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Abstract
Greenhouse gas emissions from livestock have been at the centre of a worldwide discussion. To achieve 
tangible results in mitigation strategies, all tools in the available toolset need to be used. One tool is the rumen 
microbiome, which are partly under the host genetics’ control, and could help explain variation in methane 
emissions from ruminants. Data on methane emissions and rumen fluid samples were collected from 179 
dairy cows from Dutch commercial herds. Genotypes from 70 cows were used to estimate heritability for 
methane intensity. Our goal was to assess the power of our pipeline, for subsequent application to a bigger 
dataset, by evaluating the value of adding microbial information to the analysis. Microbial estimates were 
highly confounded with the effect of farm. Our preliminary results show that our workflow is appropriate 
and that we will be able to estimate microbiability and heritability when our full dataset becomes available.

Introduction
The Dutch government has agreed on a set of guidelines, named the National Climate Agreement, with the 
goal to decrease by 2030 greenhouse gases emissions (GHG) by 49% from the 1990 levels. Five different 
sectors have been targeted, among them agriculture, where a reduction of 3.5 Mton CO2eq is expected to 
be achieved. One source of GHG from agriculture is methane emissions from ruminants, which release 
methane into the atmosphere as a by-product of their digestion. A community of microorganisms produce, 
amongst other things, CO2 and H2 in the rumen while digesting the feed, which in turn are converted to 
methane and eructed by cattle (Janssen and Kirs, 2008).

Genetic selection is an important tool for breeders, as it brings cumulative and permanent progress for a 
given trait of interest (Wall et al., 2010). Methane emissions from dairy cattle are known to be partly under 
genetic control (Difford et al., 2020; Zetouni et al., 2018), which means selecting for cows that emit less 
methane is possible, and could therefore be used as a tool to help GHG mitigation in livestock. Another 
feature that seems to be partly under host control is the vast population of microbes, i.e. the microbiome, 
found in the rumen (Malmuthuge and Guan, 2017; Roehe et al., 2016). Variation in the relative composition 
of the microbiome, termed microbiability, has been shown to explain 13% of the variation in methane 
emissions from dairy cattle (Difford et al., 2018). Therefore, microbial information could be used to help 
shed some light in understanding the genetic factors behind methane variation in cattle. Our goal was 
to evaluate the power of our sampling strategy and subsequent pipeline in this preliminary dataset, by 
evaluating to which extent microbial information could explain the variation in methane intensity from 
dairy cows from Dutch commercial herds. This paper focuses on preliminary data collection as an indicator 
on how to optimize sampling of a larger dataset for the estimation of methane microbiability and heritability, 
and in evaluating and developing our chosen methodology. Our study is part of an ongoing project with 
the aim to collect methane phenotypes, genotypes and rumen fluid samples from 1000 Dutch dairy cows.

Materials & methods
Data collection. Methane phenotypes and rumen samples were collected from 179 Holstein Friesian 
dairy cows, from 17 commercial herds spread across the Netherlands. Methane emissions were measured 
non-invasively using the GreenFeed system (C-Lock Inc., Rapid City, SD) depending on farm. Methane 
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production per cow was expressed in g/day, which was used to estimate methane intensity (MI), defined here 
as the ratio between methane production and fat and protein corrected milk (FPCM). Genomic information 
from 70 cows was incorporated into the model to estimate heritability of MI. Cows were genotyped with 
the Eurogenomics 10K chip and imputation was routinely performed by CRV to 76,438 SNPs. The rumen 
fluid samples were collected on the last day of the seven-day methane measurement period using the oral 
stomach tube according to standard operating procedures developed at WUR (Muizelaar et al. 2020). The 
samples were immediately frozen on dry ice and subsequently stored in the freezer. Thereafter, microbial 
DNA was extracted, followed by library construction of the hypervariable region V4 (from the 16S rRNA 
gene). Sequencing was performed on an Illumina HiSeq platform at Genotypic Technology Pvt. Ltd. in 
Bangalore, India. Reads were pre-processed using QIIME2 suite v2020.8 and FAST QC v 0.11.9. The 
resulting Amplicon Sequence Variants (ASV) were identified using the SILVA v.138 classifier. Cows with 
less than 20 methane measurements during the measurement period were discarded due to unreliable 
methane results. The final dataset contained 48,478 ASVs for 179 samples and an average number of reads 
per sample of 431,476. The ASVs were rarefied to a uniform sampling depth of 81,771 reads, resulting in 
42,799 ASVs. Results from the sequencing of individual rumen fluid samples were used as the microbial 
phenotype of each cow, in order to estimate microbiability.

Variance components estimation and statistical models. In order to test the power of our sampling 
strategy and chosen methodology when assessing microbial variance in our preliminary dataset, we 
first estimated microbiability using only the microbial data on all 179 cows – not including genotypes. 
A microbial relationship matrix was built with the relative abundance of ASVs as described in Ross et al. 
(2013). The relative abundance (RAij) of ASVs is considered for the elements 𝑋𝑋𝑖𝑖𝑖𝑖 = log⁡(RA𝑖𝑖𝑖𝑖 − RA𝑗𝑗̅̅ ̅̅ ̅), where 
i is the rumen sample and j is the taxonomic unit. From that a metagenomic profile (X) is derived, with 
dimensions n × m (n is the number of rumen samples; m is the number of ASVs), which are then used to 
create the microbial relationship matrix, computed as M = XX’/m.

Microbiability was estimated by the following mixed model equation,

y = Xb + Zm + Uc + e� (1)

where y is a vector of the trait observations; X, Z, and U are incidence matrices associated with the vector 
of fixed effects b of parity (1 to 4+), grazing type (barn pasture or summer barn feeding), season the 
microbiome sample was taken (fall, spring, summer or winter), soil type (clay, peat or sand), and days in 
milk, the vector of ASV effects m ~ N(0, Mσ 2

m), the vector of random farm effects caused by a common 
environment c ~ N(0, Iσ2

c); and e ~ (0, Iσ2
e) is a vector of residuals. The terms σ2

m, σ2
c, σ2

e, is for the microbial, 
farm, and residual variances respectively, and I is an identity matrix. Following Difford et al. (2018), 
microbiability was estimated as the proportion of phenotypic variance associated with differences in the 
microbiome, calculated as 𝑚̂𝑚2 = 𝜎̂𝜎𝑚𝑚2 /(𝜎̂𝜎𝑚𝑚2 + 𝜎̂𝜎𝑐𝑐2 + 𝜎̂𝜎𝑒𝑒2). The proportion of variance caused by the common 
environment effect of farm was estimated as 𝑐̂𝑐2 = 𝜎̂𝜎𝑐𝑐2/(𝜎̂𝜎𝑚𝑚2 + 𝜎̂𝜎𝑐𝑐2 + 𝜎̂𝜎𝑒𝑒2).

For estimation of additive genetic variance for MI, a genomic relationship matrix was computed following 
the second version of the method proposed by VanRaden (2008) and based on the 70 genotypes available. 
The following mixed model was used,

y = Xb + Wg + Uc + e� (2)

where terms are the same as in (1), with the exception of W, which is an incidence matrix associated with 
the vector of genotype effects g ~ N(0, G σ2

g).
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In order to determine if microbial information could help refine the heritability for MI, a third model was 
evaluated, where both the genomic and microbial relationship matrices were fitted and farm was kept as 
common environmental effect, as follows,

y = Xb + Zm + Wg + Uc + e� (3)

where the terms are as described for (1) and (2). All variance components and model effects were estimated 
with ASReml 4.1 (Gilmour et al., 2015). Our main objective behind testing three different models was to 
investigate how well they would perform on our preliminary dataset. With that, we wanted to assess our the 
sampling strategy, what could be improved in our workflow, and what lessons we could learn for the 1000 
samples we aim to collect.

Due to the limited size of our dataset and the nature of our analysis, our expectation was that our estimates 
would present large standard errors.

Results
Estimates for MI heritability (h2), microbiability (m2) and common environmental effect of farm (c2) for the 
models tested are shown in Table 1. Microbiability based on microbial information from all 179 (analysis 
1a) was of 0.10±0.13 (m2 ± SE) and it was not significant. When we moved on to compute m2 using data 
from cows with genotypes (analysis 1b), the estimated value was zero. In analysis 1a, c

2 was fairly small, 
0.06±0.07 (c2 ± SE); however, once we limited the model to use only data from cows with genotypes, c2 
increased to 0.20±0.19, while m2 was zero. Heritability for MI, estimated based on 70 genotypes (analysis 2), 
was 0.06±0.37 (h2 ± SE) and it was not significant, while c2 was 0.19±0.19. When fitting both genomic and 
microbial relationship matrices (analysis 3), estimates for h2, m2 and c2 were the same as the ones obtained 
for analysis 1b and 2.

Discussion
There has been a plethora of literature over the past decade showing that there is a genetic component 
influencing methane production from cattle, regardless of the methane phenotype chosen (de Haas et al., 
2017). In this study, we looked at methane intensity. Heritability was low and not significant. High SE were 
expected due to the limited size of our preliminary dataset. Using methane data from a combined database, 
where methane was measured with different equipment but where GreenFeed data was present, Manzanilla-
Pech et al. (2021) obtained a heritability of 0.38 for methane intensity; therefore, we can speculate that our 
estimates will improve as our dataset grows, and the lessons we have learned by conducting this study will 
increase the chances of obtaining significant heritability estimates for MI.

In our study, m2 estimates were highly confounded with c2. We believe that due to the limited dataset, the 
models are not able to properly separate the variance explained by the differences in microbiome from 

Table 1. Heritability, microbiability and common environmental effect estimates for the different models1.

Analysis Group size h2 (SE) m2 (SE) c2 (SE)
1a 179 NE 0.10 (0.13) 0.06 (0.07)
1b 70 NE 0 (0.00) 0.20 (0.19)
2 70 0.06 (0.37) NE 0.20 (0.20)
3 70 0.06 (0.37) 0 (0.00) 0.20 (0.20)
1 h2 = heritability for methane intensity; m2 = microbiability for methane intensity; c2 = common environmental effect of farm; SE = standard error; 
NE = not estimable.
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the common environmental effect of farm. Data on the 70 cows with genotypes available came from eight 
different herds, and the number of cows per herd is not evenly distributed. When looking at m2 based on 
179 cows, the model more efficiently separated the microbial effect from the common environmental effect, 
indicating that data on more animals could help separating both effects.

With the experience of the confounding between farm and microbiome, we propose sampling on fewer 
farms and sampling as many cows as possible within a farm (here the number of cows per farm was smaller 
than the number of farms). Due to GreenFeed having a throughput limitation, we will need a method that 
allows for large scale phenotyping such as the sniffers, but that will mean compromising on the methane 
trait used. We were also limited by the ratio of cows that had both microbiome and genotype, therefore 
farms should be selected based on the proportion of animals in the herd already genotyped.

Conclusions
Even though more genotypes are needed in order to obtain significant h2 estimates for MI, our results have 
highlighted the importance of modifying our sampling strategy for the next step of our project. The focus 
will be on data collection from fewer farms, increasing the number of cows per farm, in order to minimize 
the effect of c2 on m2, therefore improving our estimates of microbial effects. With that, we hope to get a 
deeper look into how the microbiome can be useful in explaining the variance we observe in methane 
emissions from dairy cows.
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