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Abstract: Over the last decade, the potential of nature-based solutions (NBS) has been recognized to
support climate change adaptation, by promoting sustainable urban planning. Nevertheless, a wider
uptake of such solutions in urban areas faces different challenges and barriers. A comprehensive
mapping of available NBS impact assessment methods could help to accelerate this process. There
is, however, a lack of comprehensive systematization of economic analysis. This research aims to
provide an overview of NBS impact evaluations by assessing how the scientific literature integrates
such economic analysis into urban planning adaptation. A systematic review approach has been
used to discuss the role of NBS in climate change adaptation. This review presents two main
stages. Firstly, it identifies the biophysical–economic assessment of NBS adaptation measures to
reduce urban flood extremes in coastal cities. Secondly, the NBS approaches were categorized based
on the biophysical benefits (in terms of flood-risk reduction) related to each specific solution and
the subsequent economic evaluation of such implementations. This research review revealed a
low-level gap of integration between climate change issues and NBS analysis (i.e., it is commonly
used as background condition). Most publications provide NBS biophysical impacts assessment,
without combining these results with economic evaluation of the flood damages to finally achieve
the avoided cost due to the implementation of such solutions. This work shows the growing interest
on further research to develop spatially integrated environmental–economic assessment of NBS
implementation, by highlighting the needs and opportunities of a trans-disciplinary approach to
support policy-making in the framework of urban climate change adaptation.

Keywords: climate change adaptation; nature-based solutions (NBS); coastal cities; spatial assessment
methods

1. Introduction

Climate change has been widely acknowledged as a global issue that results in even
larger impacts on the city level [1]. Although climate change effects are directly related to
temperature and sea-level rise, the increasing frequency and severity of urban floods are
also strictly associated with climate change processes [2]. An urban (or pluvial) flood refers
to the runoff exceedance in respect to the drainage capacity, during high-intensity and short-
duration precipitation events [3,4]. Consequently, the sensitivity of urban areas to runoff is
increasing because of the high level of impervious surfaces and the changes in precipitation
patterns [5,6]. Indeed, these impacts are directly related to microclimate and land-use
differences within each city, instead of differing only in their geographical locations and
climate conditions [7]. Land-use dominated by built-up areas strongly reduces water
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infiltration and causes excessive runoff [8]. This situation is likely to become more relevant
in the future, particularly in coastal cities where the simultaneous occurrence of pluvial
floods and storm surges, combined with high tides, exacerbates the level of risk [2,9,10].

Climate and flood-risk adaptation should be flexible and multifunctional because of
the uncertainty of climate impacts, especially considering local spatial variability within
the urban environment [7]. Consequently, urban design principles should be driven
by ecological ideas of non-linearity and heterogeneity [11]. Moreover, harmonizing the
increasingly urban development and the ecological balance of urban spaces is becoming
one of the biggest challenges for urban planning [12]. The European Commission (EC)
is addressing these challenges by emphasizing the potential of nature-based solutions
(NBS) as an urban climate change adaptation strategy, being multifunctional, as well as by
providing connectivity and multiple co-benefits [13,14]. NBS emerged as a new concept
built on older concepts, such as the “ecosystem-based approach”, and has been promoted
by the EC through financial support embedded in the Horizon 2020 agenda [15]. Following
the EC, NBS are intended to be “solutions that are inspired and supported by nature, which
are cost-effective, simultaneously provide environmental, social and economic benefits and
help build resilience. Such solutions bring diverse natural features and processes into cities
through locally adapted, and systemic interventions” [16].

To be effective, NBS require trans-sectoral and integrated planning into urban climate
change adaptation for their mainstreaming at the local level. Despite the potential of NBS
being increasingly recognized, comprehensive knowledge and consistent data about their
benefits are still missing [17]. In this view, specific assessments of NBS biophysical and
economic performance could give a significant contribution to overcoming some barriers
that are limiting wider implementation of NBS in cities. Such analysis can aid the urban-
planning practice by selecting, simulating, and evaluating NBS application, thus assessing
the related costs and benefits of flood adaptation [18]. Employing such an approach helps
to adopt site-specific performance-based solutions suitable for future urban strategies given
the climate change trend [19].

In literature NBS for flood-risk mitigation range from the building scale, such as green
roofs and facades, to the street and park scale, such as rain gardens and permeable paving.
Given their high ability for retrofitting to existing structures, the effectiveness of NBS
to reduce flood risk. in terms of peak flow, runoff, flood volume and flooded area. has
been addressed by a range of prior studies [3,20–23]. However, more quantitative results,
by integrating biophysical and economic (co-)benefits regarding the impacts of NBS, are
needed [18,24,25].

The aim of this study is, hence, to analyze how NBS biophysical performance and
economic impact evaluations are developed and integrated into urban planning adaptation.
By systematically reviewing the biophysical and economic assessment of such measures
to address flood extremes in coastal cities, this article discusses the role of NBS in climate
change adaptation planning.

The paper consists of five sections. Section 1 includes the introduction, while Section 2
presents the applied methodology to conduct the rapid systematic literature review. Section 3
shows the results by describing the different phases of the review process, until the in-
depth analysis on the focus areas of this article. Finally, a discussion on overlaps and gaps
identified by assessing focus themes has been conducted in Section 4, followed by the
conclusions in Section 5.

2. Systematic Literature Review: Methodology

A rapid literature review carried out systematically, to examine the recent literature
with consistency, which has been subjected to the peer-review process [26,27]. The con-
duction of rapid reviews, instead of full systematic ones, allows a literature review to be
undertaken in a shorter time and with limited financial funding, while being considered
robust [28,29]. The competences of the authors are strictly related to those needed to cover
the three focus areas (see Section 2.2) considered in this review. This literature review was
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conducted based on a research methodology consisting of two subsequent macrosections
(see Figure 1). The first stage (Section 2.1) includes the search phase and three-step proce-
dure to create the inventory of the studies, by using a standardized data-extraction sheet
(Excel). Subsequently, the selected database has been reviewed, deepening the focus areas.
Section 2.2 describes the method employed to collect the relevant concepts, answering this
review objective.
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2.1. Search Strategy and Inclusion Criteria

The initial phase of the review consisted of a literature search for relevant studies
published in English, up to December 2020. The literature search was finalized in July 2021.
In this case, the rapid systematic review has been limited to two electronic search databases.
Firstly, the search was carried out by using the online database in Scopus (www.scopus.com
(accessed on 16 March 2020)) through a combination of different search strings. The
search strategy includes the following combination of terms and their synonyms: “nature-
based solution*” together with “flood*”, “cit*”, and “adaptation*”. In order to conduct a
wider review on nature-based adaptation approaches to mitigate urban-flood issues, other
terminologies meeting the NBS concept have been identified. The definitions related to
urban stormwater management became more complex and diverse [30]. Therefore, four
additional terms overlapping the broad principles of NBS were selected for this search step:
sustainable urban drainage system (SuDS), green infrastructure (GI), sponge city (SC), and
blue-green city (BGC). The search strings and strategy are available on request to the authors.
Given the main focus on exploring NBS, which is a quite recent term, an additional search by
adopting the scientific database Web of Science (www.webofknowledge.com (accessed on
16 March 2020)) has been conducted [12,15]. This last search includes the same combination
of terms with NBS. After the exclusion of duplicates, 360 publications remained.

The first step procedure consists of scanning the titles and keywords. Studies focused
on the following aspects were excluded from further analysis because they were out of
scope (criterion 1—Figure 1):

- Governance and institutional aspects;
- Hydrological and engineering aspects;
- Different hazards from urban and coastal flood;
- Inland cities or rural areas.

This screening resulted in 157 studies for inclusion in the second step of the review
process. Abstracts were scanned using indicator analysis. Four indicator groups with a
set of related keywords were selected in order to have an overview of this review topic.
The second screening limited the publications to peer-reviewed articles and book chapters
(criterion 2—see Figure 1) and studies that contained at least one economic-related keyword
from the abstracts (criterion 3—Figure 1). After this step, 71 studies fulfilling all the
inclusion criteria remained, and full-text documents were downloaded to conduct the
in-depth evaluation. The final number of publications included for the third step of the
procedure is 68, because of the exclusion of studies that could not be accessed. Refer to
Appendix A for the full list of selected studies.

2.2. Review Focus Areas

To ensure consistency and controlled extracting data across all selected studies, the
publications were analysed using a standardized data-extraction sheet (Excel) inspired
by previous review articles [7,31]. The Excel sheet used to obtain the data is available
on request to the authors. The use of predefined evaluation criteria has been refined in
an iterative process, by considering four sections (Table 1): (i) background information,
(ii) climate risk information, (iii) economic information, and (iv) adaptation information.
For each publication, the whole content was considered in the review.

www.scopus.com
www.webofknowledge.com
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Table 1. Evaluation criteria used for the in-depth analysis.

Category Description Indicator

Background information
Temporal scale Time of analysis Reference year(s), NA

Spatial scale Scale of analysis Global, national, regional, local/city, district,
neighborhood

Geographical area Setting of conducted analysis Country—Region—City, NA

Study type Kind of methodology used Conceptual/empirical framework,
spatial assessment, modelling

Data used Type of information and data
employed for the analysis (Short explanation)

Data provided Kind of data provided by the study Qualitative, quantitative, spatial, and mixed data
(quantitative and qualitative)

Climate risk information

Climate hazard Climate and natural hazards
addressed by the studies Single, compound, and multiple hazards

Climate Change perspective How climate change issue has
been addressed by the studies Background, analytical, scenarios, NA

Economic information

Economic assessment Kind of approach employed in the analysis
Cost–benefit analysis, Life-cycle cost analysis (LCCA),
flood depth damage analysis, unit cost value analysis,
cost effectiveness analysis, NA

Currency Currency used for the analysis
Unit Unit used for the analysis
Adaptation information

Adaptation planning perspective How adaptation through NBS implementation is
integrated into urban planning (Short explanation)

NBS type Specific NBS to reduce flood-related effects (Most common measures to flood reduction)
NBS approach Kind of information provided on NBS Qualitative, quantitative, NA
Biophysical assessment Numeric value of biophysical flood reduction Runoff reduction values

The final database consists of a first part aimed at framing the studies in relation to a
contextualization in temporal and spatial terms. Information considered relevant to grasp
the background of this analysis of the study type, as well as the data used and provided
by the peer-reviewed publications, have been included. The information on the applied
methodology is useful to identify if and how the researchers implement NBS impacts
assessment. The collected information on the data used serves to provide knowledge
of in which ways the analysis has been conducted. Therefore, based on the information
provided, the studies were classified in qualitative, quantitative, mixed (both qualitative
and quantitative), or spatial analysis.

The second part of the database includes three focus areas to be addressed by this
review. The first focus area concerns the climate risk category, to understand the level
of integration in the literature in relation to the compound flood hazards in coastal cities.
Within this area, data on the climate change perspective have been extracted to identify
how this issue has been addressed by the researchers. This information was classified
in ‘background’, where climate change has been just mentioned as a context, ‘analytical’,
where climate change data were used in the analysis, and ‘scenarios’, where climate change
projections were included in the assessment analysis. The second focus area concerns the
economic category, by exploring how economic evaluation related to NBS implementation
has been addressed by the literature. This aspect includes economic assessments and the
currency and unit used by the studies. Finally, the third focus is related to the climate
adaptation challenge, namely, by comprehending how NBS implementation is integrated
into urban planning in practice. This category aims to identify the kind of biophysical
assessment employed by the studies, through the collection of information related to the
specific natural solutions implemented. This knowledge helps to classify the most-used
NBS, linked to their biophysical flood-mitigation values.

3. Results and Analysis

Data extraction from the three-step procedure covered both quantitative and some
qualitative aspects. Section 3.1 presents a quantitative discussion about the results, as
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comparative descriptive analysis. Section 3.2 shows an in-depth analysis of the results
in relation to the focus areas, by presenting, firstly, a background that frames the NBS
studies. The following sections represent an in-depth evaluation about the three emergent
themes this review analysis deals with: climate risk, the economic perspective, and the
economic perspective.

3.1. Statistical Overview

Given the relatively large number of publications, when combining different searches
from the online databases, a first general overview as a statistical descriptive analysis has
been conducted. This summary starts by showing the evolution over time of publications
on ecosystem-based adaptation concepts related to flood issues that resulted from the
first review step (N = 360). The bars show the number of publications per year, and
the dotted line represents the cumulative values of the studies until 2020. The number
of studies published on that topic have been rapidly increasing over the last couple of
decades (Figure 2)—especially as of 2016. About 90% of publications are from the period of
2013 to 2020.
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Looking at the distribution of publications over time, by nature-based adaptation
terminologies (Figure 3), SuDS is the first term used in the literature (since 2002). The
first two publications in 2002 concern more qualitative descriptions of SuDS, particularly
on the application of permeable pavements. NBS and SC resulted in quite new concepts
from 2015 and 2016, respectively. Publications on GI resulted in the largest number of
studies, with a significant rise from 2012 to 2020. The publications are from 138 journals
and 71 conference proceedings. Most of the studies (65%) are from three journals: Water
(24%), which started to publish on this topic from 2014, and Sustainability (21%) and Science
of the Total Environment (20%), which show first publications in 2016.
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The second review step highlighted that the GI concept has been extensively applied to
urban flood adaptation in peer-reviewed studies, as compared to the other generic nature-
based adaptation approaches (see Figure 4). The NBS concept is rapidly gaining interest
over time, especially by framing the studies as research articles (64%), followed by the
highest number of review articles (29%) among all the other generic nature-based concepts.
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However, the use of specific kinds of measures is not yet widely studied. By looking
at Figure 5, “Pond” is the most popular solution (16 studies), followed by “Wetland”
(15 studies) and “Green roof” (13 studies), even if relatively few studies examine the
application of such measures.
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3.2. Background: Framimg the Application of NBS

From a geographical perspective, about 8% concerns publications with a global scope.
Only one publication concerning a conceptual framework is independent of geographical
context. The other studies, which are all reviews, employ data from different geographic
areas. Most publications have applied case studies, as shown in Figure 6. The map illus-
trates the distribution of the NBS applications by showing the number of cases in relation
to the spatial scale for each continent. The local level in Figure 6 includes different larger
scales of analysis, such as city level, neighbourhood level, district level, and catchment
level. Around 40% of case studies cover European contexts, where only 3 applications
are at the national level, and 22 are at the local level. Among the applications at the local
level in Europe, only seven cases are at the city level. Moreover, most of those cases are
focused on flooding-related issues. The United Kingdom is the European country that
started earlier in the case-study application of natural-based approaches, in respect to other
countries. Indeed, the first application dates from 2013. For NBS applications in Asian
and American countries, the percentage of coverage is almost the same (26% and 25%,
respectively), while it is only 6% and 3%, respectively, in Oceanian and African countries.
In relation to applications at the local scale in American countries, only five cases deepen
the flooding-related issues, while the majority is focused on multiple hazards. There are
even less for Asian countries, specifically China, where only three case studies work on a
single hazard (flood).

For the study types, most of the publications cover two different kinds of methodolo-
gies (44%): review (15) and spatial assessment (15) (Figure 7). Among the review studies,
53% provide qualitative data and can be divided into two subgroups. The first group
gives information based on surveys [32,33], while the second group builds on the current
evidence of NBS applications for flooding challenges [14,34–36]. Around 27% of reviews
provide qualitative and quantitative data (mixed data) [37–39], while only 7% of reviews
present quantitative information about the unit cost estimates for flood adaptation [40], and
14% do not give any details (NA). The spatial assessment studies are quantitative (27%),
quantitative and spatial (47%), mixed (13%), or mixed and spatial (13%).
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A large portion of publications (40%) covers two other study types, namely concep-
tual/discussion (14) and modelling (13) studies (Figure 7). Most of the data and information
provided by conceptual/discussion typology are qualitative (64%). One paper presents
a comparative analysis between SUDS and SCP in the UK and China, respectively, to
identify the barriers and enablers for the adoption of GI, through 12 in-depth semi struc-
tured interviews with stakeholders [41]. Four publications describe case studies to test
conceptual frameworks or demonstrate how research project collaborations addressed
many biophysical and socio-political barriers for the NBS applications [42–45]. Data from
modelling studies are mostly quantitative (38%) and quantitative and spatial (30%), with
a few that are mixed (23%) and mixed and spatial (8%). Most modelling studies apply



Urban Sci. 2022, 6, 53 10 of 23

hydraulic models by estimating the NBS impacts without developing any economic assess-
ment [46–49]. Porse [50] uses risk-based modelling to assess cost-effective (cost–benefit
analysis) urban-floodplain-development decisions by providing qualitative and quantita-
tive data [50]. Schubert et al. [51] apply stormwater flow and quality modelling to assess
the GI impacts, by assuming fixed construction costs, which ignore the potential savings
resulting from the benefits of the measures’ implementation [51]. Alves et al. [52] develop a
monetary analysis of different co-benefits related to the implementation of green-blue-grey
infrastructure. This study provides spatial data from the 2D hydrodynamic models, to
assess the expected annual damage (EAD) for buildings, to finally obtain quantitative data
derived from the cost–benefit analysis of flood-risk mitigation measures, by comparing the
expected annual benefits and costs converted to the net present value [52].

Few papers (9%) develop empirical studies. Of the remaining five theoretical frame-
work papers (7%), different subjects have been covered. One study tests a conceptual model
to assess the groundwater table variation by providing both qualitative and quantitative
data on groundwater infiltration and storage capacity [53]. Two studies provide qualitative
data through the application of the analytical framework that conceptualizes ecosystem-
based adaptation in urban environments and the employment of a HAMIED framework
(Hydrological Assessment and Management of green Infrastructure to Enhance Decision-
making) to systematically identify and manage the aspects that stakeholders would like to
be assessed using specific models within the SuDS system [54,55]. The other two studies
provide quantitative data. One focuses on a new formula of resilience based on three
parts of system severity: social severity affected by urban flooding, environmental severity
caused by sewer overflow, and technological severity considering the safe operation of
downstream facilities [56]. The other article presents an evaluation framework that aims to
quantify the co-benefits of implemented NBS [57].

3.2.1. Emergent Theme: Climate Change Perspective into NBS Analysis

The first challenge identified concerns how climate change and which climatic risks
were addressed by NBS analysis. The level of integration of the climate change issue varies
across publications (Figure 8). Most of the studies (51%) show a low level of integration
related to the climate change concept into NBS analysis (‘background’ indicator). Of those
publications that only mentioned climate change as a background condition, 21 are focused
on a single hazard (flooding) (e.g., [58–61]), while the rest (14 studies) are focused on
multiple hazards (flooding, drought, coastal erosion, heat island effect, air quality, etc.)
(e.g., [14,34,55,62]). Those studies use the term climate change in at least one section
of the publication (e.g., the title, abstract, keywords, introduction, methods, results or
discussion/conclusion).

Among the publications that do not mention climate change (34%), most (17 studies)
analyse the flooding hazard (e.g., [63–65]), while the other six publications broadly mention
and focus on multiple hazards, by considering, especially, sea-level rise, air temperature,
and drought (e.g., [44,45]).

Only three studies show a medium level of integration of climate change issues (‘ana-
lytical’ indicator; 4%). A review paper focuses on flooding as a single hazard, by discussing
internal and external aspects that are influencing flash flood events. Climate change is
included as an external factor that induces heavy precipitation [66]. One paper focuses on
multiple hazards (flood and drought), while another study focuses on a compound hazard,
by considering river–fluvial flooding, high tides, and sea-level rise [67,68].

The seven studies that integrate climate change issues to a large extent consider climate
data to build different scenarios (‘scenario’ indicator; 10%). The major part of these studies
(five) tackle a single hazard (flooding), while one article analyses flooding and sea-level rise
as a compound hazard and one concerns multiple hazards (flood, drought, temperature,
and sea-level rise) [47,56,69–73].
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3.2.2. Emergent Theme: Economic Perspective into NBS Analysis

For the second challenge, only 19 publications (28%) report on economic research
approaches. Figure 9 shows the number of studies per each specific economic approach,
by showing the currency employed. About 10% of the studies develop a flood-damage
analysis. These studies use a flood-depth damage function to estimate the economic
damages—two studies use buildings and the other one works with income classes for
flood-costs calculation [59,64,73]. The currency is mentioned in just one of these studies,
which is GBP. Most of the publications (37%) develop cost analysis on NBS implemen-
tation to reduce flood risk. Three studies include construction and maintenance costs of
NBS in the analysis by using USD [74,75] and GBP as currencies [76]. The other part of
the studies include only the construction costs of the measures by using the currencies
USD [56,69], RMB [77], or AUD [51], respectively. About 26% employ cost–benefit analysis
(CBA) to conduct the economic calculation of NBS. One study is a review on the unit-cost
information of adaptation measures, by including the currency GBP and USD [40]. Two
publications use EUR as the currency [52,70], while one economic assessment conducted
in China is expressed in RMB [78]. Only one of those studies does not explicitly state
the currency [71]. Among the remaining 20% of studies, one focuses on life-cycle cost
analysis (LCCA), by including USD [79] m and one conducts a value-transfer methodology
to monetize the natural capital (NC) benefits by using GBP [80]. The other two studies,
which do not explicitly state the currency, show a historical comparison and a least-cost
path analysis [61,66].
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3.2.3. Emergent Theme: Adaptation Perspective into NBS Analysis

Finally, the third theme addressed in this research is related to the adaptation challenge,
essentially by highlighting the biophysical assessment employed by the studies through
the collection of the information related to the specific natural solutions implemented.
Only 31 publications address this theme, which helps to classify the most used NBS types
linked to their biophysical flood-mitigation values. Table 2 shows the number of times
that each of the most common NBS are employed in the literature, addressing the different
types of information (quantitative and/or qualitative) provided. Green roof and permeable
paving are the mostly studied solutions, for which quantitative evidence is available. For
example, most of the studies provide the numeric runoff-reduction values of flooding, as
water infiltration or retention capacity in terms of percentage, mm, or m3 [59,78,81,82]. One
study expresses the numeric flood-risk values related to the climate change mitigation
in terms of kg of CO2 reduction [83]. Green roof and permeable paving studies are also
the ones for which most qualitative evidence is available, followed by rain garden. The
kind of evidence presented refers to qualitative ranking expressed in terms of reduction
capacity (i.e., low–medium–good or including fixed values as 0–1), as developed by the
authors [63,76,84]. Green facade, green park, and green street are the less-studied solutions.
In general, only a few studies provide both qualitative and quantitative information [65,85].
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Table 2. Number of times that specific NBS address different types of information. Colours vary from
red (none or a few times) to green (several to most of the time).

Type of Information on NBS

No. of Times NBS is Studied Quantitative Qualitative Quantitative and
Qualitative NA

Green facade 2 1 0 1 0
Green park 3 0 2 1 0
Green street 3 0 1 2 0
Green roof 20 10 7 2 1

Infiltration basin 10 6 2 2 0
Permeable paving 19 10 7 2 0

Pond 10 3 5 1 1
Rain garden 11 4 6 1 0

Swale 11 4 5 1 1
Wetland 9 3 4 2 0

Note: -Dark red is associated to a low level of times in which NBS address different type pf information. Moving
to even more lighter red, orange, yellow and finally light green and dark green where NBS address several or
most of the time these different kind of information.

4. Discussion

What emerges from this literature review are research gaps for each of the deepened
focus areas and an overall lack of studies integrating the three themes together. The first
theme about climate hazard and the level of integration of climate change issues into
NBS analysis, essentially highlights the gaps in the two fields. One is related to gaps on
vulnerability and risk assessment, due to the compound effects of urban flooding and
storm surges. Generally, compound climate events are an integral part of almost all climate-
related risks and pose significant challenges to many risk-reduction measures [86]. Better
comprehension of compound events is crucial for improving risk assessment and defining
site-specific NBS to reduce the associated impacts [86,87]. Moreover, a small portion of the
literature works with climate change scenarios. The level of integration of climate change
data into analyses is weak, even though defining scenarios is a useful tool to visualize
potential futures and to address the related trade-offs [88].

For the second theme, the first issue that can be pointed out is related to the kind of
economic assessment employed. Some studies are unclear as to which currency has been
employed to address the economic evaluation. In addition, the reference year associated
to the analysis is specified only a few times. This shows the important role in economic
analysis of clarifying this information, thus helping to build useful and consistent data for
further implementation. Another issue is linked to the cost components or cost–benefit
analysis, which should be addressed. Uncertainties are associated with the NBS cost of
operation and maintenance, while NBS benefits are often not clarified and partial. Future
research should address these issues and expand the research by estimating both the cost
and benefits of flood adaptation measures.

Finally, some gaps should be addressed on the third focus area concerning the adapta-
tion theme. Urban planning is the process of developing and designing urban areas to meet
the needs of a community. Among the different disciplines—architecture, engineering,
economics, sociology, public health, finance, etc.—involved in planning, few of them have
been prioritized in the process of NBS promotion. Some studies highlighted the social
dimension by fostering stakeholder involvement and participatory planning to identify co-
benefits and barriers in the process of NBS integration into urban adaptation, e.g., [32,39,54].
However, most of them underlined the need to cover the economic and finance area of
planning. These focused on broadly proving multiple co-benefits versus different barri-
ers in NBS implementation, as compared to traditional solutions such as [45,56,72]. Few
studies highlighted the relevant role of evaluative tools (such as cost–benefit analysis)
to support the decision-making process in planning, as in [70,83]. The lack of studies in
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this field is probably related to the scarcity of biophysical studies that assess the multiple
impacts of NBS, which underpin such analyses. What emerges as one of the most important
barriers to increased implementation of NBS is related to finance, both in upfront and
maintenance costs, as in [41,89]. Thus, filling these gaps through long-term monitoring
and demonstration of impacts and benefits of NBS helps to overcome such barriers and
promote implementation of NBS. Additionally, specific vegetation information has not
been mentioned, even though it plays a crucial role when considering climate change. The
choice of specific NBS should be strictly related to the vegetation type to be effective. A
repository concerning the technical aspects (as dimensions) of each specific NBS is also
still missing.

Through this review, it is possible to infer that a large number of studies only partly
assess the biophysical and economic impacts of NBS scenarios’ implementation. Moreover,
most of the studies do not mention specific practices or procedures to systematically con-
duct biophysical–economic assessment on NBS scenarios’ implementation. Many attempts
at ecosystem services (ES) quantification and NBS biophysical benefit evaluation, for their
inclusion into the decision-making process, have been carried out [90]. Moreover, a great
number of NBS studies on flood vulnerability concerns engineering aspects (hydraulic mod-
elling assessment). However, it is argued that developing this kind of analysis as standalone
is not enough for mainstreaming wider implementation of NBS. Especially, under changing
climate conditions, it is urgent to focus on spatially integrated environmental–economic
assessments of NBS, by simulating climate change and adaptation scenarios.

Given the relevance of NBS in the execution of the United Nations (UN) Sustain-
able Development Goals (SDGs; https://sdgs.un.org/goals (accessed on 14 July 2022)),
in particular SDG 11 (sustainable cities and communities) and SDG 13 (climate action),
it becomes even more important to contribute to overcome barriers that hamper a wider
NBS implementation. An essential aspect derived by this review is related to how climate
adaptation through nature-based implementation is integrated into traditional urban plan-
ning. This is related to the disciplines involved in the planning and implementation of such
adaptation measures. Some studies focus on presenting and evaluating perceived barriers
to NBS implementation, which are compared a few times to the potential benefits, mainly
related to increasing urban ES, as in [29,42,60,61,81]. Another part of the publications shows
methodological frameworks and evaluative tools, by working with adaptation scenarios to
help local governments, as in [49,59,74,85]. One study highlighted the crucial role of CBA
as a relevant tool for decision-making for urban planning, by comparing different scenarios
of adaptation and future climate [70]. These aspects are essential strategies towards more
structural incorporation of NBS in urban planning. However, a widespread implementation
of NBS still remains limited by the lack of knowledge about how to embed urban ecological
science within urban-planning practices and policies [91]. For instance, the uncertainty and
lack of information on NBS’ long-term behaviour and effects, together with the difficulty of
quantitatively assessing their multidimensional impacts.

This rapid systematic review is not lacking shortcomings. Firstly, the number of
publications included come from two electronic databases (Scopus and Web of Science)
and may exclude some other important publications that are not stored in those databases.
Secondly, the data extracted are also limited by the areas that this study focuses on. Rather,
a reflection of the emergent themes has been carried out, even though the lack of climate,
biophysical, and economic data for some cases undermined the comparison between the
different studies.

5. Conclusions

Research interest and efforts to evaluate NBS impacts has been growing rapidly over
the last decade. So far, current approaches for NBS impacts assessment are diverse and often
vague, especially in relation to the idea of integrating NBS into the planning process. This
review, therefore, aims to systematically analyse how NBS biophysical performance and
economic impact evaluations are developed and integrated into urban planning adaptation.

https://sdgs.un.org/goals
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The four focus themes identified by the review process provide a basis for the discussion
around the role of NBS in climate change adaptation for flood issues in coastal cities.

This study contributes to the existing body of knowledge, especially by highlighting
the emergent importance of NBS in flooding-related urban planning and the lack of spatially
explicit simulation and economic assessment. Indeed, the NBS approach helps with urban-
flood management and, especially, dealing with the more extreme flooding events due to
climate change. For this reason, the information extracted by this review can be useful
for future studies that focus on comparative discussion of NBS application and economic
assessment employed for urban-flood management.

Looking at the results from an integrated perspective, which combines climate and
economic analysis by overcoming the boundaries of adaptation planning, it seems to
become even more important to conduct studies on integrated assessment methods for
policy support. This would help delineate future research aimed at assessing the signif-
icant role of NBS to reduce the biophysical and economic impacts of flood events. Such
research reflects the growing interest in further research to develop spatially integrated
environmental–economic assessments on NBS implementation, by underlining the need
for trans-disciplinary approaches to provide science-based evaluations supporting policy-
making in the framework of urban climate change adaptation. By further performing
in-depth analyses to demonstrate the multiple costs and (co-)benefits of NBS, as compared
to traditional approaches, will help to better integrate such solutions into traditional ur-
ban planning. Once sufficient studies are available, meta-analyses can be performed to
derive conclusions about the factors and conditions that determine the effectiveness of
NBS. Based on this consideration, further research on the role of specific vegetation and
on the interaction between plants and substrate, should be developed to optimize the
NBS’ efficacy.
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