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Lower pork consumption and technological 
change in feed production can reduce the 
pork supply chain environmental footprint 
in China

Bingxin Tong1,5,6, Ling Zhang1,5,6, Yong Hou    1 , Oene Oenema    1,2, 
Weitong Long1,3, Gerard Velthof2, Wenqi Ma4 & Fusuo Zhang    1

Nearly half of global pork production and consumption occurs in China, 
but the transition towards intensification is associated with worsening 
environmental impacts. Here we explore scenarios for implementing 
structural and technological changes across the pork supply chain to 
improve environmental sustainability and meet future demand. Following 
the middle-of-the-road socio-economic pathway (SSP2), we estimate that 
the environmental footprint from the pork supply chain will increase by 
~50% from 2017 to 2050. Utilizing technologies that improve feed crop 
production and manure management could reduce phosphorus and 
nitrogen losses by three-quarters and one-third, respectively, with modest 
reductions in greenhouse gas emissions and cropland area. Reducing pork 
consumption had substantial mitigation potential. Increased feed and  
pork imports would decrease domestic environmental footprints and  
meet demand, but increase footprints elsewhere. We conclude that 
farm-specific technologies and structural adjustments can support the 
development of rural, small-scale pig farms near cropland and promote 
circular economy principles.

Global pork production accounts for about one-third of global meat pro-
duction, with nearly half of the global total production in 2017 occurring 
in China1. Since Chinese policy reform in 1978, specialized and intensive 
farming systems started to grow, with ~20% pigs being raised in large-size 
industrial farms by 2000 (ref. 2). Intensification has many detrimental 
environmental impacts. Poor manure management resulted in more than 
half of nitrogen (N) (5.3 million tonnes) and phosphorous (P) (0.8 mil-
lion tonnes) being lost to the environment in 2010 (ref. 3). About one-fifth 
of cropland area in China was used for concentrate pig feed production 

(mainly corn and wheat) in 2017 (ref. 4). China imported 90.7 million tonnes 
of soybean in 2018, with about 25% going towards the pig sector1,4, while 
also importing 1.1 million tonnes of pork, which is implicated in defor-
estation and greenhouse gas (GHG) emissions in soybean-exporting 
countries in Latin America, and with environmental pollution in the main 
pork-exporting counties in the European Union (EU)1,5.

Actions to decrease environmental impacts can be implemented 
across the pork supply chain. Governmental policies can address 
demand and supply. Current dietary guidelines promote decreasing 
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increase alongside the associated environmental spillover in exporting 
countries (the EU, Canada and the United States). The required cropland 
area and the GHG emissions increase more than Nr and P losses in export-
ing countries; 28% of the cropland area needed for feed production is 
overseas in 2050 (Brazil, Argentina and Ukraine), and 14% of the total GHG 
emissions embodied in the pork supply in 2050 occurs overseas (Fig. 1).

Impacts of structural and technical changes
We explored technological measures that have been tested and applied 
in pilot farms and regions in China to assess how structural adjustments 
and technological measures impact the environmental footprints of 
the pork supply chain relative to the 2050 BAU scenario (Figs. 1 and 2).

In the ‘Dietary guidelines’ scenario, the recommended pork con-
sumption was 13 kg per capita per year, according to the Chinese guide-
lines for healthy diets19. In this scenario, the total required cropland 
area, GHG emissions, and Nr and P losses from China’s pork supply 
chain would be 64.7–66.6% lower compared with the BAU scenario 
(Fig. 1) and lower than for the year 2017 (Table 1).

Increasing pork imports (S1-1, assuming all additional demand 
will be imported compared with 2017) decreased Nr losses by 11% and 
P losses by 27%, but increased GHG emissions by 23% and required 
cropland area to increase by 36% (Fig. 2). Increasing feed import (S1-3, 
that is, increasing soybean import from 85% to 93% of the total domes-
tic demand) did not have substantial impacts on the environmental 
footprints. Changes in intensification level (S2), that is, in the relative 
contributions of small, medium and large pig farms to the total pork 
production, have substantial effects owing to the associated differ-
ences in feed use, pork production efficiency and manure management 
between farm types (Fig. 2). Environmental footprints were reduced 
by 6–8% in S2-1 (ratio of small:medium:large farms is 25:51:24) and by 
10–12% in S2-2 (ratio of small:medium:large farms is 25:18:57), rela-
tive to the 2050 baseline. However, all four environmental footprints 
modestly increased in S2-3 (assuming all pigs were fed in large farms).

Improvements in feed production through improved crop produc-
tion practices affected environmental footprints modestly (range −11% 
to +3%). Balanced N fertilization (S3-1) had the greatest reduction and 
enhanced N fertilizer technology (S3-3) the least. A combination of 
technologies in feed production (S3-4) led to an 8% reduction in GHG 
emissions, an 11% decrease in cropland area and a 3–4% reduction in Nr 
and P losses (Fig. 2). The effects of combined options are not simply 
additive, as interactive impacts are considered in the model.

Improvements in pig production (S4) decreased the four environ-
mental footprints modestly (range 0–9%), except for supplementing 
phytase in feed (S4-2, P losses decreased by 24%). Low-protein feeding 
(S4-1) and improved herd structure (S4-3) decreased the environmental 
footprints only modestly, because the genetic basis of the pig herd was 
close to international standards and feed protein content was relatively low 
on average in 2017. The combination of improved pig production measures 
(S4-4) decreased the four environmental footprints by 6–26% (Fig. 2).

Improvements in manure management and treatment had large 
impacts on the environment compared with the BAU scenario, but 
had no impact on the required cropland area (Fig. 2 and Supplemen-
tary Fig. 3). The C, N and P footprints decreased roughly in the order 
C < N < P. Improvements in manure storage and treatment (except 
for anaerobic digestion) reduced Nr and P losses, but increased GHG 
emissions. Anaerobic digestion combined with proper utilization of the 
digestate in cropland (S5-3) decreased GHG emissions by 14% (includ-
ing the emissions associated with avoided fossil energy use through 
biogas production), Nr losses by 8% and P losses by 18% (digestate 
application to cropland may substitute 1.7 Mt N and 1.3 Mt P synthetic 
fertilizer). Composting decreased P and Nr losses, but slightly increased 
GHG emissions; the reduction in methane (CH4) emissions was off-
set by increased CO2 emissions from energy use (S5-2; Fig. 2). Some 
manure management measures decreased N losses to water bodies, 
but increased emissions of ammonia (NH3) (S5-1, S5-3 and S5-4; Fig. 2). 

pork consumption, which would decrease environmental impacts on 
the demand side of the pork supply chain6,7. Supply-side options attempt 
to reduce the intensity of resource use and emissions of GHG, N and P. 
Technical measures reduce the environmental pressures from livestock 
systems through the use of, for example, feed additives, low-protein 
feeding, anaerobic digestion and improved manure management3,8. 
Structural adjustments require fundamental changes in production 
systems, such as a transition towards intensive production systems, 
relocation of production across regions through international trade and 
inclusion of demand-side adjustments9,10. Relocation of animal produc-
tion across regions could improve manure recycling and decrease N and 
P emissions greatly11,12, but the impacts of farm structure adjustments on 
the environmental performance of pork production are poorly explored.

Industrial farms typically outperform traditional smallholder 
farms in terms of productivity and farm profit, but not necessarily in 
terms of environmental performance. Smallholder farms amid villages 
and crop production farms have greater opportunity than industrial 
farms to recycle animal manure to cropland13. Pigs on small-scale farms 
can contribute to a circular bioeconomy by using household leftovers 
and agro-industrial by-products, thus recycling nutrients back into the 
food system14,15. Numerous studies have examined the environmental 
impacts of technological measures in pork production and manure 
management3,4,16,17, but impacts of combinations of technological 
measures and structural adjustments for the whole pork supply chain 
have not been examined in an integrated manner.

In this Article, we examined unique combinations of a comprehen-
sive set of measures and adjustments for the whole pork supply chain. 
First, we assessed four key environmental footprints (cropland area used 
for feed production, and carbon (C), N and P footprints) of the pork sup-
ply chain in 2017. Next, we estimated the pork demand in 2050, follow-
ing a business-as-usual (BAU) baseline (that is, the middle-of-the-road 
socio-economic pathway—SSP2 (ref. 18)), and full implementation of the 
Chinese guidelines for healthy diets19, estimating the cropland area, C, 
N and P footprints. Finally, we explored the impact of possible techni-
cal measures and structural adjustments through scenario analysis.

Results
BAU environmental footprints
In 2017, China’s pork supply totalled 55.6 Mt (import accounted for 2%), 
contributing 63% to the total national consumption of meat products 
(as carcass weight). Mean meat consumption was 61 kg per capita in 
China (that is, 50% of the mean consumption in the United States1). A 
total of 28.0 Mha of cropland was used for the pork supply, including 
7 Mha overseas (Table 1). Total GHG emissions associated with the pork 
supply (including imports) were 153.1 Mt CO2-eq. Total reactive nitro-
gen (Nr) losses were 4.7 Mt, and total P losses were 0.24 Mt (Table 1).

In the 2050 BAU scenario, pork consumption increases to a mean 
of 78.6 Mt (uncertainty range 67.5–95.8 Mt) owing to population and per 
capita consumption increases, from 38.3 in 2017 to 54.8 (range 47.1–66.8) 
kg per capita per year (Supplementary Fig. 1). Nearly 90% of total pork will 
be produced by medium (50–3,000 heads) and large (>3,000 heads) farms 
in 2050 (Table 1). Pork consumption per capita in BAU will be close to the 
current level of consumption in, for example, Germany1. Footprints of C, 
N, P and cropland per kilogram pork (carcass weight) will increase by 2.2%, 
2.4%, 7.8% and 1.1%, respectively, owing to the anticipated greater contri-
butions from large industrial farms and lower contributions from small 
farms (Table 1). These farms have contrasting differences in feed use and 
manure management and utilization resulting in the total area of cropland 
needed for feed production increasing by 41.7% between 2017 and 2050 
(from 28.0 Mha to 40.0 Mha), while total GHG emissions from the pork 
supply chain will increase by 44.5% (from 153.1 Tg to 221.1 Tg), P losses by 
52.1% (from 239.1 Gg to 363.6 Gg) and Nr losses by 44.5% (from 4.7 Tg to 
6.8 Tg) (Fig. 1 and Table 1). GHG emissions and Nr losses originate mainly 
from feed production and manure management, and P losses occur mainly 
through manure discharge and landfill (Fig. 1). Pork and feed imports 
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Trade-offs exist between emission pathways: GHG emissions increased 
by 4% and Nr losses by 3%, but P losses decreased by 3% in S5-1 (Fig. 2 and 
Supplementary Fig. 3). Overall, the combination of manure manage-
ment and treatment had the greatest impacts on total GHG emissions, 
and Nr and P losses (S5-6; Fig. 2).

Improvements in slaughterhouse waste management and utili-
zation had a surprisingly large impact on the total losses of Nr and P  
from the supply chain, but not on the cropland area and GHG emis-
sions (S6; Fig. 2).

Impacts of integrated packages of measures
An integrated package of measures from feed produc-
tion to slaughterhouse waste management (see SD in Fig. 3, 

SD = S3-4 + S4-4 + S5-6 + S6) gave large reductions of P losses (72%) 
and Nr losses (38%), with modest reductions of GHG emissions (17%) 
and the required cropland area (14%). Losses of Nr and P mainly 
decreased through improved manure management; decreases of 
GHG emissions and cropland area were largely associated with 
improved feed production.

Integration of the aforementioned technological package and 
increased pork import (see SE in Fig. 3, SE = SD + S1-1) reduced total 
Nr and P losses further, but increased total GHG emissions and the 
required cropland area, especially overseas as increased import 
leads to spillover of environmental impacts to exporting countries. 
The pressure on the environment decreased significantly when the 
aforementioned package of measures was integrated with changes 

Table 1 | Estimated cropland area needed for feed production, and GHG emissions and Nr and P losses associated with the 
pork supply chain in China (differentiated for three main farm types) and in countries that export pork and/or feed to China 
in 2017 and in 2050 (for BAU)

Countries and farm types Proportion of total pork 
supply (%)

Cropland use (Mha) GHG emissions (Tg) Nr losses (Tg) P losses (Gg)

2017 BAU 
(2050)

2017 BAU 
(2050)

2017 BAU 
(2050)

2017 BAU 
(2050)

2017 BAU 
(2050)

China Small size 24.6 9.8 1.9 0.6 11.1 4.9 0.48 0.25 28.6 15.9

Medium size 50.0 34.3 13.5 12.1 86.1 77.2 2.8 2.6 144.5 140.5

Large size 23.4 53.9 5.6 16.2 36.4 108.0 1.1 3.5 61.9 200.5

Subtotal 98.0 98.0 21.0 28.9 133.7 190.1 4.4 6.4 234.9 356.9

Brazil 0 3.1 5.1 9.2 15.0 0.13 0.22 3.6 5.9

Europe 1.5 1.5 1.0 1.3 3.9 6.0 0.04 0.06 0.27 0.39

America 0.26 0.26 2.3 3.6 4.2 6.8 0.10 0.16 0.21 0.33

Others 0.24 0.24 0.67 1.1 2.1 3.3 0.01 0.01 0.04 0.06

Subtotal 2.0 2.0 7.0 11.1 19.6 31.1 0.29 0.46 4.2 6.7

Sum 100 100 28.0 40.0 153.1 221.2 4.7 6.8 239.1 363.6

Data related to the total domestic pork supply in China and to imported pork and feed were obtained from the Food and Agriculture Organization Corporate Statistical Database. Data related 
to the differentiation over small, medium and industrial farms were collected from China Animal Husbandry and Veterinary Yearbook (2018), China Statistical Yearbook (2018) and Long et al.4. 
GHG emissions and Nr and P losses relate to the whole feed and/or pork supply chain.

P losses

Nr losses

GHG emissions

Cropland use

0% 50% 100% 150%

Dietary guidelines
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2017

Dietary guidelines
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Dietary guidelines
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Rest of the world
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Fig. 1 | Estimated relative cropland areas used for feed production, and 
relative GHG emissions, Nr and P losses associated with China’s pork supply 
in 2017 and 2050 (for BAU). Estimations are shown as percentage of the current 
situation (2017 is 100%). Results for 2050 are according to the BAU baseline 
projection (the middle-of-the-road socio-economic pathway—SSP2) without 

dedicated mitigation measures. Rest of the world indicates overseas impacts 
associated with the import of pork and/or feed. Avoided heat and electricity 
refers to the energy from biogas generation and utilization from anaerobic 
digestion of pig manure.
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in farm structure (see SF in Fig. 3, SF = SD + S2-2). Results of the 
decomposition analysis for scenario SF show that a reduced inten-
sification level alleviates environmental pressures, in particular 
for GHG emissions and cropland area, relative to the 2050 BAU 
baseline. Improving manure management greatly reduced Nr and 
P losses (Fig. 4).

In short, total P losses may be reduced by up to 84%, total Nr losses 
by up to 45%, total GHG emissions by 28% and the required cropland 
area by 20% through integrated packages of measures (Fig. 3).

Discussion
China will probably remain the main global pork producer and con-
sumer in the twenty-first century, even if the Chinese guidelines for 
healthy diets are implemented successfully (Table 1). Forecasts sug-
gest that pork consumption will increase further by about 40% during 
the next three decades, but it is uncertain how much of the additional 
pork will be produced domestically (Supplementary Table 11). This 
uncertainty is related to the shortage of domestically produced feed, 
the surface water eutrophication and air pollution caused by current 

Scenarios Variants Cropland
use

GHG
emission

s 

Nr
losses

P
losses

Changed import of pork and feed (S1)
S1-1: Pork self-su�iciency (63%) +36 +23 –11 –27
S1-2: Pork self-su�iciency (83%) +18 +11 –5 –13
S1-3: Increased feed import –1 0 0 0 

Changed intensification level of pig farm (S2)
S2-1: Small:medium:large = 25:51:24 –7 –8 –6 –7 
S2-2: Small:medium:large = 25:18:57 –11 –12 –11 –10
S2-3: Small:medium:large = 0:0:100 +1 +3 +1 +2

Improved feed production (S3)

S3-1: Balanced N fertilization –10 –6 –6 –5
S3-2: Manure substitute for fertilizer (40%) 0 –1 0 –2

0+2–20S3-3: Nitrification inhibitor
–6–3–8–11S3-4: S3-1 + S3-2 + S3-3

Improved pig production (S4)

0–9–2–4S4-1: Low-protein diet
S4-2: Phytase supplementation in feed 0 0 –3 –24
S4-3: Improved herd structure –6 –4 –6 –3

–26–15–6–9S4-4: S4-1 + S4-2 + S4-3

Improved manure management (S5)

S5-1: Improved manure storage 0 +4 +3 –3
S5-2: 100% solid—composting 0 +3 –4 –34
S5-3: 100% slurry—anaerobic digestion 0 –14 –8 –18
S5-4: 100% slurry—solid–liquid separation 0 +5 –7 –16
S5-5: Deep placement of manure in field 0 0 –5 0
S5-6: S5-1 + S5-2 + S5-3 + S5-5 0 –8 –22 –53

Improved slaughter waste management (S6) S6: Improved slaughter waste utilization 0 0 –6 –7
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Fig. 2 | Relative changes (%) in cropland area, GHG emissions, and N and P 
losses following the implementation of series of technological measures and 
structural adjustments by 2050, relative to the 2050 BAU baseline. Dark-red 

colours indicate the environmental pressures increase; blue-green colours 
indicate the environmental pressures decrease. Scenarios S1 to S6 and their 
variants are further detailed in Methods.
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Fig. 3 | The needed cropland area, and GHG emissions and reactive Nr and P 
losses associated with China’s pork supply chain for the 2050 BAU baseline 
and for various scenarios. The scenarios were constructed using a step-wise 
combination approach. SA = S3-4, SB = SA + S4-4, SC = SB + S5-6, SD = SC + S6, 
SE = SD + S1-1, SF = SD + S2-2, SG = SD + S1-1 + S2-2 (Fig. 2). Rest of the world 

indicates overseas impacts associated with the import of pork and/or feed. The 
error bars denote the 95% confidence intervals of the specific emissions (based 
on Monte Carlo simulations, n = 1,000). Data are presented as mean ± standard 
deviation.
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pork production systems and the incidence of animal diseases such 
as African swine fever3,20 (Supplementary Information). Alternatives 
include increased pork and/or feed import, but this may lead to environ-
mental spillovers and increased dependency on the vulnerabilities of 
international trade21,22 (Supplementary Information). The third possible 
pathway is improved domestic production. Our results indicate that 
impacts of the pork supply chain on the environment can be greatly 
reduced, but will require investments in innovative technologies for 
improved feed production, pig production, manure management and 
slaughterhouse waste management (Fig. 5).

Decrease red meat consumption
We argue that demand-side measures are needed, but recognize that 
reducing pork consumption is not easy, especially since more rural 
populations reach a prosperity level where they can afford pork con-
sumption more regularly23,24. The mean pork intake in 2017 was already 
beyond the Food and Agriculture Organization (FAO)25 and Chinese19 
recommended red meat consumption ranges, and consumption per 
capita in the BAU baseline for 2050 increased by 43% compared with the 
consumption in 2017 (Supplementary Fig. 1). These results are similar 
to some earlier estimations for 2050 following the SSP2 storyline26 (an 
increase of 79–99% of the pork production, relative to 2005), but are 
higher than a recent FAO estimation27. These discrepancies are partly 
related to differences in data sources, methods and reference years. 
Our forecast of pork consumption in 2050 was based on an average 
of various methods in a middle-of-the-road pathway (SSP2) (ref. 18). 
Our results indicate that four environmental footprints associated 
with China’s pork supply chain may be reduced by 65–67% relative 
to the BAU scenario if the recommended low meat intake according 
to the Chinese dietary guidelines is implemented (Fig. 1). However, 
pork consumption is embedded in Chinese culture and history6, mak-
ing substantial changes to current dietary behaviour challenging28. 
Increased consumption of fruit, vegetables and nuts, and less meat 
are often more expensive, especially in rural regions29. Investments in 

communication are needed to promote healthy diets with less pork. In 
addition, the price of pork should reflect the true societal cost of pork 
production, for example, through imposing taxes. These mechanisms 
would lower pork demand in the future, but transitions of this scale 
require time and resources.

Integrate improvements to domestic production
Productivity in the pork sector has increased strongly since 1990s, 
mainly owing to improved pig breeds and feeding, especially in indus-
trial pig farms30. The total production value of the pig sector amounted 
to 1296 billion Chinese Yuan, accounting for 45% of the total production 
value of the livestock sector in 2017 (ref. 31). In contrast, poor manure 
management and recycling led to nutrient losses estimated at 86 g Nr 
and 4.4 g P per kilogram pork in 2017, compared with 53 g Nr kg−1 and 
0.3 g P kg−1 in the EU (Supplementary Table 13).

We show that integrated packages of measures across the whole 
pork supply chain can reduce Nr losses by 45% and P losses by 84%  
(Fig. 3), confirming results of earlier model estimations3 and bringing 
Nr losses (47 g kg−1) and P losses (0.6 g kg−1) near to the current mean Nr 
and P losses in the EU. Our results may slightly overestimate the overall 
emission reduction potential in scenarios S1 to S4 as the emissions 
from the 2050 BAU may have been overestimated. The coefficients in 
the life-cycle assessment partially reflect current practices per farm 
type following the SSP2 pathway, but not necessarily future improved 
practices. An additional sensitivity analysis was therefore conducted 
(assuming that the emission coefficients will decrease by 10% or 20% 
owing to optimistic progress in management towards 2050), show-
ing that the environmental footprints in the 2050 BAU scenario will 
decrease by 3.0–8.0% (Supplementary Table 19), which are relatively 
minor decreases relative to other scenarios (S1 to S4). Moreover, some 
combinations of measures led to increased GHG emissions (Fig. 2 and 
Supplementary Fig. 3), indicating a risk of pollution swapping, and the 
need for smart combinations of techniques and measures. Evidently, 
further studies and especially tests at whole-farm scales are needed.
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Fig. 4 | The relative contributions of technological and structural measures 
to the diminished need for cropland area, and to the mitigation of GHG 
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the 2050 BAU baseline. SF incorporates a combination of technological 
measures along the pork supply chain (S3-4, S4-4, S5-6 and S6; Fig. 2) and a low 
intensification level (S2-2; Fig. 2).
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Though the potential for decreasing the footprints of C, N, P and 
cropland use are large, implementing integrated (synergistic) and 
farm-specific packages of measures will be challenging. Experience 
with single measures demonstrates ineffective implemention due to 
high operational cost, little technical guidance and lack of motivation 
and incentives32,33. In addition, there is a huge diversity among pig 
farms and among farmers’ education and attitudes34,35, which must 
be taken into account when developing, testing and demonstrating 
farm-specific packages of measures and techniques. Massive invest-
ments are needed for implementing these farm-specific packages. 
For example, the mitigation cost per kilogram Nr emissions from 
China’s agricultural system was estimated at 0.8–2.1 USD36, sug-
gesting that implementation of the most effective packages of our 
study (scenario SF in Fig. 3) will require about 2.5–6.4 billion USD, 
equivalent to 2–6% of the total annual value of pork production in 
2017 (ref. 31). Additionally, on-farm experimentation is needed to 
implement innovative measures at scales that are meaningful to 
farmers, rather than in small experimental plots37. The cost effective-
ness of integrated packages needs to be determined, to identify the 
priority packages38.

The future for small-scale farms
The structure of the pork supply chain has rapidly changed during 
the past two decades, with an increase in large specialized farms and 
a decrease in mixed smallholder farms16, yet questions remain about 
the most appropriate farm size for future pork production. In 2017, 
small-scale farms supported one-third of the pork production in China 
(Table 1). These farms are important for livelihoods in rural regions, 
where the young and middle-aged people often go out to work in urban 
areas and elderly people live on smallholder farms39,40.

The share of small-size pig farms will probably decrease further to 
~10% in 2050 (BAU)26. Our results indicate that footprints of C, N, P and 
cropland use per kilogram of pork produced may decrease by 10–12% (in 
absolute values), when the rate of intensification is halved relative to the 
2050 BAU baseline (Figs. 2 and 4). Small-size pig farms use less cropland 
per kilogram pork produced (2.0 m2 functional unit (FU)−1), emit lower 
GHG emissions (0.9 kg CO2-eq FU−1), and have lower Nr (36.9 g FU−1) and 
P losses (2.1 g FU−1) than medium- and large-size farms (Supplementary 
Table 1). Their location near villages and (small-scale) crop production 
farms allows for greater opportunities to recycle food waste to pigs41 
and animal manure to cropland14, compared with the large specialized 
farms, which reduces the need for synthetic fertilizers42, and contributes 
to improving soil fertility and to higher crop yields43.

Returning low-opportunity-cost feed to pigs impacts feed–food 
competition for cropland14. Nearly 30% of food produced annually for 
human consumption in China (349 ± 4 Mt) is lost or wasted, implying 
a large potential for recycling this biomass as feed sources44, meaning 
11–23 Mt pork being produced, that is, 14–29% of the total pork produc-
tion. Feeding swill reduces N losses at the feed production stage, and 
can save 16 Mha of land used by global pork production15. The circular 
bioeconomy framework also links healthy diets to healthy and local 
food production systems45. Small-scale traditional mixed farms can 
supply local-brand food at a relatively high price to meet increasing 
demand for ‘regional’ or ‘local’ food with unique flavours46. Small-scale 
farms also have their limitations. The productivity is often relatively 
low, and the return on investments in improved techniques is also low. 
Further, it is difficult for these farms to invest in epidemic prevention 
measures, increasing risks related to zoonoses47. Yet, these small-scale 
farms have much greater potential to intimately participate in a circular 
bioeconomy, and to produce healthy regional food than the large indus-
trial farms. Thus, targeted policy incentives are needed to improve the 
biosecurity level and production performance of small-scale farms, 
and to boost the circular economy.

Conclusion
A combination of technological improvement and structural adjust-
ment is needed to reduce the environmental impacts of the Chinese 
pork supply chain. Small-scale pig farms should receive greater atten-
tion than large-scale farms from policy and other stakeholders, as these 
small farms may harbour the appropriate mix of characteristics for the 
circular bioeconomy and as suppliers of healthy local food. Simultane-
ously, demand-side measures must aim to reduce pork consumption, 
particularly among affluent populations. If China would successfully 
secure the growing demand of animal food at a low environmental 
cost, it could pose an example for many developing countries that are 
facing similar challenges.

Methods
Footprint analyses
Footprints of the cropland area and the C, N and P used for the produc-
tion of 1 kg of pork (carcass weight) were estimated for the whole pork 
supply chain in 2017 and 2050. The pork supply chain includes four 
subsystems, that is, feed production, feed processing and transport, pig 
rearing and manure management, and pig slaughtering (Supplemen-
tary Fig. 2). An existing environmental footprint assessment model4 
was extended by including slaughtering, and a P footprint module 
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was developed. The cropland footprint reflects the area needed for 
producing the required amounts of feed for producing 1 kg of pork; 
the cropland receiving pig manures is irrespective of the cropland 
footprint defined here. The C footprint represented the GHG (nitrous 
oxide (N2O), CH4 and CO2) emissions of the entire pork supply chain. 
The global warming potentials of CH4 and N2O were set at 25 and 298 
times that of CO2, respectively, according to Intergovernmental Panel 
on Climate Change guidelines48. The N footprint included Nr emis-
sion to the atmosphere (NH3, N2O and nitrogen oxides (NOX)), and N 
leaching, runoff and erosion losses to water bodies49. The P footprint 
represented total P losses directly or indirectly caused in the pork 
supply chain50. The FU was 1 kg of carcass weight. Economic allocation 
was adopted as the allocation method in our study4 (Supplementary 
Tables 7 and 8).

The life-cycle assessment (ISO14040) was established at the pro-
vincial level, and was up-scaled here at a national level. Three farming 
systems were distinguished, with different farm size, feed regimes and 
manure management practices: namely smallholder farms (<50 heads 
per farm), medium farms (50–3,000 heads per farm) and large farms 
(>3,000 heads per farm)3,4 (Supplementary Table 6). The equations 
used for the estimation of the cropland use and the C, N and P footprints 
are detailed in the Supplementary Materials.

Estimation of pork demand in 2050
Four methods were used to forecast pork demand in 2050, using 2017 
as the reference year and following the middle-of-the-road (SSP2) 
pathway. The total pork demand is expected to increase by 41% between 
2017 and 2050, according to the mean pork consumption growth rate 
(1.1%), historical trajectories between 1961 and 2018, and the relation-
ships between pork consumption and gross domestic product, and 
with urbanization rate (Supplementary Materials and Methods part 
1). The average value of these methods was used as pork demand in 
2050 (Supplementary Fig. 1).

In addition, the future pork demand was also estimated follow-
ing the ‘Dietary Guidelines for Chinese Residents’19 (Supplementary 
Materials and Methods part 1), although healthy diets belong to the 
sustainability (SSP1) storyline—a dramatic (but gradual) shift towards 
sustainability. These dietary recommendations are based on the prin-
ciples of nutrition science and preventing human health risks.

Definition of scenarios for 2050
Six scenarios with 21 specific adjustments of the pork supply chain for 
2050 were defined (Supplementary Table 9). The scenarios included 
structural and technological changes of (part of) the pork supply chain. 
Structural changes related to changes in the import of feed and/or 
pork (varying the self-sufficiency ratio) and in the intensification level 
(varying the percentages of small, medium and industrial pig farms). 
Technological changes related to feed production, animal feeding, 
manure management and to slaughterhouse waste management. These 
scenarios are briefly explained below.

BAU. We estimated the environmental pressures of the pork supply 
chain for 2050 using a middle-of-the-road pathway (SSP2) (ref. 18), in 
the absence of the dedicated mitigation measures. China’s per capita 
pork consumption will increase from 38.3 kg per capita per year in 
2017 to 54.8 kg per capita per year in 2050 (total pork consumption 
78.6 Mt). We assume a constant pork self-sufficiency percentage of 
98% and feed self-sufficiency rate (soybean 15% and maize 99%) in 
2050 equivalent to those in 2017 (Supplementary Table 11). Further, 
the relative contributions of countries exporting pork and feed to 
China will remain unchanged (Supplementary Table 12). According 
to the historical trend in pig production51, the number of small farms 
will further decrease and the number of medium and large pig farms 
will increase. The relative contributions of small, medium and large pig 
farms to the total pork production in 2050 will be 10%, 35% and 55%, 

respectively. We assumed that the recycling rate of manure to field 
will increase from 17% (2017) to 30% (2050), based on expected policy 
interventions (for example, zero increase of chemical fertilizer use in 
China), and that the mean crop yield will increase by 13% (for example, 
the maize yield will be 8,508 kg ha−1 on average), because of improved 
crop breeding and nutrient management measures.

S1—Changed import of pork and feed. In scenario S1, we explored 
the impacts of increased import of pork or feed on the footprints of the 
pork supply chain. For the pork import variant (S1-1), we assumed that 
domestic pork production in 2050 will remain at the level of 2017, and 
that all additional demand will be imported from the same exporting 
countries in 2017. The pork self-sufficiency will therefore drop to 63% 
(Supplementary Table 11). For another pork import variant (S1-2), we 
assumed that half of the additional demand will be imported from the 
same exporting countries as in 2017, and the pork self-efficiency will 
drop to 83% (Supplementary Table 11). Those scenarios reflect possi-
ble future market developments, and/or environmental and physical 
constraints, and/or strict regulations limiting domestic pork produc-
tion. All operations of domestic pork production are assumed as the 
same as the BAU.

For the feed import variant (S1-3), we assumed that the total 
domestic feed production in 2050 will remain at the level of 2017, and 
that all additional feed demand will come from current exporting 
countries. Therefore, the proportion of imported soybean to total 
soybean use in pork feed will increase from 85% to 93%, and that for 
imported maize from 1% to 36% (Supplementary Table 11). Relative 
contributions of exporting countries to imported feed were assumed 
to remain the same as that in BAU.

S2—Changed intensification level of pig farms. In scenario S2, we 
explored the impacts of the intensification of pig production on the 
footprints of the pork supply chain (Supplementary Table 11). The 
relative contributions of small, medium and large farms to the total 
domestic pork production in 2050 was varied in response to possible 
socio-economic developments and governmental incentives3,52,53. 
In variant S2-1, we assumed that the relative contributions of small, 
medium and large farms to the total domestic pork production in 
2050 will remain at the level as in 2017 (25:51:24), because of stagnant 
economic development and a constrained labour market (S2-1). In vari-
ant S2-2, we assumed that the relative contributions of small-size farms 
remained unchanged, while the share of medium was halved and that 
of industrial farms doubled (25:18:57), because of possible incentives 
from the supply chain. In variant S2-3, we assumed rapid economic 
growth and that basically all pork will be produced in industrial farms, 
and none in small- and medium-sized farms (0:0:100).

S3—Improved feed production (S3). In scenario S3, we explored the 
impacts of improvements in domestic feed production on the foot-
prints of the pork supply chain. In variant S3-1, we assumed improved 
crop husbandry practices, leading to increased crop yields with less 
inputs of fertilizers54,55. As a result, the self-sufficiency percentage of 
maize increased from 99% in 2017 to 100% in 2050. In variant S3-2, we 
assumed an increased substitution of synthetic N fertilizer by N from 
animal manure43, from 14% in 2017 to 40% in 2050. In variant S3-3, 
we assumed the increased use of enhanced efficiency fertilizers (for 
example, nitrification inhibitors) to reduce N2O emissions by 39.8% 
in 2050 (ref. 56). The combination of all three variants (S3-1, S3-2 and 
S3-3) was explored in S3-4.

S4—Improved pig production. In scenario S4, we explored the 
impacts of improvements in domestic pig production on the foot-
prints of the pork supply chain. In variant S4-1, we assumed that all 
medium and large pig farms will adopt low-protein diets (through 
phase feeding; that is, the crude protein content in diets of piglets to 
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finishing pigs will step-wise decrease from 19% to 13%, while supple-
menting essential synthetic amino acids)17. In variant S4-2, we assumed 
phytase supplementation of pig diets for all medium- and large-size 
pig farms, simultaneously with lowering feed P supplementation; this 
will reduce the N and P excretion by 5.3% and 31.4%, respectively17. In 
variant S4-3, we assumed that the piglet production per sow and the 
feed conversion efficiency on medium- and large-size pig farms will 
have increased to an advanced level33,57,58, the management level in 
small pig farms also increased, that is, the piglet production per sow 
increased from 15 to 20, and feed conversion rate reduced from 3.4 
to 2.7. The combination of all three variants (S4-1, S4-2 and S4-3) was 
explored in variant S4-4.

S5—Improved manure management. In scenario S5, we explored the 
impacts of improvements in manure management and treatment tech-
nologies in housing, storage and field application on the footprints of 
the pork supply chain. In variant S5-1, we assumed the implementation 
of biofilters (to reduce NH3 emissions) on all medium- and large-scale 
pig farms, together with storage of pig slurries in leak-tight and covered 
storages59–61. In variant S5-2, we assumed that all slurries are separated 
in solid and liquid fractions, that the solid fraction is composted and 
that the resulting compost N and P will replace equivalent amounts 
of synthetic N and P fertilizers, following application to cropland. In 
variant S5-3, we assumed that all slurries are anaerobically digested 
to produce biogas, and that the resulting digestate are returned to 
cropland to substitute synthetic N and P fertilizers. In variant S5-4, we 
assumed that all slurries are separated in solid and liquid fractions, 
and that these are returned to cropland to substitute synthetic N and 
P fertilizers. In variant S5-5, we explored the effects of applying all 
manures to field through injection into soil, or incorporation into the 
soil immediately following surface spreading. The combination of 
these variants (S5-1, S5-2, S5-3 and S5-5) is examined in S5-6.

S6—Improved slaughter waste management. In scenario S6, we 
explored the impacts of improvements in slaughter waste management 
on the footprints of the pork supply chain. In 2017, the N and P losses 
were 71% and 10% of the amounts of N and P in slaughtered by-products 
(Supplementary Table 8), respectively3,62. We assume that, by 2050, 
the utilization of slaughtering (by-)products will have increased (for 
example, swine carcass trimmings, inedible offal and bones can be 
produced into meat and bone meal, which is an excellent source of 
protein and energy supplement in animal feed), and that the losses of 
N and P will have decreased to 30% and 5% of the amounts of N and P in 
slaughtered by-products, respectively.

Uncertainty and sensitivity analyses
Uncertainty and sensitivity analyses were performed to estimate the 
influence of possible uncertainties in activity data and parameters, 
using a Monte Carlo simulation38,60. We divided the uncertainties into 
five groups: (1) CAP: crop activity data and parameters, (2) LAP: live-
stock activity data and parameters; (3) EFN: nutrient emission factors; 
(4) OPA: other emission factors; and (5) SAD: slaughtering activity data 
(Supplementary Table 16). The uncertainty ranges are shown as error 
bars in Fig. 3. The C footprint ranged from 2.3 to 3.2 kg CO2-eq kg FU−1, 
the N footprint from 71.4 to 100.2 g N kg FU−1, the P footprint from 3.3 
to 5.4 g P kg FU−1 and the cropland footprint from 4.2 to 5.7 m2 kg FU−1 
in 2017, respectively. The coefficients of variation ranged from 14.7% 
to 24.1% for the four environmental footprints (Supplementary Fig. 
4). The uncertainty contributions of individual parameters to the 
environmental footprints are presented in Supplementary Table 17 
and Supplementary Fig. 5.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available within the 
article and its Supplementary Information files, or are available from 
the corresponding author upon reasonable request.

Code availability
The statistical coding is available from the corresponding author on 
reasonable request.
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