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Figure 1. Hypothesized effect of percentage of remaining forest cover in the
landscape on the predictability of successional trajectories (continuous line)
and forest recovery rate (dashed line). We expected a relatively lower rate
of forest recovery but higher predictability of successional trajectories at
low forest cover (a), an intermediate to high rate of forest recovery and
highly variable and consequently less predictable successional trajectories
at intermediate forest cover (b) and a relatively high rate of recovery and
more predictable successional trajectories at high forest cover (c). Circles rep-
resent 10 km radius landscapes, with the remaining forest shown in green.
See [15] for further details. (Online version in colour.)
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Abandonment of agricultural lands promotes the global
expansion of secondary forests, which are critical for preser-
ving biodiversity and ecosystem functions and services.
Such roles largely depend, however, on two essential suc-
cessional attributes, trajectory and recovery rate, which
are expected to depend on landscape-scale forest cover in
nonlinear ways. Using a multi-scale approach and a large
vegetation dataset (843 plots, 3511 tree species) from 22 sec-
ondary forest chronosequences distributed across the
Neotropics, we show that successional trajectories of
woody plant species richness, stem density and basal area
are less predictable in landscapes (4 km radius) with inter-
mediate (40–60%) forest cover than in landscapes with high
(greater than 60%) forest cover. This supports theory
suggesting that high spatial and environmental heterogen-
eity in intermediately deforested landscapes can increase
the variation of key ecological factors for forest recovery
(e.g. seed dispersal and seedling recruitment), increasing
the uncertainty of successional trajectories. Regarding the
recovery rate, only species richness is positively related to
forest cover in relatively small (1 km radius) landscapes.
These findings highlight the importance of using a spatially
explicit landscape approach in restoration initiatives and
suggest that these initiatives can be more effective in
more forested landscapes, especially if implemented
across spatial extents of 1–4 km radius.

1. Introduction
Deforestation in the tropics is causing the loss of millions of
hectares of old-growth forests every year [1]. Yet, regenerat-
ing (secondary) tropical forests are expanding across
human-modified Neotropical landscapes [2,3]. As secondary
forests can contribute to biodiversity persistence and pro-
vision of ecosystem services in human-modified landscapes
[4–9], determining the factors affecting forest regeneration
following land abandonment has gained increasing interest
[10–14]. However, all potential contributions to ecosystem
services and biodiversity conservation from secondary forests
largely depend on two attributes of the successional process:
the forest recovery rate and how plant community attributes
change as forest regeneration proceeds (i.e. the forest
successional trajectory) [9,15].

Forest regeneration in human-modified landscapes can
proceed via alternative successional trajectories with
varying recovery rates that are affected by drivers operating
across multiple temporal and spatial scales [3,9,15]. Even
regenerating forests exposed to similar local environmental
conditions and disturbance histories can differ in recovery
rate and trajectory [16–18]. For instance, forest regeneration
can rapidly accumulate tree species and biomass; i.e. show
a high recovery rate [8,9,19,20], but can also be erratic or
even arrested, resulting in impoverished assemblages; i.e.
show a low recovery rate [21,22]. While such variability in
forest regeneration can be related to both local and landscape
drivers, most forest succession research has focused on local
variables [3,9,23], such as soil fertility, stand age and disturb-
ance regime [24,25]. Therefore, considerable uncertainty
remains about the influence of landscape drivers, such as
the amount of forest cover surrounding regeneration stands,
on successional trajectory and recovery rate [15]. Reducing
this uncertainty is valuable to improve urgently needed con-
servation and restoration actions in human-modified
landscapes [26].

To address the effect of landscape disturbance on forest
regeneration, Arroyo-Rodríguez et al. [15] proposed a theoreti-
cal model for assessing the uncertainty (or predictability) of
successional trajectories and forest recovery rate (figure 1).
Yet, to our knowledge, this model has not yet been tested
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Figure 2. (a) Geographic distribution of the 22 study landscapes. Each point indicates the location of the centroid of each studied chronosequence. (b) The spatial
extent (landscape size) that yields the strongest response of successional trajectory and recovery rate to changes in forest cover (i.e. scale of forest cover effect) was
evaluated by testing such responses in 10 concentric landscapes of 1–10 km radius (at 1 km intervals). (Online version in colour.)
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empirically. In particular, the model predicts that uncertainty
in successional trajectories is higher in landscapes with inter-
mediate disturbance levels (e.g. with 40% to 60% of
remaining forest cover) than in landscapes undergoing very
high or very low disturbance levels (figure 1). This prediction
is based on the fact that landscapes with intermediate disturb-
ance typically show high spatial heterogeneity both in terms of
landscape configuration (e.g. high variation in the number of
patches and total length of forest edges [27]) and landscape
composition (e.g. high variation in the number of land cover
types and management regimes [28,29]). Such heterogeneity
exposes regenerating stands to high spatial and temporal vari-
ation in key ecological factors affecting succession, including
environmental conditions, distance to seed sources, seed dis-
persal and seedling recruitment processes, as well as human
activities like hunting and extraction of firewood and non-
timber forest products [15]. Variation in these factors can
result in highly variable rates of change in plant abundance,
species richness and biomass, resulting in successional trajec-
tories that are less predictable than those in landscapes with
high or low disturbance levels (figure 1).

In landscapes undergoing high disturbance levels (i.e. with
low remaining forest cover; figure 1a), the model predicts consist-
ently low rates of forest recovery [15]. Yet predictability of
successional trajectories is expected to be relatively high
(figure 1a) because these landscapes are spatially more homo-
geneous, characterized by a low number of relatively small and
biologically impoverished forest patches embedded in a matrix
of agricultural lands. In these landscapes, factors such as topsoil
loss, scarcity of seed dispersers and dominance of grasses, lianas
and/or invasive ferns reduce seed sources and dispersal, and
limit seedling recruitment and establishment. Under such cir-
cumstances, secondary forests are predicted to be dominated
by a few disturbance-adapted species with wide regional distri-
butions [30]. By contrast, the presence of large contiguous
forest patches in less disturbed landscapes (i.e. with higher
remaining forest cover; figure 1c) enhances the regional species
pool [31], facilitates pollination and seed dispersal services, and
reduces negative edge effects [9,32–34]. In these relatively well-
preserved landscapes, vegetation attributes such as species rich-
ness and biomass are expected to recover relatively quickly and
more predictably as vegetation attributes converge towards those
of nearby old-growth forests [5].

Here we test this model using a large vegetation dataset
(843 plots, 51 033 stems, 3511 tree species) from 22 chronose-
quences distributed across five Neotropical countries
(figure 2a; electronic supplementary material, table S1). We
used extent of forest cover estimated during the same year
that secondary vegetation was inventoried as a proxy of land-
scape-scale disturbance [31,35]. We selected this landscape
variable because it is significantly related to other landscape
spatial factors, like forest fragmentation and inter-patch
isolation distance [36]. Within each chronosequence, we esti-
mated the predictability of successional trajectories based on
plant species richness, individual density and basal area. For
each chronosequence, we first fitted generalized additive
models (GAMs) to assess the association between each com-
munity attribute and forest stand age. We used the goodness-
of-fit of each model (R2

adj) as an indicator of the predictability
of successional trajectory. The rate of forest recovery within
each chronosequence was estimated as change rate in the pre-
dicted values of each vegetation attribute in a 5-year interval
(i.e. between 15 and 20 years of succession). We then ana-
lysed how predictability and forest recovery rate varied as a
function of the percentage of forest cover in the surrounding
landscape. As we do not know a priori the spatial extent at
which forest cover best-predict vegetation responses (i.e. the
so-called ‘scale of effect’ [37]), we used a multi-scale approach
(figure 2b). Such an approach is not only needed to obtain
more accurate and confident conclusions [37]; identifying
the landscape size that makes forest cover effects on predict-
ability and rate of forest recovery the strongest is critical to
identify the scale at which restoration initiatives may be
more effective [38].
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2. Material and methods
(a) Data compilation
We compiled 22 independent databases from studies of woody
plant species recovery across five Neotropical countries
(figure 2a; electronic supplementary material, table S1). Each
study included plots established in secondary forest stands of
different ages forming a chronosequence. Plots within each chron-
osequence have similar disturbance histories (i.e. agricultural and
farming disturbance) and climatic conditions. Plot size and the
inclusion criteria of plant diameter varied among studies (elec-
tronic supplementary material, table S1), but such differences
were controlled statistically (see below). Because the effect of
precipitation on all response variables was very weak and non-
significant (electronic supplementary material, appendix S1,
tables S2 and S3), we did not include this covariate in our
models. We used taxonomic species richness, species dominance,
density of individuals and total basal area per plot to evaluate the
successional trajectories and recovery rate of vegetation structure.

(b) Imagery selection and pre-processing
Following Crouzeilles & Curran [38], for each site we defined a
landscape of 10 km radius from the centroid of the set of plots
from each study (figure 2b). We choose this radius to standardize
landscape size and enable an adequate analysis of landscape-
level forest cover for the chronosequence stands in all databases.
We obtained Landsat ETM+ and Landsat 8 satellite imagery with
30 m spatial resolution in the multispectral bands from the
United States Geological Survey database (USGS, https://
glovis.usgs.gov/app). Images were selected based on the
location of the landscape of interest, the year of vegetation inven-
tories of each study and cloudiness. For databases containing
data collected in different years, we selected imagery correspond-
ing to the median year of the study and containing less than 10%
cloudiness. During pre-processing of images, we corrected for
cloud cover by creating both a cloud and a cloud shadow
mask using the Cloud Masking tool and fmask function in
QGIS 2.18.14 software, as recommended for Landsat TM/ETM
+/OLI/TIRS images [39]. For each image in a landscape, we con-
ducted panchromatic and spectral image fusion (i.e. pansharpend
compound) to improve spatial resolution in the Landsat image
using the Intensity Hue Saturation method [40]. Due to a failure
in the Scan Line Corrector of the Landsat ETM satellite sensor
since May 2003, some images have wedge-shaped gaps on each
side, resulting in the loss of ca 22% of information. To correct
this, we applied the Gapfill tool with the ENVI 4.7 program
[41] according to the filling technique developed by Scaramuzza
et al. [42]. This technique fills gaps in a Landsat image with data
from another image and applies a linear transformation to adjust
the corrected image based on the standard deviation and mean
values of each band of each scene [42].

(c) Image classification and estimation of percentage
forest cover

We carried out a supervised classification of images based on
training data and validation. We considered three categories of
land cover in the classification: native forest cover, agricultural
lands and other land covers (e.g. water and human settlements).
Following previous studies [43,44], forest cover included both
old-growth and late successional second-growth forests because
vegetation structure in the later forest type is quite similar to
old-growth forests [5,8]. First, we selected regions of interest
based on expert knowledge (i.e. polygons with land cover infor-
mation) of the raster layer as a reference to classify unknown
pixels by comparing the digital value of pixels with training
data [45]. To this end, we used the support vector machine
non-parametric method for nonlinear data. This method uses
the Kernel class of algorithm [46,47]. Overall satellite image
classification accuracy was relatively high (greater than 85%).
To reduce the salt and pepper effect, we applied post-classifi-
cation Majority/Minority analysis. Next, we used the classified
vectors to estimate the percentage forest cover within each
study landscape, using 10 differently sized buffers, ranging
from 1 to 10 km, at 1 km intervals (corresponding to landscapes
of 314.1 to 31 415.6 ha; figure 2b). We next calculated forest cover
for each buffer using the Dinamica EGO 4 program (http://csr.
ufmg.br/dinamica). All classified vectors were sent to the
authors of each database for revision and approval before
estimation of the percentage forest cover.
(d) Data analyses
To test the model described in figure 1, we evaluated three com-
munity attributes: species richness, density of individuals and
basal area. As species richness is highly dependent on the accu-
racy of plant inventories, we used the coverage estimator (Ĉn)
recommended by Chao & Jost [48] to assess the completeness
of each tree inventory using the entropart package [49] in R
v. 3.5.1 (R Core Team, 2018). This estimator calculates the pro-
portion of the total number of individuals in an assemblage
that belong to the species represented in the sample. When a
given plot presented a relatively low coverage (less than 0.6),
we excluded this sample from the analyses to avoid any bias
associated with differences in completeness among samples
[48]. For the remaining samples, we calculated the extrapolated
values of species richness considering the maximum sample cov-
erage (Ĉn ¼ 1:0), following the protocols proposed by Chao &
Jost [48] available in the entropart package for R [49].

To assess the predictability of successional trajectories, we
related each community attribute (species richness, density of
individuals and basal area) to stand age for each chronosequence
(n = 22). Applying the gam function in the mgvc package for R
[50], we derived the adjusted R2 values from GAMs [51] to use
as a proxy for predictability of the successional trajectories.
Because R2

adj represents the fraction of the variance in the depen-
dent variable that is explained by the independent variable [51],
this parameter can be used as a proxy of the predictability of the
relationship between each vegetation attribute and stand age. We
then used GAMs to model the effect of landscape forest cover on
the predictability of successional trajectories of each vegetation
attribute. To control for differences in plot number among
studies, we included the sample size of each chronosequence
as an offset, using the offset function in the mgvc package for R
[50,51]. For all GAMs, we included predictor variables as
smooth terms to specify that linear predictors depend on
smooth functions of predictors [50,51].

To assess the recovery rate of successional trajectories, we
extracted the predicted value of the GAM relating each veg-
etation attribute and stand age for the fixed age of 15 and 20
years of succession. Then, we calculated the recovery rate
values through the equation: [(15 years predicted value – 20
years predicted value) / 5], where 5 corresponds to the age inter-
val in years. This measure was established under the assumption
that 5 years is a short interval of recovery and therefore presents
a lineal behaviour. We used the age interval from 15 to 20 years
as reference because this was included in the age range of most
chronosequences and is an ecologically relevant and representa-
tive age for secondary forests [5,8,52]. We calculated the
predicted values using the predict function in the car package
for R [53]. We then applied GAMs to evaluate the effect of
forest cover on the recovery rate of each community attribute.
To control the effects associated with differences in plot size
and minimum tree diameter among studies, we included these
predictors as covariables in the models. GAMs were fitted

https://glovis.usgs.gov/app
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http://csr.ufmg.br/dinamica
http://csr.ufmg.br/dinamica
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including predictor variables forest cover and plot size (log) as
smooth terms [50,51]. Minimum diameter was included as a cat-
egorical variable of three levels: less than or equal to 2.5 cm;
5 cm and greater than or equal to10 cm.

Given that the spatial extent (landscape size) that best fits the
response of predictability and recovery rate to landscape forest
cover (i.e. so-called ‘scale of effect’ [37]) is unknown, we ran
the models for each buffer size (1–10 km, at 1 km intervals).
We fitted a total of 30 models (3 community attributes × 10 buf-
fers) for each response variable (predictability or successional
recovery rate). We used the percentage of deviance explained
by the models to identify the buffer size at which landscape
forest cover best-predicted plant community responses. As recov-
ery rate analysis included covariables, we additionally compared
model adjustment using the Akaike’s information criterion cor-
rected for small samples (AICc) to confirm the best model scale.
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Figure 3. Effect of landscape forest cover on the predictability of successional
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3. Results
The predictability of all three community attributes was
strongly and significantly related to remaining landscape
forest cover (figure 3), with more than 70% of the explained
deviance by the models (electronic supplementary material,
table S4). In particular, the predictability of successional tra-
jectories for species richness, stem density and basal area
was lower in landscapes with intermediate (40–60%) forest
cover than in landscapes with low (less than 40%) and high
(greater than 80%) forest cover (figure 3). Although this find-
ing supports our theoretical model (figure 1), the poor
representation of landscapes with less than 40% of forest
cover suggests caution with interpretations, as the confidence
intervals of the predicted trends were notably high, revealing
a significant lack of statistical power within this range of
forest cover. Yet, the pattern was clear and accurate for all
studied successional trajectories in intermediate-to-high (i.e.
40–100%) forest cover landscapes (figure 3). Importantly,
the spatial scale at which forest cover best predicted uncer-
tainty in forest recovery was the same for all community
attributes (4 km landscape radius; electronic supplementary
material, table S4).

Landscape forest cover was a significant predictor of
species richness recovery rate (F = 7.41, p = 0.02; whole
model: R2

adj = 0.41, deviance explained = 0.57; figure 4), but a
poor predictor of stem density and basal area recovery rate
(electronic supplementary material, tables S5 and S6). In par-
ticular, we observed a proportional (linear) increase of species
recovery in landscapes with higher forest cover (figure 4),
with such an increase being stronger when measuring
forest cover across landscapes of 1 km radius (electronic
supplementary material, table S6).
trajectories in 22 Neotropical landscapes. We assessed three community attri-
butes: (a) species richness, (b) density of individuals and (c) basal area. Each
point represents the predictability of a community attribute in a particular
chronosequence, estimated as the coefficient of determination (R2adj). Percen-
tage forest cover was measured in 4 km radius landscapes. Smoothed curves
and 95% confidence intervals ( filled area) are indicated. Dashed lines indicate
the 50% threshold of forest cover. (Online version in colour.)
4. Discussion
This study provides the strongest evidence to date on the
critical role played by landscape-scale forest cover in regulat-
ing successional trajectories of secondary tropical forests.
Supporting our theoretical model (figure 1), the predictability
of successional trajectories was significantly lower in land-
scapes with intermediate forest cover (40–60%) than in
landscapes with low (less than 40%) or high (greater than
60%) forest cover, especially when considering the remaining
forest cover within a 4 km radius. Yet, the predicted negative
trends for the lower range (i.e. 0–40%) of forest cover should
be interpreted with care, as we only found two chronose-
quences in landscapes within this range, which decreased
the explanatory power of our model in landscapes with less
than 40% of forest cover. Regarding the effect of forest
cover on recovery rate, only the species richness was
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positively related to forest cover in relatively small (1 km
radius) landscapes. These novel findings have key ecological
and applied implications, especially in the context of tropical
forest restoration planning.

The high uncertainty (i.e. low predictability) of succes-
sional trajectories in landscapes with intermediate forest
cover can be related to the high spatial and environmental
heterogeneity in these landscapes. For example, at intermedi-
ate forest covers, landscapes usually show higher variability
in forest fragmentation indices, such as patch density and
total forest edge [27,36]. This heterogeneity in forest spatial
configuration is usually accompanied by higher compo-
sitional heterogeneity, such as a high number of land cover
types and management regimes that occupy a relatively
small extent of the landscape [29]. Regenerating stands in
more heterogeneous landscapes are thus likely exposed to a
relatively high spatial and temporal variation in fruit avail-
ability, seed dispersal, seed germination and seedling
recruitment and growth, which in turn can lead to highly
variable pathways in the recovery of species richness, stem
density and biomass [15]. This is particularly true for species
richness, which strongly depends on rare species whose dis-
tributions are difficult to predict because they are affected by
dispersal limitation, competition and stochastic factors
[54,55]. Therefore, the low predictability of tree species rich-
ness, stem density and basal area in tropical landscapes
with intermediate forest cover is probably related to the
high spatial heterogeneity and associated environmental
heterogeneity characterizing these landscapes.

Interestingly, forest cover shows stronger effects on
successional trajectories when assessed at the 4 km radius
extent. This suggests that ecological mechanisms (e.g. seed
source limitation and seed dispersal limitation) driving
secondary succession through changes in forest cover act
mainly at this spatial scale [56,57]. This is reasonable consid-
ering that up to 90% of tropical trees depend on vertebrate
animals (e.g. bats, birds and terrestrial mammals) to disperse
their seeds [58] and that most bats, birds and terrestrial mam-
mals’ responses to landscape structure are stronger when
assessed in 1–4 km radius landscapes [37,59]. Thus, move-
ments of seed dispersers and hence seed dispersal may
depend on forest cover at this scale. Supporting this possi-
bility, San-José et al. [34,57] demonstrate that the effect of
forest cover on seed dispersal in two rainforest regions from
southeastern Mexico is stronger when measuring forest
cover in landscapes of 1–1.3 km radius. As discussed below,
this suggests that restoration initiatives may be more effective
if implemented across spatial extents of 1–4 km radius.

In agreement with this idea, we also found that forest cover
in 1 km radius landscapes drives the recovery rate of species rich-
ness. Rozendaal et al. [8] and Pérez-Cárdenas et al. [14] also found
that secondary forests across the Neotropics recover particularly
fast in species richness, especially in more forested landscapes.
As proposed by the ‘habitat amount hypothesis’ (sensu [31]),
this could be at least partially explained by the sample area
effect; i.e. more forested landscapes can hold a higher number
of individuals and species than more deforested ones, which
can, in turn, increase the colonization rate of new species to the
regenerating stands [60,61]. In fact, the species richness of
animal- and wind-dispersed seeds in the seed rain is known to
be positively associated with the remaining forest cover at this
scale (1 km radius) [34]. Therefore, there is evidence to suggest
that most of the seeds (and species) colonizing regenerating
stands might come from the available forest cover at this
scale—an interesting avenue for future research.

The recovery rate of stem density and basal area was
weakly related to forest cover. This is not totally unexpected;
other studies have demonstrated that plant establishment and
growth rates in secondary forests do not depend on forest
cover but on other landscape and local factors. For example,
Pérez-Cárdenas et al. [14] found that the recovery rate of
aboveground biomass decreased principally with increasing
pasture cover in the surrounding landscape, likely because
this land cover is associated with disturbance risks (e.g. fire
incidence and plant damage by cattle [62]). The recovery of
stem density and biomass also depends on species’ resprout-
ing ability and other local factors such as land-use intensity,
soil fertility, seed bank, invasive species, weeds, pathogens
and herbivores [16,63–65], among others [3,66]. Thus, forest
cover appears to play a major role in determining propagule
availability and thus the recovery rate of species richness, but
disturbance regimes at the stand level are likely more impor-
tant for stem density and plant biomass, independently of
forest cover [67].

Importantly, albeit our models fitted the data reasonably
well, the limited number of chronosequences in landscapes
with less than 40% forest cover suggests caution with interpret-
ations for the lower range of forest cover. The lack of research
on secondary succession in highly degraded tropical landscapes
has been noted in previous studies [5,68] and highlights the
urgent need to fill this gap to attain a better understanding of
the effect of landscape-scale disturbance on successional trajec-
tories [69]. Yet the fact that most patterns encompassing
intermediate to high forest cover were almost identical
(figure 3) gives strong support to the hypothesis that vegetation
attributes such as species richness, stem density and biomass
recover in a more predictable manner (i.e. all these attributes
increased with stand age; electronic supplementary material,
figures S1–S3) in more forested landscapes.
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5. Applied implications
Overall, our findings support previous theoretical [15] and
empirical studies [8,14] on the critical role played by landscape
forest cover in regulating successional trajectories. The applied
implications of these findings are highly valuable, especially
in the context of forest restoration. The simplest andmost prag-
matic implication is that restoration initiatives should use a
spatially explicit landscape approach and consider the remain-
ing forest cover in the surrounding landscape. Our findings
also suggest that the ‘surrounding landscape’ specifically
refers to spatial extents of 1–4 km radius. This is consistent
with previous studies demonstrating the importance of
forest cover in driving the success and uncertainty of restor-
ation initiatives [70–72]. In fact, Crouzeilles & Curran [38]
also found an increasing uncertainty in restoration success
when forest cover falls below about 50%. This does not
imply that intermediately deforested and environmentally
more complex landscapes have a lower conservation value.
There is strong evidence worldwide that these are optimal
landscape scenarios for biodiversity conservation and the
delivery of goods and services to humans [35,73,74]. Our find-
ings rather suggest that restoration initiatives aimed at
achieving faster recovery of richness and higher predictability
of successional trajectories are likely more effective in more
forested landscapes. Therefore, to increase the effectiveness
of restoration initiatives in landscapes with an intermediate
degree of disturbance, we encourage further empirical studies
in these landscapes of the effects of local- and landscape-scale
factors on secondary succession.
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