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1  |  INTRODUC TION

Body length is shown to be an important indicator of many life his-
tory traits such as maturation, consumption, mortality, and repro-
duction rates (Beverton & Holt, 1959; Calder, 1984; Kooijman, 2010; 

Pauly,  1980; Peters,  1983). Estimating the growth trajectory of 
individuals is therefore a general aspect of understanding the life 
history and dynamics of a population. The Von Bertalanffy growth 
equation is one of the most commonly used models to describe 
growth of individuals. It is already used to describe the growth of a 
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Abstract
Growth and growth limitation are important indicators of density dependence and 
environmental limitation of populations. Estimating individual growth trajectories is 
therefore an important aspect of understanding and predicting the life history and 
dynamics of a population. Variation in individual growth trajectories arises due to 
variation in the environmental factors limiting individual growth. This environmental 
limitation can vary over time, between cohorts and between individuals within a co-
hort. For a complete and accurate understanding of individual growth in a population, 
it is important to include all these sources of variation. So far, statistical models only 
accounted for a subset of these factors or required an extensive growth history of 
individuals. Here, we present a novel model describing the growth curves of cohorts 
in a population. This model is derived from a stochastic form of the Von Bertalanffy 
growth equation describing individual growth. The model is specifically tailored for 
use on length-at-age data in which the growth trajectory of an individual is unknown 
and every individual is only measured once. The presented method can also be used 
if growth limitation differs strongly between age or length classes. We demonstrate 
the use of the model for length-at-age data of North Sea plaice (Pleuronectes platessa) 
from the last 30 years. Fitting this model to length-at-age data can provide new in-
sights in the dynamics of the environmental factors limiting individual growth and 
provides a useful tool for ecological research and management.
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wide range of species (Kingsley, 1979; Narinc et al., 2017; Ramirez 
et al.,  2021; Teleken et al.,  2017) and is especially often used for 
fish (Flinn & Midway,  2021; Lorenzen & Enberg,  2002). The Von 
Bertalanffy growth equation describes growth in terms of individual 
energy assimilation and catabolism rates (von Bertalanffy, 1938). In 
the resulting growth curve, individuals grow toward an asymptotic 
length at which the catabolism rate is equal to the assimilation rate 
and no energy is available for growth. If we follow Dynamic Energy 
Budget theory (Kooijman, 2010) and assume that assimilation scales 
with surface area while catabolism scales with body volume, we ob-
tain the most commonly used form of the Von Bertalanffy growth 
equation:

Herein, we indicate the length of individual i at age a and time t 
with �(t,a,i), which emphasizes that Equation (1) describes the growth 
rate of a single individual. In this equation, individual growth is pro-
portional to the difference between the asymptotic length (ft�∞) and 
the current length, scaled with the Von Bertalanffy growth rate sca-
lar (rB). Following Dynamic Energy Budget theory (Kooijman, 2010), 
the asymptotic length consists of a maximum asymptotic length 
(�∞ ) scaled by the limitation of the environment through assimila-
tion (ft). Although individuals might vary slightly in the values of the 
Von Bertalanffy growth rate scalar and the asymptotic size due to 
genetic differences, we will only focus on environmental effects 
on growth because these effects can affect the growth of individ-
uals through their life. It is commonly assumed that the asymptotic 
length is the only parameter in the Von Bertalanffy growth equation 
which depends on the environment (Kooijman,  2010; Lorenzen & 
Enberg, 2002). As such, the Von Bertalanffy growth equation pro-
vides an opportunity to estimate the environmental limitation on the 
individual growth rate.

Research on the dynamics of individual growth is generally based 
on one of two types of data containing age and length measure-
ments of individuals. The first type of data contains multiple mea-
surements of the same individual, for example, obtained through 
controlled experiments, mark-recapture methods or back calcula-
tion from otoliths or year-rings. This type of data generally allows 
for extensive correction for variation between individuals and co-
horts because the growth history of individuals is known (Graaf & 
Prein, 2005; Rafail, 1973; Shelton et al., 2013; Vincenzi et al., 2014, 
2016). Often, however, such rich individual-level data is unavailable, 
because individuals cannot be tagged or retrieved or because back 
calculation of otoliths and year-rings is often imprecise (Eveson 
et al., 2007). Even if these methods are successful, they only result in 
a relative relationship between age and length. Much more common 
is the second type of data, which only contains a single measure-
ment per individual. To obtain this kind of data, individuals only have 
to be measured once and the age of individuals can be determined 
based on hard or internal body structures such as year-rings, scales, 
bones, teeth, and chemical composition. This is a common method 

for fish (Maceina et al., 2007), amphibians (Smirina, 1994), reptiles 
(Castanet, 1994), mammals (Read et al., 2018), and insects (Robson 
& Crozier, 2009). In this study, we focus on the estimation of growth 
curves and variation herein based on data consisting of a single ob-
servation per individual.

In data with a single age and length observation per individual, 
the growth history of individuals is unknown and it is difficult to deal 
with the different overlapping sources of variation in the length in-
dividuals have at a specified age. In addition to variation between 
measurements due to sampling errors (Piner et al.,  2016; Taylor 
et al., 2005), variation in the growth rate can be separated into vari-
ation as a result of changes in the environment over time, variation 
in the growth history of cohorts, and variation between individuals 
within a cohort. So far, statistical methods dealing with single ob-
servations of individual ages and lengths only deal with a subset of 
these sources of variation.

Variation due to changes in the environment over time is most 
likely to affect the asymptotic length in the Von Bertalanffy growth 
equation because this is the part of the growth equation that is 
related to the environment-dependent assimilation rate of an indi-
vidual (Kooijman, 2010; von Bertalanffy, 1938). Changes in the as-
ymptotic size therefore affect all cohorts at a given time equally. This 
can be used to estimate the effect of an environmental factor on the 
growth of individuals. This is generally done by directly substituting 
the asymptotic length in the Von Bertalanffy growth equation with 
a linear dependency on the environmental factor of interest (Cloern 
& Nichols, 1978; Graaf & Prein, 2005; Lorenzen, 1996; Lorenzen & 
Enberg, 2002). Although this can be useful to prove a general rela-
tionship between the growth rate and an environmental factor, the a 
priori assumption of linearity is questionable.

Variation between cohorts arises due to differences in the 
growth history of cohorts. It is evident that cohorts in a given year 
differ in length due to the difference in age, but the length at a given 
age is likely to vary over time as well. This variation between co-
horts might arise due to variation in the length at birth, but might 
also occur because cohorts lived at different times and therefore 
differ in the experienced environment (He & Bence, 2007; Wang & 
Thomas,  1995). A common way to correct for the growth history 
of individuals is to consider the average growth increment be-
tween two time points, instead of the actual length-at-age (Lipinski 
& Roeleveld,  1990; Rafail,  1973; Wang & Thomas,  1995). As we 
consider datasets that consist of independent length-at-age obser-
vations throughout years, this method can only be applied to the av-
erage length-at-age in every sampling instance and as such neglects 
individual variation in length-at-age and environmental limitation. 
In addition, this has been shown to yield less accurate estimates of 
the Von Bertalanffy growth parameters with a larger uncertainty 
(Vaughan & Kanciruk, 1982).

Similar to variation between cohorts, variation in length-at-
age within cohorts arises due to differences in length at birth and 
differences in the experienced environment between individuals. 
Although individuals in the same cohort are not separated in time, 
they might be separated spatially or due to other ecological factors 

(1)d�(t,a,i)

dt
= rB

(
ft�∞ − �(t,a,i)

)
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leading to variation in the experienced environment. In addition, 
genetic differences might cause variation between individuals as 
well. Consistent (genetic) differences between individuals can be 
accounted for by incorporating a random effect for every individual, 
but this is only feasible in datasets with multiple observations per 
individual. We focus on datasets with single observations for each 
individual, where this approach would only lead to extreme overfit-
ting. Therefore, the only option to account for individual variation 
caused by a shared environment in datasets with single measure-
ments is by considering the length-at-age at the population level as 
a distribution rather than a single value (Eveson et al., 2007; Pilling 
et al., 2002; Praineshu & Venugopalan, 1999).

The different sources of variation in the length-at-age are entan-
gled due to the auto-regressive nature of individual growth processes 
in which the current growth rate depends on the growth history of an 
individual. As a consequence, variation in growth arises between in-
dividuals and cohorts and could fluctuate over time. All these sources 
of variation should be considered to obtain an accurate estimate of 
the Von Bertalanffy growth parameters of a specific species, even 
if we are only interested in one of the sources or variation or aver-
age growth parameters. Such a method is currently unavailable. To 
fill this gap, we derive a model that describes the length distribution 
at a given age for every cohort, which can be used for datasets with a 
single length and age observation per individual. Because we derived 
this model from a stochastic version of the Von Bertalanffy growth 
equation for single individuals (Equation 1), it simultaneously includes 
variation due to changes over time, variation due to differences in the 
growth history of cohorts, and variation between individuals within a 
cohort. Here, we derive the model and apply it to length-at-age data 
of North Sea plaice (Pleuronectes platessa).

2  |  METHODS

2.1  |  Model formulation

We start with the equation describing the growth trajectory of a sin-
gle individual (Equation 1). Individuals will differ in the experienced 
environmental limitation and this limitation might vary over time. 
We therefore assume that the limiting effect of the environment at a 
given point in time follows a Gaussian distribution of which the mean 
(�t) and variance (�2

t
) are allowed to vary over time:

By substituting this distribution in Equation (1), we obtain a sto-
chastic differential equation describing the growth of an individual 
born at time Tb. We can solve this equation by separation of variables 
and integration:

The parameter �(Tb ,0,i) represents the length at birth of an indi-
vidual. In addition, Wt represents a Wiener process, which describes 
the outcome of a continuous process with independent Gaussian 
increments (Wt+u −Wt ∼  (0, u)). The integrals in this expression 
cannot be solved explicitly because the dynamics of the mean and 
variance of the environmental limitation (�t , �

2
t
) are not defined. 

If the environmental limitation was constant over time and space 
(�t = �, �2

t
= 0), individuals would follow a Von Bertalanffy growth 

curve toward a constant asymptotic length.
In this method, we consider datasets in which every individual is 

only measured once. In the ideal situation, these individuals are se-
lected randomly from the population. In such datasets, it is not pos-
sible to follow the growth trajectory of a single individual and fit the 
derived growth curve on single individuals. Instead, we describe the 
distribution of the length-at-age for a cohort. Because we assumed 
that the environmental limitation of growth follows a Gaussian dis-
tribution, the length of individuals in a given cohort at time T follows 
a Gaussian distribution as well. Because the expected value of the 
Wiener process is equal to zero, we can derive an expression for the 
expected mean length at time T of a cohort born at time Tb.

We omitted the indices referring to single individuals in the expres-
sion of the expected value of the length-at-age (E

[
�(T ,a)

]
), to make 

clear that this expected value is a statistic of the length-at-age dis-
tribution of a cohort rather than the length of single individuals. By 
using Equations (3) and (4) and applying Ito's isometry rule, we can 
also derive an expression for the expected variance in length at time 
T for a cohort born at time Tb:

We assume that samples are taken with an approximately con-
stant time interval and therefore discretize the equations charac-
terizing the length distribution of a given cohort at time T. Under 
this assumption, the equations become independent of the length 
distribution at birth and can be applied without knowledge about 
the full growth history of a cohort.(2)ft ∼  (

�t , �
2
t

)

(3)
d�(t,a,i) = rB

(
�t�∞−�(t,a,i)

)
dt+ rB�t�∞dWt

�(T ,a,i) =�(Tb ,0,i)e
−rB(T−Tb) +∫

T

Tb

rB�t�∞e
−rB(T−t)dt+∫

T

Tb

rB�t�∞e
−rB(T−t)dWt

(4)

E
[
�(T ,a)

]
=E

[
�(Tb ,0,i)

e
−rB(T−Tb)

]
+E

[
∫
T

Tb

rB�t�∞e
−rB(T−t)dt

]
+E

[
∫
T

Tb

rB�∞�te
−rB(T−t)dWt

]

=E

[
�(Tb ,a)

]
e
−rB(T−Tb) +∫

T

Tb

rB�t�∞e
−rB(T−t)dt

(5)
V
�
�(T ,a)

�
=E

��
�(T ,a,i) −E

�
�T ,a

��2�
=E

⎡
⎢⎢⎣

�
∫
T

Tb

rB�t�∞e
−rB(T−t)dWt

�2⎤
⎥⎥⎦

=E

�
∫
T

Tb

r
2

B
�
2
t
�
2

∞
e
−2rB(T−t)dt

�
=∫

T

Tb

r
2

B
�
2
t
�
2

∞
e
−2rB(T−t)dt

(6a)
E
[
�(T+1,a+1)

]
=E

[
�(Tb ,0)

]
e
−rB(T−Tb+1) +∫

T+1

Tb

rB�t�∞e
−rB(T+1−t)dt

=E
[
�(T ,a)

]
e
−rB +∫

T+1

T

rB�t�∞e
−rB(T+1−t)dt

(6b)

V
[
�(T+1,a+1)

]
=∫

T+1

Tb

r
2

B
�
2
t
�
2

∞
e
−2rB(T+1−t)dt

=V
[
�(T ,a)

]
e
−2rB +∫

T+1

T

r
2

B
�
2
t
�
2

∞
e
−2rB(T+1−t)dt
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4 of 13  |     CROLL and van KOOTEN

To make these equations usable, we need to make assumptions 
about the dynamics of the mean and the variance of the environ-
mental limitation (�t and �2

t
). These quantities only appear within 

the integral from time T up to time T + 1. We therefore only have to 
make assumptions about the mean and variance of the environmen-
tal limitation between consecutive timepoints or measurements. We 
assume that the mean and variance of the environmental limitation 
between times T and T + 1 are well approximated by the average 
value of these quantities in the given time interval (�T and �2

T
). Under 

these assumptions, the model will approximate the growth dynam-
ics if the interval between measurements becomes small relative 
to the average lifetime of an individual. Because we substitute the 
mean and variance of the environmental limitation by the average of 
these quantities over a time interval, they become independent of 
time in the domain of integration and we can solve the integrals in 
Equations (6a) and (6b), which results in the final form of our model:

Interesting to note from this formulation is that the variance in 
environmental limitation over a given period (�2

T
) has the same unit 

as the time constant (T). This arises because we model the length of 
an individual as a Brownian process which is a process with random 
increments. The variance of a Brownian process increases due to the 
random nature of the process and therefore depends on the length 
of the time between consecutive measurements in our model. In 
other words, the total variance in environmental limitation experi-
enced by an individual increases (decreases) if the actual variation of 
the environment increases (decreases) or the individual experiences 
the environment for a longer (shorter) period of time.

To obtain a time-independent measurement of the environmen-
tal variation, we can consider the long-term asymptotic variation in 

individual length (V
[
�(T ,∞)

]
). This represents the variation in length 

that individuals would have after spending an infinitely large time 
in an environment with a given amount of variation in growth lim-
itation (�2

T
). At this asymptotic variation in length, the loss of vari-

ation in length due to growth (V
[
�(T ,a)

](
1 − e−2rB

)
) is equal to the 

gain in variation in length due to variation in the environment 
(1
2
rB�

2

T
�
2

∞

(
1 − e−2rB

)
 ). In other words, when a cohort reaches the as-

ymptotic variation in length, the variation in length of a cohort does 
not change any further over time. From Equation (7b), we can there-
fore derive the expression of the long term asymptotic variance in 
length:

2.2  |  Model application

The model proposed in Equations (7a) and (7b) predicts an independent 
Gaussian length distribution for every cohort at every discrete age and 
time value. Therefore, the model can be fitted to datasets containing 
pairs of age and length measurements using maximum likelihood esti-
mates. The best results are obtained if individuals enter the population 
at approximately the same moment of the year and measurements rep-
resent a random sample of the population. This is especially important 
for individuals in the same age class and year. Assigning weights to the 
measurements allows to correct for biases in the sample, if biases are 
known. In addition, sample instances should approximately be evenly 
distributed in time and individual ages, and cohorts should be charac-
terized on the same discrete scale as sample instances. For example, 
measurements could be taken yearly on randomly selected individuals 
at a specified date. The age of individuals is consequently measured in 
year classes and individuals born between two measurements belong 
to the same cohort. Fitting the model described by Equations (7a) and 
(7b) to a dataset with pairs of length and age measurements is done 
by optimizing the log likelihood through altering the value of the Von 
Bertalanffy scalar (rB), the length distribution at the youngest age at 

(7a)E
[
�(T+1,a+1)

]
= E

[
�(T ,a)

]
e−rB + �T�∞

(
1 − e−rB

)

(7b)V
[
�(T+1,a+1)

]
= V

[
�(T ,a)

]
e−2rB +

1

2
rB�

2

T
�
2

∞

(
1 − e−2rB

)

(8)V
[
�(T ,∞)

]
=

1

2
rB�

2

T
�
2

∞

Parameter Description Type
Number of 
parameters

nT Number of sampling instances Discrete 0 (fixed value)

na Number of sampled age classes Discrete 0 (fixed value)

Tmin Time of the first sampling instance Discrete 0 (fixed value)

amin First age class in the dataset Discrete 0 (fixed value)

rB Von Bertalanffy growth rate scalar Continuous 1

E

[
�(T ,amin)

]
Expected mean length at the first age class Continuous nT

V

[
�(T ,amin)

]
Variance in length at the first age class Continuous nT

E

[
�(Tmin ,a)

]
Expected mean length at the first sampling 

instance
Continuous na−1

V

[
�(Tmin ,a)

]
Expected variance in length at the first 

sampling instance
Continuous na−1

�T�∞ Mean asymptotic length Continuous nT−1

�
2

T
�∞

Variance in asymptotic length Continuous nT−1

TA B L E  1 Description of the parameters 
that are estimated during the model fitting 
procedure.
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    |  5 of 13CROLL and van KOOTEN

every time point (E
[
�T ,amin

]
, V

[
�T ,amin

]
), the length distribution of all other 

cohorts at the first time point (E
[
�Tmin,a

]
,V
[
�Tmin,a

]
) and the distribution of 

the environmental limitation between all time points (�T, �2T), (Table 1). 
In the proposed model, the mean and variance of the environmental 
limitation always occur as a product with the maximum asymptotic 
length (�T�∞, �2

T
�
2

∞
). Therefore, the maximum asymptotic length can-

not be estimated separately with this method and is incorporated as a 
species-specific scalar of the environmental limitation. We provided an 
R-package (Croll, 2022) that includes a procedure for fitting the model 
to a dataset with pairs of age and length measurements using maxi-
mum likelihood optimization through optimization methods available 
in the NLoptR-package (Johnson, 2022).

The R-package for fitting the described Von Bertalanffy growth 
model contains some additional features to tailor the model to spe-
cific populations. The first feature deals with the dynamics of the mean 
length at age when the environmental limitation is very variable. In the 
model described in Equations (7a) and (7b), the mean length of a co-
hort (E

[
�T ,a

]
) decreases if it exceeds the asymptotic length at some time 

step (�T�∞). This is a mathematical artifact of the model that predicts 
that individuals will shrink in size if they are too large to be supported 
by the environment. Although some species might shrink in size under 
bad conditions, this is not realistic for all species (Kooijman, 2010). This 
could be solved by either assuming a log-normally distributed error 
structure or by simply fixing the change in the mean length at age to 
non-negative values. The first option is mathematically very complex. 
Instead, the package includes a version of the model in which the aver-
age length of a cohort does not decrease if the average cohort length 
exceeds the maximum asymptotic length. This version of the model 
should be used with care and only with reasonable arguments, be-
cause this method inflates the impact of small and younger cohorts on 
the estimated environmental limitation. In any case, we advise to first 
fit the model without this additional assumption, to check whether this 
indeed predicts large decreases in mean length of some cohorts.

The second extension available in the R-package deals with dif-
ferences in environmental limitation between age and length classes. 
Differences in environmental limitation between age or length classes 
can arise if age or length classes show spatial segregation or differ in 
diet. The model allows specification of age or length classes and es-
timates separate means and variances in environmental limitation 
(�T ,c, �2T ,c) for every age or length class at every time step. It is import-
ant to note that this extension of the model only uses the mean length 
of a cohort to identify the length class and therefore all individuals in 
a cohort are always placed in the same length class. In addition, the 
number of observations per class decreases with an increase in the 
number of age or length classes. The incorporation of age or length 
classes can therefore make the model fit less accurate if there are no 
true differences in the environmental limitation of the selected classes.

2.3  |  Application to North Sea plaice

To illustrate the use of the proposed model, we fit the model to a data-
set with age and length measurements of plaice (Pleuronectes platessa) 

obtained from the Beam Trawl survey (BTS). This survey is designed 
to monitor plaice in the North Sea and is consistently conducted in 
the third quarter (July to September) from 1990 onwards. The length 
of individuals is measured with at least 5 mm accuracy and the age of 
sampled individuals is obtained through otolith readings. We down-
loaded the datasets with individual ages and lengths recorded during 
the third quarter of 1990 to 2021 from the online ICES DATRAS data 
portal on the 1st of November 2021 (ICES, 2021). The size distribu-
tions in the dataset are likely to be skewed due to size-dependent 
mortality in the population and biases in the sampling process. 
Differences between age classes and years are unlikely to affect the 
estimated size distributions because the model estimates a size distri-
bution separately for every age in every year. In contrast, differences 
between the size classes are likely to skew the size distribution of a 
given age. The age–length observations were therefore weighted by 
the inverse of the catch per unit effort (CPUE) of the observed length. 
The CPUE per length indicates the probability that an individual of 
a given length is caught in the survey of a given year. Weighting the 
observations with the inverse of the CPUE corrects for any factor that 
affects the catch probability of a given length in a given year. After 
weighing of the samples, all lengths approximately had the same con-
tribution to the dataset, and visual inspection confirmed that the data 
approximated the assumption that length at age in a given year fol-
lows a Gaussian distribution (judged by eye, Figure A3 in Appendix A).

Starting values for the expected length at the first age in the data-
set and the expected asymptotic length and the growth scalar were 
estimated by fitting a Von Bertalanffy growth model without consid-
ering differences between years and cohorts (E

[
�(T ,amin)

]
= 120mm, 

�t�∞ = 380mm and rB = 0.303y−1). Starting values for the variance 
in length at the lowest age class and the variance in asymptotic 
length were set to the variance in the youngest and oldest age class, 
respectively (V

[
�(T ,amin)

]
= 801mm2y and �2

t
�
2

∞
= 5789mm2y).

We used the Sbplx algorithm of the NLoptR-package 
(Johnson,  2022), which is a variant of the Nelder–Mead optimi-
zation method, with a relative tolerance of 10−10 to optimize the 
likelihood of our model. The optimization was performed using a log-
transformed parameter space to account for the magnitudinal differ-
ence between parameters. For comparison, we fitted two versions 
of the model. In the first version, the environmental limitation was 
constant over years and therefore the mean and variance of the as-
ymptotic length were estimated as a single parameter. In the second 
version, the environmental limitation was allowed to vary between 
years, and the mean and variance of the asymptotic length were es-
timated separately for every year.

To assess the robustness of the model with yearly varying as-
ymptotic length, we used a jackknife approach in which we repeated 
the analysis 31 times with data from one entire year omitted every 
time. This shows the impact of the samples from a given year on the 
model fit and gives an indication of the robustness of the method to 
years in which no data could be collected. Lastly, we demonstrate 
the use of separate age groups with different environmental limita-
tion in the model by splitting the plaice population in three ecologi-
cal groups by age.
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6 of 13  |     CROLL and van KOOTEN

We used a estimation of the maximum asymptotic length 
(�∞ = 780) estimated by Van der Veer et al.  (2001) and scaled the 
estimated mean and variance in asymptotic length with this value 
to obtain the mean and variance in environmental limitation (�t,�2t ).

3  |  RESULTS

A model with a constant environmental limitation and a model with 
yearly varying environmental limitation were fitted to a length-at-
age dataset for North Sea plaice. The model with yearly varying 
mean and variance of the environmental limitation fitted the data 
better compared to the model with constant mean and variance of 
the environmental limitation (AIC of respectively 16,076,750 and 
16,048,031, likelihood ratio test: p < .001). This suggests that the 
mean and variance of the environmental limitation are likely to fluc-
tuate between years. More precisely, the model with yearly vary-
ing environmental limitation suggests a weak downward trend in 
this limitation, indicating that the environmental limitation became 
stronger over time (Figure 1, solid line). The estimated variance in 
the environmental limitation is slightly larger if the environmental 
limitation is fixed compared to the model in which the environmental 
limitation is allowed to fluctuate (0.0335y and on average 0.0268y, 
respectively). This overestimation of the variance in environmental 
limitation arises because the fixed limitation model accounts for 
the variation in the asymptotic length between years in addition to 
the variation in asymptotic length within a year. As expected, the 
models also differ slightly in the estimated parameters defining the 
length distribution at the youngest age. The estimates of the Von 
Bertalanffy growth scalar of the models (0.2553y−1 and 0.2977y−1, 
respectively) are relatively close to estimates based on individual en-
ergy expenses (0.2955y−1, Van der Veer et al., 2001).

The estimated model parameters lead to predictions of the 
length-at-age distribution for every cohort, which differ most 
strongly for the older age classes (Figure 2). On visual inspection, 
both the model with a constant environmental limitation and a 
yearly varying environmental limitation appear to fit the datapoints 
well (Figure  2c–f). Note that the expected length of individuals 
in a cohort can shrink in the model with yearly varying environ-
mental limitation. This occurs if the estimated mean asymptotic 
length falls below the expected length of individuals in a cohort 
(𝜇T�∞ < E

[
�(T ,a)

]
 ). While such a decrease can realistically occur, it 

is sometimes a biologically impossible result. Repeating the analy-
sis on this dataset with the restriction that the expected length of 
a cohort cannot decrease, yields very similar results (not shown). 
Nonetheless, this additional restriction should be handled with 
care, because early tests on simulated data showed that this re-
striction makes the model more dependent on the data points of 
young age classes.

To demonstrate the robustness of the model, we used a jack-
knife approach in which we repeated the analysis with the samples 
from 1 year omitted (Figure  3). It is not unlikely that actual data-
sets will contain years for which there is no data, for example, due 

to sampling problems. This analysis showed that missing samples 
mainly affect the estimate of the mean environmental limitation in 
the time step directly before and directly after the sample instance 
with missing data. At one of these time steps, the mean environ-
mental limitation will be overestimated while it will be underesti-
mated in the other time step. In addition, it seems that this over- and 
underestimation of the mean asymptotic length becomes larger to-
ward the start and end of the time period included in the model. A 
possible cause for this pattern is that these time steps include co-
horts which partly fall outside the time period covered by the data 
and therefore are estimated on a restricted number of ages. This 
could make estimates of the growth curves of these cohorts more 
vulnerable to missing data, which is reflected in the larger over- and 
underestimations of the asymptotic length in the years these co-
horts are in. Indeed, the early years included in the analysis include 
significantly less observations than later years. Lastly, it is clear that 
the over- and underestimation of the mean asymptotic length due 
to omitted data is small compared to the variation between individ-
uals within a cohort.

Our estimation method can also be used on populations which 
consist of separate ecological groups. We demonstrate this using 
plaice, the distribution of which has been shown to shift away from 
the coast with increasing length or age (Basimi & Grove,  1985; 
Braber & De Groot, 1973; Rijnsdorp & Vingerhoed, 2001). We di-
vide the plaice population into three arbitrary age groups to rep-
resent this spatial shift with age, respectively a group up to 3 years 
old, a group from 4 to 7 years old, and a group with individuals over 
7 years old. The model fit yields an estimate of the mean and the 

F I G U R E  1 Fitted environmental limitation (�T) for the model 
with constant environmental limitation (red) and the model with 
yearly varying environmental limitation (blue). Shaded areas 
indicate the mean plus or minus the two times standard deviation 
derived from the estimated asymptotic variances (1
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    |  7 of 13CROLL and van KOOTEN

variance of the environmental limitation for every year and group 
(Figure  4). The model with three age groups does indeed fit the 
data better compared to the model without age groups (AIC of 
respectively 15,982,917 and 16,048,036). Despite a similar trend, 
year to year changes in some years differ substantially between 
length groups, both in magnitude and direction. Such differences 
could indicate relevant ecological differences between the groups. 
The average estimated variance in environmental limitation for the 
youngest age group (on average 0.0217y) is smaller compared to 
the average estimated variance in environmental limitation in the 
model without age groups (on average 0.0268y). This might sug-
gest that the environmental limitation of individuals in the young-
est age group is more similar to the environmental limitation of 
individuals in the same age group compared to the environmental 
limitation of individuals in other age groups. This could explain why 
the model with three age groups fits the data better compared to 
the model without age groups. In contrast, the average estimated 

variance in environmental limitation for the two oldest age groups 
(on average 0.0399y for age group 4–7 years and 0.0801y for age 
group 7–10 years) is larger compared to the average estimated vari-
ance in environmental limitation in the model without age groups 
(on average 0.0268y). This might suggest that the environmental 
limitation of some individuals in the two oldest age groups is more 
similar to the environmental limitation of individuals in other age 
groups compared to the environmental limitation of individuals 
in the same age group. It is important to note that the reported 
variation corresponds to the fitted variation in environmental lim-
itation and not the variation in the individual sizes. The variation 
in individual size is a balance between the variation in size at the 
previous time step and the variation in environmental limitation. 
The variation in size is therefore likely to increase or decrease with 
age, depending on the variation in size at birth. This does not hold 
for the variation in environmental limitation as it is independent of 
size and age.

F I G U R E  2 Expected value of the length-at-age (E
[
�(T ,a)

]
) for the model with a constant environmental limitation (a) and a yearly varying 

environmental limitation (b). Line colors correspond to the year of birth of the cohort. The expected length-at-age for the cohorts born in 
the years 1995 (c), 2000 (d), 2005 (e), and 2010 (f) are plotted separately for the model with a constant environmental limitation (red) and the 
model with a yearly varying environmental limitation (blue), together with the data points corresponding to the specific cohort. Shaded areas 
indicate the expected length plus or minus two times the standard deviation from the estimated length distribution. The size of the data 
points indicates the weighted number of observations of a specific age–length combination in the given cohort ranging from 1 to 60 times.
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4  |  DISCUSSION

We presented a new method to estimate Von Bertalanffy growth pa-
rameters from datasets with pairs of age and length measurements 
and provide an R package called VBGfit (Croll, 2022) to apply this 
method. The method is based on a model that describes the length 
distribution of cohorts in a population under the assumption that 
cohorts partly overlap in time and experience a fluctuating environ-
ment (Equations 7a and 7b). The model is derived from a stochastic 
differential equation describing the growth of a single individual in 
a fluctuating environment (Equation 1) and therefore accounts for 
variation due to changes in the environment over time, variation 
in the growth history of cohorts and variation between individu-
als within a cohort. Because the model is described in a discretized 
form, it is easy to fit on pairs of length and age measurements taken 
with a regular interval, which is one of the most common forms of 
data on population structure (Eveson et al., 2007).

Our model makes several assumptions about the underlying 
population structure to obtain a model applicable to datasets with 
random observation pairs of individual lengths and ages. First of 
all, we assume individuals follow a Von Bertalanffy growth curve in 
which only the asymptotic length fluctuates over time and between 
individuals (Equation 1). This is the most common and first proposed 
form of the Von Bertalanffy growth equation (von Bertalanffy, 1938). 
Nonetheless, it is sometimes assumed that both the asymptotic 
length and the Von Bertalanffy growth rate scalar fluctuate (Eveson 
et al., 2007; Pilling et al., 2002). It has been shown that estimates 
of the asymptotic length and the Von Bertalanffy growth rate sca-
lar are strongly correlated if both are allowed to fluctuate. Due to 
this correlation, it might be difficult to obtain correct parameter 
estimates, because different sets of parameters are likely to fit the 
dataset equally well (Eveson et al., 2007; Pilling et al., 2002). In ad-
dition, it has been shown that only the asymptotic length or the Von 
Bertalanffy growth rate scalar has to fluctuate to obtain a very good 
prediction of the population structure and an accurate estimate of 
the environmental limitations, when data consists of independently 
observed pairs of individual age and length (Eveson et al., 2007). We 
therefore chose to only make the asymptotic length dependent on 
the environmental limitation, as this has the most comprehensive 
substantiation in energetic theory (Kooijman,  2010). Secondly, we 
assume that the dynamics of the environmental limitation between 
two measurements can be described accurately by the average 
environmental limitation in this period. This is a very convenient 
assumption borne from the discrete nature of most datasets with 
length-at-age data. Nonetheless, it is possible to substitute a more 
complex, time-dependent formulation for the environmental lim-
itation in Equations  (6a) and (6b) and work out the more complex 
model through integration. This would lead to a more specific and 
less generally applicable form of the model. Thirdly, we assume that 
the environmental limitation experienced by an individual at a given 
moment is drawn from a Gaussian distribution. The central limit the-
orem states that if a variable is influenced by many additive random 

F I G U R E  3 Fitted environmental limitation (�T) as predicted 
during a jackknife approach. Colors correspond to different model 
fits. For every model fit, the data in the year indicated by the dot 
is omitted from the analysis. The black line is the estimated mean 
environmental limitation without omitted data and shaded areas 
indicate the mean plus or minus two times standard deviation 
derived from the estimated asymptotic variances without omitted 
data (1
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    |  9 of 13CROLL and van KOOTEN

factors, it will approach a Gaussian distribution. As the environmen-
tal limitation emerges from a complex ecological, chemical, or phys-
ical system, it is likely to be influenced by many random factors and 
therefore is likely to approach a Gaussian distribution. In conclusion, 
most of the assumptions in this method are made to ensure that the 
model is as generic as possible but still applicable to the currently 
available datasets with length-at-age data.

Just like other methods, our model assumes that individual 
length is normally distributed in a cohort and therefore in the ob-
tained samples. Deviations from this normal distribution can occur 
for example due to sampling biases or a link between individual 
mortality rate and individual length. Fits on simulated data showed 
that the value of mean environmental limitation is slightly overesti-
mated if the contribution to the data increases with size, while the 
value of the mean environmental limitation is underestimated if the 
contribution to the data decreases with size (Figures A1 and A2 in 
Appendix  A). This is comparable to a situation in which larger or 
smaller individuals respectively have a higher probability of ending 
up in the data regardless of their age. These model fits on simulated 
data show that the effects of length bias in the data might be rela-
tively small. Nonetheless, it is important to correct for skewness in 
the individual length distribution in the data when possible. One way 
to do so is to add relative weights to the samples. In our example 
with North sea plaice, we weighted the samples by the inverse of the 
catch per unit effort (CPUE) per length. The CPUE is a measure of the 
relative presence of a length class in the dataset in a given year. In 
this way, we corrected for the impact of length on the catchability of 
an individual, which can arise for example due to very strong length-
specific mortality or harvesting probabilities. This resulted in a data-
set in which individual length approximates a normal distribution of 
every age class in every year (Figure A3 in Appendix A). Because our 
model allows to add weights to every individual sample, it is in the-
ory possible to correct for biases linked to any trait of an individual 
including age and size. Nonetheless, it is important to note that it is 
not possible to correct for all biases because specific information is 
often lacking. Especially biases in growth due to genetic differences 
and habitat quality might require attention as these could directly 
impact growth and skew the size distributions in a population.

A novel and very important aspect of our method is that it ac-
counts for variation caused by environmental changes over time, 
variation between the growth history of cohorts and variation 
between individuals within a cohort simultaneously. Earlier meth-
ods only account for variation due to changes over time by fitting 
a growth curve separately for every sampling instance, or only ac-
count for the growth history of a cohort by fitting a growth curve 
separately for every cohort. Similarly, more recent methods only 
accounted for variation between individuals (He & Bence,  2007; 
Pilling et al.,  2002; Praineshu & Venugopalan,  1999; Rafail,  1973; 
Vincenzi et al.,  2014; Wang & Thomas,  1995) or variation caused 
by changes through time (Cloern & Nichols, 1978; Lorenzen, 1996; 
Lorenzen & Enberg, 2002). Due to the autoregressive nature of in-
dividual growth rates, these sources of variation are strongly inter-
twined and should not be considered separately. We account for this 

by fitting the Von Bertalanffy growth equation for all cohorts and 
sampling instances simultaneously. Because we derived our model 
from a stochastic differential equation describing individual growth, 
our model also accounts for variation in environmental limitation be-
tween individuals. In addition, we show that the variation between 
individuals is overestimated if a model does not account for changes 
in environmental limitation over time.

Because our model simultaneously accounts for variation be-
tween individuals and cohorts and allows variation from the environ-
ment to fluctuate over time, the model can be used for a wide range 
of applications. First of all, the estimated mean and variance of the 
asymptotic length estimated by our model can be used as a summary 
statistic for environmental limitation under the assumption that the 
sources of variation are independent. Growth of individuals is likely 
limited by numerous factors, which are often unknown. Our method 
offers a summary statistic for the cumulative distribution of all these 
factors. Our method is especially appropriate to estimate individ-
ual limitation in growth due to limitation through food availability. 
General theory about individual energy allocation links the asymp-
totic length of this Von Bertalanffy growth equation to the energy 
ingestion by individuals (Kooijman, 2010; von Bertalanffy, 1938). The 
distribution of the environmental limitation estimated by our model 
could therefore be used as a proxy for the distribution of food avail-
ability among the individuals in a population. Estimates of individual 
food availability are scarce, because they commonly have to be ob-
tained from intensive observations or analysis of stomach samples. 
Because our model provides a proxy of the individual food availability 
throughout the entire population, it can be used for more detailed 
analyses of the dynamics of food availability. For example, linking the 
estimated environmental limitation to the consumer density might 
reveal density dependent feedbacks in the growth rate of individuals. 
The environmental limitation as a proxy for individual food availabil-
ity might also provide insight into feeding links between species. The 
environmental limitation in our model always appears as a product 
with the maximum asymptotic length (ft�∞ ); it should therefore first 
be scaled by an estimate of the species specific maximum asymp-
totic length before it can be compared between species. Comparison 
of this scaled proxy for individual food availability between species 
might then reveal links such as shared resources or competition.

In our example with North sea place, we showed that our model 
can be used to explore environmental segregation between length 
or age groups as well. The R-package (Croll, 2022) allows to split a 
population into a priori defined length or age groups and fits an en-
vironmental limitation separately for every length or age group. With 
a realistic division in length or age groups, our model could provide 
valuable information about growth limitation in different life stages. 
If for example length or age groups show very diverse patterns in en-
vironmental limitation, it is likely that the length or age groups are 
environmentally separated either through segregation in space or dif-
ferences in diet. In this way, the model could therefore yield additional 
understanding in the growth dynamics during various life stages.

It is often difficult to judge whether a certain division in length 
or age groups is valid. A way to assess the suitability of a division 
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10 of 13  |     CROLL and van KOOTEN

in age or length groups is to look at the estimated variance in en-
vironmental limitation for every group compared to the variance in 
environmental limitation estimated in a fit without groups. Without 
groups, our general model combines all length and age groups and 
fits a single environmental limitation for all groups. This method 
lumps together the variation in environmental limitation within and 
between age or length groups which will lead to a high estimate of 
the variance in environmental limitation if groups strongly differ in 
environmental limitation. In general, one can assume that individuals 
within a group are more similar to each other compared to individ-
uals within another group. The variance in environmental limitation 
estimated for a single group is therefore expected to be lower com-
pared to the variance in environmental limitation estimated for the 
entire population. This was only the case for the youngest age group 
(up to 3 years) in our example of North Sea plaice. This suggests 
that our arbitrary division of the population into three age groups 
does not accurately represents the ecology of North Sea plaice. It 
does demonstrate that our model can be used to verify whether a 
suspected division in ecological groups is likely by comparing the 
estimated variance in environmental limitation of a fit without eco-
logical groups with a fit with ecological groups as is done in the ex-
ample for north sea plaice.

Lastly, our method might also be applicable to management as 
it is able to model variation in growth through time and between 
individuals based on only a limited number of parameters (Flinn & 
Midway, 2021). Many management models, in particular those used 
to estimate reference points for fish stock management, assume a 
fixed length distribution at a given size, while variation in growth 
rates is shown to be important for the response of populations to 
exploitation (Lorenzen & Enberg, 2002). With our model, the varia-
tion in growth between years can be easily quantified, resulting in 
a more accurate prediction of the length at age for every cohort. 
The age–length relationships from our model then can be used to 
calculate a more precise estimate of the needed reference points.

In conclusion, our model provides a way to estimate growth curves 
and length distributions of individual cohorts based on single individ-
ual length and age observations. In our model, growth is allowed to 
vary over time, while our model also accounts for variation between 
individuals and variation between cohorts. So far, these factors could 
only be estimated simultaneously if the growth history of individuals 
was known. Models for single observations of individual length and 
age only accounted of a subset of these factors. Our model does ac-
count for all these factors and in this way estimates a proxy for the lim-
itation in individual growth, which may vary over time. This estimate 
of the limitation in individual growth is a new step in understanding 
patterns in individual growth based on individual field observations.
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APPENDIX A

Model  Tes t  on S imulated Dat a

We fitted the model to simulated data to test the sensibility of the 
estimated parameters to the number of observations in the data 
and possible biases in length in the data. To do so, we generated the 
population structure of a population with a constant mean and vari-
ance of the environmental limitation. To do so, we used the following 
continuous model:

The average length at birth was determined by drawing a random 
value from a predetermined interval (�0min–�0max). Other parameters 
of the simulation were fixed (Table  A1). The population structure 
was simulated over a period of 30 years and every cohort was simu-
lated from age 0 to 10. A sample was drawn from the population 
structure for every year and cohort at 180 days after a new cohort 
with age 0 is introduced to the population.

To test the influence of the number of parameters on the esti-
mated environmental limitation, we draw 100 datasets from the sim-
ulated population structure. The number of samples varied between 
10 and 100 samples per cohort per year (Figure A1). The estimated 
mean and variance of the environmental limitation are distributed 
evenly around the actual mean and variance in the simulation. With 
an increasing number of samples, the standard error of the estimated 
mean and variance of the environmental limitation become smaller. 
In other words, the estimated mean and variance in environmental 
limitation become on average closer to the real mean and variance if 
the number of samples increases.

(A1)
�E(�)

�t
+

�E(�)

�a
= rB

(
�f�∞ − E(�)

)

(A2)
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�V(�)

�a
= 2rB
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�
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�
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Parameter definition Symbol Value Unit

Von Bertalanffy growth rate scalar rB 0.001 d−1

Maximum asymptotic length �∞ 1000 mm

Mean environmental limitation �f 0.5 -

Variance in environmental limitation �
2

f
0.0002 -

Minimum length at birth �0min 5 mm

Maximum length at birth �0max 15 mm

Maximum cohort age - 3650 d

Time between cohort starts - 365 d

Time between cohort start and sampling - 180 d

TA B L E  A 1 Parameters used for 
simulating population structure.

F I G U R E  A 1 Average of the estimated mean and variance of the environmental limitation for different number of data points drawn 
from a simulated population structure. The black line indicates the actual values of the mean and variance in environmental limitation in the 
simulation.

F I G U R E  A 2 Average of the estimated mean and variance of the environmental limitation when the data contains a bias with length. A 
positive bias with length indicates that larger individuals contribute more to the samples, while a negative bias with length indicates that 
smaller individuals contribute more to the samples. The black line indicates the actual values of the mean and variance in environmental 
limitation in the simulation.
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Another concern when estimating environmental limitations from 
sampled length structures is a possible bias in the sample method. 
It is possible that the samples are biased toward individuals with a 
larger of smaller length. To test the effect of this bias on the esti-
mated environmental limitation, we sampled 100 data sets with 50 
observations per cohort per year from the simulated population 
structure. When fitting our model, we weighed the samples by in-
dividual length. The weight of a sample changed linearly with indi-
vidual length (wi = a�i + b). The slope of this relationship determined 
the strength of the bias, ranging from a sampling bias towards larger 
individuals (a > 0) to a sampling bias towards smaller individuals 
(a < 0). The intercept of the relation between bias weight and length is 

determined in such a way that the average weight of samples is equal 
to one (b = 1 −

∑n

i=1
a�i

n
). This will ease comparison between model fits, 

because the weighted number of samples is equal for all datasets.
A sample bias linked to weight might result in an error in the esti-

mation of the mean environmental limitation, but does not affect the 
estimation of the variance in environmental limitation (Figure A2). 
The mean environmental limitation is slightly overestimated if larger 
individuals are more likely to end up in the samples, while the mean 
environmental limitation is slightly underestimated when smaller in-
dividuals are more likely to end up in the sample. Although this error 
seems to be small, it is important to keep this bias in mind an correct 
for this bias when possible.

F I G U R E  A 3 Weighted distributions of length at age at a given year. The number of observed individuals with a specific length is 
weighted by the inverse of the catch per unit effort of that length in the given year. The length at age seems to approximately follow a 
normal distribution.
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