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Abstract 
The rapid increases of the global population and climate change pose major challenges to a sustainable production of food to meet consumer 
demands. Process-based models (PBMs) have long been used in agricultural crop production for predicting yield and understanding the environ-
mental regulation of plant physiological processes and its consequences for crop growth and development. In recent years, with the increasing 
use of sensor and communication technologies for data acquisition in agriculture, machine learning (ML) has become a popular tool in yield pre-
diction (especially on a large scale) and phenotyping. Both PBMs and ML are frequently used in studies on major challenges in crop production 
and each has its own advantages and drawbacks. We propose to combine PBMs and ML given their intrinsic complementarity, to develop know-
ledge- and data-driven modelling (KDDM) with high prediction accuracy as well as good interpretability. Parallel, serial and modular structures are 
three main modes can be adopted to develop KDDM for agricultural applications. The KDDM approach helps to simplify model parameterization 
by making use of sensor data and improves the accuracy of yield prediction. Furthermore, the KDDM approach has great potential to expand the 
boundary of current crop models to allow upscaling towards a farm, regional or global level and downscaling to the gene-to-cell level. The KDDM 
approach is a promising way of combining simulation models in agriculture with the fast developments in data science while mechanisms of 
many genetic and physiological processes are still under investigation, especially at the nexus of increasing food production, mitigating climate 
change and achieving sustainability.
Keywords: Knowledge- and data-driven modelling; Machine learning; Process-based models; yield prediction.

Introduction
Simulation models are useful tools in agricultural research for 
predicting yield, optimizing crop management, understanding 
physiological mechanisms, and assisting breeding and crop-
ping system design. Typically, two types of simulation models 
are used, i.e. process-based models (PBMs) and data-driven 
models. Process-based models simulate plant growth and de-
velopment based on underlying physiological mechanisms. 
Since the 1960s, many process-based crop models have been 
built, stimulated by the rapidly developing computer science. 
Most early models (e.g. Simple and Universal Crop Growth 
Simulator, Decision Support System for Agrotechnology 
Transfer and Agricultural Production Systems Simulator) are 
still frequently used and continuously updated and improved 

(Yin and Van Laar 2005; Holzworth et al. 2014; Tovihoudji et 
al. 2019). These models are used not only for predicting yield, 
but more importantly, to understand the environmental regu-
lation of plant physiological processes and its consequences 
for crop growth, development and yield. Furthermore, model 
results may reveal emergent properties resulting from the 
interactions between individual processes simulated in the 
model. Such a systematic understanding of the determinants 
of yield helps with optimizing crop system design and making 
decisions on crop management practises (e.g. irrigation and 
fertilization) (Van Ittersum et al. 2016; Martinez-Feria et al. 
2018), as well as providing potential directions for breeding 
high-yielding cultivars, especially when combining with quan-
titative trait loci mapping, genome-wide association studies 
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and phenotyping (Rötter et al. 2015; Kadam et al. 2019; 
Tsutsumi-Morita et al. 2021).

Despite being a powerful tool used in agriculture, PBMs 
have their own intrinsic drawbacks. First, model parameter-
ization can be a difficult process. Process-based models in-
clude many parameters that need to be tuned before doing 
proper simulations, and some parameters may require a sub-
stantial amount of measurements. Second, crop models cur-
rently seem to reach their limits, not only for the algorithms 
used to simulate some of the physiological processes, but also 
in terms of expanding the boundaries of model simulations. 
Some processes have long been recognized as hard-to-predict 
(e.g. development of leaf area index and sink formation), and 
new algorithms for properly simulating these processes are 
still under exploration (Yin et al. 2021). Additionally, current 
crop models lack the capacity of downscaling towards the 
gene-to-cell level (due to unclear molecular mechanisms) and 
upscaling to the regional and global level (due to significant 
heterogeneity that cannot be ignored), as well as capturing 
key responses to environmental acclimation and extreme cli-
mate events under global change (Feng et al. 2019a; Peng et 
al. 2020; Yin et al. 2021).

Modelling in the Age of Big Data: The Rise of 
Machine Learning
While process-based modelling is based upon human know-
ledge, machine learning (ML), which is a data-driven ap-
proach, allows computers to learn from experience. The idea 
starts from Alan Turing’s question ‘Can machines think?’, 
which was distinguished from the traditional practice where 
machine systems only operate as manually programmed by 
humans (Turing 1950). The last 20 years have seen a burst 
of applying ML in many fields including agriculture. The 
early agricultural applications of ML can be dated back to 
the 1990s, with artificial neural networks being the most 
common algorithm, possibly stimulated by the birth of the 
back-propagation algorithm which enabled deriving par-
ameter values for complex neural networks (Werbos 1981; 
Rumelhart et al. 1986; Elizondo et al. 1994). Capable of re-
gression on complex non-linear relationships, classification 
and processing unstructured data (e.g. images and sensor 
data), ML is now widely used for predicting yield, ana-
lysing remote sensing data, detecting diseases and weeds, 
and phenotyping and breeding (Singh et al. 2016; Tang et al. 
2017; San-Blas et al. 2020; Van Klompenburg et al. 2020). 
However, ML models encounter the disadvantage of being 
black-box models, whose structures do not help interpret 
their parameters or predictions; this makes extrapolation dif-
ficult. Moreover, ML models usually need to be trained with 
a large amount of data.

Collaboration Between Humans and 
Machines: Allying PBMs with ML
Both PBMs and ML models have intrinsic drawbacks for 
model simulations as mentioned above. To develop models 
with both high prediction accuracy and interpretability, com-
bining human knowledge and ML has long been discussed, 
and recently interpretable ML marks the new generation of 
artificial intelligence (Thompson and Kramer 1994; Hu et al. 
2009; Rudin 2019; Deng et al. 2020). In a human–machine 

collaborating modelling approach, what and how the ma-
chines learn should be well-planned according to human 
knowledge, of which PBMs are one of the best carriers given 
their capability of summarizing and structuring domain 
knowledge. In a hybrid modelling approach that combines 
PBMs and ML (termed the knowledge- and data-driven mod-
elling approach, i.e. the KDDM approach, hereafter), task al-
locations among ML and PBMs are based on the knowledge 
embedded in PBMs.

Furthermore, PBMs can lead or restrict how machines 
learn through four aspects. First, ML algorithms should 
be selected and modified for certain tasks. For example, 
to capture the climate effects on crop growth in preceding 
weeks, specific recurrent neural network architectures such 
as long short-term memory (LSTM) should be considered 
for its ability to model relationships between events with 
long time gaps. Although research has been conducted on 
employing recurrent neural networks for the prediction of 
environmental conditions such as rainfall (Fang and Shao 
2022; Ouma et al. 2022), they have not been further ap-
plied for plant growth prediction to the best of our know-
ledge (Fang and Shao 2022; Ouma et al. 2022). Second, 
for some ML algorithms (e.g. linear regression), equations 
in PBMs can be used directly as the ML model for which 
ML learns the parameter values (e.g. intercept and slope) 
from data. Third, boundaries of variables in PBMs can be 
embedded into ML algorithms by adding constraints when 
minimizing the loss function or by choosing certain activa-
tion functions in neural networks (e.g. a sigmoid activation 
function limiting the output value between 0 and 1). While 
discussed in the field of ML for the improvement of inter-
pretability (Qu and Hu 2011), applications of the second 
and third points above received limited attentions in agri-
cultural research. Last, PBMs can generate simulation data 
which largely decrease the demand of experimentally deter-
mined training data. This has been applied in autonomous 
control research where PBMs were used to train the ML for 
smart decisions (Hemming et al. 2019).

Three KDDM Structures Combining PBM and 
ML
Modelling an agricultural system involves different patterns 
of relationships (e.g. linear versus non-linear), different simu-
lation levels (e.g. photosynthesis at leaf level versus yield at 
crop or production system level) and different types of data 
(e.g. climate data versus plant data), and thus allocating tasks 
among PBMs and ML is crucial for taking advantage of 
both process-based modelling and ML. Here, we select par-
allel, serial and modular structures for our KDDM approach 
based on the characteristics of process-based crop models 
(Fig. 1A–C), and provide examples on task allocation in these 
structures. Some of these structures exist already for decades, 
whereas not much attention has been paid to their application 
in agriculture.

Parallel structure
In the parallel structure, PBM and ML models have the same 
input variables, and the KDDM output is either the sum or 
the multiplication product of the output of PBM and ML 
models (Thompson and Kramer 1994; Hu et al. 2009) (Fig. 
1A). For the ‘sum’ structure, ML is trained based on the 
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residual between experimental data and predictions from 
the PBM. For example, in Fan et al. (2015), a combination 
of ML and the GreenLab model (a PBM taking into account 
plant 3D architecture) with the ‘sum’ structure increased 
the prediction accuracy on tomato organ dry weights under 

different environmental conditions compared with using 
the GreenLab model only. For the ‘multiplication’ structure, 
ML is trained based on the quotient obtained by dividing 
the experimental output values by the predictions from the 
PBM.

Figure 1. A KDDM approach combining a PBM and ML. The original PBM in the figure has three modules, in which (A) PBM module 1 is combined 
with ML 1 in a parallel structure, (B) PBM module 2 is combined with ML 2 in a serial structure and (C) PBM module 3 is substituted by ML 3 in a 
modular structure. The PBM can further combine with (D) ML 4 to allow downscaling towards gene-to-cell level and/or (E) ML 5 to enable the use of 
unstructured data (e.g. images and remote sensing data). The KDDM approach can be applied for (1) yield prediction under global climate change (e.g. 
heat stress) and on a regional basis, (2) assisting breeding and (3) developing autonomous growing systems. Thin arrows represent data flow. Thick 
arrows point to applications.
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Serial structure
The serial structure is defined as either running ML model 
prior to PBM or the reverse (Thompson and Kramer 1994; 
Hu et al. 2009) (Fig. 1B). When ML model is running prior to 
PBM, the ML model output becomes the parameter or input 
values of the PBM. This structure can be used to simplify 
parameterizations, and to convert sensor data to the input 
of PBM, which is needed in agricultural systems where field 
data measured by sensors are not exactly the input data for 
the crop model (see ‘Future Perspectives’). While in the case 
that PBM is running prior to ML model, the output of PBM 
is used as input for ML model, so that ML can find the rela-
tionship between the output of PBM and the required model 
output. For example, Kaneko et al. (2022) developed a hybrid 
model with a serial structure: first, a process-based single-leaf 
photosynthesis model was employed to calculate the value 
of leaf photosynthetic rate from environmental factors; then 
an artificial neural network was used to calculate the canopy 
photosynthetic rate from this single-leaf photosynthetic rate 
and leaf area index. This hybrid model not only requires a 
more simple calibration process compared with a process-
based canopy photosynthesis model, but also provides a more 
accurate prediction than using artificial neural network alone 
to predict canopy photosynthesis from environmental fac-
tors, especially when the prediction was conducted outside 
the range of training data (Kaneko et al. 2022).

Modular structure
With a modular structure, individual PBM modules (e.g. light 
interception) can be substituted by ML or combined with 
ML in a parallel or serial structure (Fig. 1A–C). Extra mod-
ules (e.g. gene-to-cell module, remote sensing module) can 
be added to the model to allow downscaling or upscaling of 
the model and utilizing unstructured data (Fig. 1D and E). 
To make the most use of both PBMs and ML models and 
to allow smooth connection between them, changes of vari-
ables and data processing might be needed. We provide three 
examples where the modular structure is or can be adopted.

Example 1.  To improve the prediction of wheat yield under 
extreme climate events (e.g. heat, frost and drought), Feng et 
al. (2019a) developed a hybrid model by incorporating ML 
in the APSIM model (a PBM predicting crop growth and pro-
duction with simplified functions describing the effects of ex-
treme climate events). In the hybrid model, Feng et al. (2019a) 
substituted APSIM’s module of predicting wheat yield from 
total biomass and development stage with ML. Their results 
showed that the hybrid model improved prediction accuracy 
by 33% compared to APSIM alone. It needs to be noted that 
extra data processing is needed between the output of devel-
opment stage from APSIM and the ML module, where Feng 
et al. (2019a) counted the duration of extreme climate events 
in each development stage. Such data processing shows how 
human knowledge can play a role in connecting PBM and ML 
modules, beyond selecting the hybrid structure and developing 
PBMs. We recommend considering such knowledge-based 
data processing rather than simply using the PBM output as 
the ML model input, in order to take the most advantage of 
both process-based modelling and ML.

Example 2.  Fan et al. (2015) tested the modular structure 
by substituting GreenLab’s module of predicting potential 

biomass from climate factors by a neural network, as a com-
parison with the parallel structure. While GreenLab only 
considered global radiation and temperature as inputs and ig-
nored other factors such as CO2 concentration and humidity, 
Fan et al. (2015) tested several ML modules with different 
climate factors as inputs. It is not surprising that in their study 
the modular structure where the ML module included more 
climate factors outperformed the parallel structure. This com-
parison between modular and parallel structures shows the 
advantage of modular structure where the re-selection of vari-
ables can improve the simulation accuracy.

Example 3.  Remote sensing, through which data can 
be derived without on-site observations, can be added as a 
module when modelling an agricultural system. For the re-
mote sensing module, ML and PBMs can be combined in two 
ways. First, ML runs after remote sensing (serial structure) 
for tasks such as processing unstructured data (e.g. images, 
satellite signals) and classifying remote sensing results (e.g. 
ML links vegetation indices derived by remote sensing to 
water stress categories; Romero et al. 2018). Second, ML can 
be combined with physical models inside the remote sensing 
module to boost accuracy (Yuan et al. 2020).

Limitations
Specific limitations should be noted when combining PBMs 
and ML. First, a large amount of data is needed for training 
ML. Second, the three structures of the KDDM approach 
only combine PBM with ML model; however, the ML algo-
rithm needs to be selected carefully to ensure its capability of 
simulating the target process. For example, the random forest 
algorithm is frequently used to simulate the relationships be-
tween yield and climate variables. However, random forest has 
limited capability to capture the impact of the past climate 
on future growth and yield; i.e., climate variables at one time 
point not only affect crop growth at this time point but also 
have prolonged effects in coming days. For dealing with such 
relationships, LSTM neural networks generally outperform 
random forest (Schwalbert et al. 2020). When combining ML 
with PBMs for dynamic relationships, the time structure (e.g. 
how many time steps in the future are influenced by a change 
at the current time step) should be considered in both models. 
Third, adding a black-box model to a PBM brings extra un-
certainties to the model that cannot be avoided, and replacing 
part of the PBM potentially hampers the interpretability of the 
original PBM. Therefore, in the modular structure, the mod-
ules that will be replaced by ML need to be evaluated carefully 
with expert knowledge. Generally, we recommend to only re-
place the modules in a PBM that use simple empirical rela-
tionships and assumptions without considering mechanisms 
underlying the simulated process, and in such cases human 
knowledge on the specific process needs to be embedded into 
ML. Modules with solid underlying physiological mechanisms 
should be kept in the original PBM.

Future Perspectives
The KDDM approach that combines the strength of PBMs 
and ML potentially increases the prediction accuracy of cur-
rent modelling tools used in agriculture while keeping their 
interpretability at a good level. In a broad sense, the KDDM 
approach would be closer to human-like artificial intelligence, 
considering that we humans learn from both prior knowledge 
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and experience in our daily life. For agricultural applications, 
the KDDM approach can be envisioned at three integration 
levels.

First, at the crop and cropping system level, the KDDM 
approach simplifies model parameterization and improves 
the prediction accuracy. Machine learning algorithms are de-
veloped to link sensor data with plant physiological proper-
ties. For example, ML is used for predicting crop nitrogen 
content from hyperspectral data, obtaining plant architec-
tural traits and detecting stress from phenotypic data, and 
predicting leaf photosynthetic parameters from leaf reflect-
ance spectra (Heckmann et al. 2017; Ziamtsov and Navlakha 
2019; Berger et al. 2020; Feng et al. 2020). These plant in-
formation (e.g. nitrogen content and architectural traits) are 
all parameters needed in crop models but require laborious 
and time-consuming measurements when determined in a 
conventional way. By combining PBMs and ML, the input 
parameters of the hybrid model can be acquired via advanced 
sensor technologies, thus simplify the parameterization of the 
hybrid model while still keeping all physiological processes 
of PBMs. Additionally, combining PBMs and ML also sim-
plifies the acquisition process of training data for ML used 
in phenotyping, since synthetic data generated by PBMs can 
be used as training data for ML (Lobet et al. 2017; Ubbens 
et al. 2018). Moreover, the KDDM approach is useful for 
improving the accuracy of yield prediction under global cli-
mate change (Fig. 1). The mechanisms of crop responses to 
climate change are still under study, which makes mechanistic 
simulation of these processes difficult. These individual pro-
cesses can be simulated using a data-driven approach based 
on historical climate and yield data, and then be integrated 
into a PBM or substitute relevant modules in a PBM (Feng et 
al. 2019a).

Second, by incorporating ML, the KDDM approach poten-
tially allows upscaling the simulation level of a crop model 
towards a farm, regional or global level, with the potential to 
predict the effects of heterogeneity. For example, ML can clas-
sify the farms in a region with the help of remote sensing, and 
combining such ML with a PBM that predicts crop growth on 
a single farm level. While ML has been used for classification 
tasks such as soil mapping, it has not been combined with 
crop models for large-scale crop growth prediction to the best 
of our knowledge (Forkuor et al. 2017). At farm-, regional- or 
global-level KDDM can assist system optimization and deci-
sion support (e.g. designing autonomous control algorithms, 
risk assessment for insurance application, and weed and stress 
detection for crop management decisions) (Gao et al. 2018; 
Feng et al. 2019b; Hemming et al. 2019; Schwalbert et al. 
2020; Li et al. 2021). For example, KDDM can generate large 
amounts of simulated data for a wide range of conditions, 
especially plant data (e.g. biomass) which is impossible to col-
lect by conventional experiments in a short period given this 
is both time- and labour-consuming. Also, these simulation 
data can be used to develop autonomous control systems for 
crop production (e.g. optimizing greenhouse climate settings 
without human interference; Hemming et al. 2019) (Fig. 1). 
This could further provide directions for sensor development 
based on the most important crop parameters or environ-
mental data needed for the autonomous control system.

Third, the KDDM approach could downscale to the gene-
to-cell level to allow predicting from genotype to pheno-
type and assisting breeding (Fig. 1). Processes that currently 

can hardly be simulated mechanistically can be data-driven, 
while simulations in other modules (e.g. from organ to plant) 
can be process-based (Kadam et al. 2019). This provides an 
opportunity to link the gene-level data to crop growth and 
development processes, given that currently it is impossible 
to simulate genotype to phenotype using a full mechanistic 
model. For example, ML has been used to link genetic marker 
data with phenological parameters, and by further combining 
with a crop model, the hybrid approach is able to predict the 
performance of a new genotype in a new environment (Chen 
et al. 2020).

In conclusion, the KDDM approach that combines the 
strength of both PBMs and ML is a useful tool at different 
integration levels. Currently, we humans are at the nexus of 
increasing food production, mitigating climate change and 
achieving sustainable agriculture. The KDDM approach is 
a promising way of using simulation models for agricul-
tural applications, given that data science is fast developing, 
whereas mechanisms of many processes in yield produc-
tion are currently still under exploration. Parallel, serial and 
modular structures are three useful structures for combining 
PBMs and ML. Knowledge-based data processing is recom-
mended when transferring PBM output into ML input, or 
vise versa. We expect that the three structures for combining 
PBMs and ML demonstrated in this paper will boost the ap-
plication of such a hybrid modelling approach in agricultural 
science.
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