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Gene gain facilitated endosymbiotic 
evolution of Chlamydiae

Jennah E. Dharamshi    1,5, Stephan Köstlbacher    2,3,4,5, Max E. Schön    1, 
Astrid Collingro    2, Thijs J. G. Ettema    1,4  & Matthias Horn    2 

Chlamydiae is a bacterial phylum composed of obligate animal and 
protist endosymbionts. However, other members of the Planctomycetes–
Verrucomicrobia–Chlamydiae superphylum are primarily free living. 
How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely 
unresolved. Here we reconstructed Planctomycetes–Verrucomicrobia–
Chlamydiae species relationships and modelled superphylum genome 
evolution. Gene content reconstruction from 11,996 gene families suggests 
a motile and facultatively anaerobic last common Chlamydiae ancestor 
that had already gained characteristic endosymbiont genes. Counter to 
expectations for genome streamlining in strict endosymbionts, we detected 
substantial gene gain within Chlamydiae. We found that divergence in 
energy metabolism and aerobiosis observed in extant lineages emerged 
later during chlamydial evolution. In particular, metabolic and aerobic 
genes characteristic of the more metabolically versatile protist-infecting 
chlamydiae were gained, such as respiratory chain complexes. Our results 
show that metabolic complexity can increase during endosymbiont 
evolution, adding an additional perspective for understanding symbiont 
evolutionary trajectories across the tree of life.

Symbioses are sustained interactions between different organisms that 
span the mutualism–parasitism spectrum1,2. Symbiotic associations 
between bacterial symbionts and both microbial (that is, protists) 
and multicellular eukaryotic hosts are ubiquitous3,4 and play essen-
tial roles, from ecosystem functioning to the evolution of biological 
complexity5–8. Driven by small population sizes, lack of recombina-
tion and host dependence, obligate intracellular symbionts—that is, 
endosymbionts—tend to undergo genome reduction and metabolic 
streamlining9–13. Studying the origins of ancient endosymbiotic groups 
is necessary to unravel symbiont evolutionary trajectories and under-
lying evolutionary processes. Host association has evolved multiple 
times in the Planctomycetes–Verrucomicrobia–Chlamydiae (PVC) 
superphylum, a group of bacteria consisting of the aforementioned 
phyla alongside Lentisphaerae, Kirimatiellaeota and other potential 

members14,15. PVC bacteria represent an ideal case for investigation of 
symbiont evolution because they are ubiquitous, have large variations 
in lifestyle and metabolism and include members of ecological, medical 
and industrial importance14,16,17. While most PVC bacteria are free living, 
all described Chlamydiae are obligate endosymbionts of eukaryotes16.

Chlamydiae are well known for the medically important human 
pathogen Chlamydia trachomatis and other Chlamydiaceae family 
members, which are animal pathogens with a high health burden and 
zoonotic potential18–20. Chlamydiae are also ubiquitous in environmen-
tal samples21,22 as endosymbionts of a wide range of both protist and 
animal hosts15,23,24. Nevertheless, apart from roles as pathogens (for 
example, Chlamydiaceae), chlamydial host effects are understudied 
despite host interactions spanning the mutualism–parasitism spec-
trum. Protist-infecting chlamydiae (for example, Parachlamydiaceae) 
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genomes (MAGs) sequenced from diverse environments and with 
unknown hosts, although several distinct groups were obtained from 
invertebrate animal metagenomes. The G2 subdivision includes the clas-
sical chlamydial animal pathogens, Chlamydiaceae and Clavichlamydia,  
alongside Sororchlamydiaceae42 in the previously established 
Chlamydiales order43. Other G2 families (Parachlamydiaceae,  
Criblamydiaceae, Waddliaceae and orphan lineages) comprise the 
here-defined order Amoebachlamydiales, which primarily infect protists.

The chlamydial endosymbiotic lifestyle is ancestral
To reconstruct PVC genome evolution we used the gene-tree-aware 
amalgamated likelihood estimation (ALE) approach44 (Supplemen-
tary Figs. 7–10 and Supplementary Data 7–9). Protein-coding genes 
from PVC genomes were clustered into homologous gene families 
and phylogenies inferred for the 11,996 clusters with more than three 
sequences. Gene tree samples were then reconciled with the species 
tree to infer evolutionary events (speciations, originations, dupli-
cations, transfers and losses) and proteome size (that is, the sum of 
inferred gene copies corrected by gene extinction probability) across 
ancestral nodes (Extended Data Fig. 1). Genes inferred as present with 
high confidence were used to reconstruct ancestral gene content, and 
event frequencies to assess overall patterns in gene content evolution. 
Of note, we can reconstruct only those genes present in extant genomes 
and in the dataset. Thus, ancestral reconstructions are incomplete 
because we miss gene families that have gone extinct or were not sam-
pled. ALE compensates for this by taking into account estimated gene 
extinction rates and genome completeness for inferring gene copy 
numbers. Originations can derive from either de novo gene birth or 
horizontal gene transfer (HGT) from outside the PVC genome data-
set. For Chlamydiae originations, to differentiate between these we 
searched for homologues in protein databases. Where identified, phy-
logenetic trees were inferred to discern with which taxonomic groups 
chlamydial genes affiliated, indicating putative donor lineages of the 
horizontally transferred gene families.

The last common Chlamydiae ancestor (LCCA) was reconstructed 
with ~1,118 protein-coding genes (Figs. 2 and 3, Extended Data Fig. 2 
and Supplementary Data 9). Of these, 401 were inferred as gene gains, 
many associated with metabolism (n = 99) and obtained through HGT 
(Extended Data Figs. 3 and 4). Hallmark endosymbiont genomic fea-
tures for host interaction, energy parasitism and the chlamydial bipha-
sic lifecycle were gained before LCCA. These genes included a type III 
secretion system (T3SS) (for example, genes sctJ, sctT, sctS, sctV and 
sctW), the adhesin Ctad1 and major outer membrane protein (MOMP), 
two nucleotide transporters (NTTs), DsbB, glycogen biosynthesis and 
degradation (for example, glgC, glgP, malQ) and the transcriptional 
regulator early upstream ORF (EUO) (Fig. 2, Extended Data Figs. 2 and 
5 and Supplementary Data 9 and 10). The T3SS facilitates host cell entry 
through effector secretion45, and Ctad1 and MOMP are pathogenicity 
factors in Chlamydiaceae involved in host invasion19. In the RB stage, 
NTTs facilitate energy parasitism and metabolite scavenging by import-
ing ATP, nucleotides and NAD+ from the host cytosol28. In the EB stage, 
DNA is condensed by histone-like proteins (for example, HctA), and 
the cell envelope rigidified to protect against osmotic and physical 
stress through disulfide crosslinking of outer membrane proteins by 
DsbB46. HctA was not reconstructed in LCCA, but in all early chlamydial 
ancestors (Extended Data Fig. 5 and Supplementary Data 10). Glycogen 
is used as a carbon source by EBs and enhances extracellular survival47. 
EUO is a master regulator that represses T3SS, DNA condensation and 
cell surface modification genes before RB-to-EB conversion48,49, and is 
a putative chlamydial gene invention.

Many gene losses (31%, n = 362) were inferred between LCCA 
and the last common ancestor of Chlamydiae, Verrucomicrobia, 
Lentisphaerae and Kiritimatiellaeota (LVCCA) (Fig. 3), and were pre-
dominantly associated with metabolism (49%, Extended Data Fig. 3). 
Relative to LVCCA, de novo amino acid and nucleotide biosynthesis 

can act as mutualists that protect against host co-infection with 
Legionella and giant viruses25,26. Parachlamydiaceae have larger 
genomes and greater metabolic capacity than the animal-pathogenic 
Chlamydiaceae27,28. Despite contrasting genomic features, all described 
chlamydiae share a biphasic lifestyle with an intracellular replicative 
phase as reticulate bodies (RBs) and a nondividing extracellular phase 
as elementary bodies (EBs)19. Chlamydiae diverged from other PVC 
bacteria 1–2 billion years ago (Ga)29,30, and their endosymbiotic lifestyle 
is proposed to have evolved early29,31–33. It was also thought that the 
chlamydial ancestor resembled extant protist-infecting lineages and 
had greater coding potential and metabolic versatility while other 
chlamydial groups underwent genome reduction. However, because 
initial studies included only the minimal chlamydial genomic diversity 
available from cultured representatives, little is known about the evolu-
tion of endosymbiosis in Chlamydiae. Through culture-independent 
genomics, numerous chlamydial lineages with unknown hosts have 
now been retrieved from various environments34–39. These groups 
fundamentally changed our understanding of chlamydial physiol-
ogy by revealing genetic potential for motility37,38 and anaerobic 
metabolism39,40. However, all isolated chlamydiae are still obligate 
endosymbionts.

We leveraged the culture-independent expansion in PVC bac-
teria genomic diversity to investigate endosymbiont evolution 
exemplified by Chlamydiae. We performed in-depth phylogenomic 
analyses to reconstruct PVC bacteria evolutionary relationships and 
gene-tree-aware ancestral state reconstruction. We reconstructed key 
endosymbiont genomic features in the Chlamydiae ancestor, suggest-
ing an ancient capability to infect eukaryotic hosts. The Chlamydiae 
ancestor was inferred to have been a motile facultative anaerobe, 
indicating a lifestyle involving transitions between oxic and anoxic 
environments. Major shifts in chlamydial energy metabolism and 
oxygen tolerance were later mainly driven by gene gain. Counter to our 
expectations for genome streamlining during endosymbiont evolu-
tion, gene gain led to expanded metabolic potential in protist-infecting 
chlamydial groups.

Results
Establishment of a resolved Chlamydiae species phylogeny
To accurately resolve PVC bacteria species relationships we selected 
high-quality genomes of species (Chlamydiae) and genus (other 
PVC bacteria) representatives (Extended Data Fig. 1, Supplementary  
Fig. 1 and Supplementary Data 1 and 2). Maximum-likelihood (ML) and 
Bayesian species trees were inferred using 74 concatenated single-copy 
marker genes, using methods to account for compositional bias and 
long branch attraction (Fig. 1, Supplementary Figs. 2–5, Supplementary 
Data 3–5 and Supplementary Discussion 1). Chlamydiae monophyly was 
fully supported, and chlamydial families were consistently resolved 
and compatible with a 16S ribosomal RNA gene phylogeny (Fig. 1 and 
Supplementary Figs. 3–6). Two long-branching lineages consisting of 
four chlamydial genomes were removed due to unstable positions (Sup-
plementary Figs. 3 and 4 and Supplementary Discussion 1). In the final 
dataset, deep evolutionary relationships were consistently resolved 
in both Bayesian and ML analyses when compositional bias was taken 
into account (Fig. 1 and Supplementary Fig. 5). These final 180 PVC 
representatives included 91 chlamydial species sequenced from nine 
environments with genome size and GC content ranging from 1.05 to 
3.42 Mbp and 26.2 to 49.1%, respectively. With a robust species tree and 
comprehensive sampling, we here propose revision of chlamydial tax-
onomy (Fig. 1 and Supplementary Discussion 2). Consistent with recent 
work37,39–41, an early divergence of Chlamydiae into two major groups, 
Group 1 (G1) and Group 2 (G2), is well supported. We can further sub-
divide G1 into two putative orders: Simkaniales (families Simkaniaceae 
and Rhabdochlamydiaceae) and Anoxychlamydiales (Anoxychlamy-
diaceae, formerly Anoxychlamydiales37, and Chlamydiae Clade III). 
G1 members are primarily represented by metagenome-assembled 
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capabilities were strongly reduced in LCCA through loss of genes for 
histidine, arginine, tryptophan, methionine, valine, leucine, isoleucine,  
phenylalanine, threonine and purine (for example, purC, purD and 
purH) biosynthesis (Fig. 2, Extended Data Fig. 2 and Supplementary 
Data 9). However, a suite of amino acid and oligopeptide transport-
ers was already inferred as being present in LVCCA and maintained in 

LCCA, with both able to acquire amino acids from external sources. 
NAD and NADP biosynthesis genes were inferred in LCCA. Pathways 
for biosynthesis of other cofactors, such as ferredoxin and cobalamin, 
were inferred as lost and LCCA probably depended on their uptake. 
Several Chlamydiaceae virulence factors associated with host metabo-
lite degradation (for example, proteases and lipases) were inferred as 
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Fig. 1 | Robust species phylogeny of PVC bacteria. Concatenated (74 
marker genes) Bayesian phylogeny of 180 PVC bacteria with compositionally 
heterogeneous sites removed (8,151 amino acid sites). Circles indicate 
bipartition support from posterior probability (P) (CAT + GTR + Γ4 model), and 
nonparametric bootstraps (BP) (LG + C60 + F + Γ4-derived PMSF approximation). 
The tree is rooted by Planctomycetes. Reduced branch lengths are indicated by 
parallel lines, and substitutions per site by the scale bar. Genome type, evidence 

for host association and the environment from which the genome was obtained 
are indicated by coloured squares according to the legend. Genome size (Mbp 
in purple) and GC content (%GC in dark blue and %AT in light blue) are indicated 
by bars. Higher-level taxonomic classifications are indicated and chlamydial 
families outlined by coloured boxes. See also Supplementary Data 2 for 
genome characteristics and Supplementary Data 6 for the uncollapsed species 
phylogeny.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 8 | January 2023 | 40–54 43

Article https://doi.org/10.1038/s41564-022-01284-9

present already in LVCCA and retained throughout chlamydial evolu-
tion (Extended Data Fig. 5 and Supplementary Data 10). LVCCA also 
already had the potential to import glucose-6-phosphate with the trans-
porter UhpC, which is used to scavenge host glucose by chlamydiae 
and other endosymbionts50 (Fig. 2 and Supplementary Data 9). While 
peptidoglycan biosynthesis genes are absent in some Planctomycetes51, 
we reconstructed most key genes (for example, murACDEFGJ, mreB 
and mraY) in both LVCCA and LCCA (Fig. 2, Extended Data Fig. 2 and 
Supplementary Data 9 and 10).

Earlier hypotheses for Chlamydiae genome evolution were based 
only on gene presence patterns or included limited genomic diver-
sity32,33. Our results provide the previously missing support that LCCA 
already had the genetic toolkit for an endosymbiotic and biphasic 
lifestyle. Furthermore, we have shown that key genes were gained 
before LVCCA, and that LCCA also evolved through a reduction in 
pathways involved in de novo biosynthesis and hence a dependence 
on uptake of essential metabolites. Chlamydiae diverged from other 
PVC bacteria between 1 and 2 Ga, coinciding with estimates for the 
evolution of eukaryotes (1.2–2.1 Ga)29,30,32,33. Our reconstruction dem-
onstrates that LCCA was already an obligate endosymbiont, indicating 
a billion-year-old history of chlamydiae infecting eukaryotic hosts as 
they evolved.

A facultative anaerobic origin of Chlamydiae
Although most Chlamydiae are aerobes, groups with anaerobic metabo-
lism (for example, Anoxychlamydiaceae) were recently identified39,40. 
To unravel the evolutionary history of aerobiosis in Chlamydiae, we 
investigated metabolic genes reconstructed in LCCA and LVCCA. Core 
metabolic genes conserved in most extant chlamydiae28 were inferred 

alongside genes indicating a facultatively anaerobic lifestyle (Figs. 2 and 
4, Extended Data Figs. 5 and 6 and Supplementary Data 9 and 10). LCCA 
had the potential to use glycolysis to generate ATP with both glucose 
(glucokinase) and glucose-6-phosphate (UhpC). The resulting pyruvate 
could be converted to acetyl-CoA using pyruvate dehydrogenase or the 
oxygen-sensitive pyruvate:ferredoxin oxidoreductase (PFO) under oxic 
and anoxic conditions, respectively. Acetyl-CoA could then be directed 
into the tricarboxylic acid (TCA) cycle or fermented. The TCA cycle was 
reconstructed as missing citrate synthase and malate dehydrogenase 
in LCCA, but as complete in many early chlamydial ancestors (Extended 
Data Fig. 6 and Supplementary Data 10). LCCA could probably perform 
oxidative phosphorylation, because we inferred a complete respiratory 
electron transport chain (ETC) including sodium-transporting NADH 
dehydrogenase (Nqr; Complex I, CI), succinate dehydrogenase (Sdh; 
CII), terminal oxidases (CIV) cytochrome bd ubiquinol oxidase (CydA-B) 
and cytochrome c oxidase cbb3-type (CcoO/N), and sodium-driven ATP 
synthase (Ntp; CV) (Fig. 4a,b and Suplementary Data 9 and 10). These 
terminal oxidases have high oxygen affinity and could have been used 
to respire oxygen under micro-aerophilic conditions, or to provide 
oxidative stress protection for oxygen-sensitive enzymes like PFO52,53. 
The LCCA ETC was probably used to generate a sodium motive force 
(SMF), as demonstrated in C. trachomatis54. The same central metabo-
lism was reconstructed in LVCCA, except for succinate dehydrogenase 
(Extended Data Fig. 6). LVCCA could also oxidize pyruvate using the 
oxygen-sensitive pyruvate formate lyase (PFL), and couple pyruvate oxi-
dation to H2 production with the oxygen-sensitive [FeFe]-hydrogenase 
(HydA) (Fig. 2, Extended Data Fig. 2 and Supplementary Data 9). More 
extensive fermentative capabilities were also reconstructed in LVCCA, 
which could ferment pyruvate to acetate, acetoin and, potentially, 
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ethanol. An Rnf complex (sodium ion-translocating ferredoxin:NAD+ 
oxidoreductase), which is strictly linked to sodium energetics and 
strongly associated with anaerobes55, was also reconstructed as part 
of the LVCCA ETC. PFL, HydA, the Rnf complex and some fermentative 
capabilities were lost between LVCCA and LCCA.

Additional genes encoding proteins with central functions and 
varying oxygen tolerances were reconstructed in LCCA and LVCCA, 
and differentially retained across early chlamydial ancestors (Fig. 2, 
Extended Data Figs. 2 and 5 and Supplementary Data 9 and 10). Com-
plementary copies of ribonucleotide reductase (RNR), the key enzyme 
for ribonucleotide-to-deoxyribonucleotide interconversion, were 
reconstructed in LCCA. Under anoxic conditions LCCA and LVCCA 
could use a class III RNR, which is highly oxygen sensitive56, and under 
oxic conditions LCCA could use a class Ic RNR, which is oxygen depend-
ent57. Similarily, haem biosynthesis can occur through both anaero-
bic and aerobic routes. The anaerobic-route, oxygen-independent 
coproporphyrinogen III oxidase was reconstructed in LCCA and LVCCA 
and retained in all chlamydial family ancestors. The aerobic-route, 
oxygen-dependent protoporphyrinogen III oxidase was reconstructed 
in most early chlamydial ancestors, but not in LCCA and LVCCA. The 
oxygen-dependent superoxide dismutase and nitronate monooxyge-
nase, which detoxify oxygen radicals and oxidize alkyl nitronates, were 
also reconstructed in LCCA and LVCCA. Transport systems for both pri-
mary iron species under anoxic (Fe2+) and oxic (Fe3+) conditions58,59 were 
reconstructed in LVCCA but not in LCCA. LVCCA and LCCA were both 
probably motile, based on an inferred flagellar apparatus and an addi-
tional type IV pilus in LVCCA. Contrary to our expectations and previous 
hypotheses32,33, in LCCA we did not reconstruct the extensive aerobic 
and energy metabolism found in modern Amoebachlamydiales.

LCCA and LVCCA were reconstructed as facultative anaerobes 
that encoded oxygen-sensitive and -dependent metabolic genes 

and pathways associated with both anaerobic and aerobic lifestyles. 
LVCCA would have lived 2 Ga, soon after the great oxidation event 
(2.1–2.4 Ga)30, when environments with transient oxygen and oxic 
microclines would have been common. Extant facultative anaerobes 
in analogous environments (for example, tidal zones, sediments and 
animal tissues) regulate aerobic and anaerobic gene expression with 
oxygen exposure60. LVCCA may have used motility to transit oxic 
microclines and adjusted metabolism accordingly, and potentially 
had a biphasic lifestyle based on oxic–anoxic transitions rather than 
host invasion as in extant chlamydiae. The eukaryotic intracellular 
environment can provide a refuge from oxygen, and strict anaer-
obes can survive and divide within amoeba vacuoles when exposed 
to high oxygen61. A possible scenario that drove the evolution of 
chlamydial endosymbiosis was a coinciding increase in oxygen and 
the emergence of a niche suited to a facultative anaerobe within early 
eukaryotic hosts. Thus, Chlamydiae evolution may have been facili-
tated by both endosymbiosis-related gene gains and a facultatively 
anaerobic ancestor.

Gene gain facilitated oxygen tolerance and respiratory chain 
expansion in Chlamydiae
Chlamydiae later diversified into two major groups, G1 and G2, diver-
gent in oxygen tolerance. Genes reconstructed in the last common 
ancestors of G1 (LG1CA) and G2 (LG2CA) and their descendents are 
indicative of lifestages in anoxic and oxic environments, respectively. 
The arginine deiminase pathway, known as anaerobic substrate-level 
phosphorylation, was reconstructed in LG1CA (Extended Data Fig. 6  
and Supplementary Data 9 and 10). Similarly, the iron transporter 
FeoAB for the primary species under anoxic conditions (Fe2+) and 
the hydrogen-producing and oxygen-sensitive HydA were recon-
structed in Anoxychlamydiales and Anoxychlamydiaceae ancestors, 
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respectively (Extended Data Fig. 5). Oxygen-utilizing enzymes, such 
as cytochrome bd ubiquinol oxidase, were also lost before the  
Anoxychlamydiaceae ancestor (Fig. 4a,b and Supplementary Data 9 
and 10). In contrast, the oxygen-sensitive PFO was lost before LG2CA 
(Extended Data Fig. 6). Unexpected in G2 was the gain of an exten-
sive suite of aerobiosis-associated pathways and oxygen-dependent 
enzymes between the last common ancestors of Amoebachlamydiales 
(LAMCA) and Criblamydiaceae, Waddliaceae and Parachlamydiaceae 
(LCWPCA), which indicates adaptation to higher-oxygen environments 
during early Amoebachlamydiales evolution (Extended Data Fig. 5 and 
Supplementary Data 10). These included genes encoding coproporphy-
rinogen III oxidase for aerobic-route haem biosynthesis, iron complex 
transporters (for example, siderophores) for the primary species under 
oxic conditions (Fe3+), catalase and superoxide dismutases for oxidative 
stress response, a bacterial globin for nitric oxide detoxification, and 
the glyoxylate shunt, a TCA cycle bypass almost exclusive to aerobes62. 
Overall, early Amoebachlamydiales ancestors were probably better 

adapted to oxic environments, suggesting oxygen tolerance as a driving 
force in chlamydial evolution.

Amoebachlamydiales also expanded energy metabolism by gain-
ing complexes for generation of a proton motive force (PMF) alongside 
the ancestral SMF. PMF has a larger redox gap than SMF and can result 
in greater ATP generation63. We reconstructed several PMF-associated 
complexes in LCWPCA, including a proton-transporting NADH 
dehydrogenase (NuoA-N; CI), cytochrome bc complex (PetBD; CIII), 
cytochrome o ubiquinol oxidase (CyoA-D) and proton-driven F-type 
ATP synthase (AtpA-H; CV) (Fig. 4a,b). In phylogenetic trees of NuoA-H 
subunits, chlamydial sequences consistently branch with members 
of the Terrabacteria superphylum (NuoG; Fig. 4c and Supplementary 
Data 6), supporting gain before LCWPCA. Such physiologically coupled 
proteins from multisubunit complexes are often gained as a func-
tional unit64. PetBD was reconstructed in LG2CA and retained in most 
descendants, but lost in Chlamydiaceae (Fig. 4a,b). The evolutionary 
history of CyoA-D in Chlamydiae is unclear. It was reconstructed in 
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Simkaniales (LSICA) and LAMCA order ancestors, but also in Chlamy-
diae Clade III and Sororchlamydiaceae family ancestors (Fig. 4a,b). 
CyoA-D gene trees show an affiliation with Candidate Phyla Radiation 
(CPR) bacteria members and suggest at least one HGT event (CyoA;  
Fig. 4d and Supplementary Data 6). CyoA-D has lower oxygen affinity 
and is associated with higher oxygen levels than other terminal oxidases 
in Chlamydiae65. Haem O synthase (CyoE), which generates the CyoA-D 
haem O cluster, was also reconstructed in LCWPCA and the Chlamydiae 
Clade III ancestor but not in other early ancestors (Extended Data  
Fig. 5). In phylogenetic trees of AtpA-H subunits, chlamydial sequences 
affiliate with Candidatus Zixibacteria and the complex was probably 
gained before LCWPCA in a single HGT event (AtpD; Fig. 4e and Sup-
plementary Data 6). Thus, an extended ETC with mosaic origins was 
gained before LCWPCA through additive HGT of several complexes 
from different bacterial groups (Fig. 4). The more extensive metabolic 
capabilities in protist-infecting Amoebachlamydiales compared with 
animal pathogen Chlamydiaceae had previously been noted27,28,66. 
However, it had been presumed that differences were a result of gene 
loss in Chlamydiaceae and other lineages, with LCCA having had the 
more flexible and branched ETC33,36. Our analyses instead indicate that 
the extended Amoebachlamydiales ETC was gained after divergence 
from LCCA.

Gene content expansion as a mode of evolution in 
endosymbionts
Amoebachlamydiales aerobiosis-associated gene expansion was 
accompanied by additional metabolic gene gains (Extended Data  
Fig. 3), in line with the extended metabolic capabilities and larger gene 

repertoires of extant members relative to other chlamydiae27,28,66. Our 
results provide evidence that these key genes were not present in LCCA 
as expected, but were instead gained later through HGT leading to the 
characteristic Amoebachlamydiales metabolic complexity. Although 
we cannot accurately reconstruct the evolution of all genes, such as 
those gone extinct or rapidly evolving, it is possible to investigate gen-
eral patterns in relative reconstructed proteome sizes. Our results indi-
cate a shift towards larger proteome sizes between LAMCA and LCWPCA 
relative to other early chlamydial ancestors (Fig. 5a). The upward trend 
in reconstructed Amoebachlamydiales proteome sizes was corrobo-
rated using a gene presence/absence method (Supplementary Fig. 12). 
However, proteome sizes of extant taxa and in-family ancestors were 
consistent only when using the gene-tree-aware method (Fig. 5b and 
Supplementary Fig. 12b). Proteome size was reconstructed as having 
expanded from 1,691 in LAMCA to 2,560 in LCWPCA, nearly double 
that inferred for LG2CA (n = 1,408) and indicating genome expansion 
in Amoebachlamydiales. In contrast, the reconstructed proteome size 
of the Chlamydiaceae ancestor (n = 1,092) suggests genome reduction. 
In other early chlamydial ancestors, reconstructed proteome sizes are 
consistent with genome maintenance (Fig. 5).

Despite a conserved endosymbiotic lifestyle, divergent patterns in 
genome evolution were found across Chlamydiae. Genome reduction in 
obligate endosymbionts is associated with vertical transmission and a 
strict host range. The resulting small intracellular population sizes and 
genetic isolation lead to gene loss through genetic drift, the accumula-
tion of slightly deleterious mutations and a lack of recombination9–12. 
We observed genome reduction leading to the pathogenic Chlamy-
diaceae, which are typically horizontally transmitted but have strict 
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animal hosts. Genome maintenance in obligate endosymbionts is asso-
ciated with horizontal transmission and a wider host range. For exam-
ple, marine bivalve endosymbionts maintain intermediate genome 
sizes due to horizontal transmission and recombination67. Protists have 
been referred to as ‘melting pots’ of evolution, because their endosym-
bionts tend to undergo less genome reduction due to HGT with host 
prey and co-infecting endosymbionts68–70. In most chlamydial lineages 
we observe patterns consistent with genome maintenance, although 
we lack information about host ranges and transmission. Genome 
reduction and maintenance are in line with previous work on the effects 
of transmission mode and host variability on endosymbiont genome 
evolution71,72. While genome expansion has been shown in facultative 
symbionts with free-living lifestages73, it has not previously been shown 
in obligate endosymbionts. We observed extensive gene gain as having 
led to the larger proteome sizes and increased metabolic complexity 
characteristic of extant protist-infecting Amoebachlamydiales. Our 
findings challenge existing paradigms by providing evidence that 
obligate endosymbionts can counter genome reduction processes 
and undergo genome expansion. Given that Chlamydiae is an ancient 
endosymbiotic phylum, we suggest that endosymbiont genomic and 
metabolic complexity can increase over long evolutionary time scales.

Gene exchange is common among chlamydiae
In our analysis, 70% of PVC gene families were found to have evolved 
vertically, closely mirroring previous reconstructions of bacterial evolu-
tion74. The remaining 30% represent horizontal gene transmission from 
within (that is, transfers) or outside the PVC dataset (that is, HGT-derived 
originations). HGT is known to occur in both horizontally and vertically 
transmitted endosymbionts (for example, Wolbachia), although it 
is more prevalent in the former67,71,75–79. Nevertheless, obligate endo-
symbionts are expected to be limited in HGT relative to free-living 
bacteria9. A large number of gene originations were reconstructed in 
Chlamydiae (n = 1,458), many of which were probably HGTs from diverse 
bacterial groups (Extended Data Fig. 4 and Supplementary Data 11). 
For example, chlamydial sequences affiliate with bacterial groups for 
94% of LCCA HGT-derived originations. For many gene originations, 
chlamydial sequences affiliate with taxonomic groups known for host 
association, such as Proteobacteria, Bacteroides and CPR bacteria80. 
This pattern is suggestive of HGT facilitated by co-occurring symbionts 
or phagocytosed prey bacteria, which is common in protists68–70,81. We 
further examined putative HGTs within the PVC dataset (that is, transfer 
events) and approximated gene transfer rates between ancestors. In 
Chlamydiae we found lower, but not statistically significant (P = 0.068), 
transfer rates than in other PVC bacteria (Extended Data Fig. 7). Between 
chlamydial families, Parachlamydiaceae and Rhabdochlamydiaceae 
had significantly higher transfer rates than Chlamydiaceae (P = 4.8 
× 10−3 and 8.5 × 10−3) and Anoxychlamydiaceae (P = 7.1 × 10−3 and 1.1 × 
10−3). Overall, gene exchange rates in some chlamydial groups do not 
differ from free-living PVC bacteria.

Interchlamydial HGT was visualized by testing for statistically 
over-represented gene transfers between chlamydial nodes where 
donor and acceptor lineages could be assigned (n = 5,937, P ≤0.05). The 
resulting network reveals gene transfer highways indicating probable 
shared environmental niches, such as shared hosts (Extended Data  
Fig. 7). Genome sequence divergence is a major barrier to HGT82. 
Despite this, 59% (n = 3,493, P ≤0.05) of significant transfers occured 
between members of different chlamydial families. Elevated HGT fre-
quency between more distantly related chlamydiae could be explained 
by ecological overlap in host or environment82,83. Chlamydiaceae, 
Anoxychlamydiaceae and Neochlamydia were under-represented in the 
network and have isolated transfer highways. These groups have con-
vergently lost central metabolic pathways, including TCA cycle and ETC 
components (Fig. 4, Extended Data Figs. 5 and 6 and Supplementary 
Data 10), suggesting adaptation to specialized environments. Exten-
sive gene transfer highways between Amoebachlamydiales members 

also support divergent genome evolution in this group (Extended 
Data Fig. 7). Chlamydial gene exchange could be facilitated by the 
presence of ancestral plasmids, which encode conjugative elements 
in some lineages including several Parachlamydiaceae41. While HGT is 
well recognized in endosymbiotic bacteria67,71,75–79, our study provides 
a systematic view on the pervasiveness of HGT and the role of inters-
ymbiont transfers in endosymbiont genome evolution.

Conclusions
In our study we present a comprehensive view of evolution in the 
Chlamydiae phylum. We found that the Chlamydiae ancestor was 
already adapted to an endosymbiotic lifestyle and probably infected 
eukaryotic hosts. We also found that Chlamydiae did not evolve 
from a metabolically versatile aerobe as expected but rather from 
a facultative anaerobe. Energy metabolism and oxygen tolerance 
gene gain later shaped diversification within the phylum. Counter to 
expectations for obligate endosymbionts, our results show that the 
protist-infecting Amoebachlamydiales underwent genome expan-
sion and only later gained their characteristic aerobic and metabolic 
versatility. Together, our results lay a foundation for further investiga-
tion of the complex, and perhaps varied, evolutionary trajectories of 
bacterial endosymbionts.

Methods
See Extended Data Fig. 1 for an overview of key steps for the reconstruc-
tion of gene content evolution in PVC bacteria.

Selection of representative genomes
A representative dataset of PVC bacteria genomes was selected using 
genome quality to obtain species-level Chlamydiae representatives 
and genus-level representatives of other PVC bacteria from the genome 
taxonomy database (GTDB) and the National Center for Biotechnol-
ogy Information (NCBI). GTDB is continually updated as genomes are 
released on NCBI and thus naming structures are nonstationary84. Here 
Chlamydiae were initially classified as a phylum, but in the version used 
were classified as a class of Verrucomicrobiota (that is, Chlamydiia). All 
genomes from GTDB v.86 (2018 database) classified as Planctomyce-
tota and Verrucomicrobiota were selected (n = 1,183). Non-chlamydial 
PVC genomes (n = 773; Supplementary Data 1) with completeness ≥90% 
and contamination ≤2%, based on GTDB metadata, were downloaded 
from NCBI (n = 182; 3 April 2019). For Chlamydiae, genomes from GTDB 
class ‘c__Chlamydiia’ were downloaded from NCBI (n = 410; 3 April 
2019) and supplemented with recently acquired MAGs and isolate 
genomes (n = 216) for a total of 626 chlamydial genomes. We used 
miComplete85 v.1.1.1 to estimate the quality of chlamydiae genomes 
using a specific marker gene set37 and selected those with complete-
ness ≥0.9 and redundancy ≤1.02 for downstream analysis (n = 460; 
Supplementary Data 1).

To reduce dataset redundancy, all genomes were dereplicated 
with dRep86 v.1.4.3 using previously proposed cutoffs for strain-level 
delineation87—that is, an average nucleotide identity of 96.5% and 
genome alignment fraction of at least 60%, resulting in 224 genomes 
(Supplementary Fig. 1 and Supplementary Data 1). Non-chlamydial 
PVC genomes were further dereplicated by comparing genome qual-
ity scores (GQS) per GTDB genus level (Supplementary Data 1). GQS 
was calculated as described in ref. 88—that is, GQS = completeness 
(%) – 5 × contamination (%). The highest GQS-scoring genome per 
genus was selected as a representative and, when two genomes had an 
equal score one was manually selected (Supplementary Fig. 1). The final 
dataset included 184 PVC genomes with 95 species-level Chlamydiae 
representatives and 89 genus-level non-Chlamydiae PVC representa-
tives (47 Planctomycetes, 34 Verrucomicrobia, 5 Lentisphaerae and 
3 Kiritimatiellaeota) (Supplementary Fig. 1 and Supplementary Data 
2). Genome characteristics were calculated using miComplete85 v.1.1.1  
(Fig. 1 and Supplementary Data 2). Putative uncharacterized PVC phyla 
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were not included, such as Candidatus Omnitrophica16 due to its con-
flicting position in some large-scale species trees of Bacteria15,88.

Phylogenomic analyses
PVC species relationships were inferred using phylogenomic datasets 
of concatenated single-copy marker genes (Supplementary Fig. 2 and 
Supplementary Data 3) for the initial 184 selected taxa (Supplementary 
Fig. 3 and Supplementary Data 2). Additional species phylogenies 
were inferred after removal of genomes with unresolved phylogenetic 
positions, resulting in datasets with 183 taxa (removal of Chlamydiae 
bacterium 1070360-7; Supplementary Fig. 4) and 180 taxa (further 
removal of the 3 Parilichlamydiaceae genomes; Supplementary Fig. 
5). ML and Bayesian phylogenies were inferred with and without the 
removal of compositionally heterogeneous sites for all three datasets 
(184, 183 and 180 taxa) as outlined below (Supplementary Data 4–6). 
Species phylogenies were rooted with Planctomycetes based on its 
phylogenetic position in recent large-scale phylogenomic analyses of 
bacterial species relationships88–90. The 180-taxa dataset was selected 
for further analyses and the converged Bayesian species phylogeny 
(consensus of chains 1 and 3), with compositionally heterogeneous 
sites removed, was used for ancestral state reconstruction (Fig. 1 and 
Supplementary Discussion 1).

Identification of single-copy marker genes. Candidate single-copy 
marker genes were identified using nonsupervised orthologous groups 
(NOGs) from eggNOG91 v.4.5.1. Protein-coding gene sequences from 
all PVC bacteria genomes were mapped to NOGs at the last universal 
common ancestor level (that is, root-level ‘-d NOG’) using emapper92 
v.1.0.1. Resulting NOGs where 95% of taxa were found in a single copy 
were identified as candidate markers for further investigation (n = 116; 
Supplementary Data 3).

Sequences from each gene family NOG were aligned using MAFFT 
L-INS-i93 v.7.427 and manually inspected, with poorly aligned and short 
sequences removed. Alignments were trimmed using BMGE94 v.1.12 
(entropy score cutoff or ‘-h’ of 0.6). IQ-TREE95 v.1.6.11 was used to infer 
phylogenetic trees, with model selection by ModelFinder96 from empir-
ical profile mixture models97 combined with the LG exchangeability 
matrix98 (that is, LG + C10 to LG + C60), and with 1,000 ultrafast boot-
straps (ufBP)99. Resulting trees (available in repository) were manually 
examined for patterns indicative of vertical inheritance and sufficient 
phylogenetic signal, and markers were removed that did not generally 
resolve PVC phyla (Supplementary Data 3). Sequences were removed 
that could represent HGT events, distant paralogues or contamination 
(Supplementary Data 3). Where multiple sequences per taxon were 
present, if they overlapped both were removed (duplicates) and, if they 
were partial and nonoverlapping, the longer sequence was retained 
(Supplementary Data 3). A second round of sequence alignment and 
tree inference was performed as above, with further markers removed 
resulting in 79 marker genes (Supplementary Data 3).

Discordance filtering100 was then performed to remove markers 
with the most anomalous phylogenetic signal relative to the majority 
(that is, the most discordant trees). NOGs (all of which were clusters of 
orthologous groups, that is, COGs) were ranked by discordance score 
and the top-scoring fraction was removed, leaving 74 single-copy 
marker genes for phylogenomic analyses (Supplementary Fig. 2). 
Amino acid sequences for each selected marker gene were realigned 
and trimmed, as above, after removal of taxa with unresolved phylo-
genetic positions (that is, datasets with 183 and 180 taxa). Trimmed 
amino acid alignments were concatenated into a supermatrix for each 
of the three datasets.

Phylogenomic inferences. Heterogenous site removal was performed 
using χ2-trimming101, with the most compositionally heterogeneous 
sites removed from each concatenated alignment in incremental 
steps of 1% of alignment sites. Site removal continued until no taxa 

significantly heterogeneous in their amino acid composition remained 
(based on the χ2 test score statistic; significance P ≤0.05; Supplemen-
tary Figs. 3–5 and Supplementary Data 4).

Using IQ-TREE95 v.1.6.10 with model selection96, ML phylogenies 
were inferred for the initial unrefined alignment, for alignments in 
10% increments of total sites removed based on χ2-trimming (up to 
50%; Supplementary Data 4), and for the alignment with no signifi-
cantly heterogeneous taxa (fully refined alignment). ML trees were 
then reconstructed using the posterior mean site frequency (PMSF) 
approximation of the LG + C60 + F + Γ4 model (selected in all initial 
trees) with 100 nonparametric bootstraps. Transfer bootstrap expec-
tation102 bipartition support was also inferred for the initial unrefined 
alignment and for the fully refined alignment using IQ-TREE103 v.2.0.

Bayesian phylogenies were reconstructed for these two align-
ments for all three taxa datasets. In each case, four independent Markov 
chain Monte Carlo chains were run using PhyloBayes-MPI v.1.7b104 
with the CAT + GTR + Γ4 model97,105, for at least 10,000 iterations. 
CAT, a site-heterogeneous model, performs more robustly against 
long-branch attraction artefacts106. If at least 10,000 iterations had 
been run but no chains had begun to converge (maximum difference 
<1), all chains were stopped. The number of generations, burn-in and 
any chain convergence (maximum difference <0.3) can be found in 
Supplementary Figs. 3–5 alongside a consensus tree of all four chains 
with posterior probability (P) indicating branch support. Posterior 
predictive checks were also performed with PhyloBayes-MPI v.1.7b104, 
with configurations sampled every ten generations after burn-in. The 
resulting range of z-scores for maximum heterogeneity and diversity 
across chains can be found in Supplementary Figs. 3–5. See Supplemen-
tary Data 6 for all uncollapsed species phylogenies and Supplemen-
tary Data 5 for a summary of the number of taxa, alignment lengths, 
inference methods, bootstrap supports and model of evolution for  
each phylogeny.

16S rRNA gene species phylogeny
Near-full-length 16S rRNA gene sequences from chlamydiae (n = 233) 
and other PVC members (n = 205) were downloaded from SILVA107 v.138 
SSU Ref NR 99, 79 near-full-length chlamydial 16S rRNA gene sequences 
(97% identity operational taxonomic unit representatives) retrieved 
from Schulz et al.22 and 142 sequences from our reference genome 
dataset. Sequences (n = 659) were clustered at 90% sequence identity 
to reduce redundancy using USEARCH108 v.11.0.667 with ‘-cluster_small-
mem’. The resulting family-level sequence representatives (n = 177) 
were aligned with SINA109 and the alignment trimmed with trimAl110 
v.1.4.1 ‘-gappyout’ (1,533 aligned positions). Bayesian tree samples with 
four Markov chain Monte Carlo chains in parallel (n = 100,000 each) 
were inferred under the CAT + GTR + Γ4 model97,105 in PhyloBayes v.4.1c111 
(Supplementary Fig. 6). Convergence was assumed once maximum 
difference dropped below 0.3 and effective sample sizes for continu-
ous parameters were >100 (according to the commands 'bpcomp' and 
'tracecomp' in PhyloBayes, respectively) after burn-in (n = 25,000).

Generation of gene families and trees
NOG clustering. PVC gene sequences from the 180-taxa dataset 
(n = 445,591) were mapped against eggNOG91 v.4.5.1 using emapper92 
v.1.0.1 at root-level ‘-d NOG’. Of these, 326,083 (73%) gene sequences 
were assigned to 17,935 NOGs (Supplementary Fig. 7).

De novo clustering. For the remaining 119,508 gene sequences in 
the 180-taxa dataset with no homologue in eggNOG v.4.5.1, we per-
formed pairwise sequence alignment in an all-against-all fashion with 
DIAMOND112 v.0.9.21 using the parameter ‘–more-sensitive’. Subse-
quently, de novo clustering with SiLiX113 v.1.2.9 was performed with 
default overlap of 80% and identity thresholds ranging from 5 to 
40% in 5% increments (Supplementary Fig. 7). To select an appro-
priate identity threshold we (1) inspected the number of singleton 
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clusters per threshold and (2) assigned TIGRFAM114 v.15.0 domains with  
InterProScan115 v.5.36-75.0 to gene sequences. Using the assigned TIGR-
FAMs, true positive rate (sensitivity) and true negative rate (specificity) 
were calculated for clusters, with different clusterings evaluated using 
the balanced accuracy measure ((specificity + sensitivity)/2) as sug-
gested113. A 25% identity cutoff performed best, yielding 10,548 de novo 
gene families with at least two members (75,218 singletons).

Gene family phylogenetic trees. We performed phylogenetic analysis 
on all gene families (both NOG and de novo clusters) with at least four 
members (n = 11,996). Sequences were aligned with MAFFT116 v.7.427 
using the strategy ‘–localpair’. Alignments were then trimmed using 
BMGE94 v.1.12 with default parameters and an entropy cutoff of 0.6. 
The permitted gap rate for alignment positions was increased to 0.5 for 
94 gene families with <50 informative aligned positions using the initial 
parameters. Gene trees were then inferred with IQ-TREE95 v.1.6.11 using 
the best-fit model identified by ModelFinder96, with ‘-m TESTNEW’, 
‘-madd LG + C10, LG + C20, LG + C30, LG + C40, LG + C50, LG + C60’ and 
1,000 improved ufBPs99 ‘-bnni’. Two specific gene families were later 
excluded (COG3119 and COG0457) due to poor alignment (probably 
caused by repeat regions) and subsequent difficulties inferring a ML 
tree, bootstraps from which are required for ALE. These gene families 
primarily occur in non-Chlamydiae PVC members and thus should 
not impact chlamydial ancestor proteome sizes (Supplementary  
Data 7). The remaining 91,705 gene families had three or fewer 
sequences. Thus, phylogenetic trees could not be inferred. However, 
because ALE requires gene families in a tree format we thus provided 
mock trees for those with two or three sequences.

Annotation of gene families. We assigned protein domain annota-
tions to gene families using InterProScan115 v.5.36-75.0 to identify the 
domains of Protein Families (Pfam)117, TIGRFAM114 and InterPro (IPR)118. 
We assigned Kyoto Encyclopedia of Genes and Genomes orthology 
and enzyme commision numbers using GhostKOALA119 and inferred 
eggNOG91 functional annotation as described above, and also at the 
bacterial level (‘-d BACT’).

Ancestral state reconstruction
To gain a more complete perspective on PVC genome evolution we used 
the complete genome dataset outlined above, which includes MAGs 
from uncultured lineages that would otherwise be missed. However, 
this was restricted to high-quality MAGs as outlined above (complete-
ness ≥90% and contamination ≤2%).

Gene-tree-unaware method, Count. For gene-tree-unaware ancestral 
gene content reconstruction, we ran Count120 v.10.04 with the gain–
loss–duplication model of evolution with Poisson distribution to model 
gene family size at the root. We used the same gain–loss and duplica-
tion–loss ratios for all lineages and inferred ancestral gene content 
using the Wagner maximum parsimony framework with default costs.

Gene-tree-aware method, ALE. ML tree bootstrap samples of gene 
families identified in the PVC dataset were reconciled with the species 
tree to reconstruct their gene family histories. We computed condi-
tional clade probabilities from bootstrap samples (ALEobserve) and 
sampled 100 reconciliations with the species tree (ALEml_undated) 
using ALE121 v.0.449, implemented as a computational pipeline (https://
github.com/maxemil/ALE-pipeline). We added singleton gene families 
as originations at the corresponding species node to the reconstruc-
tions. Furthermore, the estimated fraction of missing gene content 
per genome was provided to ALE because it uses this to correct for 
potentially missing data—that is, in the MAGs included. In addition, the 
specific implementation of ALE corrects ancestor gene copy number 
estimates using modelled gene extinction probability rates44, which 
has previously been employed to estimate ancestral proteome sizes122.

Comparison of ancestral state reconstruction methods and selec-
tion of ALE cutoff. ALE improves on earlier methods by direct estima-
tion of rates of gene duplication, transfer and loss from data, as well as 
incorporating the uncertainty in gene trees while exploring a larger 
gene tree space121. The accuracy of reconstructions can be negatively 
influenced by an inaccurate species tree and imbalanced taxon sam-
pling44,121. Here, these risks are minimized due to our extensive taxon 
sampling and species tree reconstruction efforts (Supplementary Figs. 
1–6 and Supplementary Data 1–6).

ALE reports relative frequencies for ancestral events and gene 
family copy frequencies that express their statistical support. This 
support accumulates the uncertainty introduced by alignment, tree 
reconstruction and reconciliation and should therefore not be set 
at a standard-level cutoff. We therefore aimed to identify a suitable 
threshold by investigating density distribution per inferred event 
type and transfer ratio per gene family (Supplementary Fig. 8), which 
indicated a cutoff of 0.3 for a candidate with high signal-to-noise ratio. 
The identified cutoff is in accordance with recent similar analyses that 
selected 0.3 as a frequency cutoff123,124. The transfer ratio represents the 
proportion of horizontal events over all events per gene tree. We further 
compared the tree-aware reconstructions generated by ALEml with the 
thresholds 0.3 (sensitive), 0.5 (specific) and 0.7 (very specific) using 
gene-content-only-aware Count reconstructions (Supplementary 
Fig. 9). The highest number of consensus gene families obtained with 
gene-tree-aware and -unaware methods was reached with a threshold 
of 0.3 (Supplementary Fig. 9a). Based on this analysis and event den-
sity distributions, we selected a frequency cutoff of 0.3 for inferring 
evolutionary events in our ancestral state reconstruction analysis 
(Supplementary Figs. 8 and 9). Gene families were thus inferred as 
present when reconstructing ancestor gene content if they had a copy 
frequency of at least 0.3. In addition, we used this cutoff to calculate 
confident-event frequencies. This meant that an event frequency ≥0.3 
and <1.3 was counted as 1, a frequency ≥1.3 and <2.3 was counted as 2 
and so on. These confident-event frequencies correspond to the gene 
content and events used in our ancestral reconstructions (Figs. 2 and 
4, Supplementary Figs. 10–12 and Extended Data Figs. 2–6). However, 
for estimation of genome content evolution dynamics and ancestral 
proteome size, raw reconciliation frequencies were used to avoid 
potential underestimation of transfers and losses (Figs. 3 and 5 and 
Extended Data Fig. 7).

Inference of transfer rates and gene transfer highways
We approximated the rate of intra-PVC HGT (that is, transfer rate) for 
nodes in the species tree by calculating the inferred gene transfers 
in our reconstructions divided by the number of substitutions in the 
species tree along the given branch. Based on shared gene families 
between two extant or ancestral genomes, we tested whether more HGT 
events occured between genomes than the median of transferred gene 
families within chlamydiae members. We used a one-sided binomial 
test (‘binom.test’) with ‘alternative = greater’ in the R base package125, 
and false discovery rate corrected P values for multiple testing with 
‘p.adjust’ to identify enriched transfer routes (‘gene transfer highways’) 
with P ≤0.05. Significant gene transfer highways were visualized with 
Cytoscape126 v.3.7.0.

Identification of non-PVC gene transfer donors
For genes inferred as originations within Chlamydiae, to distinguish 
bona fide HGTs from outside the PVC dataset and candidate de novo 
gene families, we performed a homology search against the NCBI 
nonredundant database. If no homologous protein sequences could 
be identified, gene families were referred to as de novo candidates, 
otherwise we inferred gene trees to identify affiliated taxonomic 
groups and thus potential donor lineages of the horizontally trans-
ferred gene (workflow: https://github.com/jennahd/HGT_trees). 
For each gene family a DIAMOND v.0.9.36.137 blastp112 search (with 
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‘max-target-seqs 2000’ and ‘more-sensitive’) was performed using 
all sequences against NCBI’s nonredundant database127 (v.5, accessed 
8 October 2020). Unique hits per gene family were compiled and 
clustered using CD-HIT128 v.4.8.1 at 80% sequence identity. NCBI’s 
taxonomy database129 was used for taxonomic classification. Protein 
sequences from each gene family and any database hits were aligned 
with MAFFT93 v.7.471 (‘–auto’) and trimmed with trimAl110 v.1.4.rev15 
(‘gappyout’). Sequences that covered <40% of the trimmed alignment 
were removed, followed by inference of an initial phylogenetic tree 
using FastTree130 2 v.2.1.11. Long-branching taxa were identified as 
having outlier terminal branch lengths (third quartile + 1.5× interquar-
tile range) relative to others in each tree, and were removed before 
reinferring trees as above.

These initial trees were prohibitively large for performing ML 
analyses and smaller subtrees were therefore selected using the 
above workflow. Here, clades comprising ≥25% chlamydiae with 
at least two chlamydial sequences were identified. To account for 
multiple HGT events, per gene family up to three clades with the 
largest number of chlamydial sequences were identified although, 
in the majority of cases, only one was found. Subtrees including 
these clades were selected by finding nodes at least three further 
up the tree hierarchy and that included at least 150 additional taxa 
and up to 400 additional taxa with bipartition support ≥0.7. Where 
a subtree fulfilling these conditions was identified, but with a larger 
number of taxa, the number of taxa was reduced to ≤400 by removal 
of more distant sequences (support ≥0.7, at least five sequences and 
at least six steps until a common ancestor with the chlamydial clade). 
Between 20 and 50 outgroup sequences were randomly selected 
from the clade with a position sister to the selected subtree (mov-
ing to the next subtending clade when there were <20 initial out-
group sequences). Selected subtrees were subsequently aligned 
and trimmed and an initial phylogenetic tree was inferred as above. 
ML trees were then inferred for each subtree using the trimmed 
alignment with IQ-TREE95 v.1.6.12 under the LG model of evolution98, 
with 1,000 ufBP. The clade sister to chlamydial sequences, and that 
subtending this clade (‘nested’) with ufBP ≥80, were identified. 
Taxonomic labels of sister and nested taxa were each compared at 
domain, superphylum and phylum levels. The lowest-level shared 
taxonomy at cutoffs of 75% (Extended Data Fig. 7), 90% and 100% 
of taxa was selected as the affiliated taxonomic group and hence 
putative gene donor (Supplementary Data 11). Originations were 
identified as de novo in the case where no non-chlamydial hits were 
found or when no sister group to chlamydial sequences was inferred.

Reconstruction of metabolic pathways
The evolutionary history of ETC components was investigated using 
the workflow described above. We reconstructed ancestral gene family 
repertoires from ALE by selecting all families predicted to be present at 
a given node with a relative frequency ≥0.3. We assessed the metabolic 
capabilities of ancestral genomes using either the Kyoto Encyclopedia 
of Genes and Genomes Module tool131 or MetaCyc pathways132.

Statistics and data visualization
Phylogenetic trees and protein domains were visualized using Figtree 
v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree), iTOL132 and the ETE3 
Toolkit133 v.3.1.2. Relative evolutionary divergence of chlamydiae 
ancestors in the species tree was calculated using PhyloRank84 v.0.1.10 
(https://github.com/dparks1134/PhyloRank). Plots were generated 
using Cytoscape126 v.3.7.0 and the R v.3.6.2 base package125 alongside 
the packages ggplot2 (ref. 134) v.3.3.3, ggtree135 v.2.5.0.991 and treeio136 
v.1.10.0.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genome data was obtained either from NCBI Genbank (https://
www.ncbi.nlm.nih.gov/nucleotide), the JGI portal (https://portal.
nersc.gov/GEM) or a zenodo repository (https://doi.org/10.5281/
zenodo.4318714). 16S rRNA gene data used in this study are available 
via the SILVA database (https://www.arb-silva.de). Genbank accessions 
and database links for genomes used in the ancestral state reconstruc-
tion are provided in Supplementary Data 2. Additional raw data files 
are hosted on the online repository figshare (https://doi.org/10.6084/
m9.figshare.17033417). These include sequences, alignments, trimmed 
alignments and trees for single-copy marker genes used for species 
phylogenies (both those selected and not selected), the 16S rRNA gene 
alignment and tree, as well as concatenated alignments and trees for 
all three species datasets (of 184, 183 and 180 taxa). Both NOG and 
de novo gene families used for the ancestral state reconstruction are 
also provided along with alignments, trimmed alignments, trees and 
bootstrap trees (ufboot) provided to ALE. The raw ALE results with 
all events are also included, along with gene annotations and events, 
and events for each gene family mapped to the species tree. Protein 
sequence datasets, alignments and trees inferred as part of the analy-
sis to determine HGT donors for chlamydiae gene originations are 
provided. In addition, PDFs of metabolic reconstructions of LVCCA, 
LG1CA and LG2CA can be found in the repository files.

Code availability
The Nextflow pipeline for running the ALE ancestral state reconstruc-
tion (https://github.com/maxemil/ALE-pipeline) and the Snakemake 
pipeline for identification of putative HGT donor groups (https://
github.com/jennahd/HGT_trees) are available on GitHub.
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Extended Data Fig. 1 | Workflow for ancestral state reconstruction of 
Chlamydiae. Dataset creation: PVC bacteria representatives from public 
repositories were selected with completeness ≥90% and redundancy ≤2%. 
Species and genus-level representatives were selected for Chlamydiae and non-
Chlamydiae PVC members, respectively. Gene tree inference: Protein sequences 
from the selected dataset were clustered into NOG gene families at the last 
universal common ancestor level. Unmapped protein sequences were de novo 
clustered. Protein sequences from each resulting gene family were aligned into 
a multiple sequence alignment (MSA) and ML single-gene trees inferred. Species 
tree inference: Gene families found in a single-copy in at least 95% of dataset 

taxa were selected as potential marker genes. ML single-gene trees were inferred 
and manually curated, with marker genes that well-resolved PVC phyla retained; 
further marker genes were removed through discordance filtering, while distant 
homologs, paralogs, and redundant sequences were removed for each retained 
marker gene. Individually aligned protein sequences from each marker gene 
were then concatenated into a supermatrix alignment that was used for both ML 
and Bayesian phylogenetic inference, with compositionally heterogeneous sites 
sequentially removed to reduce bias. Ancestor reconstruction: ancestral states 
were reconstructed using gene-tree species-tree reconciliation. See Methods 
for details.
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Extended Data Fig. 3 | Gain and loss events per functional category across 
Chlamydiae. Cladogram of Chlamydiae phylogenetic relationships showing 
gain (originations and transfers) and loss events of eggNOG NOG gene families 
with reconciliation frequencies ≥0.3 (see Methods) across COG categories. 
The barplots mapped onto each branch indicate the events that have occurred 
leading to the ancestral node to their right. The number of NOGs gained are 

indicated in the positive direction, and those lost in the negative direction, 
with the number corresponding to the bar height (see grey box scale). Bars are 
sorted and coloured according to the COG category. NOGs assigned to poorly 
characterized COG categories (R: general function prediction only, S: function 
unknown, X: Mobilome), multiple categories, and de novo gene families were 
excluded. See Data S7 for gene gains and losses inferred per functional category.
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Extended Data Fig. 4 | Taxonomic affiliation of inferred gene originations 
across Chlamydiae. Number of gene originations affiliated with different 
taxonomic groups across Chlamydiae ancestral nodes. For all chlamydial 
originations (that is, transfers from outside the PVC bacteria dataset used), gene 
trees were inferred with sequences from public databases and the affiliated 

taxonomic group identified (consensus of 75% of taxa in the sister clade), which 
represents the putative donor group. Chlamydiae taxonomy and ancestors are 
indicated to the right and left, respectively; see Data S7 for ancestor abbreviations 
and Figure S10 for node numbers mapped to chlamydial phylogeny. See Data S11 
for chlamydial originations and affiliated taxonomic groups.
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Extended Data Fig. 5 | Reconstructed presence of genes and pathways of interest across Chlamydiae ancestors. Gene family IDs (COG, NOG, or de novo identifier) 
are indicated for genes and complexes, and for pathways can be found in Data S10. See Data S10 for corresponding gene family annotations and inferred presence 
across all Chlamydiae ancestors.
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Extended Data Fig. 7 | Transfer rates in Chlamydiae and other PVC bacteria, 
and network of enriched transfer routes in Chlamydiae. a. Boxplot depicting 
median lower transfer rates (one-sided Wilcoxon signed rank test, P = 6.8 × 10−2) 
in Chlamydiae (n = 181, median 0.31, IQR 0.16–0.69) than in other PVC bacteria 
(n = 172, median 0.34, IQR 0.18–0.68). b. The average branch length per family 
without terminal leaves. c. Transfers per substitution in the species tree per 
chlamydial node for each family. To account for heterogeneous genome 
sampling in our dataset, we only evaluated transfer rates of chlamydial families 
with at least two ancestors reconstructed in our analysis, excluding terminal 
nodes. From left to right, n = (14, 18, 15, 10, 5, 7). Transfer rates are significantly 
higher in ancestors of the Parachlamydiaceae and Rhabdochlamydiaceae than 
in the Chlamydiaceae (P = 4.8 × 10−3 and 8.5 × 10−3) and in Anoxychlamydiaceae 
(P = 7.1 × 10−3 and 1.1 × 10−3), respectively. Asterisk and lines indicate families 

with P ≤0.05 based on a one-sided Wilcoxon signed rank test with Bonferroni 
correction. d. Barplot showing the number of significant transfer events 
(binomial test, significance P ≤0.05; see Methods) in gene highways within 
(purple) and between (orange) chlamydial families and e. corresponding 
networks depicting chlamydiae (nodes, colour-coded by family; families 
represented by only one genome are white, see Fig. 1) sharing significant gene 
highways (edges). Edges are coloured based on gene highways within and 
between families in purple and orange, respectively. Center lines in the box-and-
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the upper quartile and below the lower quartile. See also Figure S10 for events 
across all PVC nodes, and the repository for raw data.
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three species datasets (of 184, 183, and 180 taxa). Both NOG and de novo gene families used for the ancestral state reconstruction are also provided alongside 
alignments, trimmed alignments, trees, and bootstrap trees (ufboot) provided to ALE. The raw ALE results with all events are also included, alongside gene 
annotations together with events, and events for each gene family mapped to the species tree. Protein sequence datasets, alignments and trees inferred as part of 
the analysis to determine HGT donors for chlamydiae gene originations are provided. In addition, pdfs of metabolic reconstructions of LVCCA, LG1CA, and LG2CA 
can be found in the repository files. 
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Recruitment NA

Ethics oversight NA
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Study description Phylogenomic analyses of Chlamydiae and other Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum bacteria. Gene-
tree 
species tree reconciliation and ancestral reconstruction of the last common ancestors of PVC bacteria with a focus on Chlamydiae 
evolution. Analysis of the origin of gained gene content in the Chlamydiae phylum for key ancestors.

Research sample Available genomes of cultured and uncultured PVC bacteria with a focus on recently published Chlamydiae draft genomes.

Sampling strategy We selected genomes based on their phylogenetic affiliation with PVC bacteria. Representatives where then selected based on the 
highest genome quality score per taxonomic unit: approximately species for Chlamydiae, and genus (sensu GTDB) level for other PVC 
bacteria.

Data collection N/A, as primary data collection (i.e., DNA sequencing, genome assembly, and quality control) was performed by other parties 
(sequence contributors to JGI and NCBI). PVC genomes were downloaded based on their taxonomy from GTDB, additional 
chlamydiae from more recent studies were additionally downloaded from the JGI.

Timing and spatial scale Genomes were downloaded all at once on April 3rd, 2019.

Data exclusions We excluded Chlamydiae genomes with a miComplete specific marker gene set estimated completeness smaller than 0.9 and a 
redundancy larger than 1.02. Quality of other PVC genomes was based on GTDB provided CheckM quality scores, we excluded 
genomes with an estimated completeness smaller than 90% and a contamination larger than 2%. 
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Randomization N/A because randomization was not required for the purposes of this study, as we based all ancestral reconstructions on the 
complete set of highest quality available PVC genomes to infer ancestral state reconstruction.

Blinding N/A because blinding was not required for the purposes of this study, as the taxonomic and evolutionary context was of great 
importance for interpretation of the findings.

Did the study involve field work? Yes No
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