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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Bioreactor performance and microbial 
community profile were interdependent. 

• Proteobacteria was the most predomi-
nant phylum in all bioreactors. 

• Relative abundance of Roseococcus 
correlated with organic matter removal. 

• The incremental flow rate changes 
affected microbial community 
composition. 

• The gLV model identified relations 
within the microbial community.  
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A B S T R A C T   

Optimizing bioreactor performance for organic matter removal can achieve sustainable and energy-efficient 
micropollutant removal in subsequent tertiary treatment. Bioreactor performance heavily depends on its resi-
dent microbial community; hence, a deeper understanding of community dynamics is essential. The microbial 
communities of three different bioreactors (biological activated carbon, moving bed biofilm reactor, sand filter), 
used for organic matter removal from wastewater treatment effluent, were characterized by 16S rRNA gene 
amplicon sequence analysis. An interdependency between bioreactor performance and microbial community 
profile was observed. Overall, Proteobacteria was the most predominant phylum, and Comamonadaceae was the 
most predominant family in all bioreactors. The relative abundance of the genus Roseococcus was positively 
correlated with organic matter removal. A generalized Lotka-Volterra (gLV) model was established to understand 
the interactions in the microbial community. By identifying microbial dynamics and their role in bioreactors, a 
strategy can be developed to improve bioreactor performance.   
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1. Introduction 

The transformation of conventional wastewater treatment plants 
(WWTPs) into energy-efficient and sustainable WWTPs is essential for 
achieving Sustainable Development Goals 12 (responsible consumption 
and production) and 13 (climate action) (United Nations, 2018). In this 
regard, energy-intensive treatment methods should be optimized by 
reducing greenhouse gas emissions and, thus, their carbon footprint 
while still meeting discharge limits. Nevertheless, the removal of some 
compounds, including micropollutants, e.g., pharmaceuticals, pesti-
cides, and personal care products, at WWTPs is to date mainly ensured 
by energy-intensive tertiary treatments (e.g., ozonation, membrane 
filtration, catalyzed UV treatment). The micropollutant removal effi-
ciency by these treatments is negatively correlated with the amount of 
organic matter (OM). In other words, a lower organic matter content in 
the tertiary treatment reduces energy consumption and improves 
micropollutant removal efficiency (Nilsson et al., 2017; van Gijn et al., 
2021). Therefore, van Gijn et al. (2021) aimed to optimize organic 
matter removal by using either a biological activated carbon bioreactor 
(BAC), a moving bed biofilm reactor (MBBR), or a sand filter (SF) as a 
pre-treatment step for subsequent micropollutant removal (van Gijn 
et al., 2021). Organic matter removal efficiency varied between the 
bioreactors (i.e., BAC 72 %, SF 41 %, and MBBR 21 %) (van Gijn et al., 
2021). Microbial communities residing in these bioreactors have a 
profound effect on their performance. Primarily, specific compound 
removal efficiency is associated with microbial community composition 
(Chen et al., 2021). However, to optimize bioreactor performance, it is 
crucial to understand microbial community profiles, interactions be-
tween community members, and their functions. 

16S ribosomal RNA (rRNA) gene amplicon sequencing is currently 
the most widely used method for compositional profiling of microbial 
community composition. It has repeatedly been demonstrated as an 
effective means for that purpose (Kodera et al., 2022). Going a step 
further, systems biology-based modeling techniques have recently been 
used to elucidate microbial co-occurrence patterns to infer emergent 
properties within microbial communities (van den Berg et al., 2022). 
These techniques range from correlation-based methods to complex 
network models (Barberán et al., 2012; Gross et al., 2010; Lu et al., 
2022). Among these techniques, a popular method using few parameters 
and differential equations, generalized Lotka-Volterra (gLV) modeling, 
has been used to estimate growth rates and infer interaction strengths 
among taxa within a microbial community (Bucci et al., 2016; Li et al., 
2021). 

In the current study, microbial community composition was 
analyzed using 16S rRNA gene amplicon sequencing to assess whether 
there is a link between microbial composition and bioreactor perfor-
mance. Moreover, we applied a recent gLV modeling approach (Li et al., 
2021) to capture operational taxonomic unit (OTU) dynamics and help 
deduce the network structure of the microbial communities from the 
various bioreactors (i.e., BAC, MBBR, and SF) and influent (INF). gLV 
modeling is a powerful approach for predicting microbial interactions in 
ecosystems, although its intrinsic limitations should be considered when 
interpreting the outcome. Firstly, gLV modeling contains a static inter-
action matrix that might not fully capture shifts in interactions within a 
community (Momeni et al., 2017). Secondly, gLV modeling only con-
tains pairwise interactions, thus, missing the capacity to factor potential 
higher-order interactions among taxa (Mickalide and Kuehn, 2019). 
Thirdly, metabolite-mediated interactions are not explicitly contained in 
gLV models (Zomorrodi and Segrè, 2016). Although gLV models solely 
may thus not be able to comprehensively interpret community-level 
behavior, the current study greatly benefits from the gLV model for 
describing context-specific interactions in the bioreactors. 

As a follow-up study of van Gijn et al (2021), in this study, we have 
studied microbial dynamics in three bioreactors (BAC, MBBR, and SF) 
and their association with bioreactor performance by employing 16S 
rRNA gene amplicon sequencing and the gLV model. In addition, we 

assessed the effects of different flow rates and sampling strategies (i.e., 
short-term hourly vs longer-term daily sampling) on microbial 
dynamics. 

2. Materials and methods 

The current study is a follow-up to the study of van Gijn et al. (2021), 
and detailed information regarding the experimental setup, bioreactor 
operation, substrate characterization, inoculum, and analytical methods 
can be found in van Gijn et al. (2021). Briefly, a mixture of biologically 
activated sludges from four different WWTPs (the Netherlands) was used 
as an inoculum source. The effluent from the secondary clarifier of a 
WWTP (Bennekom, the Netherlands) was used as substrate. It contained 
24 mg/L of chemical oxygen demand (COD), 7 mg/L of total organic 
carbon (TOC), 9.02 mg/L of nitrate, and 0.57 mg/L of total phosphate. 
Three bioreactors (BAC, MBBR, and SF) with a total volume of 1.7 L each 
were operated aerobically in a continuous mode. A pre-aerator was used 
to add pure oxygen to the influent of each bioreactor to ensure aerobic 
conditions. However, the dissolved oxygen (DO) concentration varied 
according to the type and hydraulics of the bioreactor throughout 
bioreactor operation. DO was 30 mg/L in the MBBR, whereas it was 19 
mg/L on average (min 2 and max 36 mg/L) in the SF and 9 mg/L on 
average (min 1 and max 30 mg/L) in the BAC (van Gijn et al., 2021). The 
bioreactor performance was monitored by UV254 absorbance, COD, and 
TOC analyses. Furthermore, the concentrations of DO, nitrite, nitrate, 
and total phosphate were monitored. The used micropollutant mix was 
comprised of pharmaceuticals, pesticides, and industrial-based chem-
icals (benzotriazole). These micropollutants were chosen based on their 
presence in the WWTP effluent. A mixture of 16 different micro-
pollutants was spiked into the influent (INF) to obtain a final concen-
tration of 2 µg/L of each micropollutant (van Gijn et al., 2021). After the 
spike, micropollutant concentrations were measured in the 12th week, 
and microbial community sampling began afterwards. The specific ef-
fects of microbial community profile on individual micropollutant 
removal were not examined in this study. 

2.1. Sampling strategy 

Microbial community samples were collected from the feeding tank 
(influent, INF) and the effluent of each bioreactor (BAC, MBBR, and SF) 
on a daily or hourly basis (Fig. 1.a). The daily sampling was conducted 
for flow rates of 1, 0.5, 0.25, 2, 4, 0.25, 1 L/h, whereas hourly sampling 
was conducted for transition flow rates (L/h) of 1 – 0.5, 0.5 – 0.25, 0.25 – 
2, 2 – 4, 4 – 0.25 L/h (Fig. 1.b). The feeding tank was filled four times 
during bioreactor operation (September 16th, September 23rd, October 
16th, and November 13th, 2019) with the effluent of the secondary 
clarifier of a WWTP. For all liquid samples, a 50 mL sample was filtered 
with a sterile 0.2 µm filter. The filter was stored in a 2 mL sterile 
microcentrifuge tube at − 80℃ until DNA extraction. 

2.2. Microbial community analysis 

The microbial community was analyzed by Illumina sequencing of 
the 16S rRNA gene as described by Zhang et al. (2022). Total DNA was 
extracted by using the DNeasy PowerSoil Kit (QIAGEN, Hilden, Ger-
many) following the manufacturer’s instructions. DNA concentrations 
were measured by Qubit (Thermo Fisher Scientific). 16S rRNA gene 
fragments were amplified using primers 515F (5′–3′: GTG CCA GCM 
GCC GCG GTAA) and 806R (5′–3′: GGA CTA CHV GGG TWT CTA AT) 
(Caporaso et al., 2011; Klindworth et al., 2013) that were amended at 
the 5′-end with sample-specific barcodes. The PCR mixture (50 µL) was 
prepared with 10 µL 5 × HF Green buffer (Thermo Fisher Scientific, the 
Netherlands), 1 μL (2 U) of Phusion hot start II High-Fidelity DNA po-
lymerase (Thermo Fisher Scientific), primer mix (500 nM for each for-
ward and reverse primer), and 500 nM dNTP (Promega, USA), 10 ng 
DNA template and nuclease-free water (Promega, USA). The PCR 
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program was as follows: 98 ◦C, 30 s for pre-denaturation, followed by 25 
cycles of 98 ◦C, 10 s for denaturation, annealing at 50 ◦C for 10 s, 
elongation at 72 ◦C for 10 s, and a final extension at 72 ◦C for 7 min. The 
PCR products were pooled and purified using CleanPCR (cleanNA, the 
Netherlands) according to the manufacturer’s instructions. The purified 
amplicons were pooled in equimolar amounts, and nuclease-free water 
as a negative control, and sent for sequencing by Hiseq2000 (GATC- 
Biotech GmbH, now part of Eurofins Genomics Germany GmbH, Kon-
stanz, Germany). 

2.3. Computational analysis 

After data registration, the computational workflow was executed 
(Koehorst and Nijsse, 2021). The quality of the samples was identified 
using FASTQC, and amplicon sequencing variants (ASVs) were identi-
fied and classified using NGTax 2.0 in combination with the Silva 138.1 
database (Poncheewin et al., 2020). In order to avoid the inclusion of 
spurious ASVs caused by sequencing and PCR errors, a threshold of 0.1 
% relative abundance was applied per sample. Overall, 12,910,454 
reads from 275 samples were used. 

2.3.1. Generalized Lotka-Volterra (gLV) modeling 
In this study, the BEEM-Static generalized Lotka Volterra (gLV) 

framework (Li et al., 2021) was applied. The gLV model is a system of 
ordinary differential equations representing the instantaneous growth 
rate of each taxon (dxi(t)/dt) as a function of absolute cell densities 
(xi(t)) of the p taxa in a community. In inferring interactions, the gLV is 
used in its discrete form, where each time point represents a sample in 
the time-based abundance profile. The differential equations describe 
the difference of a single taxon abundance in family level in two adja-
cent time points, and how it is dependent on the growth rate and its 
interaction coefficients with the other OTUs. 

dxi(t)
dt

= μixi(t) +
∑p

j=1
βijxi(t)xj(t) (1) 

Eq. (1) xi(t) describes the relative abundance of the ith OTU at time t. 
The growth rate of the ith OTU is described by µi. β is the overall inter-
specific interaction matrix, where βij describes the strength of the in-
fluence of the jth OTU by the ith OTU. (βij < 0 represents a negative effect 
on the jth OTU by the ith OTU). In general, estimating gLV parameters (μi 
and βij) requires longitudinal data to measure dxi(t)/dt. However, at the 
non-trivial equilibrium (dxi(t)/dt = 0 and xi > 0): 

μi +
∑p

j=1
βijxj = 0 (2) 

this causes the variable time (t) become embedded in the equation. 
Furthermore, dividing both sides by -βii and the biomass m and further 
rearrangement, the following term is obtained: 

x̃i =
ai

m
+

∑p

j=1,j∕=i

bijx̃j (3) 

where ai = − μi/βii, bij = − βij/βii and is the relative abundance of 
species i at equilibrium (ai is also known as the carrying capacity of the 
species). This equation allows BEEM-STATIC to estimate gLV parame-
ters (via ai and bij) from cross-sectional data, considering that samples 
are at equilibrium, and absolute abundances are known (xi = mx̃i) 
However, since our data does not contain biomass measurements and 
only contains relative abundances, we employed an extension in BEEM- 
Static using an EM framework to jointly estimate model parameters and 
biomass (for more details, see the supplementary section in (Li et al., 
2021)). 

For estimating the biomass per taxa (i), BEEM-Static acquires the 
median for each taxa across species as a robust estimator of the biomass 
from each sample: 

m(T) = median

⎛

⎝ −
ai

(T− 1)

∑p
j=1bij

(T− 1)x̃j

⎞

⎠ (4) 

For estimating the model parameters 
(

a(T)
i and b(T)

ij

)
for each i with 

sparse regression at iteration T: 

x̃i
1

m(T) • ai
(T) +

∑p

j=1, j∕=i

bij
(T)x̃j (5) 

We used the above BEEM-Static framework as it is in our imple-
mentation. Moreover, BEEM-Static statistical filters were used to iden-
tify and remove sample that violate modelling assumptions. The 
equilibrium filter screens for samples that may not be at equilibrium. 
The equilibrium filter was set to ∊1 = 20 % (where 

(median
(⃒
⃒
⃒
⃒x̃i − x̃i

*
⃒
⃒
⃒
⃒

/

x̃i

)〉

∊1, x̃i ∕= 0). The model filter screens samples 

that may originate from an alternate gLV model. The model filter was set 
to the default value of ∊2 = 3 (where (ek − median(ek))/IQR(ek)>∊2), 

Fig. 1. Illustration of the sampling points (a) based on the reactor configurations: feeding tank (INF); biological activated carbon (BAC) filter; moving bed biofilm 
reactor (MBBR) and sand filter (SF), and (b) starting point:, hourly: and daily: sampling points based on gradual changes in the flow rate (from 0.25 L/h to 4 L/h). 
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IQR indicates inter-quartile range). 
All the abundance values were normalized for each time point. The 

area under the receiver operating characteristic curve (AUC-ROC) was 
computed for the interaction matrix Z-scores were used to rank in-
teractions (off-diagonal entries only) predicted by BEEM-Static. Sensi-
tivity for predicting the signs of interaction was calculated as the 
fraction of interactions with correctly predicted signs in the true inter-
action matrix (non-zero off-diagonal entries only). 

2.3.2. Statistical analysis 
Principal Component Analysis (PCA) was applied to the microbial 

community data to discriminate the samples according to the flow rate 
as a function of time for each bioreactor type. Pearson’s correlation 
analysis was conducted to identify the relationship between the relative 
abundance at the family level and the organic matter removal rate (COD, 
TOC, and UV254). To analyze the shift in microbial community 
composition, one-way multivariate ANOVA was conducted using the 
first two principal components; PC1 and PC2, based on relative abun-
dances at the family level and organic matter removal based on time and 
flow rate. Lastly, PC1 and PC2 were used to conduct the Kolmogorov- 
Smirnov (K-S) test to understand how well microbial community shifts 
could be studied based on the sampling structure (hourly and daily). All 

Fig. 2. (a) The relative abundance of the family-level microbial community in influent (INF), which is represented with a heat map using daily and hourly sampling 
regimes, and (b) the correlations between the most abundant species are represented with the non-zero interaction terms in gLV model. In the heat map, the color 
scale varies from absence (white: 0%) to high relative abundance (green: 100%). BEEM-estimated biomass values for INF with daily sampled microbial time series 
datasets. Graphs representing non-zero interaction terms in gLV models learned individually for the dataset using BEEM. Blue and red edges represent positive and 
negative interactions, respectively. Edge widths are proportional to the interaction strength, and node sizes are proportional to the log-transformed mean relative 
abundance of the corresponding species. Nodes are labeled with the most specific taxonomic annotations. 
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statistical tests were conducted using IBM SPSS Statistics, Version 25.0. 
The relative abundance heatmaps at the family level were generated 
using OriginPro, Version Number 2021. 

2.4. Data FAIRification 

FAIR ENA data submission files were generated using the FAIR Data 
Station (Nijsse et al., 2022) with the wastewater sludge package infor-
mation model from ENA (Retrieved 22–08-2022). ENA Project accession 
number is PRJEB54921. Experimental data and metadata of the project, 
experimental procedures, samples, and datasets were registered ac-
cording to the wastewater sludge package (MIxS) using the FAIR Data 
Station (Yilmaz et al., 2011). 

3. Results and discussion 

The residing microbial community and its functions play a crucial 
role in bioreactor performance. While determining the relationship be-
tween bioreactor performance and microbial community profile poses 
several challenges due to the complex interactions between the 

operational and environmental parameters with the microbial commu-
nity, molecular tools, and dynamic models can provide valuable insights 
into it. As a follow-up to van Gijn et al. (2021), the current study in-
vestigates the relationship between bioreactor performance and the 
microbial community profile by considering bioreactor type, flow rate, 
and sampling strategy. Moreover, gLV modeling was used to identify the 
strength of interactions among taxa in the observed microbial 
communities. 

3.1. The relation between bioreactor type and microbial community 
profile 

The microbial community profile in the influent, BAC, MBBR, and SF 
were regularly observed by 16S rRNA gene amplicon sequencing. In 
terms of organic matter removal efficiency, the highest removal per-
formance for the different bioreactors was 72 % for BAC, 41 % for SF and 
21 % for MBBR (van Gijn et al., 2021). The 16S rRNA gene amplicon 
sequence data at family level (Fig. 2.a, 3.a, 4.a, and 5.a) and its PCA 
distribution (Fig. 6) indicated that microbial community profiles were 
related to bioreactor performance. The low performance of the MBBR 

Fig. 3. (a) The relative abundance of the family-level microbial community in BAC, which is represented with a heat map using daily and hourly sampling regimes, 
and (b) the correlations between the most abundant species are represented with the non-zero interaction terms in gLV model. In the heat map, the color scale varies 
from absence (white: 0%) to high relative abundance (green: 100%). BEEM-estimated biomass values for BAC with daily sampled microbial time series datasets. 
Graphs representing non-zero interaction terms in gLV models learned individually for the dataset using BEEM. Blue and red edges represent positive and negative 
interactions, respectively. Edge widths are proportional to the interaction strength, and node sizes are proportional to the log-transformed mean relative abundance 
of the corresponding species. Nodes are labeled with the most specific taxonomic annotations. 
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coincided with a high similarity between microbial community profiles 
in the influent and the effluent of the MBBR. By contrast, the effluent of 
the BAC and SF showed different microbial community profiles 
compared to the influent. Moreover, this finding was partially aligned 
with the results of the gLV model (Fig. 2.b, 3.b, 4.b, and 5.b). The gLV 
model highlights parallels in the dynamics of the influent and MBBR 
bioreactor microbial communities involved in the complex interactions 
of its members. 

At the phylum level (see Supplementary Fig. 1), the most abundant 
taxa were Proteobacteria (27 ± 10 %), Cyanobacteria (26 ± 16 %), and 
Bacteroidota (11 ± 7 %) in the influent. Based on the bioreactor type, the 
most abundant phyla differed slightly between bioreactors: Proteobac-
teria (44 ± 25 %), Actinobacteria (15 ± 13 %), and Verrumicrobiota (12 
± 10 %) in the BAC, Proteobacteria (24 ± 11 %), Cyanobacteria (23 ± 17 
%), and Actinobacteria (12 ± 10 %) in the MBBR, and Proteobacteria (42 
± 24 %), Actinobacteria (17 ± 11 %), and Verrumicrobiota (9 ± 5 %) in 
the SF, respectively. However, at the family level, the microbial 

composition was more distinct between the influent and bioreactor 
types: Comamonadaceae (21 ± 14 %), Rhodobacteraceae (12 ± 5 %), 
Burkholderiaceae (7 ± 4 %) were the three most abundant families in the 
influent (Fig. 2.a); Comamonadaceae (24 ± 22 %), Mycobacteriaceae (10 
± 7 %), Xiphinematobacteraceae (9 ± 5 %) in the BAC (Fig. 3.a), Coma-
monadaceae (15 ± 8 %), Rhodobacteraceae (14 ± 11 %), Nocardiaceae (7 
± 4 %) in the MBBR (Fig. 4.a) and Comamonadaceae (21 ± 14 %), 
Acidithiobacillaceae (16 ± 12 %), Xiphinematobacteraceae (6 ± 4 %) in 
the SF (Fig. 5.a). E-supplementary data for this work can be found in the 
e-version of this paper online. 

Microbial community composition in bioreactors is generally shaped 
by several factors, including, among others, influent characteristics, 
inoculum source, bioreactor type, operational conditions, and environ-
mental parameters (Valentín-Vargas et al., 2012). Comparing different 
studies from a microbial community perspective can be difficult due to 
these variable factors, but it can also unveil relevant species’ functions 
and their association with bioreactor performance. For instance, Duc 

Fig. 4. (a) The relative abundance of the family-level microbial community in MBBR, which is represented with a heat map using daily and hourly sampling regimes 
and (b) the correlations between the most abundant species are represented with the non-zero interaction terms in gLV model. In the heat map, the color scale varies 
from absence (white: 0%) to high relative abundance (green: 100%). BEEM-estimated biomass values for MBBR with daily sampled microbial time series datasets. 
Graphs representing non-zero interaction terms in gLV models learned individually for the dataset using BEEM. Blue and red edges represent positive and negative 
interactions, respectively. Edge widths are proportional to the interaction strength, and node sizes are proportional to the log-transformed mean relative abundance 
of the corresponding species. Nodes are labeled with the most specific taxonomic annotations. 
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Viet et al. (2022) showed that Proteobacteria, Bacteroidota, and Acid-
obacteriota were the main phyla (80 %) for degrading organic compo-
nents in an integrated activated carbon-fertilizer drawn osmotic 
membrane bioreactor. Moreover, Li et al. (2022) compared the micro-
bial community composition for micropollutant and organic matter 
removal in different membrane biofilm bioreactors from several studies. 
Proteobacteria was the most predominant phylum for the degradation of 
chlorinated aromatic compounds (e.g., pentachlorophenol) and the 
removal of ammonia and organic carbon in an O2-based membrane 

biofilm bioreactor (Li et al., 2022). In our study, Proteobacteria was 
predominant in all bioreactors; however, organic matter removal effi-
ciency varied greatly among them. To comprehend the effects of mi-
crobial community profiles on micropollutant degradation and organic 
matter removal, lower taxonomic ranks and/or functional gene reper-
toires need to be analyzed. 

The most predominant family in all bioreactors was Comamonada-
ceae, which belongs to the Burkholderiales order in the Betaproteobacteria 
class of the phylum Proteobacteria (Brenner et al., 2005). Most of the 

Fig. 5. (a) The relative abundance of the family-level microbial community in SF is represented with a heat map using daily, and hourly sampling regimes, and (b) 
the correlations between the most abundant species are represented with the non-zero interaction terms in gLV model. In the heat map, the color scale varies from 
absence (white: 0%) to high relative abundance (green: 100%). BEEM-estimated biomass values for SF with daily sampled microbial time series datasets. Graphs 
representing non-zero interaction terms in gLV models learned individually for the dataset using BEEM. Blue and red edges represent positive and negative in-
teractions, respectively. Edge widths are proportional to the interaction strength, and node sizes are proportional to the log-transformed mean relative abundance of 
the corresponding species. Nodes are labeled with the most specific taxonomic annotations. 
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members of the Comamonadaceae are aerobic and heterotrophic bacte-
ria, and some play a role in denitrification (Rosenberg et al., 2014). They 
are primarily found in soil, freshwater, groundwater, and activated 
sludge (Rosenberg et al., 2014). Khan et al. (2002) indicated that 
members of the Comamonadaceae predominate under poly(3-hydrox-
ybutyrate-co-3-hydroxyvalerate)-acclimated denitrifying conditions 
(Khan et al., 2002) by using organic compounds as electron donor 
(Morais et al., 2016). In our study, the gLV model showed that Coma-
monadaceae was one of the most significant taxa in the correlation 
networks of the microbial community. Mainly it had negative correla-
tions with other taxa in the INF (Fig. 2.b) and MBBR (Fig. 3.b). In 
contrast, it positively correlated with Rhodobacteraceae in BAC (Fig. 4.b) 
and Burkholderiaceae in SF (Fig. 5.b). Furthermore, the significant cor-
relation of the relative abundance of Comamonadaceae with the TOC 
concentration (0.494 at p < 0.01) in our MBBR might be related to the 
available organic compounds as electron donors. Although Comamona-
daceae had the highest relative abundance in all bioreactors, there was 
no significant correlation between the removal of organic matter and the 
concentration of nitrite or nitrate. 

In turn, Xiphinematobacteraceae (23 %) was the most predominant 
family in the BAC at the date (2/12: Day/Month) with the highest 
organic matter removal rate in terms of COD (72 %), TOC (57 %), and 
UV (61 %). Xiphinematobacteraceae, a family within the Verrucomicro-
biota phylum, can be found in diverse habitats (e.g., freshwater, marine 
environment, soil, and animal gut (Fuerst, 2019). Most of the genera 
within the Xiphinematobacteraceae have an aerobic and heterotrophic 
metabolism, but very little is known about their functions. The gLV 
model indicated a positive correlation between Xiphinematobacteraceae 
and Sphingomonadaceae in the BAC. Some species of Sphingomonadaceae 
are associated with biofilm formation - extracellular polymeric sub-
stances (EPSs) production (de Vries et al., 2019; Li et al., 2019). Mi-
crobial activity in the biofilm of BAC plays a significant role in 

processing and eliminating organic matter. Nevertheless, the mass 
transport process, hence the microbial activity, within the biofilm is 
limited by the thickness of the biofilm (Simpson, 2008). Further research 
might reveal the relationship between Xiphinematobacteraceae and 
Sphingomonadaceae to understand their role in organic matter removal 
and biofilm formation in BAC, which can be used for harnessing mi-
crobial activity in biofilms. 

Another abundant family in the BAC was that of the Mycobacter-
iaceae, and its relative abundance significantly correlated with the COD 
removal rate (0.42 at p < 0.05). Mycobacteriaceae, a family within the 
Actinomycetota, include aerobic bacteria and are widely distributed in 
the environment (mainly in soil and water) (Robertson, 2022). Some 
species of Mycobacteriaceae have an essential role in organic matter 
degradation (Payeur, 2014), which might indicate their role in COD 
removal. On the other hand, on the day with the highest organic matter 
removal (2/12: Day/Month), the relative abundance of Mycobacter-
iaceae was 5.63 % in the BAC. Furthermore, the relative abundances of 
Mycobacteriaceae and Comamonadaceae were negatively correlated 
(-0.69 at p < 0.01 at SF and 0.43 at p < 0.01 at BAC) (see supplementary 
Tables 1.1 and 1.3, respectively). This might be an indication of 
competition between members of these two families. Despite this, the 
gLV model did not reveal a direct correlation between Mycobacteriaceae 
and Comamonadaceae, neither for the BAC nor the SF reactor. However, 
the model showed that Mycobacteriaceae was positively correlated with 
Acidithiobacillaceae at SF and MBBR. Members of the Acidithiobacillaceae 
family are capable of iron and/or sulfur oxidation (Kelly and Wood, 
2014), and it’s tempting to speculate that this positive correlation might 
suggest a relation between the members of Mycobacteriaceae and Acid-
ithiobacillaceae. As Li et al. (2022) stated, in the presence of some elec-
tron acceptors (e.g. nitrate, sulfate, carbonate, etc.) and intermediate 
metabolites of micropollutants, particular microbial species can 
compete or co-exist. Understanding microbial interactions may reveal 

Fig. 6. PCA distribution of microbial data at family level for influent (INF), and each reactor (BAC, MBBR, and SF). Percentages at the axes indicate the amount of 
variation in microbial data explained. 
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unknown mechanisms in micropollutant removal that might be used to 
increase removal performance by promoting a specific removal mech-
anism with bioaugmentation of specific microbial species or the addition 
of a suitable electron acceptor. E-supplementary data for this work can 
be found in the e-version of this paper online. 

On average, the Rhodobacteraceae family within the Proteobacteria 
phylum was predominant in the influent and MBBR. In the influent, its 
relative abundance increased throughout the experiment from 6.5 % to 
24 %, whereas it was more constant in the MBBR (Fig. 4.a). Moreover, 
the gLV model revealed several correlations between Rhodobacteraceae 
and other microbial groups both in the influent (Fig. 2.b) as well as the 
MBBR (Fig. 4.b), which is another indicator of the high similarity be-
tween microbial community profiles in the influent and the effluent of 
the MBBR. Based on the gLV model, Rhodobacteraceae had strong posi-
tive correlations between Flavobacteriaceae, Oxalobacteraceae, and Bur-
kholderiaceae in the MBBR (Fig. 4.b). Several members of the 
Flavobacteriaceae were found in municipal wastewater treatment plants 
and considered to be floc-forming microorganisms due to their ability to 
produce EPS (Gonzalez-Martinez et al., 2016). Therefore, the positive 
correlation between Rhodobacteraceae and Flavobacteriaceae suggested 
by the gLV model might indicate a syntrophic relation for biofilm for-
mation in the MBBR. Furthermore, the relative abundance of Rhodo-
bacteraceae was significantly correlated with the COD removal rate 
(0.614 at p < 0.01) in the MBBR. This observation makes sense as 
members of the Rhodobacteraceae are among the most widely distributed 
aerobic heterotrophic bacteria in freshwater environments and have a 
crucial role in carbon and organic sulfur cycling (Pohlner et al., 2019). 

Aside from bacteria, Nitrosopumilaceae, a family within the archaeal 
domain, was found in the BAC and SF. Members of the Nitrosopumilaceae 
grow chemolithoautotrophically under anoxic and aerobic conditions 
(Qin et al., 2016). In parallel with the DO concentration in the BAC and 
SF, the relative abundance of Nitrosopumilaceae was changed: in the 
BAC, the DO concentration in the middle and bottom of the bioreactor 
was <0.1 mg/L between days 09.25 and 10.30, while, on these dates, the 
relative abundance of Nitrosopumilaceae changed between 6 % and 26 % 
(Fig. 3.a). When the DO changed between 0.69 and 2.25 mg/L in the 
bottom part of the SF, the relative abundance of Nitrosopumilaceae was 3 
% to 19 % (Fig. 5.a). Moreover, the gLV model indicated a positive 
correlation between Nitrosopumilaceae and Acidithiobacillaceae in the 
BAC (Fig. 3.b). To our knowledge, no relationship between Nitro-
sopumilaceae and Acidithiobacillaceae has been stated in the literature, 
while several representatives of the Acidithiobacillaceae family are 
collaborating with different archaeal species for bioleaching and bio- 
oxidation (Cárdenas et al., 2010). In light of the synchronic alteration 
in DO concentration with the relative abundance of Nitrosopumilaceae in 
the BAC, Acidithiobacillaceae might have collaborated with Nitro-
sopumilaceae for iron/sulfur oxidation (Kelly and Wood, 2014). 

At the genus level (see supplementary Fig. 2), despite the microbial 
communities differing by the bioreactor type throughout bioreactor 
operation, the most abundant groups were an unidentified genus within 
the Mycobacteriaceae, Candidatus Xiphinematobacter, Polynucleobacter, 
Nordella, and Hydrogenophaga. However, Roseococcus was the most 
predominant group when the highest removal rates were obtained in the 
MBBR (22 %) and BAC (12 %). Roseococcus belongs to the Acetobacter-
aceae family, a genus of obligately aerobic and chemoorganotrophic 
bacteria (Yurkov, 2015). Their chemoorganotrophic metabolism – uti-
lizing organic compounds as electron donors – might be the reason for 
the observed correlation of the high carbon removal rate with their high 
relative abundance (0.89 at p < 0.05). The exact functions of members 
of Roseococcus in organic compound degradation await elucidation in 
future studies, e.g., metatranscriptomics and metaproteomics for the 
identification of active pathways, prior to testing them for developing a 
bioaugmentation strategy to enhance organic matter removal efficiency 
and, therefore, the bioreactor performance in tertiary treatment. E- 
supplementary data for this work can be found in e-version of this paper 
online. 

As mentioned in the Materials and Methods section, the DO differed 
based on the bioreactor type. The formation of anoxic and oxic zones in 
bioreactors might cause that observation. Overall, the results of the 
microbial community profile at the phylum, family, and genus level 
showed that different microbial metabolisms were possible based on the 
availability of the various electron acceptors in the bioreactors. 

3.2. Effect of flow rate on the microbial community profile 

One of the variables for the bioreactor operation was the flow rate. 
Twelve different flow rates were used during the bioreactor operation, 
ranging from 0.25 L/h to 4 L/h (Fig. 1.b). During this experiment, the 
highest organic matter removal was obtained with the lowest flow rate 
(0.25 L/h), probably due to increasing the contact time of the substrate 
and microorganisms (van Gijn et al., 2021). Besides bioreactor perfor-
mance, microbial community composition was monitored regularly. In 
all bioreactors, the composition of the microbial community changed 
with increasing flow rate. At the family level, Mycobacteriaceae and 
Acidithiobacillaceae were abundant at the lowest flow rate (0.25 L/h). As 
the flow rate increased to 1 – 2 L/h and 2 – 4 L/h, Comamonadaceae and 
Xiphinematobacteraceae became more abundant in the BAC, respectively. 
Similarly, at the flow rate of 0.25 L/h Nocardiaceae; 1 – 2 L/h Coma-
monadaceae; and 2 – 4 L/h Rhodobacteraceae, and Burkholderiaceae were 
abundant, respectively, in the MBBR. In the SF, Acidithiobacillaceae at a 
flow rate of 0.25 L/h and Comamonadaceae at a flow rate of 0.5 – 1 L/h 
were predominant. In addition to the positive effects of a lower flow rate 
on the growth rate and substrate contact time, it might favor the pro-
duction of EPS and other natural polymers (Moreira et al., 2013). Thus, a 
better adaptation capacity of the microbial community in the bioreactor 
might also play a significant role in the shift of the microbial community 
composition with respect to the different flow rates (Di Martino, 2018). 

Furthermore, van Gijn et al., (2021) showed that the BAC achieved 
three times higher micropollutant removal (on average 92 % of all MPs 
were removed) than MBBR and SF. Prior to sampling for the microbial 
community analysis, micropollutant removal was assessed when the 
reactors were operated at 1 L/h. The results of our study suggest that 
flow rate is an important parameter to affect microbial dynamics. 
Therefore, flow rates might affect the removal of micropollutants as 
well. For a comprehensive view, in future studies, micropollutant 
removal capacity should be analyzed in conjunction with the microbial 
community and the bioreactor operation conditions. 

PCA was conducted to analyze how the microbial community 
changed with the changing flow rate for each bioreactor (see supple-
mentary Fig. 3). At BAC (see supplementary Fig. 3.a) and MBBR (see 
supplementary Fig. 3.b), microbial communities were clustered based 
on the low (0.25–1 L/h) and high (1–4 L/h) flow rates. Furthermore, 
one-way multivariate ANOVA was performed to evaluate possible re-
lationships between microbial composition and organic matter removal 
rates as a function of time and flow rate. However, no significant rela-
tionship was found. E-supplementary data for this work can be found in 
the e-version of this paper online. 

3.3. Sampling strategy to monitor the microbial community profile shift 

Microbial community composition and function determine the per-
formance of bioreactors in terms of organic matter removal, and several 
parameters can alter this profile. Observing an alteration in the micro-
bial community might provide valuable insight into bioreactor perfor-
mance. To this end, we compared two different sampling strategies for 
the microbial community, i.e., short-term hourly sampling vs longer- 
term daily sampling. A Kolmogorov-Smirnov test was conducted with 
PC1 and PC2 from the PCA of relative abundance data at the family 
level. This analysis showed that daily sampling (0.276, p < 0.05) had a 
higher significance than hourly sampling (0.186, p < 0.05) to observe 
the evolution of community composition with changing operating con-
ditions. In order to monitor microbial community shifts in studies such 
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as the one presented here, sampling should take place over longer pe-
riods of time with daily samples rather than shorter periods with hourly 
samples. Despite this, the observation of changes in the microbial 
community structure depends on several disturbances, including 
changes in operational and environmental parameters, characterization 
of the influent and biomass, etc. (Shade et al., 2013). Therefore, the 
sampling strategy to monitor the microbial community profile shift 
should be planned based on the observation aim with abiotic and biotic 
factors. 

4. Conclusions 

The microbial community dynamics for organic matter removal in 
three different bioreactors were analyzed. The bioreactor performance 
was inversely correlated with the similarity of the microbial community 
profile in the bioreactors to that in the influent. gLV models suggested 
various interactions in the microbial community in the bioreactors. 
Roseococcus had the strongest correlation with organic matter removal 
and might be beneficial in developing bioaugmentation strategies to 
improve bioreactor performance. Applying methods that address mi-
crobial functional potential and activity can provide further insights into 
the role of microorganisms, which can be employed to improve biore-
actor performance. 
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community from tropical pristine coastal soil to crude oil contamination. PeerJ 
2016, 1–21. https://doi.org/10.7717/peerj.1733. 

Moreira, J.M.R., Teodósio, J.S., Silva, F.C., Simões, M., Melo, L.F., Mergulhão, F.J., 2013. 
Influence of flow rate variation on the development of Escherichia coli biofilms. 
Bioprocess Biosyst Eng 36, 1787–1796. https://doi.org/10.1007/s00449-013-0954- 
y. 

Nijsse, B., Schaap, P.J., Koehorst, J.J., 2022. FAIR Data Station for Lightweight Metadata 
Management &amp; Validation of Omics Studies. bioRxiv 2022.08.03.502622. 
10.1101/2022.08.03.502622. 

Nilsson, F., Ekblad, M., la Cour Jansen, J., Jönsson, K., 2017. Removal of 
pharmaceuticals with ozone at 10 Swedish wastewater treatment plants. Water Pract 
Technol 12, 871–881. https://doi.org/10.2166/wpt.2017.087. 

Payeur, J.B., 2014. Mycobacterium. Encyclopedia of Food Microbiology: Second Edition 
2, 841–853. https://doi.org/10.1016/B978-0-12-384730-0.00229-9. 

M. Atasoy et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.biortech.2023.128659
https://doi.org/10.1016/j.biortech.2023.128659
https://doi.org/10.1038/ismej.2011.119
https://doi.org/10.1186/s13059-016-0980-6
https://doi.org/10.1007/s00253-010-2795-9
https://doi.org/10.1007/s00253-010-2795-9
https://doi.org/10.1016/j.jclepro.2021.126342
https://doi.org/10.1016/j.jclepro.2021.126342
https://doi.org/10.1038/s41522-018-0074-1
https://doi.org/10.3934/MICROBIOL.2018.2.274
https://doi.org/10.3934/MICROBIOL.2018.2.274
https://doi.org/10.1016/j.biortech.2022.126972
https://doi.org/10.1016/j.biortech.2022.126972
https://doi.org/10.1016/B978-0-12-809633-8.20772-3
https://doi.org/10.1038/srep18786
https://doi.org/10.1128/JCM.01232-10
https://doi.org/10.1128/JCM.01232-10
https://doi.org/10.1128/AEM.68.7.3206-3214.2002
https://doi.org/10.1128/AEM.68.7.3206-3214.2002
https://doi.org/10.1093/nar/gks808
https://doi.org/10.1371/journal.pcbi.1009343
https://doi.org/10.1016/j.watres.2019.04.014
https://doi.org/10.1016/j.watres.2019.04.014
https://doi.org/10.1016/j.biortech.2021.126139
https://doi.org/10.1016/j.biortech.2021.126139
https://doi.org/10.1016/j.watres.2022.118104
https://doi.org/10.1016/j.cels.2019.11.004
https://doi.org/10.7554/eLife.25051.001
https://doi.org/10.7554/eLife.25051.001
https://doi.org/10.7717/peerj.1733
https://doi.org/10.1007/s00449-013-0954-y
https://doi.org/10.1007/s00449-013-0954-y
https://doi.org/10.2166/wpt.2017.087
https://doi.org/10.1016/B978-0-12-384730-0.00229-9


Bioresource Technology 372 (2023) 128659

11

Pohlner, M., Dlugosch, L., Wemheuer, B., Mills, H., Engelen, B., Reese, B.K., 2019. The 
majority of active Rhodobacteraceae in marine sediments belong to uncultured 
genera: A molecular approach to link their distribution to environmental conditions. 
Front Microbiol 10, 1–16. https://doi.org/10.3389/fmicb.2019.00659. 

Poncheewin, W., Hermes, G.D.A., van Dam, J.C.J., Koehorst, J.J., Smidt, H., Schaap, P.J., 
2020. NG-Tax 2.0: A Semantic Framework for High-Throughput Amplicon Analysis. 
Front Genet 10. https://doi.org/10.3389/fgene.2019.01366. 

Qin, W., Martens-Habbena, W., Kobelt, J.N., Stahl, D.A., 2016. Candidatus 
Nitrosopumilaceae. Bergey’s Manual of Systematics of Archaea and Bacteria 1–2. 
https://doi.org/10.1002/9781118960608.fbm00262. 

Robertson, R.E., 2022. Mycobacterium spp., in: Encyclopedia of Dairy Sciences. pp. 
499–506. 10.1016/b978-0-08-100596-5.22990-9. 

Rosenberg, E., De Long, E.F., Lory, S., Stackebrandt, E., Thompson, F., 2014. The 
prokaryotes: Other major lineages of bacteria and the archaea. The Prokaryotes: 
Other Major Lineages of Bacteria and The Archaea 1–1028. https://doi.org/ 
10.1007/978-3-642-38954-2. 

Shade, A., Gregory Caporaso, J., Handelsman, J., Knight, R., Fierer, N., 2013. A meta- 
analysis of changes in bacterial and archaeal communities with time. ISME J. 7, 
1493–1506. https://doi.org/10.1038/ismej.2013.54. 

Simpson, D.R., 2008. Biofilm processes in biologically active carbon water purification. 
Water Res. https://doi.org/10.1016/j.watres.2008.02.025. 

United Nations, 2018. Sustainable Development Goals [WWW Document]. 2018. URL 
https://sustainabledevelopment.un.org/sdgs. 

Valentín-Vargas, A., Toro-Labrador, G., Massol-Deyá, A.A., 2012. Bacterial community 
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