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Abstract
This paper accounts for spatial effects by benchmarking farms 
against their k-nearest neighbours (KNN) and measuring 
their inefficiency in a non-parametric dynamic by-production 
setting. The optimal number of neighbours 𝐴𝐴 𝐴𝐴 against which 
farms are compared corresponds to the value of 𝐴𝐴 𝐴𝐴 that maxim-
ises the Moran I test for spatial autocorrelation of the good and 
the bad output of the farms' two sub-technologies. The ineffi-
ciency scores for farms' good output, variable inputs, invest-
ments and bad outputs are then computed and compared with 
those calculated based on a global technology, which bench-
marks all farms together. The application focuses on an unbal-
anced panel of specialised Dutch dairy farms over the period 
2009–2016 that contains information on their exact geograph-
ical locations. The results suggest that the inefficiency scores 
exhibit statistically significant differences between the KNN 
and the global model. Specifically, the inefficiencies are gener-
ally deflated when a KNN technology is considered, suggest-
ing that ignoring spatial effects can overestimate inefficiency.
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1  |  INTRODUCTION

Close proximity between farms is crucial in developing networks that can help to reduce production 
costs and increase availability of inputs, as highlighted in the literature on agglomeration economies. 
Further neighbourhood benefits include knowledge spillovers (Skevas, 2020), technology diffusion 
(Case, 1992) and R&D spillovers (Mairesse & Mulkay, 2007). However, spatial concentration can also 
create tension between nearby farms through increased competition for labour or land (Weiss, 1999). 
In either case, given the important role that location plays in farms' production processes, farm-level 
benchmarking should account for spatial proximity of other farms.

In parametric efficiency studies, there are two main approaches to account for spatial proximity. 
The first approach is a spatial autoregressive (SAR) frontier model, which includes a spatial lag of the 
dependent variable on the right-hand side of the production/cost frontier (Glass et al., 2016), and the 
second approach directly includes a spatial lag of the inefficiency component (Skevas, 2020; Skevas 
& Skevas, 2021).1 With regard to the non-parametric efficiency literature, studies account for spatial 
effects either in two-stage or in single-stage models. In the former, Skevas and Grashuis  (2020), 
Schneider et al. (2021) and Skevas and Oude Lansink (2020) compute the inefficiency scores using 
data envelopment analysis (DEA), and then account for spatial spillovers in the traditional Simar and 
Wilson (2007) truncated bootstrap approach. However, a growing literature questions the validity of 
the assumption of separability, which is typically made in two-stage models between variables used 
for defining the frontier and variables that explain the distance to the frontier. For this reason, another 
stream of literature includes spatial aspects directly in the DEA model.

The direct incorporation of spatial factors in DEA models has its roots in the seminal papers of 
Cazals et  al.  (2002) and Daraio and Simar  (2007) who introduced the order-m frontier that limits 
the analysis to a subset of 𝐴𝐴 𝐴𝐴 firms in order to mitigate the impact of outliers, and the conditional 
order-m efficiency approach that includes environmental factors that can influence firms' production 
processes, and therefore their inclusion in a certain subset 𝐴𝐴 𝐴𝐴 . Apart from individual characteristics, 
these environmental factors can include spatial indicators. However, as Vidoli and Canello (2016), 
and Fusco et al. (2020) argue, a selection of an erroneous or an incomplete set of spatial variables 
can significantly influence the inefficiency scores, for which ex-post validation processes are not 
available. To overcome this limitation, they propose using the location of each firm as the condi-
tional (spatial) environmental variable, such that each firm is compared only against its neighbouring 
peers. This approach captures the global spatial trend, which is difficult to identify and/or measure 
by simply using a set of spatial variables. The immediate question is then about the optimal number 
of neighbours against which to benchmark. The answer depends heavily on the data at hand. Neigh-
bouring peers can be the ones that belong to the same region or municipality if this information is 
available. However, given firms' exact location information (i.e., latitude and longitude), Vidoli and 
Canello (2016) propose the following procedure: (1) estimation of the optimal distance in terms of 
spatial autocorrelation;2 (2) identification of neighbours falling within this distance; and (3) solution 
of the DEA problem, where individual firms are only compared against their optimal number of 
neighbours.

1 Although not applied to efficiency analysis yet, an alternative approach called eigenvector spatial filtering (ESF) exists that incorporates 
spatial information in a model by computing spatial eigenvectors, which are defined by the spatial structure associated with a specific variable 
(Murakami & Griffith, 2019).
2 Vidoli and Canello (2016) use the so-called semivariogram which studies the relationship between a random variable (i.e., inefficiency) and 
the location, so that it reveals how the variability of the random variable changes with increasing distance.
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We propose an alternative optimal neighbour identification strategy that combines the widely 
used Moran I test for spatial autocorrelation and the k-nearest neighbour (KNN) concept. Using 
values of the number of neighbours, we construct several KNN matrices for different values of 
neighbours 𝐴𝐴 𝐴𝐴 , and test which value yields the maximum Moran I test statistic for the utilised vari-
ables. Subsequently, farms are benchmarked relative to their optimal KNN. As opposed to Vidoli 
and Canello (2016), our approach is less computationally demanding because the semiovariogram 
approach involves multiple estimation steps including (i) the estimation of the semiovariogram 
using a modified version of the General Additive Model, and (ii) the subsequent calculation of the 
optimal number of spatial peers based on the local maximum found from the previous step. We 
further depart from the existing literature by applying the proposed method to the dynamic 
by-production model building on the static model of Murty et  al.  (2012), and extended to the 
dynamic context by Dakpo and Oude Lansink (2019). Specifically, we derive farms' inefficiencies 
with respect to good output, variable inputs, investments and bad output once using a model that 
benchmarks farms only against their optimal KNN (i.e., KNN technology), and once using a model 
where farms are benchmarked against all farms in the sample (i.e., global technology). Subse-
quently, we use the non-parametric adapted Li test (Li, 1996; Simar & Zelenyuk, 2006) to compare 
the distributions of the inefficiencies' estimates across the global and the KNN technologies. By 
doing so, we provide information on whether dynamic inefficiency differs when accounting for 
spatial aspects.

The remainder of this paper is organised as follows. Section  2 presents the utilised dynamic 
by-production framework. Section  3 provides details on the estimation of the global and KNN 
dynamic by-production inefficiencies. Section 4 describes the data used in the application. Section 5 
presents the results and discusses the performed robustness checks. Section 6 concludes.

2  |  DYNAMIC BY-PRODUCTION TECHNOLOGY

This study considers a dynamic by-production technology, based on Murty et al. (2012), that consists 
of two sub-technologies: (1) a good output sub-technology 𝐴𝐴 Ψ𝑔𝑔(𝑡𝑡) that produces a vector of intended 
outputs 𝐴𝐴 𝐴𝐴(𝑡𝑡) , where 𝐴𝐴 𝐴𝐴 ∈ 

𝑄𝑄

+
 ; and (2) a bad output sub-technology 𝐴𝐴 Ψ𝑏𝑏(𝑡𝑡) , that yields a vector of unin-

tended outputs 𝐴𝐴 𝐴𝐴(𝑡𝑡) , where 𝐴𝐴 𝐴𝐴 ∈ 
𝑅𝑅

+
 . The term 𝐴𝐴 𝐴𝐴 represents time. We denote the vector of non-polluting 

fixed inputs as 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛(𝑡𝑡) , with 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
∈ 

𝑆𝑆

+
 , the vector of polluting fixed inputs as 𝐴𝐴 𝐴𝐴

𝑝𝑝(𝑡𝑡) , with 𝐴𝐴 𝐴𝐴
𝑝𝑝
∈ 

𝑊𝑊

+
 , 

the vector of quasi-fixed inputs as 𝐴𝐴 𝐴𝐴(𝑡𝑡) , with 𝐴𝐴 𝐴𝐴 ∈ 
𝐿𝐿

+
 , the vector of gross investments as 𝐴𝐴 𝐴𝐴(𝑡𝑡) , with 

𝐴𝐴 𝐴𝐴 ∈ 
𝐿𝐿

+
 , and the vector of variable inputs as 𝐴𝐴 𝐴𝐴(𝑡𝑡) , where 𝐴𝐴 𝐴𝐴 ∈ 

𝐽𝐽

+
 . The dynamic by-production technol-

ogy 𝐴𝐴 Ψ(𝑡𝑡) is defined as the intersection of the good output dynamic sub-technology and the bad output 
dynamic sub-technology:

Ψ(𝑡𝑡) = Ψ𝑔𝑔(𝑡𝑡) ∩ Ψ𝑏𝑏(𝑡𝑡)� (1)

where 𝐴𝐴 Ψ𝑔𝑔(𝑡𝑡) =

{

(𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∶ (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡)) can produce 𝐴𝐴 𝐴𝐴(𝑡𝑡) given 𝐴𝐴 𝐴𝐴(𝑡𝑡) , 

𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛(𝑡𝑡) and 𝐴𝐴 𝐴𝐴

𝑝𝑝(𝑡𝑡)

}

 and 𝐴𝐴 Ψ𝑏𝑏(𝑡𝑡) =

{

(𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∶ (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡)) can yield 𝐴𝐴 𝐴𝐴(𝑡𝑡) 

given 𝐴𝐴 𝐴𝐴(𝑡𝑡) , 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛(𝑡𝑡) , and 𝐴𝐴 𝐴𝐴

𝑝𝑝(𝑡𝑡)

}

 . The properties of the good output dynamic sub-technology 𝐴𝐴 Ψ𝑔𝑔(𝑡𝑡) are 
described in Silva and Stefanou (2003):
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𝐴𝐴 𝐴𝐴1 No free lunch and inactivity

𝐴𝐴 𝐴𝐴2 Input essentiality and attainability

𝐴𝐴 𝐴𝐴3 Non-emptiness and closeness

𝐴𝐴 𝐴𝐴4 Boundedness

𝐴𝐴 𝐴𝐴5 Positive monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≥ 𝑣𝑣(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡)

𝐴𝐴 𝐴𝐴6 Negative monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≤ 𝑖𝑖(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡)

𝐴𝐴 𝐴𝐴7 Free disposability of good outputs: if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≤ 𝑦𝑦(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡)

𝐴𝐴 𝐴𝐴8 Reverse nestedness in 𝐴𝐴 𝐴𝐴(𝑡𝑡) , 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛(𝑡𝑡) , and 𝐴𝐴 𝐴𝐴

𝑝𝑝(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≥ 𝑘𝑘(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) . If 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) 

and 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛

′

(𝑡𝑡) ≥ 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
′

(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) . Similarly, if 𝐴𝐴 𝐴𝐴
𝑝𝑝
(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 𝐴𝐴

𝑝𝑝
′

(𝑡𝑡) ≥ 𝑓𝑓
𝑝𝑝
(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

𝑝𝑝
′

(𝑡𝑡) ∈ Ψ𝑔𝑔(𝑡𝑡) .

𝐴𝐴 𝐴𝐴9 Convexity in 𝐴𝐴 (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑓𝑓 𝑛𝑛𝑛𝑛(𝑡𝑡), 𝑓𝑓 𝑝𝑝(𝑡𝑡), 𝑦𝑦(𝑡𝑡))

Given the properties presented above and assuming a flexible variable returns to scale (VRS) 
technology, the DEA problem for 𝐴𝐴 𝐴𝐴 firms for the good output sub-technology is:

Ψ𝑔𝑔(𝑡𝑡) = (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∶

𝑦𝑦𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑦𝑦𝑛𝑛(𝑡𝑡),

𝑣𝑣𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡),

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡),

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡),

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 (𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)),

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 = 1,∀𝑛𝑛𝑛

(𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∈ 

𝐽𝐽+𝐿𝐿+𝐿𝐿+𝑆𝑆+𝑊𝑊 +𝑄𝑄+𝑅𝑅

+

� (2)

where 𝐴𝐴 𝐴𝐴 stands for the depreciation rate with respect to the quasi-fixed input 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) 
represents net investments (i.e., gross investments net of the depreciation rate). The inequality signs 
in the constraints of the good output sub-technology imply that all inputs increase good output. For 
the case of dairy farms, increasing variable inputs such as veterinary expenses and feed can improve 
cow's health/diet and raise milk production. Regarding fixed inputs, more animals and land imply 
higher production volume, whereas more labour can mean more milking hours, leading to increased 
milk production. However, investments in quasi-fixed assets decrease good output in the year of 
investment because they cause adjustment costs (financial and/or learning) that hinder production.

Moving to the bad output dynamic sub-technology 𝐴𝐴 Ψ𝑏𝑏(𝑡𝑡) , its properties are opposite to those of the 
good output sub-technology, and as in Dakpo and Oude Lansink (2019), are expressed as:

SKEVAS et al.4
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The above properties highlight the costly disposability of pollution as expressed in Murty 
et al. (2012), and one can consult Dakpo and Oude Lansink (2019) for a discussion of each property. 
Based on the above properties and assuming again a flexible VRS technology, the DEA problem for 
the bad output sub-technology is:

Ψ𝑏𝑏(𝑡𝑡) = (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∶

𝑏𝑏𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡),

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡),

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡),

𝑣𝑣𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡),

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛(𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)),

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛 = 1,∀𝑛𝑛𝑛

(𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∈ 

𝐽𝐽+𝐿𝐿+𝐿𝐿+𝑆𝑆+𝑊𝑊 +𝑄𝑄+𝑅𝑅

+

� (3)

The inequality signs in the constraints of the bad output sub-technology for non-polluting fixed inputs 
and investments in quasi-fixed assets suggest that they mitigate pollution. Notably, there is no consen-
sus in the literature regarding the inclusion or not of such non-polluting inputs in the bad output 
sub-technology. However, in line with Dakpo and Oude Lansink  (2019), we argue that although 
non-polluting inputs do not directly generate pollution, they can impact pollution generation indi-
rectly. For example, and considering again the case of dairy farms, increasing fixed inputs such as 
labour can lead to better manure management and as a result reduce emissions. Furthermore, invest-
ments can mitigate pollution because there is a substitution between the associated adjustment costs 
and emissions (i.e., the resources used to learn a new technology will not be used to produce emis-
sions).3 The inequality signs in the constraints of variable inputs and polluting fixed inputs imply that 
they increase pollution because increasing such inputs is related to a larger herd size that can contrib-
ute to higher emissions due to higher manure production and rumen and intestinal fermentation.

3 Note that in the properties of the bad output dynamic sub-technology, the disposability assumptions for investments and for quasi-fixed inputs 
have opposite signs. This is because a higher quantity for a quasi-fixed input (e.g., capital) can be related to a bigger herd size in the farm, 
which can in turn imply higher emissions.

5

𝐴𝐴 𝐴𝐴1 Negative monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≤ 𝑣𝑣(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴2 Positive monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≥ 𝑖𝑖(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴3 Negative monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≤ 𝑘𝑘(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴4 Negative monotonicity in 𝐴𝐴 𝐴𝐴
𝑝𝑝(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴

𝑝𝑝
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴

𝑝𝑝
′

(𝑡𝑡) ≤ 𝑓𝑓
𝑝𝑝
(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

𝑝𝑝
′

(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴5 Positive monotonicity in 𝐴𝐴 𝐴𝐴
𝑛𝑛𝑛𝑛(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
′

(𝑡𝑡) ≥ 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

𝑛𝑛𝑛𝑛
′

(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴6 Positive monotonicity in 𝐴𝐴 𝐴𝐴(𝑡𝑡) : if 𝐴𝐴 𝐴𝐴(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡) and 𝐴𝐴 𝐴𝐴
′
(𝑡𝑡) ≥ 𝑏𝑏(𝑡𝑡) then 𝐴𝐴 𝐴𝐴

′
(𝑡𝑡) ∈ Ψ𝑏𝑏(𝑡𝑡)

𝐴𝐴 𝐴𝐴7 Convexity in 𝐴𝐴 (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑏𝑏(𝑡𝑡))

𝐴𝐴 𝐴𝐴8 Polluting inputs essentiality 𝐴𝐴 [𝑣𝑣(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓 𝑝𝑝(𝑡𝑡)]

𝐴𝐴 𝐴𝐴9 Boundedness

SPATIAL-DYNAMIC INEFFICIENCY ANALYSIS
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Finally, following Murty et al. (2012) the DEA problem for the overall technology 𝐴𝐴 Ψ(𝑡𝑡) is:

Ψ(𝑡𝑡) = (𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∶

𝑦𝑦𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑦𝑦𝑛𝑛(𝑡𝑡),

𝑣𝑣𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡),

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡),

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡),

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 (𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)),

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 = 1

𝑏𝑏𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡),

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡),

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡),

𝑣𝑣𝑜𝑜(𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡),

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛(𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)),

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛 = 1,∀𝑛𝑛𝑛

(𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡)) ∈ 

𝐽𝐽+𝐿𝐿+𝐿𝐿+𝑆𝑆+𝑊𝑊 +𝑄𝑄+𝑅𝑅

+

� (4)

In order to account for interdependence in the two sub-technologies 𝐴𝐴 Ψ𝑔𝑔(𝑡𝑡) and 𝐴𝐴 Ψ𝑏𝑏(𝑡𝑡) , we follow Dakpo 
and Oude Lansink (2019) and further impose the following constraints which equalise the optimal 
values of the common variables of the different sub-technologies (i.e., variable inputs, fixed inputs 
and investments):

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑓𝑓

𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑓𝑓

𝑝𝑝

𝑛𝑛 (𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 (𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛(𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡))

� (5)

The interdependence constraints ensure that projections towards the different frontiers reach consist-
ent benchmarks across the different sub-technologies (Dakpo & Oude Lansink, 2019).

SKEVAS et al.6
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3  |  ESTIMATION OF GLOBAL VERSUS KNN DYNAMIC 
BY-PRODUCTION INEFFICIENCY

3.1  |  Global dynamic by-production inefficiency

Measuring technical inefficiency in the dynamic by-production framework presented in the previous 
section can be achieved using several approaches, such as the radial and the hyperbolic distance func-
tions. However, these two approaches may not be suitable for the specified dynamic by-production 
model because radial distance functions cannot handle zero values for one or more variables, which 
is typically the case for gross investments in dynamic models, while the hyperbolic distance func-
tion makes the unrealistic assumption that good and bad outputs should be expanded and contracted, 
respectively, by the same proportion. The above restrictions, though, are not in place when using 
a directional distance function (Chambers et  al.,  1998). Hence, in this study we consider the two 
sub-technologies presented in the previous section and use a general formulation of the non-radial 
form of the directional distance function to measure inefficiency, as in Zhang and Choi (2014). Specif-
ically, the global directional distance function for the overall technology is written as:

⃖⃖⃗𝐷𝐷
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

𝑡𝑡

(

𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡); ⃖⃖⃖⃗𝑔𝑔𝑦𝑦, ⃖⃖⃖⃗𝑔𝑔𝑣𝑣, ⃖⃖⃗𝑔𝑔𝑖𝑖, ⃖⃖⃗𝑔𝑔𝑏𝑏

)

= max

𝛽𝛽𝛽𝛽𝛽𝑔𝑔,𝜇𝜇𝑏𝑏

1

𝑁𝑁
𝑔⃗𝑔

[

𝛽𝛽𝑦𝑦 + 𝛽𝛽𝑣𝑣 + 𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑏𝑏

]

s.t.

𝑦𝑦𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑦𝑦⃖⃖⃖⃗𝑔𝑔𝑦𝑦 ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑦𝑦𝑛𝑛(𝑡𝑡)

𝑣𝑣𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑣𝑣⃖⃖⃖⃗𝑔𝑔𝑣𝑣 ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡)

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡)

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡)

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑖𝑖 ⃖⃖⃗𝑔𝑔𝑖𝑖 ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 (𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡))

𝑏𝑏𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑏𝑏 ⃖⃖⃗𝑔𝑔𝑏𝑏 ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡)

𝑣𝑣𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑣𝑣⃖⃖⃖⃗𝑔𝑔𝑣𝑣 ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡)

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡)

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≤

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡)

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑖𝑖 ⃖⃖⃗𝑔𝑔𝑖𝑖 ≥

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛(𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡))

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑣𝑣𝑛𝑛(𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑓𝑓

𝑛𝑛𝑛𝑛

𝑛𝑛 (𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛𝑓𝑓
𝑝𝑝

𝑛𝑛 (𝑡𝑡) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛𝑓𝑓

𝑝𝑝

𝑛𝑛 (𝑡𝑡)

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 (𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡)) =

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛(𝑖𝑖𝑛𝑛(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑛𝑛(𝑡𝑡))

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑔𝑔

𝑛𝑛 = 1

𝑁𝑁
∑

𝑛𝑛=1

𝜇𝜇
𝑏𝑏
𝑛𝑛 = 1

� (6)
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where 𝐴𝐴 𝐴𝐴
𝑔𝑔
 stands for the number of decision variables in the problem's objective function, imply-

ing that we give the same weight to each inefficiency score. Generalising the non-radial approach, 
each of the 𝐴𝐴 𝐴𝐴 inefficiencies are individualised with the different corresponding variables 𝐴𝐴 𝐴𝐴𝑦𝑦𝑦𝑦 , 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣 , 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 
and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏 , (i.e., good output, variable inputs,4 investments and bad output inefficiencies). As its name 
suggests, in the global directional distance function each firm is compared against all other firms. 
Following Chung et al. (1997), the directional vectors for the good output, variable inputs and bad 
output are set equal to the corresponding observed values. The directional vector for investments 
equals 20% of capital, as in Dakpo and Oude Lansink (2019) and Skevas and Oude Lansink (2020). 
Additionally, the DEA problem is solved separately for each year recognising that technology can 
differ across different time periods. Finally, the interdependence constraints that appear in Equa-
tion (6) and equalise the optimal values for variable inputs, fixed inputs and gross investments for the 
two sub-technologies, make sure that these two sub-technologies are imbedded in the same Euclid-
ean sub-space.

3.2  |  Identification of optimal number of neighbours 𝑨𝑨 𝑨𝑨

Benchmarking firms in a KNN framework requires the identification of the optimal number of nearest 
neighbours 𝐴𝐴 𝐴𝐴 . Since in DEA the best-practice frontier is formed based on the available data (and not 
based on functional forms that shape their relationship, and noise), the optimal number of neighbours 
is identified based on the observed spatial autocorrelations in the specified variables. The Moran I 
test is used to test for spatial autocorrelations. We apply the Moran I test to the two outputs of these 
two technologies, tha is, the good and the bad output. Besides, given that the inputs of production 
are transformed into outputs, as production theory suggests, any spatial autocorrelations in the inputs 
should eventually be reflected in the outputs produced. Note, however, that we also apply the test to 
all remaining variables in the study's robustness checks. In a general form, the Moran I test measures 
the spatial autocorrelation of the variable of interest based on the following formula:

𝐼𝐼 =
𝑁𝑁

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖

𝑁𝑁
∑

𝑖𝑖=1

𝑁𝑁
∑

𝑗𝑗=1

𝑤𝑤𝑖𝑖𝑖𝑖

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
)(

𝑥𝑥𝑗𝑗 − 𝑥𝑥
)

𝑁𝑁
∑

𝑖𝑖=1

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
)2

� (7)

where 𝐴𝐴 𝐴𝐴 is the number of firms indexed by 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 is the variable of interest with a bar over it 
representing its average value, and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the spatial weight between observations 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . Typically, in 
the spatial econometrics literature 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is presented in its matrix form 𝐴𝐴 𝐖𝐖 of 𝐴𝐴 𝐴𝐴 ×𝑁𝑁 dimension, which 
in our case is constructed based on the KNN concept. Specifically, a weight of 1 is assigned to each 
firm's KNN and a weight of 0 otherwise. We construct several 𝐴𝐴 𝐖𝐖 matrices for all possible values of 

𝐴𝐴 𝐴𝐴 and test which value gives the maximum (significant) Moran I test statistic. The Moran I test takes 
values between 𝐴𝐴 − 1 and + 1 and its statistical significance can be evaluated based on a z-score and its 
associated p-value.5

4 We measure inefficiency separately for each variable input because this is more informative than simply presenting an aggregate inefficiency 
score for all variable inputs.
5 Note in passing that we do not row-normalise the spatial weights matrix 𝐴𝐴 𝐖𝐖 , as this is mainly needed when estimating a parametric spatial 
model and not when conducting the Moran I test. Besides, in the subsequent application the outcomes of the Moran I test are the same 
irrespective of whether or not we row-normalise the spatial weights matrix.

SKEVAS et al.8
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3.3  |  KNN dynamic by-production inefficiency

Using the optimal value 𝐴𝐴 𝐴𝐴 from the above step, the KNN dynamic by-production model limits the 
inefficiency analysis to a subset of the optimal 𝐴𝐴 𝐴𝐴 firms, with each firm being compared with its KNN. 
Hence, the KNN directional distance function for the overall technology reads as:

⃖⃖⃗𝐷𝐷
𝐾𝐾𝐾𝐾𝐾𝐾

𝑡𝑡

(

𝑣𝑣(𝑡𝑡), 𝑖𝑖(𝑡𝑡), 𝑘𝑘(𝑡𝑡), 𝑓𝑓
𝑛𝑛𝑛𝑛
(𝑡𝑡), 𝑓𝑓

𝑝𝑝
(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑏𝑏(𝑡𝑡); ⃖⃖⃖⃗𝑔𝑔𝑦𝑦, ⃖⃖⃖⃗𝑔𝑔𝑣𝑣, ⃖⃖⃗𝑔𝑔𝑖𝑖, ⃖⃖⃗𝑔𝑔𝑏𝑏

)

= max

𝛽𝛽𝛽𝛽𝛽𝑔𝑔,𝜇𝜇𝑏𝑏

1

𝑁𝑁
𝑔⃗𝑔

[

𝛽𝛽𝑦𝑦 + 𝛽𝛽𝑣𝑣 + 𝛽𝛽𝑖𝑖 + 𝛽𝛽𝑏𝑏

]

s.t.

𝑦𝑦𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑦𝑦⃖⃖⃖⃗𝑔𝑔𝑦𝑦 ≤
∑𝐾𝐾

𝑘𝑘=1
𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑦𝑦𝑘𝑘(𝑡𝑡)

𝑣𝑣𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑣𝑣⃖⃖⃖⃗𝑔𝑔𝑣𝑣 ≥
∑𝐾𝐾

𝑘𝑘=1
𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑣𝑣𝑘𝑘(𝑡𝑡)

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥
∑𝐾𝐾

𝑘𝑘=1
𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑓𝑓
𝑛𝑛𝑛𝑛

𝑘𝑘
(𝑡𝑡)

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≥

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑓𝑓
𝑝𝑝

𝑘𝑘
(𝑡𝑡)

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑖𝑖 ⃖⃖⃗𝑔𝑔𝑖𝑖 ≤

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
(𝑖𝑖𝑘𝑘(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑘𝑘(𝑡𝑡))

𝑏𝑏𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑏𝑏 ⃖⃖⃗𝑔𝑔𝑏𝑏 ≥

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑏𝑏𝑘𝑘(𝑡𝑡)

𝑣𝑣𝑜𝑜(𝑡𝑡) − 𝛽𝛽𝑣𝑣⃖⃖⃖⃗𝑔𝑔𝑣𝑣 ≤

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑣𝑣𝑘𝑘(𝑡𝑡)

𝑓𝑓
𝑛𝑛𝑛𝑛

𝑜𝑜 (𝑡𝑡) ≥

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑓𝑓
𝑛𝑛𝑛𝑛

𝑘𝑘
(𝑡𝑡)

𝑓𝑓
𝑝𝑝

𝑜𝑜 (𝑡𝑡) ≤

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑓𝑓
𝑝𝑝

𝑘𝑘
(𝑡𝑡)

𝑖𝑖𝑜𝑜(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑜𝑜(𝑡𝑡) + 𝛽𝛽𝑖𝑖 ⃖⃖⃗𝑔𝑔𝑖𝑖 ≥

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
(𝑖𝑖𝑘𝑘(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑘𝑘(𝑡𝑡))

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑣𝑣𝑘𝑘(𝑡𝑡) =

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑣𝑣𝑘𝑘(𝑡𝑡)

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑓𝑓
𝑛𝑛𝑛𝑛

𝑘𝑘
(𝑡𝑡) =

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑓𝑓
𝑛𝑛𝑛𝑛

𝑘𝑘
(𝑡𝑡)

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
𝑓𝑓
𝑝𝑝

𝑘𝑘
(𝑡𝑡) =

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
𝑓𝑓
𝑝𝑝

𝑘𝑘
(𝑡𝑡)

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
(𝑖𝑖𝑘𝑘(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑘𝑘(𝑡𝑡)) =

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
(𝑖𝑖𝑘𝑘(𝑡𝑡) − 𝛿𝛿𝛿𝛿𝑘𝑘(𝑡𝑡))

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑔𝑔

𝑘𝑘
= 1

𝐾𝐾
∑

𝑘𝑘=1

𝜇𝜇
𝑏𝑏

𝑘𝑘
= 1

� (8)

where 𝐴𝐴 𝐴𝐴 = 1,… , 𝐾𝐾 represents the subset of the firm's KNN. The same directional vectors are used as 
in the case of the global technology, whereas the DEA problem is solved separately for each year. This 
is done because the technology as well as the optimal 𝐴𝐴 𝐴𝐴 can differ across years.
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3.4  |  Comparison of inefficiency densities

We use the non-parametric adapted Li test (originally developed by Li, 1996 and subsequently extended 
to the DEA framework by Simar & Zelenyuk, 2006), to compare the densities of the inefficiencies' 
estimates under the global and the KNN technologies. The test recognises the bounded support of the 
inefficiency estimates and uses the estimated inefficiency scores instead of the true ones.6 Assuming 
that 𝐴𝐴 𝐴𝐴𝑔𝑔 and 𝐴𝐴 𝐴𝐴𝑘𝑘 are two vectors of random variables, the test's null and alternative hypothesis are:

𝐻𝐻0 ∶ 𝑓𝑓
𝑔𝑔
(

𝑢𝑢𝑔𝑔

)

= 𝑓𝑓
𝑘𝑘(𝑢𝑢𝑘𝑘)

𝐻𝐻1 ∶ 𝑓𝑓
𝑔𝑔
(

𝑢𝑢𝑔𝑔

) ≠ 𝑓𝑓
𝑘𝑘(𝑢𝑢𝑘𝑘)

for a set of positive measures
� (9)

where 𝐴𝐴 𝐴𝐴 denotes the densities of the random variables. Given that in this study the estimated ineffi-
ciency scores are bounded from below at 0, we follow Simar and Zelenyuk (2006) and use a smooth-
ing procedure:

𝛽𝛽
∗

𝑛𝑛 =

⎛

⎜

⎜

⎝

𝛽𝛽𝑛𝑛 + ϵ𝑛𝑛, if 𝛽𝛽𝑛𝑛 = 0

𝛽𝛽𝑛𝑛 otherwise

� (10)

with 𝐴𝐴 ϵ𝑛𝑛 ∼ Uniform

(

0,min

{

𝑁𝑁
−2∕𝐷𝐷

, 𝑎𝑎
})

 , where 𝐴𝐴 𝐴𝐴 stands for the number of observations, D is the 
dimension of the convergence rate of the DEA model (i.e., the total number of specified variables), 
and 𝐴𝐴 𝐴𝐴 is the 0.05 quantile of the empirical distribution of 𝐴𝐴 𝛽𝛽𝑛𝑛 > 0 . Li (1996) shows that the asymp-
totic distribution of the test-statistic is standard normal. We use the algorithm presented in Simar and 
Zelenyuk (2006) to obtain the value of the test-statistic and the corresponding p-values.

4  |  APPLICATION

The data used in the application are obtained from the Dutch Farm Accountancy Data Network 
(FADN) collected by Wageningen Economic Research in the Netherlands. The dataset contains infor-
mation on specialised Dutch dairy farms observed over the period 2009–2016, and is an unbalanced 
panel of 2103 observations. Based on the FADN definition, specialised dairy farms are those whose 
revenues from sales of milk, milk products and turnover and growth of cattle comprise at least 66% 
of their total revenues.

The model distinguishes one good output, three fixed inputs (two non-polluting and one pollut-
ing), one quasi-fixed input with its associated investments, two variable inputs and one bad output. 
The good output is farms' total output and includes milk, milk products, turnover and growth of 
cattle, crop and other products. The three fixed inputs are total land measured in hectares, total labour 
expressed in hours, and animals measured in livestock units. Total labour is considered as a fixed 
input because it mostly concerns family labour. Animals are also specified as a fixed input because 
changing herd size can involve adjusting a large part of capital (i.e., milking machines, animal hous-
ing etc.). Total land and total labour are treated as non-polluting fixed inputs, whereas animals are 
considered as a polluting input as they are responsible for methane 𝐴𝐴 (CH4) emissions. The quasi-fixed 
input is capital stock of buildings and machinery, and gross investments in this component are also 
considered. These gross investments are measured as the end value of capital stock in year 𝐴𝐴 𝐴𝐴 minus 
the beginning value of capital stock in the same year (which is essentially the end value of capital 
stock in year 𝐴𝐴 𝐴𝐴 − 1 ), plus the value of depreciation in year 𝐴𝐴 𝐴𝐴 . Note also that this is an aggregate variable 

6 Due to the inherent bias of the estimated inefficiency scores, other non-parametric tests such as the Kolmogorov–Smirnov or the Mann–
Whitney are avoided because they have an incorrect size and, as a result, wrong p-values (Kenjegalieva et al., 2009; Ohene-Asare et al., 2017; 
Simar & Wilson, 2002).

SKEVAS et al.10
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consisting of gross investments in buildings, and gross investments in machinery. Although for one 
of the sub-components a negative value is observed for some observations, the aggregate variable 
is for all observations non-negative. Hence, we do not observe any disinvestments in the sample. In 
any case, these are still accommodated through the use of the directional vector that is positive for all 
observations (20% in our case), which allows for each farm to be projected on the part of the frontier 
with positive investments.

The two variable inputs are costs of intermediate inputs (excluding purchased feed) and purchased 
feed costs. Intermediate input costs consist of veterinary expenses, crop-specific costs, energy 
expenses, contract work and other variable costs. The bad output is farms' total 𝐴𝐴 CH4 emissions that 
come from (1) cows' manure production and storage (amount × emission factor), and (2) from their 
rumen and intestinal fermentation (the ration, the ration composition and the emission factor). These 

𝐴𝐴 CH4 emissions are measured in tons of carbon dioxide (𝐴𝐴 CO2 ) equivalent. Specifically, the factor with 
which 𝐴𝐴 CH4 emissions are multiplied in order to yield the corresponding 𝐴𝐴 CO2 equivalent is 28, as laid 
down in the most recently published standard of the Intergovernmental Panel on Climate Change. All 
the above monetary variables are measured in 2010 constant prices using Eurostat price indices, thus 
creating implicit quantities. The Eurostat price indices, which are the same for all farmers, are used 
because our dataset does not contain information on farm-specific prices. However, we do not expect 
that prices vary across space because farmers are price-takers and the Netherlands is a relatively small 
country. Summary statistics of all variables appear in Table 1.7

Finally, our dataset provides information on farms' latitudes and longitudes. These are used to 
calculate the distance of each farm to all others, and based on them, construct the different spatial 
weight matrices 𝐴𝐴 𝐖𝐖 as described in Section 3.2. Note that we allow the optimal number of neighbours 
to change over time due to both technical and theoretical reasons. From a technical perspective, the 
optimal number of neighbours 𝐴𝐴 𝐴𝐴 changes over time because the employed dataset is unbalanced, with 
farms rotating in and out of the sample over the years. From a theoretical perspective, the optimal 
number of neighbours changes because of farm exit and entry, changes in farmers' social networks 
over time due to their changing preferences, priorities, targets or friendships, the establishment of new 
study groups that can change the spatial interactions, or because farmers retire and new generations 
with different social relationships take over.

7 Note that Table 1 only presents the lowest and highest 5% values of the utilised variables, as reporting minimum and maximum values is not 
allowed by the data provider.

11

T A B L E  1   Summary statistics of utilised variables

Variable Mean Std. dev. 5% 95%

Good output (€ in 2010) 336,423.400 239,921.600 78,653.460 818,078.200

Land (hectares) 68.227 40.939 22.156 145.448

Labour (hours) 4645.135 2595.074 2101.200 8492.000

Animals (livestock units) 235.346 434.449 56.700 521.700

Capital (€ in 2010) 484,042.600 411,158.100 62,033.380 1,399,308.000

Gross investments (€ in 2010) 117,133.500 172,278.400 7447.563 419,612.600

Intermediate inputs (€ in 2010) 76,817.560 58,383.620 18,226.380 182,489.800

Purchased feed (€ in 2010) 79,513.310 65,754.830 14,114.630 207,650.300

Bad output (𝐴𝐴 CH4 emissions in tons of 𝐴𝐴 CO2 -eq) 664.686 450.840 174.745 1562.514

SPATIAL-DYNAMIC INEFFICIENCY ANALYSIS
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5  |  RESULTS

5.1  |  Main empirical findings

Table 2 presents the optimal values of 𝐴𝐴 𝐴𝐴 (i.e., the ones that yield the maximum significant Moran I test 
statistic) for good and bad output for each year. The optimal 𝐴𝐴 𝐴𝐴 values are the same for both variables in 
each year, highlighting a consistency in terms of spatial autocorrelation across the outputs of the two 
sub-technologies. Additionally, we observe that the optimal 𝐴𝐴 𝐴𝐴 values differ only slightly across years 
ranging from 14 to 19. Based on these results, the KNN DEA model is computed separately for each 
time period and with the corresponding number of optimal 𝐴𝐴 𝐴𝐴 . Obviously, the model is solved with a 
small number of observations in each year. Although this fact implies that the model can suffer from 
the ‘curse of dimensionality’, there does not exist a certain rule of thumb for the minimum number 
of observations in DEA, particularly for the dynamic by-production model. Certainly, it would be 
preferable to have a bigger dataset as it would probably yield a larger number of optimal neigh-
bours. However, this is not the case with the available FADN data. Note as well that it is difficult to 
ameliorate the ‘curse of dimensionality’ by either changing the number of neighbouring peers 𝐴𝐴 𝐴𝐴 or by 
removing some variables. This is because the optimal value of 𝐴𝐴 𝐴𝐴 is calculated based on the Moran I 
test, and all the specified variables are already aggregated as much as possible. Also, the small number 
of observations is due to the fact that the DEA problem is solved separately for each year recognising 
that technology can differ across different time periods. Hence, there exists a trade-off between ‘curse 
of dimensionality’ and model specification.

Tables 3 and 4 present the inefficiency estimates across time periods for the global and the KNN 
technology, respectively. The inefficiencies with respect to good output, investments and bad output 
are lower in the KNN technology. Specifically, farms can increase their good output by 1.7% under 
the global technology and by 1.1% under the KNN technology, on average. Investments can on aver-
age be expanded by 99.52% and 13.38% (inefficiency × 0.2 × 100) based on the global and KNN 
technology, respectively. Bad output can be contracted by 19.3% according to the global technology 
and by 1.9% based on the KNN technology, on average. Regarding variable inputs, slightly lower 
inefficiency scores are observed under the global technology. Intermediate inputs can on average 
be reduced by 5.9% and 15.6% under the global and the KNN technology, respectively. Regarding 
purchased feed, a 5.4% average decrease in the global technology and a 11.7% average decrease in 
the KNN technology is possible.

The above differences in the inefficiency estimates are visualised through Figure 1, which presents 
the time evolution of all inefficiencies (averaged across farms) for the global and the KNN technolo-

SKEVAS et al.12

T A B L E  2   Optimal values of 𝐴𝐴 𝐴𝐴 for good and bad output across years

Variable 2009 2010 2011 2012 2013 2014 2015 2016

Good output 15 18 15 14 19 15 15 16

Bad output 15 18 15 14 19 15 15 16

T A B L E  3   Global inefficiency estimates across time periods

Inefficiencies 2009 2010 2011 2012 2013 2014 2015 2016 Average

Good output 0.015 0.005 0.014 0.012 0.017 0.013 0.039 0.017 0.017

Intermediate 0.079 0.041 0.054 0.045 0.088 0.079 0.053 0.033 0.059

Feed 0.081 0.016 0.040 0.066 0.094 0.028 0.055 0.053 0.054

Investments 7.439 5.822 4.530 3.648 4.324 4.835 5.166 4.042 4.976

Bad output 0.178 0.285 0.181 0.170 0.185 0.181 0.125 0.235 0.193

N = 227 N = 241 N = 275 N = 277 N = 281 N = 275 N = 267 N = 260
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gies. Furthermore, Figures A1–A8 present kernel densities of all estimated inefficiencies for all years 
for the global and the KNN technologies.

In general, the reported technical inefficiency estimates are consistent with the findings of other 
related studies. Very low output inefficiency scores in the global technology for Dutch dairy farms 
are also reported by Skevas et al. (2018) and Skevas (2020). With respect to emissions, Dakpo and 
Oude Lansink (2019) report that GHG emissions from French cows can be reduced by an average 
of 7.1%, which is closer to our finding from the KNN technology. Dakpo and Oude Lansink (2019) 
also find high investment inefficiency, as the present study does. This is because in dairy farming we 
typically observe producers who invest very small amounts and others that invest a lot, with this high 
heterogeneity explaining the corresponding high investments inefficiency. Regarding variable inputs' 
inefficiencies, the estimates from the KNN technology are closer to the findings of other studies as the 
one of Skevas and Oude Lansink (2020) who report an average inefficiency of 22% for Dutch dairy 
farms' variable inputs.

Moving to the bigger picture, the finding that lower inefficiency scores are observed for good 
output, investments and bad output under the KNN technology is an expected result also reported by 
Vidoli and Canello (2016) and Fusco et al. (2020). This is because in a KNN setting, firms are only 
compared relative to their neighbouring peers given that their close proximity can result in employing 
similar production practices/technologies. This leads to a reduction of the heterogeneity in the sample 
that prevents an overestimation of inefficiency that is observed when firms are benchmarked under 
a global technology. This is particularly true for the inefficiency with respect to investments. This 
heterogeneity may not only be due to different farm networks that arise across space but also due to 
climatic differences (the growing season differs by 3 weeks between farms in the north and the south 

13

T A B L E  4   KNN inefficiency estimates across time periods

Inefficiencies 2009 2010 2011 2012 2013 2014 2015 2016 Average

Good output 0.011 0.010 0.005 0.010 0.009 0.008 0.017 0.021 0.011

Intermediate 0.167 0.168 0.158 0.148 0.138 0.160 0.154 0.158 0.156

Feed 0.141 0.123 0.108 0.108 0.104 0.109 0.127 0.116 0.117

Investments 1.153 0.925 0.514 0.413 0.536 0.559 0.690 0.559 0.669

Bad output 0.020 0.033 0.021 0.017 0.019 0.014 0.013 0.018 0.019

K = 15 K = 18 K = 15 K = 14 K = 19 K = 15 K = 15 K = 16

F I G U R E  1   Time evolution of global and KNN inefficiencies

SPATIAL-DYNAMIC INEFFICIENCY ANALYSIS
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of the Netherlands) or differences in soil conditions as dairy farms can be found on sandy, peat, clay 
and loss soils (van den Berg et  al.,  2017). However, inefficiencies with respect to variable inputs 
exhibit lower values when a global technology is considered. This occurs because the method removes 
all slacks from the model. Hence, the optimal solution may entail a larger contraction of one of the 
inputs in a sub-sample compared to the entire sample.

Finally, Table 5 presents the values of the Li test and the corresponding p-values for comparing the 
densities of the different inefficiency components across the global and the KNN technologies. The 
null hypothesis of equal densities is rejected for all inefficiencies, manifesting statistically significant 
differences between the global and the KNN inefficiencies. This result suggests that ignoring spatial 
effects across farms significantly changes the inefficiency scores.

5.2  |  Robustness checks

We perform robustness checks with respect to different values of 𝐴𝐴 𝐴𝐴 in order to identify the sensitivity 
of the results from the KNN technology. For this purpose, we first compute the optimal 𝐴𝐴 𝐴𝐴 values for all 

SKEVAS et al.14

T A B L E  7   Robustness checks estimates of inefficiency scores under a KNN technology

Variable 2009 2010 2011 2012 2013 2014 2015 2016 Average

Good output 0.013 0.010 0.007 0.011 0.006 0.008 0.015 0.022 0.012

Intermediate 0.160 0.177 0.149 0.145 0.143 0.162 0.152 0.168 0.157

Feed 0.134 0.122 0.098 0.110 0.105 0.112 0.128 0.122 0.116

Investments 1.246 0.773 0.620 0.447 0.408 0.564 0.674 0.489 0.653

Bad output 0.022 0.019 0.023 0.020 0.013 0.013 0.013 0.016 0.017

K = 17 K = 14 K = 17 K = 18 K = 15 K = 14 K = 14 K = 14

T A B L E  5   Li-test for each inefficiency component

Variable Mean global inefficiency Mean KNN inefficiency Li test p-value

Good output 0.017 0.011 11.212 0.000

Intermediate 0.059 0.156 219.624 0.000

Feed 0.054 0.117 183.334 0.000

Investments 4.976 0.669 329.664 0.000

Bad output 0.193 0.019 449.525 0.000

T A B L E  6   Optimal values of 𝐴𝐴 𝐴𝐴 for all remaining variables for each year

Variable 2009 2010 2011 2012 2013 2014 2015 2016

Land 15 15 17 16 19 15 15 16

Labour 16 18 17 17 NS NS NS NS

Animals NS NS NS 14 19 15 14 15

Capital 17 15 NS 17 18 15 15 14

Intermediate 16 14 15 14 15 14 14 16

Feed 15 15 15 14 16 14 15 15

Investments 16 NS NS 18 NS NS 14 NS

Minimum 15 14 15 14 15 14 14 14

Maximum 17 18 17 18 19 15 15 16

Note: NS means that the Moran I test is not significant for all k.
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the remaining variables and report their range (minimum and maximum values) for each time period. 
The results are presented in Table 6.

We observe that for some variables, the Moran I test is insignificant for certain years for all 𝐴𝐴 𝐴𝐴 . 
However, in most cases the Moran I test is significant and reaches its maximum for 𝐴𝐴 𝐴𝐴 between 14 and 
19. This result is very close to the optimal 𝐴𝐴 𝐴𝐴 values reported for the good and the bad outputs.

Then, we compute for each year the inefficiency scores under a KNN technology using the 
extremes of optimal 𝐴𝐴 𝐴𝐴 's (i.e., minimum and maximum) for all involved variables (including the good 
and the bad output). However, given that for all years the minimum or the maximum optimal 𝐴𝐴 𝐴𝐴 from 
Table 6 coincides with that of our base KNN model from Table 2 (for instance in 2009 the minimum 

𝐴𝐴 𝐴𝐴 from Table 6 coincides with the optimal 𝐴𝐴 𝐴𝐴 presented in Table 2), the minimum or maximum 𝐴𝐴 𝐴𝐴 from 
Table 6 is only used dependent on the case. In this way, the inefficiencies under a KNN technology are 
computed based on the lowest and largest value of the range of optimal 𝐴𝐴 𝐴𝐴 's of all involved variables. 
The results from the robustness checks are presented in Table 7. The inefficiency scores for all varia-
bles are quite similar to those from the base KNN model presented in Table 4. This finding suggests 
that inefficiencies are not sensitive across the range of optimal 𝐴𝐴 𝐴𝐴 values for all utilised variables.8 This 
result is even more clear when looking at Table A1, which presents the inefficiency scores for the 
minimum and the maximum values of 𝐴𝐴 𝐴𝐴 for each year.

6  |  CONCLUSIONS

This study proposes an optimal neighbour identification strategy that combines the Moran I test for 
spatial autocorrelation and the k-nearest neighbour (KNN) approach to benchmark farms against their 
optimal KNN and measure their inefficiencies in a non-parametric dynamic by-production setting. 
The optimal number of KNN corresponds to the number of neighbours that maximise the Moran I test 
statistic for the outputs of farms' two sub-technologies (good and bad output). The results from the 
KNN model are compared with those from a global model that benchmarks all farms together. The 
models are applied to specialised dairy farms from the Netherlands and measure their inefficiencies in 
terms of their good output (milk and other products) production, variable inputs (costs of intermediate 
inputs and purchased feed) use, investments levels and bad output (methane emissions) production as 
in Dakpo and Oude Lansink (2019).

According to the Moran I test, the optimal numbers of neighbours (i.e., those that maximise the 
Moran I test) range from 14 to 19 dependent on the year under consideration. The results from DEA 
suggest that technical inefficiency is generally deflated when using a KNN approach. This holds 
for good output, investments and bad output inefficiencies. The benefits from using a KNN model 
are especially highlighted in the case of investments inefficiency, which is severely inflated when 
considering a global technology. This is because farms are compared against very heterogeneous ones, 
which is less pronounced in the KNN model that compares farms only against their neighbouring 
peers. However, inefficiencies with respect to variable inputs are slightly higher when using a KNN 
technology, because the method removes all slacks from the model, and therefore the optimal solution 
results in a larger contraction for the variable inputs in the KNN sub-sample. Robustness checks with 
respect to different KNN reveal that the results are not sensitive across the range of optimal KNN for 
all utilised variables. Additionally, the adapted Li-test (Simar & Zelenyuk, 2006) suggests that the 
densities of all inefficiency components are significantly different among the global and the KNN 
models, highlighting that practitioners should be cautious regarding the peers against which farms are 
benchmarked, in order to provide more accurate efficiency estimates that can be used by both farmers 
and policy-makers in their efforts to improve efficiency.

8 Furthermore, the adapted Li test suggests that the inefficiency scores from the robustness checks of the KNN technology are again statistically 
different from the ones derived from the global technology.

15SPATIAL-DYNAMIC INEFFICIENCY ANALYSIS
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An interesting avenue for future research would be to decompose inefficiency changes over 
the years from the KNN model into inefficiency changes due to changes in the number of optimal 
neighbours 𝐴𝐴 𝐴𝐴 across years, frontier shifts, and farm-specific inefficiency changes. Also, the proposed 
approach can be adapted to the estimation of total factor productivity growth and its components. 
Given the significant differences of the inefficiency scores among the global and the KNN technology 
reported in the current study, an analogous result can be expected for productivity. Furthermore, the 
KNN benchmarking approach can be particularly useful when analysing the inefficiencies/productiv-
ities of farms located in less developed countries that are characterised by high degree of farm heter-
ogeneity where a global benchmarking can severely distort the performance estimates. Additionally, 
the Moran I test that is used to derive the optimal number of neighbours 𝐴𝐴 𝐴𝐴 is conducted separately for 
the good and the bad outputs. We argue that this approach is not so restrictive as the good and the bad 
outputs are already correlated by definition, given that the latter is a by-product of the former. This 
inherent correlation is most probably responsible for the fact that the optimal number of neighbours 

𝐴𝐴 𝐴𝐴 found from the Moran I test are the same for both variables, irrespective of the year considered. 
However, future research could focus on deriving the optimal number of neighbours 𝐴𝐴 𝐴𝐴 , while taking 
into account the inherent correlation between the good and the bad outputs when conducting the 
Moran I test. Finally, in cases where farms are unevenly distributed across space, which is more 
probable in large countries rather than in small countries like the Netherlands where farms are spread 
across space, one can relax the assumption of a homogeneous spatial pattern and allow the optimal 
number of neighbours to vary across farms.
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