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Abstract

Real-time, detailed online information on cell cultures is essential for understanding

modern biopharmaceutical production processes. The determination of key parame-

ters, such as cell density and viability, is usually based on the offline sampling of biore-

actors. Gathering offline samples is invasive, has a low time resolution, and risks

altering or contaminating the production process. In contrast, measuring process

parameters online provides more safety for the process, has a high time resolution, and

thus can aid in timely process control actions. We used online double differential digital

holographic microscopy (D3HM) and machine learning to perform non-invasive online

cell concentration and viability monitoring of insect cell cultures in bioreactors. The

performance of D3HM and the machine learning model was tested for a selected vari-

ety of baculovirus constructs, products, and multiplicities of infection (MOI). The

results show that with online holographic microscopy insect cell proliferation and bacu-

lovirus infection can be monitored effectively in real time with high resolution for a

broad range of process parameters and baculovirus constructs. The high-resolution

data generated by D3HM showed the exact moment of peak cell densities and tempo-

rary events caused by feeding. Furthermore, D3HM allowed us to obtain information

on the state of the cell culture at the individual cell level. Combining this detailed, real-

time information about cell cultures with methodical machine learning models can

increase process understanding, aid in decision-making, and allow for timely process

control actions during bioreactor production of recombinant proteins.
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1 | INTRODUCTION

The baculovirus-insect cell expression vector system (BEVS) is used

for the production of recombinant proteins and is one of the most

used eukaryotic expression platforms to produce virus-like particles

(VLPs).1–4 With this expression platform, VLP quantities comparable

to those achieved in yeast can be produced. In addition, with BEVS

it is possible to perform post-translational modifications (PTMs),

such as glycosylation, comparable (but not identical) to that of mam-

malian cells.5–7 The baculovirus vector constructs required for the

expression of the desired proteins (e.g., VLPs, viral glycoproteins, gene

therapy vectors, enzymes, and biologicals) can be generated in a

matter of weeks. The ability to quickly express the desired protein

and scale up the production makes the BEVS an excellent platform to

respond to emerging virus threats, as witnessed recently during the

global COVID-19 pandemic and earlier during outbreaks of the Zika

virus.8–10

When scaling up the BEVS in bioreactors, it is important to deter-

mine three key parameters that interact with each other; the cell den-

sity at infection (CCI), multiplicity of infection (MOI), and the optimal

time of harvest (TOH). First, cells are grown to the CCI at which point

the baculovirus particles are added at a certain MOI, that is, number

of infectious virus particles per viable cell. Approximately 20–24 h

after the insect cells are infected by the baculoviruses they start pro-

ducing the protein of interest. Next, at approximately 48–72 h after

infection, the cells start to lyse and release their contents in the

medium among which proteases. This may affect product quality and

complicate downstream processing, essentially lowering the product

yield. On the other hand, performing the harvest too early leads to

reduced yields as well. Harvesting at the right TOH is therefore critical

for obtaining optimal yields of a high-quality product. Being able to

precisely determine the values for CCI, MOI, and TOH during process

development is essential for obtaining optimal volumetric productivity

and product quality in the final production process.

Key process parameters describing the state of the culture, like

viable cell density, viability, and infection state of the culture, are usu-

ally measured only once or twice per day. As a result, the time resolu-

tion (once every 12–24 h) is low and important information to

determine for example cell growth or infection stage may be obtained

too late or even completely missed. This leads to suboptimal control

and potential failure of production runs.11 In addition, insufficient

information is obtained for a proper mechanistic understanding of the

system. For example, when developing mathematical models based on

scattered, offline sample data, the low time resolution of the data will

impact the quality of these models. Finally, such manual sampling also

introduces the risk of contaminating the culture and is prone to opera-

tor variance leading to less reliable datasets. Thus, online and real-

time measurement of key parameters like viable cell density, viability,

and infection state of the culture appears to be important for a proper

understanding of the BEVS and timely control of the production

process.

Currently, several physical probes are available to allow online

measurements of biomass, such as dielectric spectroscopy and light

scattering. Dielectric spectroscopy measures viable biomass based on

biomass capacitance, whereas light scattering methods measure total

biomass.12–14 These methods are well suited for measuring cell bio-

mass, however, they cannot directly measure the viability or infection

stage of a single cell. Image-based cell culture monitoring is a more

direct approach, where cells can be visualized individually to extract

both the cell density and information on the state of the cells. An

example of such an online imaging tool is online double digital differ-

ential holographic microscopy (D3HM).15,16 With this technique, the

cell density is measured as well as a large number of optical parame-

ters among which cell diameter and circularity, as well as quantitative

parameters associated with the light phase and light intensity of each

cell. These parameters can be related to the physiological states of

the cells using machine learning models and specific training data sets.

There is currently only one study that demonstrated the ability of

online double digital differential holographic microscopy to monitor

the BEVS in bioreactors.17 In that study by Pais et al. (2020), two bio-

reactor batch runs of Sf9 cells in SF900 II medium were performed

where the insect cell concentration was measured online and the via-

bility and AAV production titer was predicted. One growth batch

without baculovirus infection and a single AAV production run using a

two-baculovirus infection strategy at an MOI of 0.05 TCID50/cell

were monitored.

The current work aims to obtain more insight into the perfor-

mance of online digital differential holographic microscopy to monitor

baculovirus-infected cell cultures in bioreactors. Several baculovirus

constructs were included, producing various recombinant proteins,

and under varying process conditions, using the ExpiSf9 cell line as a

model.18 First, training data sets were generated to develop machine

learning models. Then the performance of the D3HM tool and

machine learning model was evaluated during online monitoring of

bioreactor runs. Results showed that after training the machine algo-

rithm with a training data set, the cell density, cell viability, cell diame-

ter, and the fraction of infected cells could be accurately determined

for a variety of bioreactor processes. Furthermore, the continuous

online measurements allowed for the construction of high-resolution

time-series profiles of these parameters. These high-resolution time-

series profiles gave more insight into the state of the cell culture

inside the bioreactor. Infected cells could be detected earlier com-

pared to offline methods and the effect of process interventions such

as feeding became distinguishable. Improved training data sets can

further increase the accuracy of the online prediction, allowing for

more advanced process control strategies and increased process

understanding of recombinant protein production processes.

2 | MATERIALS AND METHODS

2.1 | Cell lines, media, and virus stocks

ExpiSf9 cells (Thermo Fisher) adapted to ExpiSf chemically defined

medium (Thermo Fisher) were used in all batch and shake flask cul-

tures. Recombinant baculoviruses of Autographa californica
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multicapsid nucleopolyhedrovirus (AcMNPV) were generated in two

ways. Baculovirus expressing His-tagged GFP (hisGFP) or mCherry

from the polyhedrin promoter, and a dual fluorescence baculovirus

(AcBac-2FL) with GFP driven by the OpMNPV IE2 promoter and

mCherry from the polyhedrin promoter were constructed by bac-to-

bac transposition in Escherichia coli (Thermo Fisher), followed by trans-

fection of the bacmid into Sf9 insect cells with Expres2TR transfection

reagent (Expres2ion Biotechnologies). Baculovirus expressing the strep-

tagged SARS-COV-2 S1 spike subunit from the polyhedrin promoter

was constructed by using pOET1-derived plasmids to transfect insect

cells with the flashBAC Ultra kit (Oxford Expression Technologies, van

Oosten et al., 2021). All baculovirus stocks were amplified in ExpiSf9

cells, and viral titers were determined by endpoint dilution assay on

Sf9-easy titer cells using the Reed-Muench method.19 Viral titers are

defined as 50% tissue culture infectious dose (TCID50) units per ml.

2.2 | Bioreactor cultures

Cells were grown in 0.5 L miniBio or 3 L glass reactor vessels (Getinge)

controlled by myControl bioreactor controllers (Getinge). The working

volume of each reactor vessel was 0.3–2 L. Reactors were inoculated

at target starting densities of 0.5–1.0 � 106 viable cells/ml. The liquid

temperature was controlled at 27�C. The pH was not controlled but

maintained by the buffering capacity of the medium. Measured values

remained between pH 5.7–6.1. Dissolved oxygen was controlled at

30% of air saturation using Lumisens optical dissolved oxygen sensors

(Getinge) and sparging of pure oxygen through open pipe spargers. In

addition, a constant headspace aeration rate of 0.01 vvm air was

applied. Agitation with marine impellers was set to 266–600 rpm by

keeping the tip speed constant among the different reactor sizes.

2.3 | Analytical methods

Cells were counted by trypan blue exclusion using a TC20 Automated

Cell Counter (Bio-Rad) or by manual counting using DHC-F01 cell

counting chambers (INCYTO). Online measurements of viable and total

cell density, viability, and infected cells were performed by differential

digital holographic microscopy (D3HM) using iLine F holographic

microscopes (OVIZIO). Data acquisition and quantitative data analysis

were performed using OsOne software (OVIZIO). Infected cells were

visualized by expression of GFP or mCherry detected by a C6 Plus Flow

Cytometer (BD Accuri). SARS-CoV-2 S1 subunits were quantified using

a SARS-COV-2 Spike S1 Protein ELISA kit (AssayGenie).

3 | RESULTS AND DISCUSSION

3.1 | Training of the machine learning model

We assessed the ability of the iLine F online microscope to monitor

cell growth, viability, and virus infection in bioreactors. Cell culture

fluid was continuously pumped from the reactor through the iLine F

flow cell and back into the reactor again. In this flow cell, holograms

of the cells were captured. These holographic pictures allowed for

direct calculation of the cell concentration and analysis of a large set

of optical cell parameters that can be linked to the state of the cell.

For example, upon baculovirus infection, distinct changes in cell mor-

phology occur such as cell enlargement and changes in the granularity

of the cell.20–23 Specific optical changes also occur if the cell loses via-

bility. Changes in measured optical parameters were then linked to

the infection state and viability of each separate cell by a machine-

learning model (Figure 1). The model was trained by monitoring biore-

actor cultures of baculovirus-infected ExpiSf9 suspension cells in

ExpiSf chemically defined medium. The training was done for the

parameters of viability and infection percentage. Data from 6 runs

with around 7 captures per run were used to train the initial machine

learning model. To calculate the cell concentration, a segmentation

model was used to detect the objects on the images. The objects were

then filtered to remove non-cell objects like cell debris by specifying

criteria such as particle size. Since the segmentation algorithm was

not a machine learning model, no training step was required but only

model parameter tuning. Part of the training was a bioreactor run with

ExpiSf9 cells that were infected with a baculovirus expressing two

fluorescent protein genes at high MOI (3 TCID50/cell) (Figure 2). The

training data set for the live and dead cell detection algorithm was cal-

ibrated using offline samples and standard manual hemocytometer cell

counting techniques using trypan blue exclusion. Viable cell percent-

ages were very similar for the online measurement and offline samples

except for 96 hours post-inoculation (hpi) when offline measured via-

bility was notably higher (Figure 2a). The machine learning model

might have detected dead or dying cells before this was discernable

by trypan blue exclusion.

The infected cell detection algorithm was calibrated to offline

data from the same baculovirus-infected bioreactor cultures of

Expisf9 cells in ExpiSf chemically defined medium. To calibrate the

algorithm, a purpose-built dual fluorescence baculovirus construct

was engineered. This dual fluorescence baculovirus, AcBac-2FL, was

constructed to express the GFP gene behind the immediate early

OpIE2 promoter, and the mCherry gene behind the very late polyhe-

drin promoter. The expression of GFP behind the OpIE2 promoter

allowed us to spot early infection as the OpIE2 promoter becomes

active immediately after baculovirus infection.24,25 The expression of

mCherry was regulated by the very late polyhedrin promoter com-

monly used in the BEVS. This polyhedrin promoter becomes active

around 20–24 h after baculovirus infection.26 To generate the training

data set, the bioreactor culture was infected with AcBac-2FL at an

MOI of 3 TCID50/cell. The early and very late phases of baculovirus

infection could clearly be distinguished since cells showing green fluo-

rescence were detected 1 day before the appearance of red fluores-

cent cells (Figure 2b). Using the early expression of GFP in insect cells,

the machine learning model for the detection of infected insect cells

was then calibrated to offline samples measuring the percentage of

green fluorescent cells with a flow cytometer. The iLine F detected

the percentage of infected cells before mCherry was detected by the

ALTENBURG ET AL. 3 of 10
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flow cytometer (about 16 h). However, detection of infection by the

iLine F was still slightly delayed (about 4 h) compared to the percent-

age of infection as determined by immediate early expression of eGFP

manually. The eGFP was detected by flowcytometry about 5 h after

infection of the culture. This indicated that the expression of early

genes preceded detection of optical changes to the cells by the micro-

scope and the machine learning algorithm.

3.2 | Verification run of baculovirus infection at
low MOI

After the machine learning model was trained using this training data

set, the model was tested using new verification data sets. ExpiSf9

cells were infected with AcBac-2FL at an MOI of 0.01 at a CCI of

1.1 � 106 cells/ml. The bioreactor culture was monitored by the iLine

F holographic microscope (Figure 3). Using a low MOI of 0.01 would

lead to multiple infection cycles before the complete culture would be

infected with baculovirus.

Although online measurements showed a similar trend in mea-

sured viable cell density and total cell density compared to offline

measurements, both viable and total cell densities were higher for the

online measurements (Figure 3a). Since the cell counts are based on

image analysis of the flow cell with a known volume and are exten-

sively verified by the supplier, it might be that the difference is caused

by the loss of cells during the offline sample handling. When taking

samples offline and measuring them manually with the iLine F, cell

counts were more similar between hemocytometer and holographic

F IGURE 1 Workflow for training the machine learning model to detect alive and dead cells

F IGURE 2 Time-course profiles for a training bioreactor run where ExpiSf9 cells were infected with a baculovirus expressing GFP and
mCherry at an MOI of 3. The used baculovirus construct, AcBac-2FL, contained a gene for GFP located behind the immediate early OpIE2
promoter and a mCherry gene located behind the very late polyhedrin promoter. The dashed lines indicate the moment of baculovirus infection.
(a) Viable online (⁃) and offline (●) and total online (⁃) and offline (●) cell densities. Online (⁃) and offline (●) viable cell percentages. (b) Online
predicted infected cell fraction (⁃), offline measurements of fraction of GFP (●) and mCherry (●) expressing cells and average online cell diameter
(⁃). Error bars represent duplicate measurement values
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cell count methods (data not included). This indicates that cells might be

lost due to cell attachment, disintegration, or other reasons during sam-

pling, diluting, and mixing of cell suspension samples from the bioreactor.

The online measurement showed a clear peak in the viable cell density,

whereas the manual counts showed a plateau in the viable cells followed

by a decrease in viable cells. This demonstrated that due to the high reso-

lution of online measurements, the exact moment where the cells stop

growing could be determined. The viability estimated by the online micro-

scope showed a similar trend as the manual value, although the offline

measured values were higher towards the end of the cell culture when

the viability dropped (Figure 3a). This could be due to the difference in

measurement principle. The manual method is based on membrane per-

meability. The microscope method is based on alterations in the optical

properties of the cell, which may occur before the membrane becomes

permeable, thus resulting in lower viable cell percentages. Furthermore,

as cells start to die, the morphology of the cell population becomes more

heterogeneous. The increase in heterogeneity complicates cell measure-

ments and can cause inaccuracies in both offline and online methods

mainly due to cell clumping and decreasing cell circularity.

Based on offline flow cytometer measurements of low MOI

infected cells, expression of green fluorescence was detected only

slightly earlier than red fluorescence and this was well predicted by

the iLine F. The start of mCherry expression was almost at the same

moment as the start of eGFP expression, where it is expected to start

16–20 h later as observed previously for high MOI infections. Possibly

this is due to the low resolution of offline measurements with only

one measurement taken when baculovirus infection started to spread

throughout the cell culture. In contrast, the iLine F was able to contin-

uously follow the progression of baculovirus infection and predict the

percentage of infected insect cells in real-time, in this case also for

infections that were started at a low MOI and thus requiring multiple

infection cycles to infect all the cells at 93 hpi (Figure 3b). This

moment coincided with the stabilization of the total cell density as

measured in real-time by the iLine F. Viable cell density peaked and

the cell viability started to decrease around the same moment. Slower

cell growth was observed before the first infected cells were detected

between 70 and 80 hpi. This could be due to the delay between actual

infection and the appearance of optical changes in the cell as discussed

with the calibration experiments. In addition, it could also partly be due

to the multiple infection cycles needed to infect all the cells. However,

it was not possible to make a clear distinction between sequential

infection cycles from the online measurements of infected cells. When

infecting with an MOI of 0.01, <1% of the cells are expected to be ini-

tially infected. This is close to the detection limit of the system. Some

measurement noise existed in the online signal of the fraction of

infected cells, especially during the first 24 and final 10 h. During cell

culture, there are typically moments where cells experience high stress

due to respective inoculation, apoptotic signals, budded virus produc-

tion, and cell death.27–30 These events may influence cell morphology,

such as average cell diameter, which in turn affects the infected cell

prediction. Additional training with new datasets could improve the

accuracy and sensitivity of the infected cell detection algorithm to

reduce this measurement noise and possibly detect the different infec-

tion cycles during low MOI baculovirus infection processes.

3.3 | Online monitoring of baculovirus infection
at different MOIs

Using the machine learning model calibrated on immediate early

expression, ExpiSf9 cell infection was monitored for bioreactor pro-

cesses where fluorescent proteins were expressed behind the very

F IGURE 3 Time-course profiles for a verification bioreactor run where ExpiSf9 cells were infected with a baculovirus expressing GFP and
mCherry at an MOI of 0.01. The used baculovirus construct, AcBac-2FL, contained a gene for GFP located behind the immediate early OpIE2
promoter and a mCherry gene located behind the very late polyhedrin promoter. The dashed lines indicate the moment of baculovirus infection.
(a) Viable online (⁃) and offline (●) and total online (⁃) and offline (●) cell densities. Online (⁃) and offline (●) viable cell percentages. (b) Online
predicted infected cell fraction (⁃), offline measurements of fraction of GFP (●) and mCherry (●) expressing cells, and average online cell diameter
(⁃). Error bars represent duplicate measurement values
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late polyhedrin promoter, which is the strongest baculovirus promoter

and most commonly exploited for the expression of recombinant pro-

teins with the BEVS.31,32 All bioreactor runs were monitored with the

iLine F microscope to follow baculovirus infection inside the cells.

MOIs between 0.01 and 10 were used to investigate differences

between immediate cell infection and slower infection processes

involving multiple infection cycles inside the production bioreactor.

With the iLine F, it was possible to monitor the fraction of

infected cells in real time for different MOIs. For the high MOI

processes, infection development was faster and 100% cell infection

was reached within 9 h after infection for MOI 10 and within 17 h for

MOI 1 (Figures 4b and 5b). With the iLine F, infected cells could be

detected before offline detection of fluorescent cells by flow cytome-

try. For the lower MOI process, infection development was slower

and 100% of infected cells were detected only 45 h after infection

(Figure 3b). Real-time measurements of average cell diameters

showed a similar pattern. Average cell diameters increased more rap-

idly for the process infected with a high MOI (Figures 4b and 5b).

F IGURE 4 Time-course profiles of a bioreactor infected with MOI 10. ExpiSf9 cells were infected with a baculovirus expressing GFP from the
very late polyhedrin promoter at an MOI of 10. The dashed lines indicate the moment of baculovirus infection. (a) Viable online (⁃) and offline (●)
and total online (⁃) and offline (●) cell densities. Online (⁃) and offline (●) viable cell percentages. (b) Online predicted infected cell fraction (⁃),
offline measurements of fraction of GFP expressing cells (●), and average online cell diameter (⁃). Error bars represent duplicate measurement
values

F IGURE 5 Time-course profiles of a bioreactor infected with MOI 1. ExpiSf9 cells were infected with a baculovirus expressing GFP at an
MOI of 1. This baculovirus construct contained a gene for GFP located behind the very late polyhedrin promoter. The dashed lines indicate the
moment of baculovirus infection. (a) Viable online (⁃) and offline (●) and total online (⁃) and offline (●) cell densities. Online (⁃) and offline (●)
viable cell percentages. (b) Online predicted infected cell fraction (⁃), offline measurements of fraction of GFP expressing cells (●), and average
online cell diameter (⁃). Error bars represent duplicate measurement values
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3.4 | Verification of baculovirus-infected insect
cell culture with butyrate addition

The high resolution of the online measurements ideally would allow

for spotting small process deviations that might be invisible with daily

manual sampling. The sensitivity of the online microscope to spot

temporary effects of butyrate addition was, therefore, investigated.

Butyrate was added to improve baculovirus gene expression.18,33

ExpiSf9 cells were grown until they reached a density of 4 � 106

cells/mL at 72 hpi, at which point butyrate was added at a final con-

centration of 2 mM. Immediately afterward, cells were infected with

an MOI of 0.01 with a baculovirus construct containing GFP behind

the polyhedrin promoter. Online measurements of viable cell density

and total cell density, and online predictions of cell viability and infec-

tion state were compared to offline measurements. Offline measure-

ments of cell densities and cell viability showed a similar trend to

online measurements although offline-measured cell densities were

lower (Figure 6a). The online measurements showed a clear peak in

the viable cell density and a sharp switch from growth to death phase,

whereas the manual counts showed a plateau in the viable cells fol-

lowed by a decrease in viable cells. This demonstrates once more that

due to the high resolution of online measurements, the exact moment

when the cells stop growing can be determined. Together with the

virus, butyrate was added to the cell culture at 72 hpi to enhance GFP

production. A temporary slowdown of cell growth was visible

between 72 and 85 h in the high-resolution data of the online viable

cell and total cell density measurement (Figure 6a). This is in agree-

ment with the fact that butyrate can cause a cell-cycle arrest.34 Note

that this arrest is not visible in the low-resolution offline data, show-

ing the importance of having a high-resolution online measurement.

Online monitoring of the infected percentage of cells showed a small

peak around 80 hpi after which the fraction of infected cells stays

slightly elevated at about 5%, followed by a sharp increase around

120 hpi (Figure 6b). Such a small peak was not expected when infect-

ing with an MOI of 0.01. It could be caused by the diameter increase

of the cells directly after butyrate addition since the prediction algo-

rithm mainly makes predictions based on the size of the cell. This indi-

cates the potential limitation of the current model of having a strong

dependency on certain parameters when using a machine learning

modeling approach. Generating additional training sets specifically

aimed at breaking this correlation, for instance by changing culture

osmolality, could potentially improve the accuracy of the infection

prediction algorithm. The small peak around 80 hpi was not clearly

visible with the offline measurements GFP fluorescence at this point

is unexpected as the polyhedrin promoter becomes active at 20 hpi.26

3.5 | Online monitoring of SARS-CoV-2 spike
protein production using a low MOI

To follow the infection process for non-reporter-secreted proteins,

the holographic microscope was used to monitor a SARS-CoV-2 spike

protein production process (Figure 7). In contrast to reporter proteins

such as GFP and mCherry, which accumulate inside the cells,35 the S1

subunit of the SARS-CoV-2 spike protein is excreted into the

medium.9 To produce SARS-CoV-2 S1, insect cells were infected with

an MOI of 0.01 at 70 hpi. S1 was detected for the first time in the cul-

ture fluid at 140 hpi and S1 concentration continued to increase until

harvest at 190 hpi. Using the holographic microscope and the previ-

ously calibrated infected cell detection algorithm, the moment of

100% infected cells was detected at 155 hpi (Figure 7b). Peak viable

cell density was reached a little bit earlier, at 150 hpi (Figure 7a). The

F IGURE 6 Time-course profiles of the GFP production run with butyrate addition. ExpiSf9 cells were infected with a baculovirus expressing
GFP at an MOI of 0.01. This baculovirus construct contained a gene for GFP located behind the very late polyhedrin promoter. The dashed lines
indicate the moment of baculovirus infection and butyrate addition. (a) Viable online (⁃) and offline (●) and total online (⁃) and offline (●) cell
densities. Online (⁃) and offline (●) viable cell percentages. (b) Online predicted infected cell fraction (⁃), offline measurements of fraction of GFP
expressing cells (●), and average online cell diameter (⁃). Error bars represent duplicate measurement values
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reactor content was harvested when cell viability dropped below

70%. Again, the cell densities measured by the iLine F were slightly

higher and the viability slightly lower than the offline samples. For the

percentage of infected cells, a small increase could be observed at

about 10 h after infection (80 hpi), which might represent the start of

the second infection cycle. Next, the infection increased to 100%

between 100 and 150 hpi (30–80 h after infection) for a low MOI

process. About 30 h after the infection percentage started to rise, at

118 hpi, the secretion of the spike protein started, which is within the

range expected for very late gene expression.24

The ideal TOH depends on product concentration and product qual-

ity. Since both parameters are relatively difficult to measure in real-time,

the online measured viability, diameter, and percentage of infected cells

can be used as indicators for determining the best moment of harvest.

Low viability can affect protein quality, as proteases are released from

dead cells.36,37 Harvesting too early, however, can negatively affect

product yield. Sander et al.38 already demonstrated that peak protein

production was reached 1 or 2 days after the point of maximum average

cell diameter, showing diameter to be a good indicator for determining

optimal harvest time in terms of peak protein yield. The combination of

a real-time percentage of infected cells, average cell diameter, and cell

viability can present a clearer picture of the state of the cell culture to

determine the optimal moment of harvest. As all these parameters are

measured in real-time, trends can be spotted faster and bioreactor har-

vest can commence instantaneously once the desired parameter criteria

are met. This removes the need for offline sampling, reducing delays and

inaccuracies associated with offline sample handling. Furthermore, moni-

toring the progress of infection is crucial to spot process deviations early

on and determine the exact moment when all cells have been infected.

In case of a delay, process deviations are spotted later by offline mea-

surements, and the timings of process decisions are sub-optimal. For low

MOI processes, this delay affects robustness and reproducibility to a

greater extent. Since several infection cycles are necessary to reach

100% infected cells, the time to reach 100% infection can be signifi-

cantly influenced by relatively small deviations at the moment of infec-

tion, for example in the titer of the baculovirus stock and amount of

virus stock added. This makes low MOI processes generally less predict-

able. Being able to consistently execute low MOI processes with high

reproducibility is highly advantageous from a process development point

of view. Small virus stocks can be used, avoiding the need for a separate

large-scale virus production run and subsequent virus titer determina-

tion. This leads to considerable time savings at the industrial production

scale.39 Such time savings are of utmost importance to speed up process

development, especially when a rapid response to pandemic outbreaks,

such as the recent SARS-CoV-2 outbreak, is needed. This study shows

that with a limited training set (limited number of process conditions and

virus constructs) the microscope and machine learning algorithm can

predict cell numbers, viability, and infection percentage for different viral

constructs, MOIs, and butyrate addition. However, the model heavily

relies on the increase in cell size for predicting the infected cell percent-

age. This could be a limitation in case process conditions are introduced

that cause changes in cell size. Further training of the model using such

conditions could further improve the accuracy and applicability of the

model. The high resolution of the online measurements enables the

detection of small events or process deviations that would have other-

wise been missed by manual sampling. Detecting these deviations gives

more insight into the state of the culture and could aid in process under-

standing and process control.

4 | CONCLUSION

Online double differential digital holographic microscopy (D3HM) and

machine learning modeling was used for real-time monitoring of insect

cell proliferation and baculovirus infection in bioreactors. Training and

verification data sets were generated using a purpose-built

F IGURE 7 Time-course profiles of a SARS-CoV-2 S1 production run. ExpiSf9 cells were infected with a baculovirus expressing SARS-CoV-
2 S1 subunits at an MOI of 0.01. The gene for expression of SARS-CoV-2 S1 was located behind the very late polyhedrin promoter. The dashed
lines indicate the moment of baculovirus infection and butyrate addition. (a) Viable online (⁃) and offline (●) and total online (⁃) and offline (●) cell
densities. Online (⁃) and offline (●) viable cell percentages. (b) Online predicted infected cell fraction (⁃), average online cell diameter (⁃), and
offline measured SARS-CoV2 S1 concentrations (●). Error bars represent duplicate measurement values
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baculovirus construct. Calibration of the machine learning model was

based on infection with a baculovirus that had eGFP behind an early

promotor. With the online microscope, it was possible to accurately

monitor viable and total cell densities, viable cell percentages, and

insect cell infection states for a variety of baculovirus constructs,

MOIs, and produced proteins based on this calibration data set. More-

over, the high resolution of the online measurements made it possible

to accurately determine changes in the culture like the exact moment

of peak cell densities and detection of growth arrest due to butyrate

addition. Accurate online monitoring of bioreactor cell cultures with

high resolution is important to enhance process understanding and

may aid in the timing of important process steps such as the time of

infection or the time of harvest. Each newly generated data set can be

used to improve the machine learning algorithms and can be used ret-

roactively by re-calculating old data sets. The variety of cell parame-

ters computed by the microscope potentially hides a wealth of

information on the biological state of the cells. Interpreting this infor-

mation to obtain further insight into the state of the cell culture, and

in real-time, is a future challenge.
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