising
point on the benchmark frontiers of periods t and t + 1. Analogously to , we assess

 with respect to ̃P𝑡 and ̃P𝑡+1, which respectively yields the Laspeyres-type mea-
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sure of mix efficiency change, , and 
the Paasche-type measure of mix efficiency 

change, . Here,  is the 

arithmetic average of  and . If , the ability to correctly 
allocate the mix of variable inputs, outputs and net investments improves over time.

Second, 𝐷𝐵𝑄𝐶(⋅) can be decomposed into components of dynamic technical change 

with regard to the benchmark technology , dynamic technical efficiency change 
DTEC, dynamic dual scale efficiency change DDSEC and dynamic mix efficiency change 
with respect to the actual technology DMEC:

𝐷𝐵𝑄𝐶(⋅) = 𝐷𝑇 𝐶 + 𝐷𝑇 𝐸𝐶 + 𝐷𝐷𝑆𝐸𝐶 + 𝐷𝑀𝐸𝐶, where (C4a)

 

𝐷𝑇 𝐸𝐶 ≡ 𝐷𝑡(Q𝑡;g) − 𝐷𝑡+1(Q𝑡+1;g), (C4c)

𝐷𝐷𝑆𝐸𝐶 ≡ 1
2

{[𝐷𝐷𝑆𝐼𝑡(Q∗
𝑡 , ̃P𝑡;g) − 𝐷𝐷𝑆𝐼𝑡+1(Q∗

𝑡+1, ̃P𝑡;g)]

+ [𝐷𝐷𝑆𝐼𝑡(Q∗
𝑡 , ̃P𝑡+1;g) − 𝐷𝐷𝑆𝐼𝑡+1(Q∗

𝑡+1, ̃P𝑡+1;g)]}

≡ 1
2

{𝐷𝐷𝑆𝐸𝐶𝐿 + 𝐷𝐷𝑆𝐸𝐶𝑃} and (C4d)

𝐷𝑀𝐸𝐶 ≡ 1
2

{[𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡;g)]

+ [𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡+1;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡+1;g)]}

≡ 1
2

{𝐷𝑀𝐸𝐶𝐿 + 𝐷𝑀𝐸𝐶𝑃}. (C4e)

Here,  and DTEC are components also occurring in the first decomposition, which 
have the same interpretation.

In addition, analogously to , we assess DDSEC with respect to ̃P𝑡 and 
̃P𝑡+1, which respectively yields the Laspeyres-type measure of scale efficiency change, 

𝐷𝐷𝑆𝐸𝐶𝐿 ≡ 𝐷𝐷𝑆𝐼𝑡(Q∗
𝑡 , P̃𝑡;g) − 𝐷𝐷𝑆𝐼𝑡+1(Q∗

𝑡+1, ̃P𝑡;g), and the Paasche-type measure 

of mix efficiency change, 𝐷𝐷𝑆𝐸𝐶𝑃 ≡ 𝐷𝐷𝑆𝐼𝑡(Q∗
𝑡 , ̃P𝑡+1;g) − 𝐷𝐷𝑆𝐼𝑡+1(Q∗

𝑡+1, ̃P𝑡+1;g). 
Here, DDSEC is the arithmetic average of DDSECL and DDSECP. If DDSEC > 0, the 
DMU moves closer to the scale operation of the benchmark frontier, in terms of prices 
and quantities.

Finally, as in the decomposition presented in the main text, DMEC is the change in 
ability to correctly allocate the mix of variable inputs, outputs and net investments, with 
regard to the dynamic profit-maximising point on the actual frontiers of periods t and t + 1. 
We assess DMEC with respect to ̃P𝑡 and ̃P𝑡+1, which respectively yields the Laspeyres-type 
measure of mix efficiency change, 𝐷𝑀𝐸𝐶𝐿 ≡ 𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡;g) − 𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡;g), 
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and the Paasche-type measure of mix efficiency change, 𝐷𝑀𝐸𝐶𝑃 ≡ 𝐷𝑀𝐼𝑡(Q𝑡, ̃P𝑡+1;g) −
𝐷𝑀𝐼𝑡+1(Q𝑡+1, ̃P𝑡+1;g). Here, DMEC is the arithmetic average of DMECL and DMECP. 
If DMEC > 0, the ability to correctly allocate the mix of variable inputs, outputs and net 
investments improves over time.

Appendix D Proof of Proposition 1

Proof.We can write 

𝐿𝑡,𝑡+1(Q𝑡,Q𝑡+1;g) = 1
2

{𝐿𝑡(⋅) + 𝐿𝑡+1(⋅)}

where 

𝐿𝑧(⋅) = [𝐷𝑧(Q𝑡;g) − 𝐷𝑧(Q𝑡+1;g)] .

Analogous to the proof of Chambers (1996); Chambers (2002) and Balk (1998) in the 
static context, we apply Diewert (1976)’s quadratic lemma to the dynamic context: 

𝐿𝑧(⋅) =1
2

[∇𝑦𝐷𝑧(Q𝑡;g) + ∇𝑦𝐷𝑧(Q𝑡+1;g)](y𝑡 − y𝑡+1)

+ 1
2

[∇𝑥𝐷𝑧(Q𝑡;g) + ∇𝑥𝐷𝑧(Q𝑡+1;g)](x𝑡 − x𝑡+1)

+ 1
2

[∇𝐼𝐷𝑧(Q𝑡;g) + ∇𝐼𝐷𝑧(Q𝑡+1;g)](NI𝑡 −NI𝑡+1).

The arithmetic average of both 𝐿𝑡(⋅) and 𝐿𝑡+1(⋅) and assuming 𝑎𝑡
𝑥𝑖𝑥𝑖′ = 𝑎𝑡+1

𝑥𝑖𝑥𝑖′  for all 

i and i′, 𝑎𝑡
𝑦𝑙𝑦𝑙′ = 𝑎𝑡+1

𝑦𝑙𝑦𝑙′  for all l and l′, and 𝑎𝑡
𝑁𝐼𝑗𝑁𝐼𝑗′

= 𝑎𝑡+1
𝑁𝐼𝑗𝑁𝐼𝑗′

 for all j and j′, yields: 

𝐿𝑡,𝑡+1(⋅) =1
2

[∇𝑦𝐷𝑡(Q𝑡;g) + ∇𝑦𝐷𝑡+1(Q𝑡+1;g)](y𝑡 − y𝑡+1)

+ 1
2

[∇𝑥𝐷𝑡(Q𝑡;g) + ∇𝑥𝐷𝑡+1(Q𝑡+1;g)](x𝑡 − x𝑡+1)

+ 1
2

[∇𝐼𝐷𝑡(Q𝑡;g) + ∇𝐼𝐷𝑡+1(Q𝑡+1;g)](NI𝑡 −NI𝑡+1).

The assumption of dynamic profit-maximising behaviour allows exploitation of the dual 
relationship between the dynamic directional distance function and restricted dynamic profit 
function and thus also derivation of the FOCs (7). Substitution for the FOCs completes our 
proof: 

𝐿𝑡,𝑡+1(⋅) = 1
2

[− ̃p𝑡 − ̃p𝑡+1] (y𝑡 − y𝑡+1) + 1
2

[ ̃w𝑡 + ̃w𝑡+1] (x𝑡 − x𝑡+1)

+ 1
2

[−∇𝐾
̃𝓙𝑡 − ∇𝐾

̃𝓙𝑡+1](NI𝑡 −NI𝑡+1)

= 𝐷𝐵𝐶(Q𝑡,Q𝑡+1; ̃P𝑡, ̃P𝑡+1).
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Appendix E Shadow prices of capital

In line with Proposition 1, we use the following quadratic functional form for firm z:

𝐷𝑡(x𝑧,𝑁𝐼𝑧,𝑦𝑧; (g𝑥,g𝐼,g𝑦)) (E1)

= 𝑎0 +
2

∑
𝑢=1

𝑎𝑢𝑥𝑢
𝑧 + 𝑏𝑦𝑧 + 𝑐𝑁𝐼𝑧 + 1

2

2
∑
𝑢=1

2
∑
𝑣=1

𝛼𝑢𝑣𝑥𝑢
𝑧 𝑥𝑣

𝑧

+ 1
2

𝛽𝑦2
𝑧 + 1

2
𝛾𝑁𝐼2

𝑧 +
2

∑
𝑢=1

𝜙𝑢𝑥𝑢
𝑧 𝑦𝑧

+
2

∑
𝑢=1

𝜒𝑢𝑥𝑢
𝑧 𝑁𝐼𝑧 + 𝜓𝑦𝑧𝑁𝐼𝑧 + 𝑎𝑡𝑖𝑚𝑒(𝑡 − 2012).

Equation (E1) satisfies the conditions from the theoretical results, as all coefficients are 
time-invariant. We use a time trend to account for technical change.

We estimate equation (E1) for firm z by the following linear programme:

min𝑒𝑧≥0

𝑍
∑
𝑧=1

𝑒𝑧 (E2a)

s.t. 𝑒𝑧 = (𝐸5) ∀𝑧 = 1,…,𝑍 (E2b)

(13𝑏) − (13𝑓) (E6c)

𝜕𝐷𝑡(x𝑧,𝑁𝐼𝑧,𝑦𝑧; (g𝑥,g𝐼,g𝑦))/𝜕𝑥𝑢
𝑧 ≥ 0 ∀𝑧 = 1,…,𝑍; ∀𝑢 = 1,…,2 (E6d)

𝜕𝐷𝑡(x𝑧,𝑁𝐼𝑧,𝑦𝑧; (g𝑥,g𝐼,g𝑦))/𝜕𝑦𝑧 ≤ 0 ∀𝑧 = 1,…,𝑍 (E6e)

𝜕𝐷𝑡(x𝑧,𝑁𝐼𝑧,𝑦𝑧; (g𝑥,g𝐼,g𝑦))/𝜕𝐼𝑧 ≤ 0 ∀𝑧 = 1,…,𝑍. (E6f)

Combining equations (7b), (7c), (E6e) and (E6f) allows us to directly obtain the firm-
specific shadow price of capital ∇𝐾𝒥𝑧(⋅): 

∇𝐾𝒥𝑧(⋅) = 𝑝
𝑐 + 𝛾𝑁𝐼𝑧 + ∑2

𝑢=1 𝜒𝑢𝑥𝑢
𝑧 + 𝜓𝑦𝑧

𝑏 + 𝛽𝑦𝑧 + ∑2
𝑢=1 𝜙𝑢𝑥𝑢

𝑧 + 𝜓𝑁𝐼𝑧
. (E3)
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Appendix F Linear programmes

Denote 𝐽𝑏
𝑚 ⊆ {1,…,𝑛} an index set of size 𝑚 ≤ 𝑛 for bootstrap iteration 𝑏 = 1,…,𝐵. The 

bootstrap estimate of the dynamic directional distance function �̂�𝑏
𝑡(x𝑘𝑠,NI𝑘𝑠,y𝑘𝑠;g) eval-

uated for an observation k in period s against a technology in period t in the direction g for 
bootstrap iteration b is computed using the following linear programme: 

�̂�𝑏
𝑡(x𝑘𝑠,NI𝑘𝑠,y𝑘𝑠;g) =max

𝛽,𝝀𝑡
𝛽 (F1)

∑
𝑖∈𝐽𝑏

𝑚

𝜆𝑖𝑡x𝑖𝑡 ≤ x𝑘𝑠 − 𝛽g𝑥, (F2)

∑
𝑖∈𝐽𝑏

𝑚

𝜆𝑖𝑡NI𝑖𝑡 ≥ NI𝑘𝑠 + 𝛽g𝐼, (F3)

∑
𝑖∈𝐽𝑏

𝑚

𝜆𝑖𝑡y𝑖𝑡 ≥ y𝑘𝑠 + 𝛽g𝑦, (F4)

∑
𝑖∈𝐽𝑏

𝑚

𝜆𝑖𝑡 = 1. (F5)

If m = n, the approximation follows the classical, usual DEA approach of Banker, 
Charnes and Cooper (1984). Let �̂�𝑡(x𝑡,NI𝑡,y𝑡;g) be the empirical estimate of equation (2) 
using the full sample DEA technology (that is, m = n). Furthermore, let �̂�𝑏

𝑡(x𝑡,NI𝑡,y𝑡;g)
be a corresponding bootstrap estimate 𝑏 = 1,…,𝐵 for subsample size m < n, obtained by 
drawing m independent and uniform samples without replacement from the data. We can 
then construct 100(1 − 𝛼)% confidence intervals: 

[�̂�𝐿
𝑡 (⋅), �̂�𝑈

𝑡 (⋅)] = [�̂�𝑡(⋅) −
𝜓1−𝛼/2,𝑚

𝑛
2

𝑢+𝑣+𝑓+1
, �̂�𝑡(⋅) +

𝜓𝛼/2,𝑚

𝑛
2

𝑢+𝑣+𝑓+1
] , (F6)

where 𝜓𝛼/2,𝑚 (𝜓1−𝛼/2,𝑚) is the 𝛼/2 (1 − 𝛼
2 ) percentile of the set

{𝑚
2

𝑢+𝑣+𝑓+1 (�̂�𝑏
𝑡(⋅) − �̂�𝑡(⋅))}

𝐵

𝑏=1
 (Simar, Vanhems and Wilson, 2012). Furthermore, bias-

corrected estimates can be computed (Simar, Vanhems and Wilson, 2012: Eq.(6.1)) by: 

�̂�𝐵𝐶
𝑡 (⋅) = �̂�𝑡(⋅) − (𝑚/𝑛)

2
𝑢+𝑣+𝑓+1

1
𝐵

𝐵
∑
𝑏=1

(�̂�𝑏
𝑡(⋅) − �̂�𝑡(⋅)). (F7)

Appendix G Robustness checks

G.1. Alternative shadow price specification

We consider another specification for the shadow prices of capital. Specifically, we compute 
∇𝐾𝓙𝑡(⋅) for the full data set, not only comprising large and very large firms, but also 
small- and medium-sized firms. The computed shadow prices are generally higher than in 
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802 F. Ang and P. J. Kerstens

Fig. G1. Histogram with estimated alternative shadow prices of capital. 

our main specification. The shadow price of capital is on average 0.521 and ranges from 
0 to 0.695. In contrast to our main specification, the Hessian matrix associated with the 
quadratic dynamic directional distance function is negative semi-definite, as evidenced by 
the eigenvalues [6.502×1011, −5.806×102, −5.216×103, −3.682×104]. This indicates 
convexity of the technology set for the full sample, with ∇𝐾𝓙𝑡(⋅) consistent with dynamic 
profit maximisation. 

G.2. Alternative subsample sizes

We verify the robustness for the choice of m. In the main results, the subsample retains 70 
per cent of all observations for the bootstrap. We verify the robustness by also considering 
subsample sizes retaining 50 per cent and 90 per cent of all observations.8

G.3. Decomposition residual check

We investigate the empirical differences between DMEC, on the one hand, and 𝐷𝐵𝑄𝐶 −
𝐷𝑇 𝐶 − 𝐷𝑇 𝐸𝐶, on the other hand. Following equation (11), they should be the same in 
theory. In practice, however, they can differ as each component is bootstrapped for a differ-
ent subsample (albeit with the same size m). These differences are to a large extent mitigated 
because of the high number of bootstraps (𝐵 = 2,000). Indeed, the difference is on average 
very close to zero (0.00014) and its standard deviation is small (0.01465). Nevertheless, 

8 Simar, Vanhems and Wilson (2012) propose a data-driven approach to choose the subsample size 
of m. In their approach, m is evaluated from 1 to n for B bootstraps. Subsequently, m is chosen 
such that the volatility of the confidence intervals evaluated for [𝑚 − 𝑖,…,𝑚,…,𝑚 + 𝑖] is min-
imised given i. This yields an observation-specific m for the computation of confidence intervals. 
The same procedure is also conducted for the computation of the bias-corrected estimates, yield-
ing another observation-specific m. However, this approach appears to be too computationally 
heavy for the current application.
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Robust nonparametric analysis of dynamic profits, prices and productivity 803

Fig. G2. Average dynamic profit change, dynamic productivity change and dynamic price change 
over time using alternative shadow prices. 

Fig. G3. Proportion of firms for which DBQC and DBPC increase, stagnate or decrease between two 
periods using alternative shadow prices. 

divergences exist: the differences range from −0.31658 to 0.14550. Our robustness check 
entails a verification of the main results for the subsample for which these divergences are 
small (< 5%), in line with our theoretical expectation.
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Robust nonparametric analysis of dynamic profits, prices and productivity 807

Fig. G4. Proportion of firms for which components of dynamic productivity change increases, 
stagnates or decreases in consecutive periods using alternative shadow prices. 
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808 F. Ang and P. J. Kerstens

Fig. G5. Comparison of dynamic productivity change and its components for different subsample 
sizes (𝑚 = 70% vs. 𝑚 = 90% and 𝑚 = 70% vs. 𝑚 = 50%) with the 45 degree line as a reference. 
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Robust nonparametric analysis of dynamic profits, prices and productivity 809

Fig. G6. Boxplot of decomposition residual.
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