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Abstract  Worldwide deforestation and degradation 
are limiting the capacity of tropical dry forests (TDFs) 
to provide environmental services. Agroforestry 
systems (AFSs) are agricultural land systems that 
combining perennial elements with crops, can provide 
important benefits to people (e.g. timber and non-
timber products) and the environment (e.g. hosting 
biodiversity). Using a semi-quantitative methodology 
(i.e. weight of evidence), we assessed the role 
of the three main types of AFSs (intercropping, 
multistrata and silvopastoral and protective systems) 
in restoring key ecosystem services in TDFs. We 

found that each type of AFSs contributed differently 
to soil quality restoration, productivity, biodiversity, 
carbon sequestration, and culture preservation. 
Yet, AFSs can also deliver few disservices, such as 
yield reductions. Despite the identified knowledge 
gaps, such as the carbon sequestration capacity, our 
findings indicate that AFSs can contribute to restore 
TDFs by providing valuable ecosystem services to 
halt degradation and sustain people’s livelihood.
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Introduction

Deforestation and forest degradation are increasing 
threats in tropical dry forests (TDFs), which have 
been considered the most threatened tropical forests 
worldwide (Blackie et al. 2014). These anthropogenic 
disturbances limit the maintenance of human 
wellbeing, a major concern, considering that TDFs 
support a significant portion of the poorest people 
in the world (Djoudi et al. 2015), who rely on forest 
resources and agriculture for their livelihood (Mbow 
et al. 2014; Djoudi et al 2015). Thus, understanding 
how to restore at least some elements of the structure 
and function of TDFs while also covering people 
needs is an urgent task (productive restoration; 
Ceccon 2013).

Agroforestry systems (AFSs) are land-use systems 
where crops and/or pastures coexist with perennial 
elements (trees, palms, bamboo, cacti or rosetophile 
species in different spatio-temporal arrangements of 
the annual and perennial elements (Nair 1993), that 
provide benefits to both wildlife and local people 
(Montagnini et al. 2015).

Given the climatic restrictions imposed by TDFs 
(long dry seasons), the main types of AFSs usually 
performed in this ecosystem are: (i) intercropping 
systems; consist of agricultural scattered or aligned 
trees of one or few species, which usually are 
maintained at a density that does not interfere with 
crop development (ii) multistrata systems; are 
typically composed of woody and herbaceous species 
in diverse configurations and, (iii) silvopasture and 
protective systems; the first are a generic name for 
pasturelands with perennial elements, whereas the 
latter constitute a single or double line of woody 
elements bordering houses, agricultural plots, or 
paddocks (Nair 1985, 1989, 1993) (see an extended 
definition in Table S1).

Some reviews on the benefits of those AFSs 
indicate that they contribute to people welfare 
through timber and non-timber products, however, 
they are typically focus on local or regional analyses 
rather than more holistic or wide-scale benefits 
(Roy 2016; Rathore et  al. 2019) or are limited to 
few ecosystem services (e.g., mitigation of climate 
change, Mbow et  al. 2014). Moreover, these studies 
raise the idea that AFSs in TDFs always generate 
positive contributions, but this may not be the case in 
all situations (Sinare and Gordon 2015). Therefore, 

to improve their efficiency, both the positive and 
negative contributions of AFSs need to be explored 
more deeply while also recognizing the relative 
contribution of different types of AFSs.

Thus, this study analyzes the role of AFSs in 
providing ecosystem services in TDFs. We adopted 
the term ecosystem services because it has a long 
tradition of use in research and has been reported 
in several publications (Braat 2018). We combined 
a literature review with a weight of evidence 
(WOE) approach (EFSA 2017), a useful semi-
quantitative analysis, to organize the information 
in lines of evidence for each ecosystem service (soil 
quality, production increases, carbon sequestration, 
biodiversity conservation, and cultural importance). 
With this approach, we tested the hypothesis that 
AFSs can restore the provision of ecosystem services 
in TDFs. Evidence supporting the hypothesis was 
classified as “benefits” (positive contributions), 
whereas evidence rejecting the hypothesis was 
identified as “disservices” (negative contributions or 
drawbacks). When a study did not provide enough 
information to sustain the hypothesis, it was classified 
as “lack of evidence”.

The present study may help researchers and 
conservation practitioners to recognize opportunities 
to tailor AFSs in TDFs to enhance the provision of 
benefits to people, and take actions to tackle local or 
global environmental challenges (Blackie et al. 2014).

Methods

Literature process selection

The literature survey was performed in the ISI Web of 
Knowledge Database (Thomson Reuters, New York, 
USA) on March 2nd 2019, included the search terms 
[“dry forest” or “dryland*” and “agroforestry” or 
“agroforestry system*”], which could be in the title, 
abstract and/or keywords. We also reviewed the “Red 
SAM” (a thematic network of agroforestry systems 
in Mexico, http://​www.​red-​sam.​org) repository on 
May 6th 2019, for articles containing the same terms 
in Spanish [“bosque seco” or “bosque tropical seco” 
and “agroforestería” or “sistema* agroforestal*”]. We 
conducted a direct search on two selected publications 
on the topic: Nair et al. (2017) and Félix et al. (2018). 
Thus, the identification phase resulted in a total 

http://www.red-sam.org
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of 1392 articles (802 duplicates were removed). 
The literature selection process is summarized in a 
PRISMA flow diagram (Fig. 1).

In the first filter of the screening phase, we 
excluded 616 articles as they employed superficially 
the terms “agroforestry”/“agroforestry systems”, 
e.g., as an option of sustainable land use strategy in 
drylands mentioned at the end of discussion. At the 
end of the first filter, only 186 studies remained. A 
second filter was applied to verify that studies were 
carried out in an area previously covered by TDF. 
We used the delimitation proposed by The Global 
Ecological Zoning for the Global Forest Resources 
Assessment-2000 (2001), which establishes that 
climate of this biome is characterized by annual 
rainfall ranging from 500 to 1500 mm, one or two dry 
seasons ranging from 5 to 8 months and temperatures 
higher than 18 °C; 80 articles did not pass the climatic 
criterion.

Finally, 106 research articles were included for 
the analysis: 60 articles from ISI Web of Knowledge, 
17 from Red SAM, four from Nair et al. (2017) and 
25 from Félix et  al. (2018) fulfilled the climatic 
requirements (Fig.  1, ‘Eligibility’). As many of the 
research articles described more than one type of 
AFSs, we finally included 272 independent studies 
(entries) (Fig. 1, ‘Included’).

The database included information on AFSs 
type, annual rainfall (mm), perennial elements 
and ecosystems services explicitly or implicitly 
highlighted. When available, data on crop yields, 
measurements of biodiversity, ecosystem (e.g., C 
stored), economic (profits) and/or social benefits 
were also gathered. The country and geographic 
coordinates of the study were used to plot a map 
where each study was located.

Fig. 1   PRISMA Diagram 
with the steps of the 
literature selection process. 
ISI Web of Knowledge and 
Red SAM were consulted. 
Screening phase: * First 
criterion of selection, the 
study mentions superficially 
the term “agroforestry”. 
** Second criterion of 
selection, the ‘climatic 
criterion’ stated that dryland 
is an area previously 
covered by tropical dry 
forest biome
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The weight of evidence (WOE) approach

Due to the narrative nature of most data found during 
the survey, we assessed the services and disservices 
provided by AFSs in TDFs with a WOE approach. 
In this approach, evidence and data are structured 
in lines of evidence, which are sets of information 
grouped by their similarity to assess a hypothesis. 
Among the different methods that can be used to 
analyze and synthesize evidence, the best professional 
judgement was used to integrate multiple lines of 
evidence and infer conclusions from them (Linkov 
et al. 2009).

We assessed the hypothesis that AFSs restore 
ecosystems services in TDFs. To evaluate its validity, 
we explored the following lines of evidence (i.e., 
environmental services), based on the Millennium 
Ecosystem Assessment (2005): (1) soil quality 
improvement (soil structure maintenance, biological 
diversity, nutrient cycling, (2) belowground C 
sequestration; (3) production increase (biomass, crop 
yield and secondary products); (4) biodiversity and 
agro-biodiversity conservation, and (5) harboring 
cultural importance. We acknowledge that some of 
these functions are interrelated to soil quality, such as 
C sequestration capacity or production; however, we 
considered the former as one of the strategies to offset 
greenhouse gases emissions (Nair et  al. 2009a, b; 
UNFCCC 2020), while production was an indicator 
of agricultural importance.

To complete the database, every study was 
reviewed to answer the questions “Does the study 
support, provide no information, or reject the line 
of evidence? If so, at which degree?” We assigned 
the scores + 2, + 1, 0, −  1 or −  2 based on the next 
qualitative criteria: strong support (+ 2), when the 
study reported statistical support to the hypothesis; 
weak support (+ 1), when the study presented 
narrative arguments of support; lack of evidence 
(0), when the study did not support nor rejected 
the evidence; weak rejection (−  1), when the 
study presented narrative arguments rejecting the 
hypothesis or did not present statistical conclusions; 
and strong rejection (−  2), when the study reported 
statistical conclusions rejecting the hypothesis.

Data analyses

Although SAFs with different names were found 
in several studies (e.g. parkland, woodlot, living 
fences, alley cropping, silvopasture, homegarden, 
windbreaker, among others), and possibly, some 
AFS are more related to dry forests that receive the 
maximum volume of precipitation, and others with 
the minimum amount, to have a larger number of 
cases for each ecosystem service, we pool all those 
structurally or functionally similar AFS. In this 
sense, we analyzed separately evidence only for four 
generalized AFSs: intercropping systems, multistrata 
systems, and silvopasture and protective systems. 
Then, we counted the total number of times a score 
was assigned. For example, for production increase in 
intercropping systems, 76 entries were assigned with 
“+ 2”, 45 with “+ 1”, 27 with “0”, two with “−  1”, 
and 70 with “−  2”; n = 220 (Table  S2). We then 
converted these counts to percentage to standardize 
and compare lines of evidence with unequal number 
of entries for each AFSs. Results were arranged and 
plotted by line of evidence (Fig. 2).

Results and discussion

The continent with the most studies was Africa 
(45.55%) and Burkina Faso was the most prominent 
country (14.44% of studies). America was second 
(35.55%) and two countries had the highest 
percentages of studies (Brazil, 16.66% and Mexico, 
13.33%). India was the country with the highest 
percentage of studies (10%) in Asia (15.55%, Fig. 2). 
In Burkina Faso, all studies found were parklands, 
AFS that prevails in a large part of this continent, 
while in Brazil and Mexico a wide variety of AFS 
were evaluated.

Evidence indicated that each type of AFSs provides 
different benefits (Fig. 3, dark and light green areas) 
and some disservices (Fig.  3, dark and light red 
areas) in TDFs. The main types of AFSs recognized 
for intercropping systems were alley cropping, 
multipurpose trees, improved fallows, and parklands. 
For multistrata systems were homegardens and crops 
under shade. Silvopasture included protein banks 
and grazing under trees, whilst protective systems 
comprised living fences and windbreaks. Moreover, 
the WOE approach allowed us to identify areas of 
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knowledge which have been underexplored (Fig.  3, 
grey areas). Percentages of evidence supporting 
and rejecting the hypothesis, the percentage of lack 
of evidence and number of entries in each case are 
summarized in Supplementary Table S2.

Benefits

Soil quality

We found evidence that AFSs improve soil quality, 
but such improvement varies among the types of 
AFSs. Intercropping systems showed the greatest 
benefit (total support = 81%, Fig. 3A), with studies 
reporting increases in soil nutrient stock and soil 
organic matter (Ceccon et  al. 2015; Sileshi 2016) 
relatively high soil water levels (Ong et  al. 2007; 
Beranger et  al. 2017), and reduced soil erosion 
(van Hoogesteger et  al. 2017). Although there was 
not so much strong evidence for soil improvement 
in multistrata systems (total support = 54%, 
12% strong; Fig.  3A), we found evidence that 
homegardens do have desirable soil characteristics. 
For instance, in the Yucatan Peninsula, Mexico, 
soils in solares (traditional homegardens) showed 
favorable physicochemical characteristics (e.g. 

relatively high soil organic matter content, neutral to 
moderately basic pH and heat dissipation capacity) 
(Flores-Delgadillo et al. 2011) compared to soils in 
the rest of the peninsula, which are poorly developed 
(Bautista et  al. 2005). The weakest benefit was 
given to silvopasture and protective systems (total 
support = 50%, Fig.  3A), although we found some 
important exceptions. Some silvopastoral systems in 
Brazil can maintain similar or higher values of soil 
organic matter than in conventional pastures and 
native vegetation (Cardozo et  al. 2016). Regarding 
protective systems, in Africa, India and Australia, 
windbreaks avoid the loss of soil by trapping dust 
or reducing wind speed (e.g. 5 to 41 t ha−1 of soil 
or 40–200  cm of sand accumulation; Bird et  al. 
1992; Stigter et  al. 2002, respectively). Therefore, 
some AFSs are better than others in improving soil 
quality.

Soil improvement is promoted by treed elements 
in productive lands, so the management of such trees 
may explain the observed differences among types 
of AFSs in improving soil quality. Management 
strategies practiced systematically in some types of 
AFSs would enhance some of these benefits.

Fig. 2   World map with geographic coordinates of all studies used in the WOE approach
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Production increases

We found considerable evidence that AFSs 
can increase total production compared with 
conventional farming systems. By total production 
we refer to the yield of main staple food crops, the 
biomass for forage or secondary products (e.g., 
benefits including food complements, medicines, 
fuelwood, fodder, or ornaments). Multistrata 
systems had the highest percentage of support for 
increased production (total support = 79%, Fig. 3B), 

especially of secondary products obtained in 
homegardens. Some of the most cited and highly 
valued secondary products are fruits, herbs for 
seasoning, medicine, materials for construction, 
fibers, fuelwood, and aesthetic/religious/magic 
plant-based ornaments (Poot-Pool et  al. 2012; 
Larios et al. 2013). This high productivity is mainly 
since most of the species found in traditional 
homegardens usually used to be shade tolerant 
(De Clerck and Negreros-Castillo 2000; Martin 
et al. 2019). Main evidence of production increases 

Fig. 3   Weight of evidence for the hypothesis that agroforestry 
systems can restore the provision of ecosystem goods and 
services in tropical dry forests. “Strong support” means that 
statistical conclusions support the hypothesis. “Weak support” 
indicates that narrative arguments support the hypothesis. 
“Lack of evidence” encompasses studies which do not support 
nor reject the hypothesis. “Weak rejection” indicates that 

narrative arguments reject the hypothesis. “Strong rejection” 
means that statistical conclusions reject the hypothesis. 
Number of entries per subsystem (n): intercropping systems, 
n = 220; multistrata systems, n = 24; silvopasture and protective 
systems, n = 28. ‘n’ is the same for all environmental services 
(See also Table S2)
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for intercropping systems (total support = 54%, 
Fig. 3B) was obtained for main crops. For example, 
we find an increase in production of up to of 150% 
for maize (Zea mays, Sileshi 2016), and 274% for 
taro (Colocasia esculenta, Pouliot et  al. 2012) 
compared to their respective monocultures. Similar 
benefits were found in the yield of silvopasture 
and protective systems (total support = 54%, 
Fig.  3B) in which both, woody and grass species, 
produced more biomass. For example, a Brazilian 
silvopastoral system can produce more biomass 
with Panicum spp. grass than with Brachiaria spp. 
or grass monocultures (Cardozo et al. 2016). Also, 
trees employed as living fences in Panama are 
appreciated for providing secondary products such 
as fruits, wood, and fuelwood (Garen et  al. 2011). 
Therefore, our findings support the hypothesis that 
AFSs have the capacity to increase production 
expressed as crop yields, forage biomass or the 
provision of secondary products.

An increase in production can be explained by the 
fact that, when properly designed and managed, AFSs 
are structurally and functionally complex systems, 
which may resemble a natural ecosystem and can be 
highly productive and profitable (Nair et al. 2009a, b; 
Jose et al. 2019).

Carbon sequestration

Although weakly supported, AFSs also contributed 
to carbon sequestration. This was more evident in 
multistrata systems (total support = 25%, Fig.  3C), 
particularly from homegardens. For example, in Sri 
Lanka, homegardens from dry and wet zones store, in 
average, 35 and 87 Mg C ha−1, respectively in above-
ground biomass (Mattsson et al. 2013). Intercropping 
systems (total support = 21%, 11% strong + 10% 
weak; Fig.  3C) also may contribute to carbon 
sequestration, although this contribution seems to 
depend on tree species-soil type interactions. For 
example, soils under Acacia auriculiformis and 
Azadirachta indica growing in a fallow with a Ferric 
Acrisol soil type in Togo, stored 3.41 and 12.46 Mg 
soil C ha−1 respectively; whereas the carbon stored 
under Crotalaria grahamiana ranged from 1.69, 
in Arenosol, to 3.6  Mg soil C ha−1, in Ferralsol, in 
Kenya (Albrecht and Kandji 2003; Partey et  al. 
2017). Finally, silvopasture presented low support 
(14% strong; Fig. 3C) but in a Brazilian silvopasture 

with Mimosa spp., Thiloa glauca and different 
grasses stored more C soil (32.8  Mg C ha−1) when 
compared with a conventional grassland (20.7 Mg C 
ha-1) (Cardozo et al. 2016). Therefore, the available 
evidence supporting the value of AFSs in delivering 
this environmental system service is not so strong, 
however, its importance is not negligible considering 
that natural forested areas are rapidly decreasing.

Biodiversity conservation

Our findings also support the hypothesis that 
AFSs provide niches for a wide range of plant 
and animal species, above and below ground. The 
strongest evidence comes from multistrata systems 
(total support = 71%, Fig.  3D), especially from 
homegardens, within which 50 to 70% of trees are 
composed of native species and the herbal stratum 
includes native and introduced species or varieties 
(Moreno-Calles et  al. 2016; Aguirre-Salcedo and 
Ceccon 2020 among others). Silvopasture and 
protective systems also promote biodiversity (total 
support = 54%, Fig. 3D). For example, in a Mexican 
silvopastoral landscape, the species richness of 
Scarabaeinae beetles increased from highly managed 
patches (rangelands with no trees) to intermediate- or 
low-managed ones (Acacia spp woodlots and mature 
TDF) (Arellano et  al. 2013). Regarding protective 
systems, in Panama, nearly 90% of the tree species 
employed as living fences are native to this country 
(Garen et  al. 2011), and in central Mexico, up to 
61 species of birds coexist in living fences in agro-
silvopastoral landscapes (Zuria and Gates 2013). 
Finally, biodiversity conservation was relatively less 
evident in intercropping systems (total support = 31%, 
Fig.  3D). Yet, some exceptions merit special 
attention: in the Tehuacán Valley, Mexico, jiotillales, 
chichiperas and garambullales, complex traditional 
systems, involving multipurpose trees in croplands 
and cacti as living fences, preserve nearly 94% of 
genetic variation of columnar cacti species (Moreno-
Calles and Casas 2010), which is of major importance 
given that the area is center of diversification and 
endemism for Cactaceae family (Dávila et al. 2002). 
Therefore, we confirm our hypothesis that AFSs 
conserve wild and domesticated plants and animals, 
according to the type of system.

The capacity of AFSs to harbor biodiversity and 
agrobiodiversity seems to be related to their complex 
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structure, which in turn is driven by management 
strategies. Farmers introduce, conserve or tolerate 
diverse perennial and annual species in their AFSs 
(the ´planned biodiversity´, Altieri 1999), and 
manage them to maximize positive interactions 
– traduced in profits—and minimize competition 
– traduced in drawbacks (Nair et al. 2009a, b). Some 
species from the surrounding ecosystems benefit on 
the environmental setting created by the AFSs and 
can play beneficial (e.g., pollination or suppression 
of ‘undesirable’ organisms) or negative roles (e.g., 
feeding on main crops or compete with them, Hellin 
et al. 1999). AFSs also improve the human modified 
landscapes facilitating ecological processes, such as 
pollination, seed dispersal or genetic connectivity 
among forest fragments (Arroyo-Rodríguez et  al. 
2020).

Cultural importance

Evidence indicates that AFSs are of cultural 
importance, which refers to the values and meanings 
that people give to the positive contributions 
generated in AFSs, such as food, medicine, fuelwood, 
fodder, material for construction, ornaments, and 
the monetary income (Millennium Ecosystems 
Assessment 2005).

Evidence on cultural importance was noticeable 
in multistrata systems (total support = 83%, Fig. 3E), 
especially in homegardens, where the production 
usually covering part of daily-life household demands 
in rural or poor communities (Poot-Pool et al. 2012; 
Larios et al. 2013 among others). Evidence for cultural 
importance for silvopasture was also high (total 
support = 68%, Fig. 3E), and the most representative 
evidence was found on protective systems (Garen 
et al. 2011). In Burkina Faso, livestock wander freely 
during the dry season and sometimes, animals go 
inside private backyards and cause damages to the 
neighbor’s property. Woody poles or barbed wire are 
expensive or scarce, so farmers employ living fences 
as the most profitable option to keep cattle out of their 
properties and because of the secondary products they 
obtain (Ayuk 1997). Cultural importance was less 
evident in intercropping systems (total support = 36%, 
Fig.  3E). In African parklands Vitellaria paradoxa 
(shea nut or karité) trees are part of the Sahelian 
landscape, and its fruits are one of the main sources 
of energy for peasants during the hardest season of 

land preparation; moreover, fruit collection, butter 
extraction and trading –activities carried out mainly 
by women- generate important economic revenues 
(Maranz et al. 2004). Therefore, our findings support 
the hypothesis that AFSs are of cultural importance 
because of the material and immaterial positive 
contributions generated there.

Disservices

Some evidence in this study show that AFSs may also 
deliver disservices or negative contributions (Fig.  3, 
dark and light red areas). We considered disservices 
as tradeoffs between positive contributions and 
decreased performance in other ecosystem functions. 
However, almost all the impacts presented low 
percentage of rejection (< 3%). The only moderate 
rejection found was the impact on the yield in 
intercropping systems (total rejection = 33%, 
Fig.  3B), where yield reductions ranged from -3% 
to -81% (de Ruijter et  al. 2010 and Glasener and 
Palm 1995, respectively). Although water or nutrient 
competition may explain the negative results on crop 
yields (Nair 1993; García-Barrios and Ong 2004; Ong 
et al. 2007), sun light complex interactions seem to be 
also involved. Studies on crop performance under tree 
crowns vs open areas are suggest.

Knowledge gaps

Carbon sequestration capacity was the greatest 
knowledge gap for all types of AFSs. We found high 
percentages of lack of evidence in silvopasture and 
protective systems (86%), intercropping systems 
(77%) and multistrata systems (75%, Fig.  3C). 
Moreover, biomass addition to soil sometimes results 
in greenhouse gases emission, and it is not clear under 
which circumstances this phenomenon is triggered 
(i.e., soil type, fixing- or non-N-fixing species, 
management practices). To overcome this gap, 
gathering data on characteristics of the system, such 
as the tree litter quality, management practices, soil 
characteristics and agroclimatic conditions, can serve 
to model the C storage capacity of different AFSs and 
improve our understanding about their performance 
across different contexts (Nair et al. 2009a, b). Filling 
this research gap may also provide information to 
establish threshold quantities of biomass application 
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or to develop strategies to limit greenhouse gases 
emissions (Glasener and Palm 1995; de Ruijter et al. 
2010).

Conclusions

We provided a nuanced understanding of the different 
degrees of evidence for the contribution of AFSs 
to maintaining or restoring the provision of goods 
and ecosystem services (“positive contributions” or 
benefits). Yet, disservices (“negative contributions” 
or drawbacks) were also documented. We also 
found a close relationship between management 
practices and the capacity of AFSs to provide 
positive contributions. Thus, farmers usually obtained 
more benefits when an AFSs was more intensively 
managed, that is, more organic inputs added, higher 
number of species sheltered or more intensively 
labored. To scale-up the adoption of AFSs as an 
instrument for productive restoration, however, the 
involvement of the private and public sector as well 
as academics and local groups it is needed.

Finally, as a methodological consideration, the 
WOE approach proved to be a useful framework to 
conduct semi-quantitative reviews of the ecological 
literature. This approach allowed us to frame and 
assess information on ecosystem services (i.e., 
lines of evidence) coming from different fields 
of knowledge. It was also especially useful with 
narrative-type literature (e.g., ethno-ecology, 
botanical or zoological list), in which statistical 
conclusions are not always available. Furthermore, 
the WOE allows to test diverse lines of evidence in 
the same analysis (five in the present study).
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