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Summary

Skates and rays are managed under the European Union total allowable catch (TAC) and quota
regulation since 1999. Since its introduction, the TAC has gradually been reduced, and has been
constraining landings for many fisheries. Consequently, under the current Common Fisheries Policy
(CFP) skates and rays are one of the main “choke species” under the landing obligation. While skates
and rays have a temporary high-survivability exemption from the landing obligation, better data
collection of catch quantities and composition are needed. Such data will contribute to improve stock
assessments and thus improve management of skates and rays in the North Sea.

The OSW 2.1 Innorays project aims to improve the knowledge base for skate and ray stocks in the
North Sea. The project is financed from the Science and Fisheries Research Collaboration scheme
under the Dutch operational program for the European Maritime and Fisheries Fund (EMFF). Here, the
potential of video-based monitoring on board fishing vessels, commonly described as Electronic
Monitoring (EM), to estimate catches is evaluated. EM systems allow continuous catch monitoring over
extended periods without requiring additional on-board personnel. In addition, EM can provide more
representative coverage of the fleet than any other observer programme.

In 2019, two beam trawlers and one twin rigger were equipped with an EM system (Anchor Lab) used
for catch recording. The EM system consists of CCTV cameras, winch sensors, a GPS antenna and a
4G-LTE antenna mounted on board a fishing vessel. Catch processing on board the vessel is recorded
through five CCTV cameras; one mounted on the conveyor belt and two on each sorting belt. During
the entire project, EM systems have been on board for 368 trips of which 218 trips (59%) resulted in
valid trips that where thus useable for video analysis. The latter consists of recording counts of the
different skate and ray species in the catch on a haul by haul basis.

In the project nine observer trips divided over the three participating vessels where planned. These
were carried out by on-board observers appointed by the fishing sector. Observers were obliged to
participate and pass a species identification test. In 2019, a species identification test was organised
starting with a test followed by a workshop to demonstrate and discuss the distinctive characteristics
of the different species. Three of the seven participants passed and were allowed to conduct an
observer trip independently.

The observer trips were planned to have a ground truth and allow validation of the counts made by
the manual video review versus the number of skates and rays observed by the on-board observers.
Outcomes demonstrate there is a significant difference in the numbers counted between the video
review and observer, whereby the number of rays counted in the video review is higher. When
reviewing footage of the observer trips, the video reviewers are helped by the handling of the rays of
the observer. The reviewer can identify when the observer is picking up an individual from the sorting
belt and can use the software to pause and replay video footage. In real-time, on board, processing is
a continuous process; a ray that is not picked up from the conveyer belt because an observer does not
see it or is ‘too late’ is not counted. As opposed to the observers, the video reviewers could, however,
not identify all rays in the catch, especially individuals with the ventral side up to the camera. As
observers on board can handle the fish (i.e., turn around to see the dorsal side), species-specific
identification is better compared to the video reviewer. Consequently, the percentage of unidentified
rays was high for each trip, accounting for more than 50% of the individuals observed in the video
footage. In addition, the data of the observer trips were used to estimate the number of hauls to be
reviewed to have an accurate estimate of ray catches in a trip. This was estimated to range between
44% and 57% of total hauls, relating to 17 to 23 hauls per trip, that need to be reviewed in order to
achieve 80% certainty in catch estimates.

ICES provides single stock advice. In this context, it's required to have species-specific catch data. For
rays which could not be identified through video review, the proportion of species composition from
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roundfish area 5 and 6 from obtained from the data collected within the Dutch discard self-sampling
program was used. Depending on the fishing location, the proportion of species composition of either
roundfish area 5 or 6 was used to extrapolate to the unidentified rays within a haul. This assumes that
the species-specific distribution of rays within the INNORAYS project is similar to the distribution found
within the discards self-sampling program. Most of the unidentified rays are allocated to thornback ray
and spotted ray, which were also present in highest numbers within the identified individuals.

This project demonstrates that manual review of EM data requires human observations which is error
prone, labour intensive and results in relatively high costs. These are limiting factors to implement the
system on a broader scale in commercial fisheries. Here, the technical feasibility of automated image
recognition as a solution to fully automatically record the number and species of rays present in the
(by)catch has been examined. Images of three ray and four flatfish species were collected with three
levels of complexity in composition. Outcomes indicate that a computer can make reliable judgements
on detecting and identifying a species, especially with a low complexity, but slowly decreasing when
the composition of fish become more complex. Yet, even in the most complex situation, i.e. rays being
occluded, the performance of the network is good. These outcomes demonstrate that computer vision
technology may contribute to increase monitoring coverage of fishing activities and may ease
registration of catches on-board. The development of computer vision technology in Dutch demersal
fisheries is currently ongoing within the EMFF funded ‘Fully Documented Fisheries” project.

To conclude, the use of video-based monitoring on-board fishing vessels is a way to improve our
knowledge on catches in commercial fisheries. EM could be a tool leading to better registration of
catches and thus estimates of fishing mortality on a stock. Consequently, improved data could allow
an increase of quota and reduce the risk of these species being a “choke species” under the landing
obligation. Especially, the automated registration of catches by species, which was explored in this
project, may contribute to the accuracy of catch estimates for “data-limited stocks”.
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Samenvatting

Roggen worden sinds 1999 beheerd onder de TAC en quota verordening van de Europese Unie. Sinds
de invoering, is de TAC systematisch verlaagd, waardoor de aanvoer voor veel visserijen beperkt is
geworden. In het kader van het huidige gemeenschappelijk visserijbeleid (GVB) zijn roggen dan ook
een van de belangrijkste "choke species" onder de aanlandplicht. Hoewel roggen een tijdelijke
uitzondering op basis van “hoge’ overleving hebben, is een betere dataverzameling over de omvang
en de samenstelling van de vangsten nodig.

Voor beter beheer van de roggen populaties in de Noordzee zijn betere gegevens voor de
bestandsschattingen nodig. Het OSW 2.1 INNORAYS project heeft als doel de kennis- en
gegevensbasis voor roggen in de Noordzee te verbeteren. Het project is gefinancierd uit de regeling
Samenwerkingsprojecten Wetenschap en Visserij in het kader van het Nederlandse operationele
programma voor het Europees Fonds voor Maritieme Zaken en Visserij.

In deze studie is gekeken naar de inzet van ‘Electronic Monitoring’ (EM) aan boord van visserschepen
om de schattingen van roggenvangsten in de visserij te verbeteren. EM kan de ruimtelijk en
periodieke dekking van een monitoringsprogramma aanzienlijk vergroten zonder dat daar hogere
kosten aan verbonden zijn of extra personeel aan boord voor nodig is en is dus mogelijk effectiever
dan enig ander monitoringsprogramma.

Twee boomkor kotters en één twin rigger werden uitgerust met een EM-systeem van Anchor Lab in
2019. Het systeem wordt enkel gebruikt voor vangstregistratie van roggen. Het EM-systeem bestaat
uit CCTV-camera's, liersensoren, een GPS-antenne en een 4G-LTE-antenne die aan boord van een
vissersvaartuig gemonteerd zijn. De vangstverwerking aan boord van het vaartuig wordt geregistreerd
via vijf CCTV-camera’s. Eén camera is op de transportband gericht en twee cameras zijn boven elke
sorteerband geinstalleerd zodat het hele verwerkingsproces in beeld gebracht wordt. Gedurende de
looptijd van het project zijn de EM-systemen tijdens 368 reizen in werking geweest, waarvan er voor
218 reizen (59%) bruikbaar beeldmateriaal beschikbaar waren voor videoanalyse. De videoanalyse
zelf omvat het op trekniveau registreren en tellen van de verschillende soorten rog in de vangst.

Voor het project waren negen waarnemersreizen gepland, verdeeld over de drie deelnemende
schepen. Tijdens de waarnemersreizen werden per trek alle roggen gepakt en op soort geidentificeerd.
Deze reizen zijn belangrijk om een ‘ground truth’ te verkrijgen en de validatie van de telling uit de
videoanalyses mogelijk te maken. Waarnemersreizen werden uitgevoerd door sectoropstappers.
Opstappers waren verplicht deel te nemen aan en te slagen voor een soort-identificatie toets
georganiseerd door WMR in 2019. De toets omvatte een test, gevolgd door een workshop om de
onderscheidende kenmerken van de verschillende soorten te bespreken. In totaal slaagden drie van de
zeven deelnemers waardoor zij zelfstandig een waarnemersreis uit mochten voeren.

Resultaten van de vergelijking tussen validatiereizen en video-review tonen aan dat er een significant
verschil is in de tellingen tussen de waarnemersreizen en videoreviewers, waarbij het aantal roggen
geobserveerd in de videoreview hoger is. Bij het bekijken van de videobeelden van de
waarnemersreizen worden de videoreviewers geholpen door handelingen van de waarnemer aan
boord. De videoreviewer ziet wanneer de waarnemer een individu van de sorteerband oppakt,
daarnaast kan de reviewer videobeelden pauzeren en terugspoelen Aan boord gaat het
verwerkingsproces gewoon door, een rog die niet van de sorteerband gepakt wordt omdat deze niet
wordt opgemerkt of omdat de opstapper ‘te laat’ is, wordt dan ook niet geregistreerd. De
videoreviewers zijn daarentegen niet in staat alle roggen in de vangst op soort te identificeren. Dit is
met name het geval wanneer individele roggen met de witte buikzijde naar boven en dus de camera
gericht zijn. Het percentage niet op soort gebrachte roggen bedroeg meer dan 50% van de op de
videobeelden waargenomen individuen. In tegenstelling tot de videoreviewers kunnen de waarnemers
aan boord de roggen omdraaien, bekijken, en op soort identificeren. Naast de validatie van de
videoreview werden de gegevens van de waarnemersreizen gebruikt om een schatting te maken van
het aantal te reviewen trekken per visreis om zodoende een nauwkeurige schatting te maken van de
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totale hoeveelheid roggenvangsten. Om met 80% zekerheid de vangsten van rog te schatten, moeten
ongeveer 44% tot 57% van de totale aantal trekken, d.w.z. 17 tot 23 trekken per reis geanalyseerd
worden.

ICES geeft vangstadviezen voor individuele roggenbestanden. Om de gegevensbasis voor
bestandsschattingen te verbeteren is het dan ook vereist om soortspecifieke vangstgegevens te
verkrijgen. Wanneer een rog niet op soort geidentificeerd kon worden in de videoanalyse, werd een
soort toegekend op basis van de bekende soortensamenstelling uit rondvisgebied 5 en 6. Hiervoor zijn
gegevens verzameld binnen het Nederlandse discard zelfbemonsteringsprogramma gebruikt.
Afhankelijk van de vislocatie werd het aandeel van de soortensamenstelling van rondvisgebied 5 of 6
gebruikt om te extrapoleren naar de niet-geidentificeerde roggen binnen een trek. Hierbij is de
aanname dat de soortspecifieke verdeling van roggen binnen een reis in het INNORAYS-project
vergelijkbaar is met de verdeling waargenomen in het discard zelfbemonsteringsprogramma. De
meeste ongeidentificeerde roggen werden toegewezen aan stekelrog en gevlekte rog.

Dit project heeft aangetoond dat het handmatig uitvoeren van videoanalyses van de EM-beelden
foutgevoelig en arbeidsintensief is en relatief hoge kosten met zich meebrengt. Dit zijn beperkende
factoren om het systeem op grotere schaal toe te kunnen passen in de commerciéle visserij. In het
project is een technische haalbaarheidsstudie naar automatische beeldherkenning opgezet.
Automatische beeldherkenning zou een oplossing kunnen bieden om roggenvangsten per soort te
registreren. Uit de resultaten blijkt dat een computer roggen kan detecteren en accuraat op soort kan
identificeren. De betrouwbaarheid van automatische beeldherkenning is erg hoog bij een lage
complexiteit (als de rog duidelijk zichtbaar is). De betrouwbaarheid neemt geleidelijk af naarmate
vissen elkaar overlappen de de samenstelling dus complexer wordt. Toch zijn de prestaties van
automatische beeldherkenning in de meest complexe situatie goed. Deze resultaten tonen aan dat
deze technologie bij kan dragen tot een betere monitoring van visserijactiviteiten en registratie van
vangsten aan boord.

Concluderend, het gebruik van EM aan boord van vissersschepen kan bijdragen om kennis over de
roggenvangsten in de commerciéle visserij te verbeteren. Verdere ontwikkeling van het EM-systeem
leidt mogelijk tot een betere registratie van de vangsten, waardoor er meer inzicht komt in de visserij-
effecten wat vervolgens ook de bestandsschattingen kan beinvloeden. Een betere gegevensbasis voor
belangrijke commerciele soorten zoals stekelrog zou mogelijk tot een verhoging van de quota kunnen
leiden en het risico dat deze soorten "choke species" worden in het kader van de
aanlandingsverplichting verminderen. Met name de verdere ontwikkeling van automatische
beeldherkenning van vangsten per soort kan bijdragen tot nauwkeurigere vangstschattingen voor
datagelimiteerde bestanden. Op dit moment vindt de verdere ontwikkeling van automatische
beeldherkenning in de Nederlandse demersale visserij plaats in het door het EFMZV gefinancierde
project "Fully Documented Fisheries " (FDF).
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1 Introduction

Sharks, skates, and rays (elasmobranchs) are characterized by specific biological traits including being
long-lived, showing slow growth, late sexual maturity and producing a small number of young per
year. These traits make elasmobranchs vulnerable to fishing, pollution, and changes in essential
habitats, especially spawning and nursery areas (Stevens et al., 2000, Schindler et al., 2002,
Heessen, 2010). Worldwide, several populations have undergone sharp declines under the influence of
anthropogenic activities such as fishing, large-scale coastal infrastructure, and pollution (Brander,
1981, Walker and Heessen, 1996, Dulvy et al., 2008, Dulvy et al., 2014, Sguotti et al. 2016). While
data from scientific survey programs show an increase in populations for several species in European
waters since 2010 (ICES, 2021), there is still much concern that current assessments and
management do not offer adequate protection for elasmobranchs (STECF, 2017).

In the North Sea, most elasmobranch stocks are classified as category 3 stocks, for which ICES advice
is based on an indicative trend from available survey data. Scientific surveys such as the International
Bottom Trawl Survey (IBTS) and Beam Trawl Surveys (BTS) are the primary source of fisheries-
independent data for elasmobranch stock assessment. These surveys, however, were initiated
primarily to estimate the recruitment of the main exploited stocks and were not primarily designed to
inform on the populations of demersal elasmobranchs. Hence, gears used, timing of the surveys and
distribution of sampling stations may not be optimal for informing on elasmobranch species and/or
life-history stages. This is problematic and impedes the use of analytical stock assessments for these
stocks.

Analytical stock assessments generally rely on population models integrating biological, survey and
fisheries data including fishing mortality and catch estimates (Beverton and Holt, 1957; Punt et al.,
2006). In this context, accurate catch estimates are important to achieve sustainable fisheries,
especially for sensitive species such as skates and ray. Unfortunately, good catch estimates are
lacking for most skates and ray stocks. More specifically, data on the discarded part of the catch is
uncertain due to species misidentification, insufficient sampling effort, variable raising factors, varying
discard retention patterns, and high expected discard survival (ICES, 2021). While much effort has
been done to improve discard estimations (ICES 2017, 2020), several Member States still report
incomplete data which is not species specific affecting the catch statistics provided to ICES. As such,
data from national discard programs has, to date, mostly been used in exploratory and descriptive
analyses.

In 1999, the European Commission introduced a combined Total Allowable Catch (TAC) for skates and
rays, in the North Sea, meaning several species are managed by a single TAC. Since its introduction,
the TAC has gradually been reduced, and landings of skates and rays in the North Sea have been at or
above the TAC since 2006. To keep landings within the national quota, Dutch Producer Organisations
have implemented landing restrictions including a minimum landing size of 55cm total length and trip
limits to control quota uptake Furthermore, the constraining quota for skates and rays make them one
of the main “choke species” under the landing obligation, meaning the fisheries for flatfish is halted in
case all skate and ray must be landed and the ray quota has been fully exhausted. Skates and rays
are exempt from the landing obligation based on high survival up until 2023. Yet, improved
management of skates and rays in the North Sea is urgent and can be supported by developing better
data collection of catch quantities and composition.

One way to improve our knowledge on catch in the Dutch fleet, is through the use of video-based
monitoring on board fishing vessels. This is commonly described as Electronic Monitoring (EM), also
described as Remote Electronic Monitoring (REM), allowing catches to be observed remotely by human
experts without requiring additional on-board personnel (McElderry et al., 2003; Kindt-Larsen et al.,
2011; Stanley et al., 2015; Hold et al., 2015; van Helmond et al., 2017). EM systems enable
continuous catch monitoring over extended periods, making them more suitable for monitoring
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discards from commercial fishing vessels than human on-board observers; they can provide more
representative coverage of the fleet than any other observer programme (van Helmond et al., 2020).
Hence, this part of the INNORAYS project aims to explore the potential of EM to monitor skate and ray
catches in the Dutch demersal fisheries. Because analysis of EM video data requires human
observations, costs are still relatively high, which, together with the number of human resources
needed, is a limiting factor in the uptake of EM (Needle et al., 2015; Mortensen et al., 2017). To
reduce the workload and improve the sampling frequency, a reform of EM data processing is
necessary. As such the project also explored the potential of automated image recognition to improve
accuracy in catch estimates on board.

The project covered a four-year period and was funded by the Science and Fisheries Cooperation

Projects Scheme (Partnerschappen Wetenschap en Visserij) under the Dutch Operational Program for
the European Maritime and Fisheries Fund (EMFF).
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2 Assignment

2.1 Aim

The objective of the project is to improve the quantity and quality of data for the Data Limited Stocks
(DLS) of skates and rays in the North Sea by using on-board Electronic Monitoring (EM) and by
applying an innovative genetic tool (close-kin Mark recapture) to estimate population structure and
size. Improved catch estimates from EM and knowledge on the population size (through DNA-analysis)
can be used to estimate the effects of fishing on skate and rays in the North Sea. Hence, the project
will contribute to better advice on fishing opportunities and reducing fishing impacts on skates and
rays as an important species in the North Sea ecosystem.

This report focuses on applying EM to evaluate observations of skates and rays in the catch of Dutch
demersal fisheries. Working with EM has the advantage that it gives a larger spatial and temporal
distribution of catch data allowing to improve our knowledge on the catch composition and estimation
of catch quantities in the context of sustainable management of the North Sea. INNORAYS also
explores potential of using these techniques (if successful) to additionally improve data collection and
quality of other North Sea DLS fish stocks and links to the development of Fully Documented Fisheries
(FDF) as an instrument in the implementation of the Common Fisheries Policy.

2.2 Work packages

The main question in the project was to explore whether Electronic Monitoring can be used to estimate
ray catches in the Dutch demersal fisheries. Improved catch data will contribute to better advice on
fishing opportunities and thereby reduce the fishing impact on skates and rays, important species in
the North Sea ecosystem. Three work packages were defined to address the question.

Work package A focussed on the ground truth for manual video review by planning observer trips
which are required to validate counts made by video reviewers. Work package A consisted of:

1. Improving species identification by organising a species-identification workshop with
participating skippers, industry observers and video reviewers.

2. Recruiting vessels and installation of hard- and software on-board.

3. Conducting 10 observer trips on-board participating vessels, required to have allow
comparison of on-board and video footage observations (i.e., the ground truth).

Work package B focused on the implementation of EM systems and validating the effectiveness of
manual video review to estimate ray catches. Work package B consisted of:

1. Validation of EM by comparing catch estimates from manual video review with observed
catches in the observer trips.

2. Data analysis to develop a method to accurately estimate ray catches using video monitoring.

3. Reviewing video footage of participating vessels and apply method to estimate ray catches
within a trip.

Work package C is focussing on the development of computer vision technology. Work package C
includes:
1. Performing a pilot on the technical feasibility of automated computer vision for skates and
rays.
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3 Materials and Methods

3.1 Species identification workshop

Because the project aims to obtain a better understanding of the catch composition and catch
estimates by species, species identification is a critical component for the quality assurance of the data
collection within the INNORAYS project. More specifically, video reviewers, skippers and crew as well
as on-board observers are required to accurately identify the different species and thus must be tested
on their species identification skills.

In 2019 Wageningen Marine Research (WMR) organised an elasmobranch species identification test
and workshop. The workshop was compulsory for WMR employees participating in fish surveys on
board of research vessels, sampling of landings and discards from commercial fishing vessels and
those responsible for the review of video footage. In addition, externally hired personnel including
skippers, crew and on-board observers appointed by the sector parties were obliged to participate and
pass the test. Because the initial score of the industry observers was low, a second test was organised
in April. This allowed them to absorb the information of the workshop and gave additional time to
increase their species-identification skills.

The identification workshop was split in two parts, starting with a test followed by a workshop to
demonstrate and discuss the distinctive characteristics of the different species. In total, ten
elasmobranch species were used in the test, in total 20 specimens. When species were identified
correctly to the lowest taxonomic level, 1 point was assigned. Wrong identification or empty fields
were scored as 0. When the main identification criteria for two similar species were put on the list, this
was scored as 0.5. Ambiguous or incomplete naming of species (e.g., ‘starry smooth hound’ instead of
‘Mustelus sp.”) was scored as 0. During the test it was not allowed to use any reference material for
species identification. Participants were encouraged to mention on their forms distinctive identification
criteria when being in doubt between two species, as a measure for their knowledge of distinctive
species characteristics. For the project, video reviewers of WMR and observers appointed by the sector
parties had a limit on species identification set to >80% before being allowed to identify species
independently and join the observer trips.

3.2 Vessel monitoring

In Dutch fisheries beam trawlers and twin rig fisheries targeting flatfish are responsible for
respectively 87.6 % and 3.8 % of Dutch skate and ray catches. Initially, the aim was to involve four
vessels in the project, but due to developments in European fisheries policy and the apprehensiveness
of the fishing industry towards on-board camera systems(i.e., for control and enforcement purposes)
only three vessels were found willing to participate on a voluntary basis. Two of these vessels are
beam trawlers and one is a twin rigger.

In 2019, the three vessels were equipped with an electronic monitoring system (BlackBox VX, Anchor
Lab) used for catch recording. The BlackBox is a system consisting of CCTV cameras, winch sensors, a
GPS antenna and a 4G-LTE antenna mounted on board a fishing vessel. It also uses a software
programme to analyse the data recorded on board. The winch sensors and GPS antenna on board the
vessel provides reliable positioning recording and time synchronization from the location of fishing
hauls. Catch processing on board the vessel is recorded through five CCTV cameras; one mounted on
the conveyor belt and two on each sorting belt. The cameras on the sorting belt only show what is on
the belt, due to privacy reasons other areas of the image have been automatically blacked out on the
recording and is therefore not recorded (figure 3.1).

Wageningen Marine Research report C093/22 | 11 Of 55



Figure 3.1: Screenshot of the Blackbox software. At the top, vessel speed is depicted by the blue line which
provides an indication of the activity (setting or hauling the net or fishing). The bottom figure shows the
video footage of the 4 cameras installed above the sorting belt.

3.2.1 Manual review

Video images are stored on board and sent through WIFI to a database ashore at the end of the trip
when the vessel enters the 4G network range. While the video images are owned by the vessel
owners, the database was managed by VisNed. WMR was given access to the images for quality
control and analysis. Access was under strict conditions, which included a restriction of data use to the
project itself and that video images gathered within the project may only be used for the
implementation of the project itself and that only trained researchers can access the images.
Furthermore, review was only to be done in a locked room, and images were removed immediately
after video analysis.

The video analysis consists of recording the catch within a haul. Images taken by the CCTV cameras
on board the vessel were manually reviewed using the BlackBox software programme. The species
observed on the camera images were recorded on a datasheet including information on counts by
species on a haul by haul basis.

3.2.2 Observer trips

A total of 9 observer trips (3 in 2019 and 5 in 2021) were caried out. Due to COVID-19 one of the
planned observer trips was not done. Furthermore, one trip had a duration of 10 days and was split to
count this trip as two separate observer trips. An observer appointed by the fishing sector recorded
the species and number of individuals in all hauls within an observer trip. During these trips, also
video footage from the sorting belt was routinely collected via the EM system for all the hauls within a
trip. The camera images are viewed on land by experienced observers who make estimates from the
video footage (see 3.2.1 manual review). The video footage from the REM system is validated by the
data collected on board by the observer. Furthermore, the results were used to estimate how many
hauls within a trip must be video reviewed in order to effectively determine the catch composition and
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quantities. A bootstrap approach was applied with a 20% confidence interval to calculate the number
of hauls to be video reviewed. The number of hauls to be reviewed in order to achieve 80% certainty
in number of rays caught varied between vessels and trips, ranging from 44% to 57% of total hauls.
This relates to 17 to 23 hauls per trip.

3.3 Catch composition and catch estimation

The effectiveness of the manual video review to estimate ray catches was first validated by comparing
those hauls in which ray catches were also recorded by an on-board observer, which is not covered in
the current section. This section only covers trips for which no observer was present and only video
footage was analysed. It was decided for each vessel to randomly select and review two trips by
quarter for 2021. For every selected trip the camera images of the sorting process were manually
reviewed.

In order to get species-specific data from video reviews, it is necessary that rays, and their specific
morphological traits needed to identify a species, are visible on the conveyer belt. For rays that cannot
be identified, data collected within the Dutch discard self-sampling program (Bleeker et al., 2022),
enforced through the Data Collection Framework (DCF) of the European Commission, is used. The
spatial distribution of five ray species; thornback ray, spotted ray, blonde ray, cuckoo ray and starry
ray within the discard self-sampling between 2018 and 2021 was used to calculate the proportion
present of each species (Figure 3.2). To incorporate a potential spatial effect of the distribution of
species, it was chosen to use ICES Roundfish areas as cut off point. We looked at the proportion of
species between Roundfish area 5 and 6 as the spatial distribution of these areas overlap with the
spatial distribution of the trips in which the REM system was used. There was a minor difference in
proportions between the areas. For each haul in which unidentified rays were found, the proportion of
species composition, of either area 5 or 6, was used to extrapolate to the unidentified rays proportion.
This assumes that the species-specific distribution of rays within the INNORAYS project is similar to
the distribution found within the discards self-sampling program.

Blonde ray Cuckoo ray Spotted ray Starry ray Thornback ray
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Figure 3.2: Species-specific spatial distribution of rays collected in the Dutch discard self-sampling program
for years 2018-2021 (Bleeker et al., 2022).

Table 3.1: mean weight (g) for the five main ray species based on data from the Dutch beam trawl survey

(2020)
Species Mean
weight
Thornback ray 435.5
Spotted ray 275.2
Blonde ray 756.6
Cuckoo ray 291.4
Starry ray 239.1

Total number of individuals for each species was raised from sampled hauls to trip level using the ratio
between the total duration of the trip to the sampled duration. These ratio's where between 1.1 and
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2.9 for all trips. A mean weight for each species (table 3.1), calculated based on data from the Dutch
beam trawl survey (2020) was used for total catch estimation for each species and trip.

3.4 Automated image recognition

Manual review of EM data requires human observations which is labour intensive and results in
relatively high costs. These are limiting factors to implement the system on a broader scale. To reduce
the workload and improve sampling frequency and accuracy, a reform of EM data processing using
automated image recognition is necessary.

Training a computer to recognize fish during the sorting process on board a fishing vessel is
challenging, due to variability in fish appearance. For example, fish from the same species are not
identical in size, colour, and patterning, while different ray species also share similarities, e.g., all
species have a white ventral side. Also, catch is often loaded in bulk on a sorting belt for processing on
board, and consequently, fish are randomly positioned on the belt, often overlapping each other,
resulting in severe occlusions. The monitoring system needs to deal with partly visible specimens and
must be able to identify multiple individuals and species in a single image frame.

Here, the technical feasibility of automated image recognition as a solution to fully automatically
record the number and species of rays present in the (by)catch has been examined. To do so
"computer vision" and "deep learning" techniques were used to train a neural network that can
automatically recognise three ray species (blonde ray, Raja brachyura; spotted ray, Raja montagui;
and thornback ray, Raja clavata) in images, and keep track of the number per species.

Training a system to recognise ray species in catches on board of fishing vessels in demersal mixed
fisheries requires representative image data. Image data was created by placing fish on a blue
background in a lighting box with LED strips on the topside. A camera (Nikon D5300) was mounted
above the fish, capturing images with a resolution of 6000 x 4000. Composition of collected images
was comparable to the top view of a conveyor belt during the sorting process on a fishing vessel.
Since the fish catch consists not only of ray species, image data were also collected of other demersal
fish species. Specimens of seven fish species were collected. Three were ray species: thornback ray,
spotted ray, and blonde ray; and four flatfish species, plaice, dab, turbot, and sole.

Low complexity Medium complexity High complexity

Figure 3.3 Sample images of possible compositions that could occur on a conveyor belt. From left to right: a
single fish (low complexity), multiple fish lying adjacent to each other (medium complexity), or fish
overlapping each other (high complexity).

To mimic the sorting process on a conveyor belt, images were collected with different compositions.
The possible compositions were defined in three levels of complexity (Figure 3.3). At low complexity,
images contain single fish completely visible (1108 images). The view of both dorsal and ventral sides
of the fish were photographed. At medium complexity, images contain multiple fish lying close and
adjacent to each other (253 images with 871 fish). Lastly, at high complexity, images contain multiple
overlapping fish (229 images with 834 fish). In medium and high complexity, the combinations of fish
were randomly selected with the only requirement that at least two fish are in the frame. Also, the
dorsal and ventral view of each fish in the image was randomly selected. In all situations, the fish
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were randomly positioned. The total data set consists of 1591 images containing 2813 individuals of
seven species.

Deep neural networks allow the end-to-end processing of data, meaning that the raw images are
taken as input, which are processed by the network to provide the required output. This study uses
YOLO version 3 (Redmon and Farhadi, 2018) as a tool, providing bounding boxes of the objects in the
image as output, together with the corresponding object classes. Additionally, the network provides a
confidence score for each of the object detections.

Training a YOLO network requires a dataset in which every object of interest in the images is
annotated. An annotation includes the coordinate and size of the object’s bounding box and the
corresponding class, which in our case is the name of the fish species. Examples of annotations can be
observed in Figure 3.4. The performance of the models has been evaluated using the precision, and
recall. Precision represents the proportion of correct detections over all detections by the network (Eq.
1) and recall represents the proportion of correct detection that could be retrieved out of all actual
detections (Eq. 2). Furthermore, a confusion matrix was made to summarise the number of correct
and incorrect classified fishes. A more detailed description of the method can be found in van Essen et
al. 2021.

Precision = % (Eq. 1)

(Eq. 2)

TP
TP+FN

Recall =

When the actual fish is correctly detected, the detection is defined as a true positive (TP). All fish in
images that are not detected are labelled as false negatives (FN), and all detections that do not
correspond with a fish or have the wrong class are labelled as false positives (FP). Full description of
the method can be found in Annex 1.

Figure 3.4: Annotation example. Bounding boxes are drawn around the object of interest for each detection
task. RM= spotted ray, RC=thornback
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4 Results

4.1 Species identification workshop

Two species-identification workshops were organised in 2019. The maximum possible score in both
workshops was 20 (the number of specimens to identify). The scores of the first workshop showed
that the industry observers’ species knowledge was insufficient to allow them to carry out the work
independently (Table 4.1). During this workshop, much attention was given to clarifying the species-
specific characteristics. In addition, participants were referred to available literature to aid them in
memorizing the different characteristic by species.

The second workshop was held in April 2019 to re-evaluate species identification skills of the industry
observers. The outcomes showed that three of the five observers are able to identify elasmobranch
species independently and were therefore allowed to conduct an observer trip independently (Table
4.2). Two participants from the first workshop were unable to attend.

Table 4.1: Outcomes of the elasmobranch identification workshop in February 2019. Percentage = % good,
score = number good, Level = level against which tested (3=ability to independently identify species as used
by WMR), Level_2 and level_3 contain the threshold values for the level scores (60% and 80% respectively),
The column passed indicates whether someone meets the required level. Names of candidates have been
anonymised for privacy reasons.

Percentage Score Participan Level Level_2 Level_3 Passed
t
15 3 A 3 12 16 N
25 5 B 3 12 16 N
10 2 C 3 12 16 N
20 4 D 3 12 16 N
25 5 E 3 12 16 N
30 6 F 3 12 16 N
15 3 G 3 12 16 N

Table 4.2: Outcomes of the elasmobranch identification workshop in April 2019. Percentage = % good,
score = number good, Level = level against which tested (3=ability to independently identify species as used
by WMR), Level_2 and level_3 contain the threshold values for the level scores (60% and 80% respectively),
The column passed indicates whether someone meets the required level. Names of candidates have been
anonymized for privacy reasons.

Percentage Score Participan Level Level_2 Level_3 Passed
t
70 14 A 3 12 16 N
90 18 B 3 12 16 Y
95 19 D 3 12 16 Y
100 20 E 3 12 16 Y
55 11 G 3 12 16 N
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4.2 Vessel monitoring

In March 2019, two vessels were equipped with an electronic monitoring system. The third vessel
could only be equipped with the EM system in July 2019. During the entire project, EM systems have
been on board for 368 trips of which 218 trips (59%) resulted in valid trips that where thus useable
for further analysis. Video reviewers of WMR regularly checked the quality of the video footage and
noticed differences in quality by vessel. While vessel two has 101 valid trips (79%), vessels 1 and 3
have 75 (58%) and 42 valid trips (37%), respectively (Table 4.3). The small humber of valid trips in
vessel 3 was caused by technical failures of the EM system on board. Unfortunately, due to covid,
there was a long delay before the system could be repaired.

Beyond technical issues, the quality of the video footage is a key factor to determine their usability for
analysis. The quality of the available video material depends on several factors in which the
maintenance of the system by the crew is crucial. The lenses from the onboard cameras focused on
the sorting belt need to be cleaned on a regular basis. Hauls of which the image quality is low due to
e.g., drops or other dirt on the lens cannot be used for further analysis because this prevents proper
detection and identification of the fish on the sorting belt. Furthermore, technical issues may occur
such as video footage being displayed in black and white, making species identification difficult, or
video footage stopping to record in the sorting process preventing the video reviewer to analyse the
full haul. Finally, factors like fishing grounds and catch volume are also important aspects allowing
reviewers to correctly analyse the video footage. For instance, it can be difficult to identify a species
when the catch is covered in mud or peat or when the rays are occluded by other fish or benthos.

Despite checks on quality, the project did not entirely succeed in properly engaging the participating
vessels. Meetings in both 2020 and early 2021 with skippers and crew have been postponed due to
COVID-19. This was not ideal as contact about their input, functioning and output of the project was of
upmost importance to continue to have support and contributions to the project.

Table 4.3: By vessel, the gear (TBB = beam trawl, OTB = twin rig), period of having EM system on board,
Total number of weeks with EM system and valid weeks.

: Total weeks Usable weeks
Vessel Gear Period
(Number) (Number)
Vi oTB March 2019 - October 2021 128 75
V2 TBB March 2019 - October 2021 128 101
v3 TBB July 2019 - October 2021 112 42

Table 4.4: number of hauls and rays observed for both video reviewer and observer for each vessel en trip

Vessel Trip ID Number of hauls Number of rays observed
Video review Observer
V1 1 27 203 189
V2 1 22 2691 1733
V2 2 30 509 435
V2 3 27 1686 1692
V3 1 46 440 467
V3 2 28 648 694
V3 3 27 826 876
V3 4 28 2125 694
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4.2.1 Paired observer - video review trips

The number and species of rays caught per haul were recorded by an observer on board and by
manually reviewing the video footage of these hauls for eight trips. In three out of eight trips, all hauls
were video reviewed, whereas for the remainder of these trips the last hauls were systematically
excluded. For the reviewed hauls the whole duration of the video footage was annotated. When it was
not possible to identify an individual, it was recorded as Rajidae (unidentified ray). Table 4.4 shows for
each trip, the number of hauls and the total number of rays observed by both the video reviewer and
the on-board observer.

Figure 4.1 shows per trip and haul the number of rays observed by both the video reviewer and observer.
Visual inspection of the total number of rays counted per haul between the observer and the video reviews
show that for most of the trips similar numbers were observed. In two trips (V2_1, V3_4) the number of
rays observed in the video reviews are notably higher than the observer. Trip V3_4 is excluded from further
analysis as the number of rays observed in the video review were 3 times higher than the observer data.
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Figure 4.1: the number of rays by haul for each observer trip. Red bars indicate the observer count and
grey bars the video reviewer.

4.2.2 Video review validation
Preliminary analysis involved the comparison of the number of ray individuals observed in the video

footage and by the on-board observers. For eight trips with paired haul observations, Pearson's R was
used to determine the strength of the relationship between the two count variables. R values close to
0 indicate a weak relationship, whereas a value of 1 indicates a strong relationship. Figure 4.2 shows
the correlation between the number of rays counted by the observer (x-axis) and video reviewer (y-
axis) for all paired haul observations within each observer trip. All trips, except for one, show a strong
correlation with R values ranging between 0.89-1. In one of the trips, the humber of rays counted in
the video review is much higher than those counted by the on-board observer, which results in a weak
correlation between the variables (R = 0.3). Next, only trips with a significant relationship (p < 0.05)
were included for further analysis (Figure 4.2). Then a parametric paired t-test was applied to all trips
except V2_2, and a significant difference was found in the numbers counted between the video review
and observer. For trip V2_2, a Wilcoxon rank sum test was applied, as the data did not meet the
assumptions for a t-test and showed a significant difference.
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4.3

This section only covers trips for which no observer was present and only video footage was reviewed.
A total of 15 trips were used in the analyses to gain insight into the potential of EM to estimate

catches of skates and rays in Dutch demersal fisheries.

4.3.1 Species identification and allocation

The percentage of unidentified rays was high for each trip, accounting for more than 50% of the
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Catch composition and catch estimation
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individuals observed in the video footage. The spatial distribution per species for all video-reviewed

trips is shown in figure 4.3. Three species were identified in the video reviews: blond ray, spotted ray

and thornback ray. Thornback ray is found in highest numbers, followed by spotted ray.
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Figure 4.3: Spatial distribution per species for all video-reviewed trips.

The proportion of species composition from the Dutch discards self-sampling program (Bleeker et al.,
2022) was used to fill in the species composition of unidentified rays. Figure 4.4 shows the proportion

of ray species with unidentified rays (upper panel) and the species distribution after allocating the

unidentified fraction. Though cuckoo ray and starry ray were not present in the video footage, based
on the spatial distribution and their presence in the discard self-sampling data the proportion of these
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two species is also used in the allocation of unidentified rays. Most of the unidentified rays are

allocated to thornback ray and spotted ray, which were also present in highest humbers within the
identified individuals.
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Figure 4.4: Percentage of individuals counted by species within a trip. The upper panel shows the

proportions including unidentified rays. The lower panel shows the proportions after allocating unidentified
rays to species.

4.3.2 Catch estimation

The total number of individuals from the sampled hauls for each species and trip can be found in
figure 4.5 (red bars). For each of the 15 video-reviewed trips, the numbers were raised to estimate
the total numbers by trip, using the ratio between the total duration of the trip and the sampled
duration. The raised numbers are shown in green bars (figure 4.5). The ratio's for raising ranged
between 1.1 and 2.9 between trips. For each species and trip, raised humbers were multiplied with the
mean weight calculated for each species to get an estimate on catch weight (Figure 4.6).
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Figure 4.5: Counted numbers by species for the 15 video-reviewed trips, with red bars indicating the count
of sampled hauls and green bars the numbers raised to total trip.
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Figure 4.6: Total catch weight (kg) per species for the 15 video-reviewed trips.
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4.4 Automated image recognition

To determine whether the network can correctly identify specific ray and the other fish species, a
"confusion matrix" was created. The matrix contains the actual number of specimens per species
against the predicted number, showing which prediction errors are made (Table 4.5). Each row in the
confusion matrix represents the fish species and each column the predicted species. A class
“background” is added. Horizontally, this means that a detection in reality is background, which
happened only three times, while vertically, it means a fish was not detected by the network, being
the case in 32 occasions. Ideally, all values should be on the diagonal, meaning a perfect prediction.

Table 4.5: Confusion matrix of neural network with seven classes. Predicted class background class refers to
false negatives, while actual class background refers to false positives. The green cells show the number of
correct predictions.

Predicted class

Blonde Spotted Thornback .
Dab Plaice Sole | Turbot | Background

ray ray ray
Blonde ray 30 5 1 0 0 0 0
Spotted ray 1 95 9 0 0 0 0 6
Thornback ray 0 7 79 0 1 0 0
Actual Dab 0 0 0 145 6 0 0 12
class Plaice 0 0 0 4 135 0 0 6
Sole 0 0 0 1 0 6 0
Turbot 0 0 0 0 0 6 0
Background 0 2 0 0 0 0 NA

Performance of the neural network was quantified by "precision" (how many predictions are correct)
and "recall" (how many of the rays are found). Figure 4.7 shows the precision and recall for the different
image compositions (complexity) for rays only. The precision is high for all compositions, indicating that
the network makes reliable judgements. The recall is very high with a low complexity and slowly
decreases when the composition of fish become more complex. Yet, even in the most complex situation,
i.e. rays being occluded, the performance of the network is good. Most errors were made by the network
when the rays were pointing with the ventral side to the camera.
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Figure 4.7: Performance of the neural network. The data was separated by composition complexity (Low,
Medium, and High). The ray species blonde ray (RB), spotted ray (RM); and thornback ray (RC) were evaluated
separately. The error bars represent the standard error.

Figure 4.8 shows the results on the precision and recall when other fish species were included. The overall
performance of detecting seven individual fish species shows no significant difference with the detection of the
three ray species. This indicates that the performance of the deep neural network is not harmed by adding
more fish species. Looking at the precision and recall, we can observe that the precision is generally higher
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than the recall, indicating that the most of detections made by the networks are correct and thus very reliable,
but that some of the fish are not detected.
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Figure 4.8: Performance of a neural network on seven demersal fish species. The test data were separated
by composition complexity (Low, Medium, and High). The seven fish species blonde ray (RB); spotted ray
(RM); thornback ray (RC), dab (LL); plaice (PP); turbot (SM); and sole (SS) were evaluated separately. The
error bars represent the standard error.

In general, we can see that most of the detections are correct, and that misidentification mainly occur
within the skates and rays' group and within the other demersal fish group. There is only one
misidentification between these two groups. While blonde ray and spotted ray share similar patterns
and are known to be sometimes misidentified in surveys or by observers, the errors occur mostly
between spotted ray and thornback ray. While dab and plaice also look very similar, they're only
sporadically confused by the network, which is encouraging for possible future extension to other fish
species with many similarities between them.

The identification of skate and ray species based on the ventral side is difficult and often performed
poorly by humans compared to the dorsal view due to the absence of well-identifiable patterns. This
can also be seen in the performance of the network. Figure 4.9 shows the percentage of correct
detections, misidentifications and non-detections for the dorsal side (left) and the ventral side (right).
Misidentifications occur more on the ventral side, 11% compared to 3% in case of the dorsal side.
Nevertheless, the network was still able to classify about 84% of the fish from the ventral side,
compared to 92% on the dorsal side.

Dorsal Ventral

MlscIaSS|f|cat|on
Mlscla551flcatlon
Not detected \ Not detected \
Correc
Correct

Figure 4.9: Performance of the Fish-species network. The test set contain 332 dorsal views and 231 ventral
views of the fish. Evaluation was made based on whether the detection was correct, misclassified, or the fish
was not detected. For dorsal, 92% was correct, 3% was misclassified, and 6% was not detected. For ventral,
84% was correct, 11% was misclassified, and 6% was not detected.
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5 Conclusions and recommendations

The main question in this study was to explore whether EM can be used to estimate ray catches in the
Dutch demersal fisheries. In total eight observer trips on board participating vessels were carried out
to allow a comparison of on-board observations and video footage observations. The outcomes
showed that the manual review of video footage resulted in a higher count of individual rays. When
reviewing footage of the observer trips, the video reviewers are helped by the handling of the rays of
the observer. The reviewer can identify when the observer is picking up an individual from the sorting
belt. In addition, the reviewers can manipulate the review process by pausing and replaying footage
allowing them to more accurately count the individuals compared to the observer who is limited by the
sorting speed and volume of other fish on the sorting belt. However, video reviewers could not identify
all rays in the catch, especially individuals with the ventral side up to the camera. As observers on
board can handle the fish (i.e., turn around to see the dorsal side), species-specific identification is
better compared to the video reviewer.

ICES advice for North Sea rays and skates is based on data-limited methods which only include trends
in surveys. Catch estimates are not part of the current assessment because good estimates of ray
catches, and especially the discarded part of the catch, are lacking. Given the common fisheries policy
(CFP) requires fish stocks to be managed at maximum sustainable yield (by 2020), there is a growing
demand for stock assessments which allow establishing reference points such as Bmsy and Fmsy. In
this context, the use of surplus production models (e.g., SPiCT or JABBA) are recommended as these
provide a quantitative estimate of the stock status. The application and parameterization of surplus
production models would benefit from having reliable fisheries dependent data (catch data). Here, we
have shown that EM can be a promising tool to register catches and inform stock assessment models
in the future. However, EM as applied in this study, i.e., manual video review, still has some
limitations.

The first limitation is the inability of the reviewers to identify a large part (>50%) of the individuals in
the catch at the species level. Having species-specific catch data is required because ICES is providing
single stock advice (e.g., Thornback ray (Raja clavata) in Subarea 4 and in divisions 3.a and 7.d
(North Sea, Skagerrak, Kattegat, and eastern English Channel)). Here, the potential of data collected
within the Dutch discard self-sampling program to fill in the unidentified skate and ray species was
explored. Due to limitation in the spatial coverage of the sampling programme, data were aggregated
at a large spatial scale (by roundfish area). However, skates and rays are known for their patchy
distribution and the fishing activities and the distribution of a species within a roundfish area may not
necessarily be consistent. For example, whereas starry ray (Amblyraja radiata) is widely distributed in
the central North Sea it is only sporadically caught in the southern North Sea. Given roundfish area 6
covers both areas partially, the area will always contain a proportion of starry ray in the catch
composition. This proportion will be extrapolated over the unidentified part of the catch even if the
fishing trip has taken place in the southern North Sea, outside the distributional range of the species.
This bias could be mitigated by deriving the proportions in species composition at a finer scale such as
by ICES rectangle, if sampling coverage permits, or by extrapolating the proportion of known species
within a haul to the unidentified species within the same haul.

The second limitation is the need to fully review a large number of hauls (i.e., 44-57%) to achieve a
80% certainty in the number of skates and rays caught within a trip. The number of hauls to review
will increase if the accuracy needs to be improved. In addition, a representative part of the fleet will
also have to contribute to the data collection if data are to be used in stock assessments. This could
include a direct use of catch estimates but could possibly also include processing the data into a CPUE
index as applied in turbot in the North Sea. Despite EM being increasingly used to monitor catches
from commercial fisheries remotely by human experts, manual review of video footage requires a lot
of manhours and thus still results in relatively high costs (Helmond et al. 2020). Ultimately, to reduce
costs and the need of human resources, as well as allowing the technology to be expanded over a
large part of the fleet would require to implementation of automated computer vision.
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In this project the potential of using a deep-learning method which can deal with the complexities
present in on-board catch monitoring was explored. Three conclusions can be drawn: 1) the number of
fish species could be increased without loss in performance, 2) fish singulation is not necessary as the
composition complexity could be increased in most cases without loss in performance, and 3) similarly
looking skate and ray as well as flatfish species could be detected, even when only the white ventral
side was visible to the camera. Although the method does make errors, the benefit is the potential to
observe the full catch. Implementing such technology and applying this to a representative part of the
fleet will increase the sample size for stock assessment by an order of magnitude compared to current
practices. Of course, fish in video footages should be partly visibly to enable detection. Still, all video
footage taken from the fishing vessels could be processed with known error margins, whereas current
on-board or video observers generally identify species and record their choice. Since the error margins
in the choices of observers is unknown, extrapolating count estimation based on small samples of the
catch gives a false sense of accuracy. This is especially relevant in fisheries with rare species for which
misidentification is common (van Helmond et al., 2015; van Helmond et al., 2017). To conclude,
implementation of computer vision technology in commercial fisheries could provide an important
improvement compared to current observer programs. An automated registration of catches will
increase monitoring coverage of fishing activities and will reduce the errors of misidentification by
allowing the probabilities of correct species identification. These probabilities can be propagated into
the estimates of population size and mortality rates. Furthermore, computer vision could be expanded
to acquire length and weight information from individuals to further improve the data input in more
complex assessment models.

Overall, the use of video-based monitoring on-board fishing vessels is a way to improve our
knowledge on catches in the Dutch fleet. Here, we aimed to improve the quantity and quality of data
for the Data Limited Stocks (DLS) of skates and rays in the North Sea, using on-board EM. Such
improvement in the on-board monitoring process could be relevant for a wide range of fisheries
management measures (Catchpole et al., 2005; Uhlmann et al., 2013). This includes the landing
obligation which obliges fishers to land the complete catch of species under quotas, including the
undersized, unmarketable part of the catch. The landing obligation also applies to skates and rays
which are managed under the quota regulation. Moreover, since the introduction of the TAC for skates
and rays, the TAC has gradually been reduced and has become restrictive for most fisheries (ICES,
2021). Consequently, skates and rays are one of the main “choke species” for the Dutch fishery under
the landing obligation. In this context, there is a real incentive to improve monitoring and data
collection of skate and ray catches allowing the use of more quantitative assessments methods
currently developed for “data-limited stocks” within ICES. These novel methods provide improved
advice which falls within the ICES MSY framework. Yet, the ability of these methods to ensure fishing
opportunities reflect the total catch of a stock depend on the ability to efficiently register catches on-
board. Possibly, EM could be a tool leading to better registration of catches and thus estimates of
fishing mortality on a stock. Consequently, improved data could allow an increase of quota and reduce
the risk of these species being a “choke species” under the landing obligation. Especially, the
automated registration of catches by species, which was explored in this project, may contribute to
the accuracy of catch estimates for “data-limited stocks”.
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8  Abstract
9 North-Searays are currently considered to be data-limited stocks as catch estimates are uncertain and

10 the stock assessments are primarily based on indicative trends of survey data, There is great potential
11  in using computer-vision technology for automated identification of ray species in commercial fish
12 catches, which will lead to improved and more cost-efficient data collection, The objective of this
13 studyis to investigate whether a current deep-learning method can deal with the complexities present
14  in on-board catch monitoring. We deployed deep-learning techniques for automated detection of
15 three ray species and four flatfish species. To reflect the sorting process on board of a commercial
16 fishing vessel, the collected data consisted of images containing different fish species with varying
17 amount of overlap. Our results show: 1) no significant difference in performance when more species
18 are added for detection, 2) the performance is not influenced by the amount of overlap, and 3) similar
19  looking fish can be distinguished from each other, even when the white ventral side was faced up.
20 Compared to current practice of random manual sampling, we expect our method to be able to

21  improve stock assessments of ray species as well as other data-limited stocks.

22 Keywaords: fish detection, computer vision, deep learning, neural networks, stock assessments

23 Introduction
24 Fisheries management generally relies on accurate estimates of fish abundance and fishing mortality.

25  These are often derived from population models that integrates available fisheries data including

26 catch estimates (Beverton and Holt, 1957; Punt et al, 2006; Rijnsdorp ef of., 2007; Bradshaw et al.,
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2018). Accurate catch estimates are thus a cornerstone of sustainable fisheries management,
especially for species that are sensitive to fishing, such as sharks and rays (Stobutzki et al., 2002;
Broadhurst et ol., 2006; Harry et al., 2011). However, factors such as species misidentification, low
economic value, and low guotas could cause inaccuracy in catch estimates, which is the case for the
ray population inthe Morth Sea. Because of the low value and low quotas, a substantial fraction of ray
catches are being thrown overboard (Stevens et al., 2000; Oliver et al., 2015) in fisheries that target
other demersal fish stocks, The ray catches in the North Sea are mostly estimated from on-board
observer programs with low sample sizes (Stratoudakis et al., 1999; Dickey-Collas et of., 2007; Poos et
al., 2013). As a consequence, stock assessments of rays are solely based on data from annual scientific
surveys (ICES WGEF, 2018). To improve sustainable management of ray populations, better data

collection of catch quantities per species is required,

Videa-based monitering on-board fishing vessels, commonly described as electronic monitoring (EM),
allows observing catches without requiring additional on-board personnel (McElderry et al, 2003;
Ames et al, 2006; Kindt-Larsen et al., 2011; Stanley et of., 2015; Hold et al,, 2015; van Helmond et al,
2017). EM systems enable continuous catch monitoring over long periods, making it suitable for
monitoring species of low abundance or patchy spatial distribution. Considering the dispersion
patterns of North Sea rays, EM would significantly improve data collection of these ray species (Walker
et al, 1997; Ellis et al, 2004; Daan et ol., 2005). However, as EM requires human observations, costs
are still relatively high and the amount of human resources needed for video review is a limiting factor
(Meedle et al., 2015; Mortensen et al., 2017). To reduce the workload and improve the sampling

frequency, a reform of EM data processing is necessary.

Automated image recognition is the logical next step to improve accuracy in catch estimates on board.
Howewer, training a computer to recognise rays during the sorting process on board a fishing vessel is
challenging due to the variability in appearance. For example, rays from the same species are not

identical in size, colour, and patterning, while different fish species also share similarities, e.g. all ray
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species have a white ventral side. Also, catch is often loaded in bulk on a sorting belt for processing
on board, and consequently, fish are randomly positioned on the belt, often overlapping each other,
resulting in severe occlusions, The monitor system needs to deal with partly visible specimens and
must be able to identify multiple individuals and species in a single image frame.

Related work

Recognising multiple fish in images is an object-detection task, consisting of the subtasks, object
localisation and ohject classification. Object localisation involves locating ohjects in an image, and
object classification assigns a class label to that located object. Several approaches have been
proposed to perform the detection task or one of the subtasks. Traditional approaches rely on tailor-
made image-processing algorithms. Zion et ol. (1955), and Storbeck and Daan (2001), for instance,
constructed a system that performs image classification based on shape descriptors of the fish in the
images. However, these systems are constrained by a fixed orientation of the fish. White et af. (2006)
suggested a method that automatically rotates and orient fish in the images before classification as a
solution to this constraint. A different approach was proposed by Hu et al. (2012), in which, colour
and texture features were used instead of shape features, as fish are not always completely visible in
images. The above systems were developed for images with single fish of a specific species. Marini et
al. (2018) developed a framework that detects multiple fish in underwater videos using traditional
image-processing technigues, such as colour thresholding, for localisation and a machine-learning
based approach for binary classification (a fish or not a fish). All these approaches require dedicated
feature extraction for specific species in images with specific conditions, and therefore, cannot be

reusad for other fish detection problams.

Developing tailor-made systems using handcrafted features for every particular problem is not
practical and guite costly. An alternative approach is to use of deep-learning technigues, such as
convolutional neural networks (CNNs) (LeCun et al., 2015). Through feeding a large number of data
examples, CNNs are trained to perform specific tasks by independently finding relevant features in

the input data. At the beginning of the training, the network outputs random predictions. During
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training, the network adjusts the weights of the network connections based on the error in prediction,
The goal is to show the network enough data until the prediction is a good approximation of the actual
answer, Current, widely used object-detection CNN architectures are YOLO (Redmon et al., 2016) and
RCNM and its variations (Girshick et al, 2013; Girshick, 2015; Ren et al., 2015). YOLO performs the
localisation and classification tasks jointly in one CNM, while RCMN splits the tasks in two stages where
relevant regions in the images are first searched by a region-proposal network and then every

proposed region is classified by a different network,

Several CMMN-based approaches have been suggested for detecting or classifying fish in images. Shafait
et al. (2016) and Siddigue et al. (2018) developed an approach that classifies images containing single
fish underwater, while Lu ef ai. (2019) designed a CNN that classifies images of fish catch landed on
the deck of fishing vessels. Allken et al. (2018) implemented a CNN that classified images with multiple
fish in a controlled environment. Various studies have implemented a variation of RCNN or YOLO to
detect fish species in image datasets that are made publicly available for benchmark purposes, such
as ImageCLEF (underwater images of fish) (Li et ol, 2016), or for a competition, such as the Nature

Conservancy Fisheries Monitoring (images of fish on decks of fishing vessels) (Wang et al., 2018),

Objectives
The main objective of this paper is to investigate whether a current deep-learning method can deal

with the complexities that an on-board menitoring system faces. Specifically, we investigated three
main factors: 1) the influence of training neural networks on different number of fish species, 2] the

complexity of the compaosition of the fish on the conveyar belt, and 3) the main sources of error,

To this end, we applied deep-neural networks to localise and classify different fish species in images
mimicking the sorting process on board of a fishing vessels. Rather than using EM videos, specimens
were physically collected as species identification require specific expertise in order to get reliable
ground truth, especially for the ray species. The images include overlapping fish of different species

randomly positioned in the frame. We studied the performance of the networks to detect three ray
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103 species; thornback ray (Rojo clavata), spotted ray (Rajo montagui), and blonde ray (Rajo brachyura),
104 in combination with four demersal flatfish species, plaice [Pleuronectes platessa), dab (Limando
105  limanda), turbot (Scophthalmus maximus), and sole (Soleo solea). These fish are commonly caught in

106 demersal-mixed fisheries in the North Sea,

107 Methods

108 Data collection
109  Training a system to recognise ray species in catches on board of fishing vessels in demersal mixed

110 fisheries requires representative image data. Image data was created by placing fish on a blue
111 background in a lighting box with LED strips on the topside. A Nikon 05300 camera was mounted
112 above the fish, capturing images with a resolution of 6000 x 4000. Composition of collected images
113 was comparable to the top view of a conveyar belt during the sorting process on a fishing vessel, Since
114  the fish catch consists not only of ray species, image data were also collected of other demersal fish
115  species, Specimens of seven fish species were collected. Three were ray species: thornback ray,
116  spotted ray, and blonde ray; and four flatfish species, plaice, dab, turbot, and sole. The specimens
117 were caollected from four commercial fishing trips to the North Sea between June and NMovember 2018
118 by a commercial fishing vessel. During these trips, the vessel deployed an 80 mm codend on a pulse

119 trawl gear (de Haan et al., 2016).

120 To mimic the sorting process on a conveyor belt, images were collected with different compositions.
121 The possible compositions were defined in three levels of complexity (Figure 1). At low complexity,
122 images contain single fish completely visible (1108 images). The view of both dorsal and ventral sides
123 of the fish were photographed. At medium complexity, images contain multiple fish lying close and
124  adjacent to each other (253 images with 871 fish). Lastly, at high complexity, images contain multiple
125  overlapping fish (229 images with 834 fish). In medium and high complexity, the combinations of fish
126 were randomly selected with the only requirement that at least two fish are in the frame. Also, the

127 dorsal and ventral view of each fish in the image was randomly selected. In all situations, the fish were
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randomly positioned. The total data set consists of 1591 images containing 2813 individuals of seven

species.

Low complexity Medium complexity High complexity

Figure 1 Sample images of possible compositions that could occur on a conveyor belt. From left to nght: a single fish (low

complexity), multiple fish lying adjacent to each other [medium complexity), or fish overlapping each other (high complexity).

Deep-learning method for fish localisation and classification
This study uses YOLO version 3 (Redmon and Farhadi, 2018) for ray species and flat fish species

detection. Although there are other methods available for the task, such as Faster R-CNN (Ren et al.,
2015) and SSD (Liu et al., 2016), YOLO has been used frequently for similar tasks and has a good trade-
off between speed and accuracy. Differences between these methods, however, are marginally, and

similar results can be expected for a different deep-learning method.

Deep neural networks allow the end-to-end processing of data, meaning that the raw images are
taken as input, which are processed by the network to provide the required output. A YOLO network
provides the bounding boxes of the objects in the image as output, together with the corresponding
object classes. Additionally, the network provides a confidence score for each of the object detections.
Hence, YOLO performs the subtasks of object localisation and object classification jointly in one
network. The combined subtasks will be henceforward termed object detection. Figure 2 illustrates
the architecture of YOLO. The YOLO network consists of a feature extractor backbone and three blocks
that perform the bounding box detection at different spatial scales. The backbone has 53
convolutional layers with skip connections (residual blocks) to ensure minimal loss of information

across the large number of layers. This residual learning was introduced by He et al. (2016). YOLO also
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149  adopted a Feature Pyramid network-like structure (Lin et af., 2017) to allow for detection of ohject
150 with different sizes on the images. In the backbone block, feature maps are extracted at three spatial
151  scales and then merged to add more meaningful information from earlier feature map for better
152 object detection. For each bounding box, YOLO outputs five components: x, ¥, w, h, and confidence
153  class probability. The (x, ¥) coordinates represent the centre of the bounding box, while the [w, k) are
154 the dimensions of the bounding box. For more details on the network, we refer to Redmon et al.

155  (2016). Redmon and Farhadi (2017), and Redmon and Farhadi (2018),

B corobstional layer [ of Tiners] foemel size)
—— — b
Il corcstenation
[ veempiing taver

Uptamgple

Conv 256 {1xl)

scale 3: large objects

156
157 Flgure 2 Visual representation of YOLOv3 network. |t consists of a feature extractor backbone and three blocks for detecting

158  ohjects in different scales.

159  Training & YOLO network requires a dataset in which every object of interest in the images is
160  annoctated. An annotation includes the coordinate and size of the object’s bounding box and the
161 corresponding class, which in our case is the name of the fish species. Examples of annotations can be
162  observed in Figure 2 and the specific annotations used will be discussed in more detail in the
163 subsection “Experiments”. Training a neural network essentially comes down to tuning the network
164  weights. The weights are adjusted based on the loss (or error) of the network. The loss is determined

165  based on the location and size of the predicted bounding box and on the predicted class, Additionally,
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the network provides a confidence score on its predictions. Initially, the loss will be high, as the
network is not yet able to correctly predict the location and class of the ohjects. Over time, the loss
will decrease as the network learns to translate the image data into the desired output. During
training, the network will learn to detect patterns in the image data that can be used to detect the
fish in the images. The data set was split in a proportion of about 8:2 to generate a training and a test

set respectively.

To improve learning, two techniques were used in conjunction: transfer learning and data
augmentation. Transfer learning is a technigue that reuses a network that was trained on a related
problem as a starting point (Bengio, 2012). This improves learning a task, especially if training data is
limited. We initialised the networks with the weights of a network pre-trained on images from
ImageMet (Krizhevsky et al.,, 2012), a large online image data set containing many different classes of
objects, and then fine-tuned them with our collected data set. With data augmentation, the original
training data is randomly transformed to make a trained network more robust to variations in the
appearance of objects in the images. We applied real-time augmentation where each image is
randomly transformed on-the-fly at each iteration during the training procedure, This ensures that
the network sees different images each epoch. The augmentations include transformations of the
colour (hue, saturation, and brightness) of the image by changing the pixel values, and spatial
transformations by randomly flipping, rotating, resizing and cropping the image (Table 1) (Redmon et
al,, 2016), Images were resized from 6000 x 4000 to 416 x 277 to keep the aspect ratio, and then

padded with black bars to create a 416 x 416 squared image.

Table 1 Data augmentation parameter settings

Parameter Volue

Hue Initial value * [-0.1-0.1]
Saturation  Initial value * [1/1.5 - 1.5]
Brightness  Initial value * [1/1.5 - 1.5]
Flipping Probability of 0.5
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Rotating [0-360] degrees
Cropping +/- 30% of original image
187  All three networks were fine-tuned on a NVIDIA GeForce GTX 1080 Ti. We used a batch size of 64, the

188 learning rate was set to 10, the momentum was set to 0,90, and the decay rate was set to 5 x 107,
185 The networks were fine-tuned for 500 epochs (number of passes through the full training set).

190 Experiments

191 Three experiments were conducted to evaluate the performance of the YOLO network in detecting
192 fish in camera images. In the first experiment, different levels of dass complexity were examined. A
193 first network, the “Ray network”, was trained to detect rays as a single class, This network was
194  evaluated to examine if rays, irrespective of species, can be detected. To examine if a network can
195  distinguish the three ray species, the “Ray-species network” was trained to detect the three ray
196  species, separately. To explore the possibility of extending the detection to more species, a third
197 netwark, the “Fish-species network”, was trained to detect the three ray species, as well as, the four
198  flatfish species. The three networks were trained with differently annotated image data, see Figure 3.
199 For the “Ray network”, all rays in the images were annotated with a single class “Ray”, irrespective of
200 the specific ray species. The “Ray-species network” was trained with annotations where each ray
201 species was provided a different class label. For the “Fish species netwark”, all fish in the images were
202  annotated and labelled with their corresponding species name. All described networks in this
203 experiment were trained and tested with images of every composition complexity. In the second
204  experiment, the influence of the composition complexity on the network performance was examined.
205 To this end, the performance of the three networks was tested for images of low, medium and high
206 complexity, asillustrated in Figure 1. In the third experiment, commaon errors made by the fish species

207 network were examined.
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Figure 3 Annotation example for the same training image for three networks that have different detection tasks, Bounding
boxes are drawn around the object of interest for each detection task. The first column contains training images for a network
with a ray detection task. The second column contain images for a ray species task. The last column contains images for a

fish species detection task. R=ray, RM= spotted ray, RC=thomback ray, PP=plaice, LL=dab.

Indicators of network performance
Detection of objects was determined based on the intersection-over-union metric (loU) (Eq. 1), which

represents how much overlap there is between the area of an actual bounding box, A%, surrounding
an object of interest, and a predicted bounding box, A”. When the actual and predicted bounding box
have an loU = 0.5 and have the same class, the detection is defined as a true positive (TP). All fish in
images that are not detected are labelled as false negatives (FN), and all detections that do not

correspond with a fish or have the wrong class are labelled as false positives (FP).

14" nA%|

loU = ——
14" ua®|

(Eq. 1)
The performance of the models has been evaluated using the precision, recall, and F1 metric. Precision

represents the proportion of correct detections over all detections by the network (Eq. 2) and recall

represents the proportion of correct detection that could be retrieved out of all actual detections (Eq.
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3). The Fl-score combines both precision and recall and computes the harmonic mean of the two (Eq.

4).

TF

Precision = —— (Eg.2)
TP
Recall = e {Eq.3)

Precision : Recall

Fl=2- Precizion + Recall {Eq"ﬂ
To determine the confidence interval for every metric, the test set was randamly split in five groups.
For every group, the mean and its 95%-confidence interval are provided. & two-sided dependent

Student’s t-test was used in experiment 1. In experiment 2, a two-sided independent Student’s t-test

was used. In both cases, an alpha-level of 0.05 was applied.

Results

Experiment 1
Comparisons were made between the Ray network, Ray-species network and Fish-species network.

Figure 4 shows some examples of correct and incorrect detections made by the three networks on

two test images.
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Figure 4 Detection example by three neural networks with different detection task. The first column are detections by the
Ray network that was trained to detect ray species as a collective group. The second celumn are detections by the Ray-
specdes network that was trained to detect three ray species. The last column are detections by the Fish-species network
that was trained to detect seven fish species. Green boxes represent correct detections. Oranges boxes represent missing

detection. The box labels describe the actual class: R=ray, RC=thornback ray, RM= spotted ray, PP= plaice, LL = dab.

Figure 5 shows the quantitative performance of each of the three networks. The plots show the
precision, recall and Fl-score for the different networks tested on the tasks of ray detection, ray-
species detection and fish-species detection. Detecting ray species as a single class is performed by
each network with the lowest F1 score of 0.97. No significant differences in performance were found
between the network that was specifically trained for detecting rays and the networks that were
trained to detect individual ray species and individual fish species. When testing the ability of the Ray-
species and Fish-species networks to detection specific ray species, we observe lower average F1-
scores (0.90 and 0.88 respectively). This indicates that the networks can detect rays in general very
reliably, but that distinguishing individual ray species is more challenging. No significant difference
was found between the Ray-species network and the Fish-species network, showing that increasing

the number of classes during training does not affect the overall performance of ray-species detection.

42 Of 55 | Wageningen Marine Research report C093/22



256  Finally, looking at the task of fish-species detection, we see that the Fish-species network has an
257 average Fl-score of 0.91. The overall performance of detecting the seven individual fish species shows
258  nosignificant difference with the detection of the three ray species. Indicating that the performance
255 of the deep neural network is not harmed by adding more fish species. Looking at the precision and
260  recall, we can ohserve that the precision is generally higher than the recall. This shows that the
261  detections made by the networks are very reliable, but that some of the fish are not detected

262 correctly.

263
Precision Recall F1 scare
Ry defaction =
s ===
Fish species detection
N T T O
oe a2 a4 a8 s Lo 1] o2 a4 a8 an 1o oo o o4 LT an Lo
264 = fay network  EEm Ray species network  mmm Fish species network

265 Flgure 5 Performance of three neural networks on three different detection tasks. Each network was tralned on the same
266 data to detect different number of classes. The Ray network detects all ray species as one dass, the Ray-species network
267 detects the ray species as individual classes and the Fish-species netwark detects all seven fish species individually. The
263 performance on ray detection was tested on all three networks, in which the individual ray species were not taking into
269 account. The performance on detecting the three ray species was tested with the ray species and fish species networks.
270 Finally, the detection of the individual fish species was tested anly for the fish species netwerk, Thie bars shew the mean

271 scores and the error bars represent 95% confidence intervals on the means.

272 Experiment 2
273 Inthis experiment, we investigate the performance of the networks depending on the complexity of

274 the fish composition. Here, the three networks were trained on all training images and then tested on
275 images with low, medium and high complexity. Figure 6 shows some correct and incorrect examples

276 of detections by the Ray-species network for the different complexities.
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Figure 6 Examples of ray species detections by a neural network on images with different composition complexity. The
network was trained to detect the blonde ray (RB), the spotted ray (RM), and the thornback ray (RC). The first column
contains low complexity images, the second column contains medium complexity images, and the last column contains high
complexity images. Green boxes represent correct detections, red boxes represent misclassifications, and oranges boxes
represent missing detections. The labels of the green and orange boxes describe the actual class. The labels of the red boxes

describe the actual class and the incorrect predicted dass,

Figure 7 shows the Fl-scores for the three different networks tested on the low, medium and high
complexity. The Ray network has a perfect detection performance on the low complexity. For the
medium and high complexity, some detection errors are visible. The Ray-species network and the Fish-
species network show a lower performance on the low complexity and a small decrease for more
complex compositions. In general, the results show a small decrease in performance for the more
complex situations. However, performing a two-sided t-tests show no significant difference between

the performance for the different composition complexities, apart from the medium and high

44 Of 55 | Wageningen Marine Research report C093/22



291  complexity of the Fish-species network (p-value 0.03). That most differences are non-significant shows
292 that the networks in general can deal with the complex situations with overlapping fish without a big

293 lossin performance.

Ray network Ray species network Fish species network

Low

—

i :

High

b0 b2 04 06 08 10 00 A2 a4 06 ©8 10 008 02 04 08 08B 10
F1 score
294

295 Figure 7 Evaluation of three neural networks with different detection tasks on different test data, The networks were
296 trained on all complexity images but evaluated per complexity {low, medium, and high). Error bars represent 95% confidence

297 intervals.

298  Analysis of errors
299  Errors made by the networks can be categorised as either no detection or misclassification of localised

300  fish. Table 2 show the confusion matrix for the Fish-species netwaork, indicating how often these errors
301  occur. Intatal, the network made 566 detections, which happens to correspond to the same number
302  of fish in reality. The actual classes are presented horizontally and the predicted classes vertically. &
303  class “background” is added. Horizontally, this means that a detection in reality is background, which
304 happened anly thrice, while vertically, this means that a fish was not detected by the netwaork, which
305  was the case in 32 occasions. In general, we can see that most of the detections are correct.
306 Misclassifications occur mainly within the ray species group and within the other group of demersal
307  fishspecies. Only once, there is a misclassification between these two groups. Even though the blande
308  ray and spotted ray share similar back pattern (both have spots), the errors ocour mostly between
309  spotted ray and thornback ray. Dab and plaice are also sometimes mixed up. In total, 35

310 misclassifications were made on the test set.
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Table 2 Confusion matrix of newral network with seven dasses, Predicted class backgrownd class refers to false negatives,

while actual class background refers to false positives, The green cells shaw the number of correct predictions,

Predicted class
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From experience, identifying the species based on the ventral side of demersal fish is performed
poorly by humans compared to the dorsal view, due to the absence of well-identifiable patterns on
the ventral side. This can also be seen in the performance of the Fish-species network. Figure 8 shows
the percentage of correct detections, misclassifications and non-detections for the dorsal side (left}
and the ventral side (right). Miscdlassifications occur mare on the ventral side, 11% compared to 3% in
case of the dorsal side. Nevertheless, the network was still able to classify about 84% of the fish in the

test set from the ventral side, compared to 92% on the dorsal side,

Dorsal Ventral

Mustlassuhcatwn
Hut detected _— th debected [
m:ct

Flgure 8 Performance of the Fish-species network. The test set contain 333 dorsal views and 231 ventral views of the fish.

Evaluation was made based on whether the detection was correct, misdassified, or the fish was not detected. For dorsal,
92% was correct, 3% was misclassified, and 6% was not detected. For ventral, 84% was correct, 11% was misclassified, and

&% was not detected.
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326  Conclusion and discussion
327  Inthis paper, we investigated a current deep-learning method can deal with the complexities present

328 in on-board catch monitoring. Three conclusions can be drawn: 1) the number of fish species could be
329  increased without loss in performance, 2) fish singulation are not necessary as the composition
330 complexity could be increased in most cases without loss in performance, 3) similarly looking ray and

331  flatfish species could be detected, even when only the white ventral side was visible,

332 Our collected data represent a simplification of on-board situation. Images of fish were taken in a
333 controlled environment without benthos and debris, which is often part of the catch in demersal-
334 mixed fisheries. Mare data shall likely further improve the results, This would especially be in the case
335 of maore complex situation. For an automated monitoring system on-board of a fishing vessel, more
336 data is indeed required. However, the goal of this research is not to achieve optimal performance,
337  Rather, we investigate the changes of the performance as a function of the complexity. In our work,
338 neither the complexity in composition nor the number of detection of fish species are significant.
335 Adding more training data will likely diminish the gap in performance between the simple and complex

340  situations. Hence, our conclusions will not change by adding more training data.

341  Nevertheless, for human observers, recognising and identifying species in video footage with complex
342  compositions is challenging, but for our method it is not. Although our method makes errors, the
343 benefit is the potential to observe the full catch, thereby increasing the sample size for stock
344 assessment by an order of magnitude compared to current practices. Of course, fish in video footages
345  should at least be partly visibly to enable detection. still, all video footages taken from the fishing
346 vessels could be processed with known error marging, whereas current on-board or video observers
347 generally identify species and record their choice. Since the error margins in the choices of observers
348  is unknown, extrapolating count estimation based on small samples of the catch gives a false sense of
349  accuracy. Thisis especially relevant in fisheries with rare species for which misidentification is common
350 [van Helmond et al., 2015; van Helmand et al, 2017). Thus, deep-learning methads could provide an

351  important element compared to cbserver programs: the probabilities of correct species identification.
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In theory, these probabilities can be used to inform stock assessment models about the accuracy of
the catch information, which can then be propagated into the estimates of population size and

mortality rates.

Currently, our method detects fish in images, and counting fish in a sequence of images would be a
simple extension. For most stock assessments these counts would have to be converted to weights in
order to obtain estimates of total catch in weight. Previous studies have already dewveloped
approaches that estimate weights based on lengths (Robinson et ol., 2010; Froese et al., 2013). In
future research, fish length could be estimated based onimages (White et al,, 2008, even if individuals
are partly covered by ather fish in the catch, Deep-learning methods can be developed to estimate
size and weight simultaneously. Cumulating the body weights in the samples will give an estimate of

the total catch in weight.

More complex assessments require length or age stratification of catches to disentangle the effects
of birth, growth, and mortality on population dynamics (Beverton and Holt, 1957; Hillary et al., 2010).
Age information is generally obtained from growth rings in hard structures inside the body, and these
cannot be obtained from the images. Meanwhile, deep-learning techniques could in theory be able to
estimate age from morphological characteristics of the individuals beyond length, if such

characteristics exist.

In conclusion, this study provides a crucial step in innovating data collection in commercial fisheries
by exploring deep-learning techniques in fish-catch maonitoring, which could contribute to stock

assessments, and eventually, more sustainable fishenes.
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