


Propositions 
 

1. Complete maturation of the gut microbiota extends from infancy into 
childhood and puberty. 
(this thesis) 

2. The gut microbiota is a regulator of child mental health and development. 
(this thesis) 

3. A single model never represents all aspects of an actual condition. 

4. Omics-driven correlative results are often overinterpreted without adequate 
evidence from mechanistic validation studies. 

5. Unconsciously under-reporting negative results introduces bias when drawing 
conclusions. 

6. What we see is often obscured, and we always want to know what is blocked 
from our view. 

7. It does not matter what we choose, but the process of selection does. 
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Brief introduction 
There is mounting evidence that the gut microbiota is intimately involved in a wide variety 
of health outcomes, from energy supplementation to immune regulation. Remarkably, 
recent investigations, especially animal studies and human case-control studies, have 
illuminated the emerging role of the gut microbiota in mental health. Therefore, it is 
essential to keep normal microbial composition and function to maintain both physical and 
mental fitness. As a consequence of multiple early-life factors, the gut microbiota shows a 
dynamic development in infancy and toddlerhood, and is supposed to strongly resemble an 
adult microbial profile within the first three years of life. However, due to the scarcity of 
long-term longitudinal studies, it is not yet clear whether microbial community succession 
continues to an older age under the extended influence of extrinsic factors. Besides, little is 
known about how rapidly developing child gut microbiota is related to mental wellbeing 
during childhood and later in life in community samples during sensitive periods. 

To provide insight into the unclear and the unknown, this thesis aims to (1) describe 
gut microbiota development and its associations with extrinsic factors from birth to puberty 
and (2) explore relations between the gut microbiota and child mental development and 
health in community samples during sensitive time windows. In the following sections, I will 
take you on an explorative journey to gut microbiota development and microbial relations 
to multiple extrinsic factors and health outcomes, in particular child mental wellbeing. 

What is the gut microbiota? 
The term microbiota is defined as the assemblage of microorganisms present in a certain 
environment (Marchesi & Ravel, 2015), consisting of two ancient Greek words “micro” 
indicating small and “biota” specifying organisms in an ecosystem or a particular area (Berg 
et al., 2020). Microorganisms include the aggregate of bacteria, archaea, and eukaryotes, of 
which those specifically inhabiting the gastrointestinal system are collectively termed the 
gut microbiota. Gut bacteria, approximately accounting for 1014 cells per person (Sender, 
Fuchs, & Milo, 2016), have been widely explored in many aspects of health and disease (Fan 
& Pedersen, 2021; Nikolova et al., 2021), since 1885 when they were first studied in infants by 
Professor Theodor Escherich (Farré-Maduell & Casals-Pascual, 2019). Recently, with 
increasing knowledge on the microbiota and its complex interplay with the host, scientists 
often refer to the microbiota with a broader term, “microbiome”, which not only contains 
the community of microorganisms, but also their structural elements (e.g., proteins, lipids, 
polysaccharides, and nucleic acids), metabolites (e.g., organic and inorganic compounds, 
signaling molecules, and toxins), and environmental conditions (Berg et al., 2020). The 
community of microorganisms not only provides the host with nutrients and energy, but 
also regulates bowel movements, immune response, and even mental health (Cryan et al., 
2019; Flint, Scott, Louis, & Duncan, 2012; Valdes, Walter, Segal, & Spector, 2018) For easy 
understanding, the more universal term gut microbiota will be used to represent gut bacteria 
herein. 
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1 
Factors related to the gut microbiota in the first years of life 
It remains a general dogma that the fetus is sterile in healthy women, as a consequence of 
the placental barrier that protects against the invasion of pathogens and the diffusion of 
toxins (Matamoros, Gras-Leguen, Le Vacon, Potel, & de La Cochetiere, 2013; Rodríguez et al., 
2015). However, this dogma has been challenged over the past decade, as evidence is growing 
that microbial DNA has been detected in meconium and amniotic fluid (Stinson, Boyce, 
Payne, & Keelan, 2019). Nevertheless, there is currently no consensus on whether the 
microbiota colonizes the fetal gut prior to birth, as both meconium and amniotic fluid are 
low in microbial biomass, and therefore can be easily contaminated by external materials 
and environment (Stinson et al., 2019). 

 

Figure 1. Factors related to the gut microbiota in the first years of life. (created with 
https://biorender.com/) 
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Despite this prenatal contention, upon delivery, the neonatal gut starts to harbor a 
large number and a wide array of microbes (Bäckhed et al., 2015; Hill et al., 2017; Shao et al., 
2019), the composition of which is related to multiple factors (Figure 1). Vaginally delivered 
newborns acquire Bifidobacterium spp. from their mothers (Shao et al., 2019), while infants 
born by C-section miss the maternal transmission of beneficial microbes, which can disrupt 
normal gut microbiota development and further affect the immune system extendedly 
(Korpela, 2021). Antibiotic administration and early gestation (i.e., premature infants born 
before 37 weeks) can also largely impact the colonization of the gut by microbial 
communities at birth (Rodríguez et al., 2015). Furthermore, the feeding type exerts a 
considerable selection on neonatal gut microbiota. Specifically, human milk is enriched in 
oligosaccharides that promote the growth of benign Bifidobacterium spp. which can boost 
host immunity and protect against pathogens (Laursen, 2021). In comparison with breast-
fed infants, formula-fed infants usually exhibit higher prevalence of opportunistic pathogens 
and a fermentation pattern towards proteolysis (Laursen, 2021). Later, complementary solid 
foods induce a remarkable shift in gut microbiota composition. Especially microbial taxa 
consuming dietary fibers will prosper, making the infant metabolically ready for an adult 
diet (Laursen, 2021). Taken together, feeding-related factors, such as duration of exclusive 
breastfeeding, proportion of breast milk to total milk intake, and the introduction of solid 
foods, are considered important factors affecting gut microbiota colonization and 
development in the first few years of life, while their long-term effects are ambiguous. 
Extrinsic factors related to the living environment, such as household composition (e.g., 
siblings and pets) and geographical location, are also linked to microbial development and 
composition (Gacesa et al., 2022). 

Additionally, factors of hosts themselves, such as biological gender and host genetics, 
may also impact the structure and function of the gut microbiota (Korpela et al., 2021; 
Rodríguez et al., 2015; Yuan, Chen, Zhang, Lin, & Yang, 2020). Regarding biological gender, 
its role in infancy and middle childhood remains unclear, but differential microbial 
composition has been observed in children at the onset of puberty, with sexual hormones 
probably being the driving force (Korpela et al., 2021; Yuan et al., 2020). As for host genetics, 
although their interactions with the gut microbiota are still under debate at population level, 
several twin studies have shown profound effects of host genotype on shaping microbial 
communities (Rodríguez et al., 2015). 

Development of the gut microbiota at early ages 
Under the joint effects of the aforementioned factors, the gut microbiota may follow 
divergent trajectories to develop into different microbial patterns, varying in composition 
and possibly function. It has been believed that the gut microbiota completes developing to 
an adult-like configuration within the first three years of life (Yatsunenko et al., 2012), while 
some controlled studies (children vs adults from different cohorts) have indicated that it 
may take longer to reach a mature state highly resembling adult gut microbial profiles than 
previously thought (Agans et al., 2011; Cheng et al., 2016; Hollister et al., 2015; Ringel-Kulka 
et al., 2013). According to these cross-sectional studies, one of the major differences between 
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older children and adults is the relative abundance of Bifidobacterium spp., which were 
reported conspicuously higher in infants and children. However, evidence from longitudinal 
studies that include continuous time points from the same cohort, is scarce beyond the age 
of three years. 

The gut microbiota in health and diseases 
Over the years, many health outcomes and diseases have been found tightly related to the 
gut microbiota (de Vos, Tilg, Hul, & Cani, 2022). In healthy individuals, the gut microbiota 
mainly supplies nutrients, provides energy, inhibits growth of pathogens, maintains normal 
gut motility and immune function (Flint et al., 2012; Valdes et al., 2018). When a disturbance 
happens to the gut microbiota, these microbial functions can be influenced partly or 
completely, which may contribute to the pathogenesis of various diseases or disorders, such 
as gastrointestinal diseases, metabolic disorders, and neuropsychiatric and neurogenerative 
illness (Cryan et al., 2019; Fan & Pedersen, 2021; Flint et al., 2012; Fujimura & Lynch, 2015; 
Meng, Bai, Brown, Hood, & Tian, 2018; Nishida et al., 2018; Pittayanon et al., 2019). In 
particular when the microbial disruption occurs during sensitive time windows, like infancy 
and puberty, this may not only influence host fitness temporarily, but also long-term and 
even life-long (Derrien, Alvarez, & de Vos, 2019). 

The microbiota-gut-brain axis 
In the past decades, scientists found that germ-free, antibiotic-treated, or gnotobiotic 
rodents, showed substantial changes in brain physiology and host behavior (Cryan et al., 
2019). These findings first jointly established the emerging role of the gut microbiota in brain 
development and mental health. In the following years, microbial differences were 
frequently observed between neurotypical individuals and patients with various mental 
illnesses, such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder 
(ASD), major depressive disorder (MDD), and generalized anxiety disorder (GAD) 
(Bundgaard-Nielsen et al., 2020; Cheung et al., 2019; Jiang et al., 2018; Sukmajaya, Lusida, 
Soetjipto, & Setiawati, 2021). Meanwhile, animal studies were carried out to discover 
potential molecular mechanisms underlying the observations. Collectively, these links 
between the gut and the brain are defined as the microbiota-gut-brain axis (MGBA) (Cryan 
et al., 2019; Morais, Schreiber, & Mazmanian, 2021). Along this MGBA, three major 
bidirectional communication paths have been identified till now, including metabolic and 
endocrine pathways, immune and neuroimmune pathways, and neuronal signaling (Cryan 
et al., 2019; Morais et al., 2021). Importantly, it has been suggested that the interplay along 
the MGBA is much more active at a developing age (Cryan et al., 2019). 

Across the lifespan, the period from birth to puberty is of high importance 
(Blakemore, Burnett, & Dahl, 2010; Tierney & Nelson, 2009). In infancy and early childhood, 
children experience rapid physical, emotional, and particularly cognitive developments as a 
result of remarkable anatomical changes in the brain (e.g., neuronal cell proliferation, 
migration, myelination, and synaptogenesis) (Tierney & Nelson, 2009). Of note, the 
development of cognition (i.e., activities and processes including thinking, reasoning, 
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perceiving, imaging, and remembering) in early life has large impacts on physiological and 
mental health in later life (Bayne et al., 2019). For instance, lower cognitive ability at early 
ages is associated with a higher risk of alcohol abuse, MDD, and GAD in adulthood (Gale et 
al., 2008). 

In childhood and puberty, a vast repertoire of problem behavior can start emerging 
(Bongers, Koot, van der Ende, & Verhulst, 2003). For ease of interpretation, problem behavior 
is often divided into internalizing and externalizing behavior (Achenbach, 1966). 
Internalizing behavior includes withdrawal, anxiety, and emotional problems, mainly 
influencing the internal psychological environment. Externalizing behavior comprises 
impulsive, aggressive, and hyperactive features, which mainly exhibit in the external 
environment. Children with elevated levels of problem behavior are more likely to develop 
substance abuse, antisocial personality disorder, and depression in adulthood (McGue & 
Iacono, 2005). 

Such an important period is referred to a sensitive time window for mental 
development. Under the influence of external factors during a sensitive period, it may be 
difficult without tremendous efforts to redirect mental development along a typical 
trajectory (Meredith, 2015; Nelson, Zeanah, & Fox, 2019). Remarkably, the sensitive periods 
of mental development seem in parallel with the sensitive periods of gut microbiota 
development (Cryan et al., 2019), indicating probably stronger interplay between them 
during such periods. However, to date, many aspects concerning the MGBA are not yet clear 
in community samples during sensitive time windows. In Table 1, I present currently 
available findings regarding the relations between the gut microbiota and cognition and 
problem behavior in a community sample of children. 

Table 1. Findings of the relations between the gut microbiota and cognition and problem behavior in a 
community sample of children. 

Parameter Design Sample 
size; Ages; 
Country 

Measures* Main findings Reference 

Cognition Longitudinal N = 89; 
Ages = one 
and two 
years; 
USA 

Fecal microbiota 
composition at the age 
of one year was 
analyzed by 16S. Child 
cognition was 
measured at one and 
two years of age, by 
the MSEL and sMRI. 

Highest cognitive 
scores at age two were 
observed in the 
bacterial cluster 
enriched in Bacteroides 
at age one, while 
lowest scores at age 
two were found in the 
cluster enriched in 
Faecalibacterium at 
age one. Alpha 
diversity (Chao1, 
observed species, and 
Shannon index) at age 
one was negatively 

(Carlson et 
al., 2018) 
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related to cognitive 
scores at age two, and 
positively linked to 
regional gray matter 
volumes at age two. 

 Longitudinal N = 309; 
Ages = 
three to six 
months 
and three 
years; 
USA 

Fecal microbiota 
composition of 
children aged from 
three to six months 
was analyzed by 16S. 
Parents completed the 
ASQ when children 
were three years old. 

The Clostridiales-
predominated 
coabundance group 
was related to worse 
cognitive 
performances in 
aspects of 
communication skills 
and personal and 
social skills. The 
Bacteroides-
predominated group 
was related to poorer 
ability in fine motor 
skills. 

(Sordillo et 
al., 2019) 

 Cross-
sectional 

N = 39; 
Age = one 
year; 
USA 

At one year of age, 
fecal microbiota 
profiles were analyzed 
by 16S, and brain 
functional connectivity 
was measured by fMRI. 

Alpha diversity was 
negatively related to 
functional connectivity 
regarding cognitive 
development. 

(Gao et al., 
2019) 

 Cross-
sectional 

N = 46; 
Age = three 
years; 
China 

At three years of age, 
fecal microbiota 
configuration was 
analyzed by 16S. Child 
neurodevelopment was 
measured by parental 
BSID (second edition). 

The coabundance 
group enriched in 
Faecalibacterium, 
Sutterella, and 
Clostridium cluster 
XIVa, exhibited 
positive relations to 
better mental and 
psychomotor 
developments at age 
three. 

(Rothenberg 
et al., 2021) 

 Cross-
sectional 

N = 71; 
Age = 18 
months; 
Spain 

Fecal microbiota 
composition was 
analyzed by 16S. Child 
neurodevelopment was 
measured by the BSID 
(third edition) at 18 
months of age. 

Fine motor skills 
explained partial 
microbial variation 
(beta diversity). The 
bacterial cluster 
enriched in Firmicutes 
genera showed higher 
scores in fine motor 
skills than those in 
Bacteroidetes 
predominant cluster. 
Increased 
Bifidobacterium and 
Lactobacillus were 
related to more fine 

(Acuña et 
al., 2021) 
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motor skills, while 
Turicibacter and 
Parabacteroides were 
related to less fine 
motor skills. 

 Longitudinal N = 260; 
Ages= six 
weeks and 
one to 
three years; 
USA 

Fecal microbiota 
diversity and genus-
level composition were 
analyzed at the age of 
six weeks, one year, 
and two years, by 16S. 
Fecal microbiota 
composition at 
species-level was 
analyzed at the age of 
six weeks and one year 
by WGS. Parents 
completed the BASC 
(second edition) when 
children were three 
years old. 

Regarding 16S results, 
increased relative 
abundances of 
Bifidobacterium, 
Bacteroides, and 
Streptococcus at six 
weeks were related to 
more adaptive skills in 
boys, while increased 
levels of Klebsiella, 
Clostridium, and 
Haemophilus at the 
same age were related 
to less adaptive skills 
in boys. Regarding 
metagenomic 
outcomes, increased 
relative abundances of 
Klebsiella oxytoca were 
related less adaptive 
skills in boys. 

(Laue et al., 
2021) 

 Longitudinal N = 405; 
Ages = one 
and two 
years; 
Canada 

Fecal microbiota 
profiles were analyzed 
at the age of one year 
by 16S. Child 
neurodevelopment was 
measured by parental 
BSID (third edition) at 
one and two years of 
age. 

The bacterial cluster 
enriched in 
Proteobacteria at age 
one exhibited lowest 
cognitive scores at age 
two, compared to 
Firmicutes and 
Bacteroidetes 
predominant clusters. 

(Tamana et 
al., 2021) 

 Longitudinal N = 90; 
Ages = 
birth to 60 
months; 
Italy 

Microbiota 
composition was 
analyzed in meconium 
and fecal samples at 
the age of three, six, 12, 
24, and 36 months by 
16S. Cognitive 
development was 
measured at the age 
from six to 60 months 
by the GMDS. 

Gut microbiota 
composition in 
meconium was 
associated with 
practical reasoning at 
60 months of age. In 
particular, increased 
relative abundances of 
Bifidobacterium were 
related to better 
practical reasoning. 
(The authors did not 
report links between 

(Guzzardi et 
al., 2022) 
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the gut microbiota and 
cognition at other 
ages. This might be 
their next step.) 

Problem 
behavior 

Longitudinal N = 201; 
Ages = one 
month to 
two years; 
Australia 

Fecal microbiota 
composition was 
analyzed at the age of 
one, six, 12 months, by 
16S. Parents filled in 
the CBCL when 
children were two 
years old. 

Increased relative 
abundances of 
Prevotella at 12 months 
of age were related to 
less problem behavior 
at the age of two years. 
Increased relative 
abundances of an 
unidentified 
Lachnospiraceae 
genera at the age of 12 
months were related to 
more problem 
behavior at age two. 
Both associations were 
primarily related to 
internalizing behavior. 

(Loughman 
et al., 2020) 

 Longitudinal N = 260; 
Ages = six 
weeks to 
three years; 
USA 

Fecal microbiota 
diversity and genus-
level configuration 
were analyzed at the 
age of six weeks, one 
year, and two years by 
16S. Species-level fecal 
microbiota 
composition was 
analyzed at the age of 
six weeks and one year 
by WGS. Parents 
completed the BASC 
(second edition) when 
children were three 
years old. 

Increased levels of 
alpha diversity 
(Shannon index from 
16S) at the age of six 
weeks were related to 
less internalizing 
behavior at age three, 
particularly in boys. 
Increased relative 
abundances of 
Streptococcus peroris 
at age one were related 
to less internalizing 
behavior at age three 
only in girls. 

(Laue et al., 
2021) 

 Cross-
sectional 

N = 248; 
Age = four 
years on 
average; 
Canada 

Fecal microbiota 
composition was 
analyzed at the age 
ranging from three to 
five years by 16S. Fecal 
short-chain fatty acid 
levels were measured 
by LCMS. Parents 
completed the CBCL 
for children. 

Increased Shannon 
alpha diversity was 
related to less 
internalizing behavior. 
Increased levels of 
valerate and 
isobutyrate were 
related to less 
internalizing behavior. 

(Van De 
Wouw et 
al., 2022) 

*Notes. 16S, 16S ribosomal RNA gene sequencing; WGS, whole-genome shotgun metagenomic sequencing; MSEL, the Mullen Scales of Early Learning; 
sMRI, structural magnetic resonance imaging; ASQ, Ages and Stages Questionnaire; fMRI, functional magnetic resonance imaging; BSID, Bayley Scales of 
Infant Development; BASC, Behavioral Assessment System for Children; GMDS, Griffith’s Mental Development Scales; CBCL, Child Behavior Checklist; 
LCMS, liquid chromatography–mass spectrometry. 
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Approaches to decipher gut microbiota composition 
Given the fact that a large number of microorganisms cannot grow on known laboratory 
media (Eckburg, 2005; E. J. Stewart, 2012), culture-independent molecular approaches have 
been developed rapidly in the past decades. These approaches decipher gut microbiota 
composition by classifying DNA sequences taxonomically and phylogenetically (Poretsky, 
Rodriguez-R, Luo, Tsementzi, & Konstantinidis, 2014). This process allows quick, accurate, 
and comprehensive descriptions of microbial community structure and dynamics. Such 
DNA-based strategies can be categorized into targeted amplicon sequencing and whole-
genome shotgun metagenomic sequencing (Kuczynski et al., 2012). The former focuses on 
PCR amplification of marker genes, while the latter sequences random fragments of genome 
without targeting and amplifying a specific gene (Kuczynski et al., 2012). Regarding the 
amplicon-based approach, 16S ribosomal RNA (rRNA) genes have been commonly used as 
marker genes for prokaryotes, as these genes not only contain highly conserved regions that 
can be targeted by the universal PCR primers but also hypervariable regions that can be 
distinguished between microbial taxa (Kuczynski et al., 2012). To date, many gut microbiota 
studies are based on 16S rRNA gene amplicon sequencing, although they can largely differ in 
sample collection, DNA extraction, PCR primers, sequencing platforms, and bioinformatic 
pipelines, which might cause inherent biases between study comparisons. Furthermore, 
compared to shotgun metagenomic sequencing, 16S rRNA gene sequencing is restricted by 
the targeted region and primer specific amplification bias, lower microbial resolution, and 
reduced accuracy in predicting gene functions (Brumfield, Huq, Colwell, Olds, & Leddy, 2020; 
Durazzi et al., 2021; Ramiro-Garcia et al., 2018). Despite these limitations, 16S rRNA gene 
sequencing provides affordable and informative data about microbial communities, and 
therefore is irreplaceable at this moment. 

Disentangling relations between gut microbiota composition and 
host observable traits 
Targeted amplicon sequencing and whole-genome shotgun metagenomic sequencing 
generate numerous gut microbiota data, which are often (1) high-dimensional, i.e., the 
number of microbial taxa is larger than the number of samples, (2) phylogenetically 
structured, i.e., evolutionary closeness between microbial taxa, (3) zero-inflated, i.e., some 
microbial taxa are absent in samples, and (4) over-dispersed, meaning that variance exceeds 
the mean (Chen & Chen, 2018). These features make it a challenging task to explore 
sequence-based gut microbiota composition in relation to host observable traits (e.g., age, 
BMI, biological gender, and mental health). 

Depending on the type of analytical strategies, current methods can be divided into 
classic and modern tools: 

Classic univariate tools, such as parametric t-test and non-parametric Wilcoxon 
rank sum test are often used to compare microbial differences in abundances and diversity 
between two groups. Comparisons between more than two groups can be done by using their 
expansions, i.e., ANOVA and Kruskal-Wallis test. Despite the fact that these tools are easy-
to-perform, such basic tools do not consider the existence of confounders. In contrast, by 



General introduction and thesis outline 

17 

1 
performing a more flexible model, such as a generalized or Bayesian linear model used in 
this thesis, we can contemplate potential confounders, and therefore reduce the 
correlational bias. For instance, Valles-Colomer et al. fitted a generalized linear model 
between a mental index and abundances of a microbial taxon, along with the correction for 
anthropometric and gastrointestinal variables (Valles-Colomer et al., 2019). Furthermore, 
Eckermann et al. regressed executive functions to microbial diversity through Bayesian linear 
models, by taking age, gender, and socioeconomic status as potential confounders into 
account (Eckermann, Ou, Lahti, & de Weerth, 2022). 

Classic multivariate analyses for gut microbiota studies mainly come from ecological 
and environmental science (Chen & Chen, 2018). Among them, constrained methods, 
including canonical correspondence analysis (CCA) and redundancy analysis (RDA), have 
been used the most frequently. In particular, RDA accepts the use of a distance or 
(dis)similarity matrix, which can be calculated by various measures for different purposes. 
For example, UniFrac distance considers phylogenetic relations between microbial taxa 
(Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011). In particular, unweighted and 
weighted UniFrac distances are widely adopted in gut microbiota studies. The former assigns 
more weight to rare taxa, while the latter underlines the most enriched taxa. In addition to 
RDA, I briefly introduce two more recently developed multivariate analysis approaches (i.e., 
random forest and Dirichlet multinomial mixtures; both were utilized in this thesis) below. 

The random forest (RF) algorithm is non-parametric. Stanislawski et al. used RF 
models to decipher associations of microbial abundances and diversity in the first two years 
of life with BMI at the age of 12 years (Stanislawski et al., 2018). They further selected 
important microbial features from the RF models, and then fitted a linear model to each 
feature, for the purpose of correlational direction and strength. Besides, RF models were 
adopted in predicting chronological age by the gut microbiota (Gasparrini et al., 2019; Huang 
et al., 2020; Wan et al., 2022). Gasparrini et al. used such a predictive tool to explore if 
preterm gut microbiota would develop into an age-matched healthy profile in the first years 
of life (Gasparrini et al., 2019). With such a tool, Wan et al. observed lagging gut microbiota 
development in autistic children compared to age-comparable neurotypical peers (Wan et 
al., 2022). As for Vujkovic-Cvijin et al., they employed RF models multiple times on 
numerous host observable traits about physiology, lifestyle, and diet, and assessed their 
individual relations to gut microbiota composition (Vujkovic-Cvijin et al., 2020). 

In 2012, Holmes et al. developed a powerful framework, called the Dirichlet 
multinomial mixtures (DMM), which can be used to identify compositional patterns. Instead 
of focusing on a distance or (dis)similarity matrix as RDA does, the DMM approach pays 
attention to actual taxon abundances. To the best of my knowledge, the DMM has been used 
in describing maternal gut microbiota during pregnancy (Berry et al., 2021) and temporary 
gut microbiota development in early life (Roswall et al., 2021; C. J. Stewart et al., 2018), and 
classifying enterotypes in the gut microbial community landscape (Brial et al., 2021; Costea 
et al., 2017). These DMM clusters, which differ in microbial composition, can then be 
compared in aspects of a collection of host observable traits. 
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Research aims and thesis outline 
Maintaining a normal developmental trajectory of the gut microbiota is pivotal for child 
growth and health. A derailment of the development of the gut microbiota may trigger 
various temporary and enduring diseases and disorders. Studying gut microbiota 
development during sensitive time windows can help increase the understanding of the 
dynamics of microbial ecology, weigh the impact of extrinsic factors, and provide leads 
towards effective interventions. Moreover, the sensitive time windows of the developing gut 
microbiota largely align with those of the maturing brain. During these periods, intense and 
complex bidirectional interactions between the microbiota and the brain may occur along 
the MGBA. Knowing how the gut microbiota is related to mental development and health is 
the first and primary step before systematically exploring cause and effect. 

The aims of this thesis are: (1) Describing gut microbiota development and its 
associations with extrinsic factors from birth to puberty; (2) Exploring relations between the 
gut microbiota and child mental development and health in community samples during 
sensitive time windows. The thesis includes six chapters: 

Chapter 1 introduces the importance, extrinsic factors, and analytical methods of 
investigating gut microbiota development, and presents the MGBA by highlighting currently 
available correlational findings about child cognition and problem behavior during sensitive 
periods. 

Chapter 2 describes the associations between the gut microbiota in the first three 
years of life and child problem behavior and cognitive ability regarding executive functions 
at age three, in a longitudinal study named BINGO. 

Chapter 3 provides insights into gut microbiota development in the first decade of 
life and its short- and long-term relations to potential extrinsic factors. The chapter also 
investigates microbial links to problem behavior at six and ten years of age by using several 
complementary and sophisticated statistical approaches, based on an ongoing longitudinal 
study called BIBO. 

Chapter 4 depicts biological gender differences in gut microbiota composition of 
BIBO participants at the onset of puberty (age 12) and investigates cross-sectional 
associations of the gut microbiota (relative and absolute abundances of microbial taxa, and 
microbiota-derived fecal metabolites) with problem behavior and prosocial behavior at this 
age. 

Chapter 5 extends the data and analyses presented in Chapter 3 by profiling gut 
microbiota development in BIBO children during puberty, and delineating relations between 
pubertal gut microbiota and problem behavior and social anxiety from birth to puberty (age 
14). 

Chapter 6 discusses major findings in this thesis and proposes perspectives for 
future studies. 
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Abstract 
Background: Recent studies show that the gut microbiota is critically linked to mental 
health. As early life is a sensitive period for both microbiota and brain development, evidence 
from longitudinal studies on low-risk populations are necessary. However, studies in this 
period are lacking. This study investigated the associations of the gut microbiota in the first 
three years of life with problem behavior and executive functions in three-year-old children. 
 
Methods: Participants were low-risk three-year-old children and their parents (n=64). Fecal 
microbiota composition was analyzed at five different time points within the first three years 
of life by 16S ribosomal RNA gene sequencing. Microbial relations to three-year-old 
children’s problem behavior and executive functions (reported by parents), and inhibition 
(measured by behavioral tasks), were determined by random forest and Bayesian models. 
 
Results: Increased Streptococcus relative abundance, specifically at the age of two weeks 
and throughout the first three years of life, was related to worse executive functions. Higher 
relative abundance of [Ruminococcus] torques group, at the age of three years and over the 
period from the age of one to three years, was associated with less internalizing behavior. 
Besides, several robust age-specific associations were identified: higher Bifidobacterium 
relative abundance (age three years) was associated with more internalizing and 
externalizing issues; higher Blautia (age three years) relative abundance was linked to less 
internalizing behavior; and increased relative abundance of an unidentified 
Enterobacteriaceae genus (age two weeks) was related to more externalizing behavior. 
 
Conclusions: Our findings provide suggestive evidence for associations between gut 
microbiota variation, during the first three years of life, and problem behavior, executive 
functions, and inhibition in a low-risk sample, supporting the idea that early life gut 
microbiota markers can be linked to behavioral and cognitive development. 
 
Keywords: Gut microbiota; Early life; Problem behavior; Cognition; Executive functions; 
Inhibitory control 
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Introduction  
The human gut harbors a great number of microorganisms, of which bacteria are an essential 
part. These microorganisms are collectively termed the ‘gut microbiota’ (Thursby & Juge, 
2017). Not only has the gut microbiota been involved in many health outcomes, such as 
obesity, type 2 diabetes, and irritable bowel syndrome (Vos, Tilg, Hul, & Cani, 2022), it has 
also been linked to mental health. Accumulating evidence from animal and adult human 
studies has uncovered several key bidirectional communication pathways between the gut 
microbiota and brain functioning, named the microbiota-gut-brain axis (MGBA) (Cryan et 
al., 2019). Remarkably, the MGBA is not only functional in adults, but starts playing an 
equally or even more important role at early ages with regard to child behavior and cognition 
(Cryan et al., 2019). Both the gut microbiota and the brain develop at a breathtaking pace 
during early life, however, only few studies investigated associations between the gut 
microbiota and behavior in such sensitive periods. Therefore, this study aimed to investigate 
the relations of the gut microbiota in the first three years of life with child problem behavior 
and executive functions at the age of three years. 

The bidirectional interactions of the MGBA occur through intricately innervated 
and highly adaptable neuronal pathways, and extremely delicate and difficult-to-measure 
molecular communication systems (Cryan et al., 2019; de Weerth, 2017). For instance, short 
chain fatty acids (SCFAs), mainly being produced through dietary fiber fermentation by the 
gut microbiota, likely affect the brain via the vagus nerve, immunity, and the endocrine 
system (Dalile, Van Oudenhove, Vervliet, & Verbeke, 2019). Furthermore, specific microbial 
taxa ca -aminobutyric acid (GABA), which is the main inhibitory 
neurotransmitter of the central nervous system and regulates many physiological functions 
(Mazzoli & Pessione, 2016; Silva, Bernardi, & Frozza, 2020). The symporter that mediates the 
uptake of microbiota-derived GABA is present through the gastrointestinal tract, suggesting 
that luminal GABA is able to cross the gut barrier and influence extra-gut targets. Although 
remaining controversial, recent studies suggest the permeability of the blood-brain barrier 
to GABA, implying its direct impact on the central nervous system (Mazzoli & Pessione, 2016). 
Besides, GABA receptors are widely expressed in enteric neurons and immune cells, 
indicating the role of GABA in regulating the gut-to-brain signaling and neuroinflammation 
(Auteri, Zizzo, & Serio, 2015; Hyland & Cryan, 2010). Such pathways along the MGBA may 
partially explain how the gut microbiota impacts mental health. 

The colonization of the gut by microorganisms mostly commences soon after birth 
and continues in the following years. Gut microbial disturbances during this dynamic and 
sensitive period can result in subsequent health problems, such as developing allergies and 
obesity (Zhuang et al., 2019). This is explained by the early life programming theory, that 
refers to long lasting changes and disruptions as a consequence of environmental exposures 
at a young age (Tarry-Adkins & Ozanne, 2011). In early life, the brain experiences numerous 
quick developments in neuronal proliferation, migration, differentiation, synaptogenesis, 
myelination, and apoptosis (Rice & Barone, 2000), largely impacting brain functioning, 
cognition and behavior (Erus et al., 2015). Simultaneously, the microbiota is becoming 
established in the gut of infants and young children (de Weerth, 2017; S. Wang et al., 2018). 



Chapter 2 

26 

Thus, alterations of the gut microbiota in early life may exert considerable effects on the 
development of the brain. Indeed, there is compelling evidence from animal studies 
supporting such a hypothesis (Clarke, O’Mahony, Dinan, & Cryan, 2014; Leclercq et al., 2017; 
O’Mahony et al., 2014; Stilling et al., 2015). This marks early life a sensitive time window to 
obtain and maintain microbiota composition that will promote normal physical and mental 
development. However, we know little about early-life gut microbiota in association with 
child behavior and cognition. Specifically, how the gut microbiota and brain functioning, in 
particular host behavior, are interconnected in low-risk community infants and children (i.e., 
generally healthy and neurotypically developing) is underexplored. Knowledge on these 
associations, particularly when uncovered by comprehensive longitudinal studies, can 
provide insight into the typical early development of the gut microbiota in relation to child 
behavior and cognition. 

First studies have found evidence for associations between the gut microbiota and 
child behavior and cognition. Regarding behavior, Loughman et al. reported that increased 
relative abundances of taxa belonging to the genus Prevotella at one year of age were 
associated with less internalizing behavior at age two (i.e., problem behavior affecting 
internal psychological conditions, characterized by withdrawal, anxiety, and emotional 
problems (T. M. Achenbach, 1966)) (Loughman et al., 2020). In our previous study, we found 
that the rise of Prevotella 9 in middle childhood was related to more externalizing behavior 
at age ten (i.e., problem behavior exhibited in the external environment, including features 
like impulsivity, aggression and hyperactivity (T. M. Achenbach, 1966)) (Ou, Belzer, Smidt, 
& de Weerth, 2022). Besides, Laue et al. observed a negative relation between Streptococcus 
peroris and internalizing behavior in girls before school age, and a positive association 
between Lachnospiraceae species and externalizing behavior in both genders (Laue et al., 
2021). Furthermore, Lachnospiraceae species and Veillonella were linked to more 
internalizing behavior in pre-schoolers; interestingly, Veillonella was positively related to 
externalizing behavior as well (Van De Wouw et al., 2022). Additionally, increased alpha 
diversity was observed in preschool children with less internalizing (Laue et al., 2021; Van De 
Wouw et al., 2022). 

Four other studies have found an underlying link between infant gut microbiota and 
child cognition (Aatsinki et al., 2020; Carlson et al., 2017; Rothenberg et al., 2021; Streit et al., 
2021; Tamana et al., 2021). Cognition is fundamental for the development of executive 
functions, including higher-level cognitive processes like inhibitory control (Diamond, 2013). 
Specifically, a cross-sectional study found more Enterobacteriaceae species in relation to 
worse cognition at age 45 months (Streit et al., 2021). Longitudinal research reflected that 
high relative abundances of Bacteroides at age one year were related to better cognition at 
age two (Carlson et al., 2017; Tamana et al., 2021). Furthermore, Faecalibacterium at one year 
of age was associated with reduced cognitive functions at age two (Carlson et al., 2017). 
Additionally, a lower relative abundance of Bifidobacterium and a higher relative abundance 
of Clostridium at two-and-a-half months were linked to increased attention at eight months 
(Aatsinki et al., 2020). Moreover, Rothenberg et al. found that children with better cognition 
showed enriched Faecalibacterium, Sutterella and Clostridium cluster XIVa at age three years. 
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Finally, high alpha diversity at age one year was reported in two-year-old children with worse 
cognition (Carlson et al., 2017). 

To conclude, a number of associations have been observed between the gut 
microbiota and problem behavior and cognition in early life, but findings are variable and 
inconsistent across studies. Furthermore, most of the previous studies have assessed 
problem behavior and cognition by using only one questionnaire of a single reporter. In the 
current longitudinal study in a community sample of children, we investigated the gut 
microbiota in relation to problem behavior (i.e., internalizing and externalizing behavior) 
and executive functions (i.e., advanced cognitive abilities, including inhibitory control 
(Diamond, 2013)) using questionnaires of multiple reporters and behavioral tasks. We had 
the following two hypotheses: (1) relative abundances and alpha diversity (i.e., Chao1, 
Shannon, and phylogenetic diversity) of the gut microbiota at age three years are associated 
with reported problem behavior and executive functions at the same age; (2) relative 
abundances and alpha diversity of the gut microbiota at early ages (i.e., two, six, and 12 weeks, 
and one year) are associated with reported problem behavior and executive functions at age 
three. 

We investigated these hypotheses in three ways: (1) as the gut microbiota is highly 
dynamic in early life, its composition at different ages may be differently associated with 
problem behavior and executive functions later in life. For this reason, we analyzed the 
overall gut microbiota composition in relation to preschool-aged cognitive measures in an 
age-specific manner; (2) for the same reason, relations regarding a single taxon and an alpha 
diversity index were analyzed in an age-specific manner; (3) based on the age-specific 
analyses, we explored the trajectories of taxa and alpha diversity parameters in association 
with mental outcomes over the whole study period. Figure 1 shows the workflow of our 
analyses. Considering that most published findings were at the genus level, we performed 
our analyses at the same taxonomic level. However, given the paucity of studies on these 
relations at such early ages, we did not hypothesise specific associations between microbial 
taxa and mental outcomes. 
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Figure 1. Workflow of the analyses.  



The gut microbiota and behavior in the first three years of life 

29 

2 

Materials and Methods 
Participants 
The current study is part of the longitudinal Dutch study named BINGO where early factors 
associated with child development were investigated. Participants were healthy children and 
their parents living in the Netherlands. Detailed in- and exclusion criteria are described in a 
previous publication (Hechler, Beijers, Riksen-Walraven, & de Weerth, 2018). At baseline, 88 
pregnant women joined the BINGO study. Postnatal exclusion criteria included: 
complications during pregnancy, gestational age at birth <37 weeks, birth weight <2500 g, 5-
min Apgar score <7, and congenital malformations. Seventy-seven mothers were followed 
up after postnatal exclusion. At child age three years, 76 families were approached (one drop-
out occurred during the previous measurement rounds). Among them, two families could 
not be contacted, six families did not participate due to time constraints, and one family 
dropped out due to personal reasons. Parental demographics did not differ significantly 
between participating and non-participating families. This resulted in a final sample of 67 
families. Of them, 64 families participated in home visits when their children reached age 
three, and the other three families were unable to join home visits but filled out 
questionnaires in this assessment round. Both parents participated in 54 families (81%, 
54/67), and only mothers participated in 13 families (19%, 13/67). 

Ethics 
The BINGO study was independently reviewed by the Ethics Committee of Social Sciences 
of Radboud University, and no formal objection to this research was made [ECSW2014–1003–
189 and amendment: ECSW–2018–034]. The current study was preregistered on the Open 
Science Framework: https://osf.io/vwgef with amendment: https://osf.io/nyeb4. 

Data Collection Procedure 
Collection of child stool samples was done at the ages of two, six and 12 weeks, and one and 
three years. Stool samples were stored in the participant’s freezer (-20°C) until they were 
collected with a portable freezer. The stool samples were stored at -80°C at Radboud 
University prior to being processed at the Laboratory of Microbiology at Wageningen 
University & Research. 

Home visits took place at child age three years. Prior to the home visit, mothers and 
their partners independently filled in digital questionnaires about their child’s problem 
behavior and executive functions. During the home visit, the child performed inhibitory 
control tasks. Tasks were video recorded and afterwards rated by two trained observers. 

Measures 
Gut microbiota composition 
Stool samples were collected with a polystyrene 10 mL stool container. Total DNA was 
extracted from 0.01-0.15 g of stool sample with 300 μL of Stool Transport and Recovery Buffer 
by double bead-beating steps as previously described (Gu et al., 2018). The variable V4 region 
of prokaryotic 16S ribosomal RNA (rRNA) genes was then amplified by PCR in duplicate 
reactions, by using primers 515F-n (5’-GTGCCAGCMGCCGCGGTAA) and 806R-n (5’-
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GGACTACHVGGGTWTCTAAT) (Gu et al., 2018). The 16S rRNA gene sequencing was 
completed on the Illumina HiSeq platform by Eurofins Genomics Germany GmbH. 

Behavioral measures 

Parental questionnaires 
Mothers and their partners filled in all questionnaires mentioned below. However, because 
fewer partners completed the questionnaires, we used partner reports for sensitivity analyses 
to validate the maternal reports by calculating Kendall correlations between both. The non-
parametric Kendall method was chosen due to its better performance in handling non-
normally distributed data and tied values (Kendall, 1945). Maternal reports were used as the 
final measure of reported problem behavior and executive functions. 

To assess child problem behavior, the Child Behavior Checklist for ages of one and 
a half to five years (CBCL, 103 items) (Thomas M. Achenbach & Ruffle, 2000) and the 
Strengths and Difficulties questionnaire (SDQ, 25 items) (Goodman, 1997) were used. The 
CBCL and the SDQ include internalizing and externalizing subscales, consisting of items 
scored on a three-point Likert scale. The SDQ can detect problem behavior as accurately as 
the CBCL does (Goodman & Scott, 1999). Given that the Kendall correlations on the same 
subscales of the CBCL and the SDQ were lower than 0.5 (Table S1), we included both 
instruments separately in the analyses. In both instruments, higher scores on subscales 
indicate more problem behavior. 

To evaluate child executive functions, the Behavior Rating Inventory of Executive 
Function – preschool version (BRIEF-P, 63 items) questionnaire for pre-schoolers (Sherman 
& Brooks, 2010) and the Ratings of Everyday Executive functions (REEF, 77 items) (Nilsen, 
Huyder, McAuley, & Liebermann, 2017) were used. The BRIEF-P and the REEF are scored on 
three- and four-point scales, respectively. A higher score on the BRIEF-P indicates worse 
executive functions, while a higher score on the REEF indicates better executive functions. 
The BRIEF-P is a commonly used questionnaire that measures general executive functions 
and does not differentiate between different situations. The REEF rates executive functions 
in different situations (e.g., executive functions around friends, during grocery shopping, or 
in the community) and determines an average score. Kendall correlations between the 
BRIEF-P and the REEF were lower than 0.5 (Table S1), hence both instruments were included 
in the analyses. 

total 

(ranged between 0.65- -0.96) (Table S2) 
(Revelle & Condon, 2019). 

Inhibitory control tasks 
Six different behavioral tasks with good reliability (i.e., Flanker, Whisper, Gift Wrap, Gift 
Delay, Snack Delay, and Bear Dragon) were performed to measure inhibitory control as 
previously stated in detail (Willemsen, Beijers, Arias Vasquez, & de Weerth, 2021). Snack 
Delay and Bear Dragon were excluded from the analyses due to insufficient variation and 
low number of children that passed the practice trials, respectively. The other four tasks were 
included in our study. Higher scores on these tasks indicate better inhibitory control. 
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Statistical analyses 
Pre-processing of sequence data 
Sequence data were processed via NG-Tax 2.0 with default settings (Poncheewin et al., 2020; 
Ramiro-Garcia et al., 2018), with SILVA SSU 16S rRNA gene reference database (version 132) 
(Quast et al., 2012). The raw amplicon sequence variant (ASV) count data were used to 
calculate alpha diversity by the ape (Paradis, 2020) and the picante (W. Kembel, 2020) 
packages. Then, ASV count data were glommed at the genus level prior to analyses. 

Gut microbiota composition and development over the first three years of life 
For descriptive purposes, we first delineated gut microbiota composition and development 
in the first three years after birth (including all samples at the age of two, six and 12 weeks, 
and one and three years). We compared differences in alpha diversity indices, including 
Chao1, Shannon, and phylogenetic diversity, between ages using Wilcoxon rank-sum tests 
corrected with the False Discovery Rate (FDR) method. Next, we also compared beta 
diversity between ages by conducting Principal Coordinate Analysis (PCoA) via the vegan 
package (Oksanen, n.d.). Considering that PCoA can be applied to different dissimilarity and 
distance metrics that all differ in specific aspects and corresponding interpretation, we 
included the Bray-Curtis, weighted Jaccard (formula = 2*Bray-Curtis dissimilarity / (1 + Bray-
Curtis dissimilarity)), unweighted UniFrac, weighted UniFrac, and Aitchison (the Euclidean 
distance based on centered-log-transformed ASV count data) methods, to comprehensively 
describe the compositional differences. Except for the Aitchison distance, we transformed 
genus-level count data into relative abundances before calculating other dissimilarity and 
distance metrices. Significance was determined as a p value lower than 0.05 for non-multiple 
tests and an FDR-adjusted p value lower than 0.05 for multiple tests. 

Additionally, we visualized average and individual relative abundances at the genus 
level over the study period by using a barplot and a heatmap, respectively. To identify 
differentially abundant microbial taxa at the genus level between ages, we conducted the 
Linear Discriminant Analysis Effect Size (LEfSe) method by using the microbiomeMarker R 
package (Segata et al., 2011), with a log-transformed Linear Discriminant Analysis (LDA) 
score higher than two indicating significance. 

Confounding effects 
In our original preregistration, we considered child age and diet quality as potential 
confounders (i.e., variables that influence both the independent variables and the outcome). 
After reconsideration, both variables were removed as potential confounders due to two 
major reasons (amendment can be found via https://osf.io/nyeb4): (1) low variation in child 
age (see Figure 2 for notes regarding ages); (2) our previous study using the same cohort 
found no significant associations of diet quality with behavior and executive functions 
(Willemsen et al., 2021). Potential covariates of the independent variables only (i.e., the gut 
microbiota) were not accounted for in downstream analyses (Cinelli, Forney, & Pearl, 2020), 
as they would remove variation in the gut microbiota data, which was not the purpose of this 
study. These potential confounders and covariates as well as their relations to the gut 
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microbiota and behavioral outcomes are displayed in a directed acyclic graph (DAG) (Figure 
S1). 

Data imputation and transformation 
Missing values (proportion of missing values is shown in Table S3) in problem behavior, 
executive functions, and inhibitory control were imputed ten times together, by using the 
predictive mean match (PMM) method in the R package mice (Buuren, 2021). The imputation 
model was conducted separately at each age. For instance, at the age of three, 64 children 
provided gut microbiota data, and their missing values in aforementioned behavioral 
measures were imputed jointly in one model. No auxiliary variables (i.e., variables that are 
not included in analyses, but are correlated with imputed variables) were considered in the 
imputation. 

For both random forest models and the Bayesian linear regression models, genus-
level relative abundance data were used. Numeric variables were standardized (i.e., 
subtracting the mean and dividing by the standard deviation) for the Bayesian models only, 
as random forest models rely on decision trees for which standardization is considered 
unnecessary. 

Main analyses 
To determine whether gut microbiota composition in the first three years of life (i.e., two, 
six and 12 weeks, and one and three years) is associated with problem behavior (i.e., 
internalizing and externalizing behavior) and executive functions (including inhibitory 
control) at age three, we conducted random forest models and the Bayesian linear regression 
models (Bürkner, 2017; Kuhn et al., 2020). Random forest is first of all well suited to analyse 
microbiome data as it is appropriate for high dimensional data, invariant to scaling of inputs, 
computationally efficient, and able to uncover nonlinear relationships (Belk et al., 2018; 
Louppe, 2014; Namkung, 2020). The first random forest model was applied to assess the 
contribution of the total gut microbiota composition on our behavioral outcomes. This was 
done for the purpose of exploring the gut microbial community as a whole to account for the 
complex interplay between taxa. The following random forest model was applied as a 
preselection tool, to select possibly important taxa from high-dimensional data, before 
passing them on to the Bayesian linear regression model. The Bayesian model was first used 
to determine age-specific relations (i.e., directions and strengths) of a selected taxon and an 
alpha diversity index with each outcome measure. By looking at the different time points 
separately, these analyses can help identify periods of development that are sensitive to 
certain microbial compositions. Although not preregistered, after reconsideration, we 
decided to perform an additional analysis to optimize the use of our longitudinal data. Based 
on the age-specific results, we implemented a multilevel Bayesian model to determine 
whether trajectories of change in the gut microbiota were associated with the outcome 
measures at age three. Figure 1 shows the workflow of our analyses. 

Age-specific analyses 
Determining the contribution of the overall gut microbiota to each behavioral measure 
through random forest models 
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Data were imputed ten times: data were randomly split into a training dataset (including 80% 
participants) and a testing dataset (including 20% participants), leading to ten training 
datasets and ten corresponding testing datasets. The procedure of data splitting was applied 
to children who provided gut microbiota information at each age separately. To prevent data 
leakage, the missing values of behavioral measures were imputed in training and testing 
datasets separately (ten times) as described earlier. Next, we included genus-level relative 
abundances of overall gut microbiota as independent variables and one behavioral measure 
as an outcome. This step was performed on each individual behavioral measure separately. 
To train the model, a ten-repeated ten-fold cross-validation was conducted on each complete 
training dataset including imputed values via the caret package (Kuhn et al., 2020). 
Afterwards, we used the trained model to obtain predicted behavioral outcomes of each 
corresponding complete testing dataset including imputed values. Similarity between 
predicted and actual behavioral outcomes of the complete testing dataset was measured by 
the Pearson correlation with its p value obtained from a permutation test (N = 1000). 
Considering that data splitting and imputation resulted in multiple datasets, we used the 
median value of the Pearson correlation coefficient from multiple cases to represent the final 
similarity. The p value corresponding to this median was included. P values were adjusted 
with FDR methods, with corrected values under 0.05 indicating significance. 
Preselecting potentially important gut microbiota contributing to each behavioral measure 
through random forest models 
To identify microbial taxa that contribute to each behavioral outcome, we measured the 
change in the generalized cross-validation (GCV) value in the random forest model. Larger 
GCV changes indicate more contribution of the independent variable to the model, in other 
words, this analysis shows which taxa are potentially more important (Kuhn et al., 2020). 
Unlike the first random forest model, we did not split the data but used the whole dataset 
here, because we prioritized the structure of the model and a large sample size can provide 
more valid information. Missing values of behavioral measures in the whole dataset were 
imputed as described in the section of data imputation and transformation. Then, relative 
abundances of all taxa were treated as independent variables with one behavioral measure 
as an outcome. This procedure was performed on each behavioral measure separately. Next, 
we carried out a ten-repeated ten-fold cross-validation on each complete dataset containing 
imputed data and calculated average GCV values of multiple datasets acquired from data 
imputation. Based on the size of average GCV values, we selected the largest 20 taxa as the 
top 20 in importance. These 20 taxa were then passed to the Bayesian linear regression 
models to confirm their actual associations with behavioral measures. 
Associating the gut microbiota with behavioral measures by using Bayesian linear regression 
models 
We implemented Bayesian linear regression models to estimate the relations of relative 
abundances of the selected top 20 microbial taxa with a prevalence value higher than 10% 
and alpha diversity with the child behavioral measures. Compared to standard linear 
regression models, the Bayesian linear regression models compute the probability of 
different effects rather than simply reporting single estimates of the "true effect" (Bürkner, 
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2018). We performed the Bayesian models by using the brms R package built based on the 
programming language Stan (Bürkner, 2017). The brm function within the brms package was 
used with the Gaussian distribution (mean = 0, std = 1) as the prior distribution for all beta 
coefficients and the Student’s t-distribution for error distribution (due to better performance 
in handling extreme values) (Lange, Little, & Taylor, 1989). A list containing multiple 
complete datasets including imputed data was directly passed to the brm function, which in 
turn generated a single estimate. Other arguments of the brm function were set as follows: 
chains = 4, iter = 2000, and warmup = 1000. Under these settings, chains were converged 
properly with Rhat values lower than 1.01. Regarding the outcomes of the Bayesian models, 
the less the posterior distribution overlaps with zero, the more likely a relation is positive or 
negative. In the current study, we defined a relation as positive or negative with confidence 
when its 95% credible interval (CI) excluded the value zero. 

Trajectory analyses 
Relating the developmental trajectories of the gut microbiota to behavioral measures through 
multilevel Bayesian linear regression models 
To make maximum use of our longitudinal data, we conducted multilevel models to 
investigate relations between the developmental trajectories of the gut microbiota and 
behavioral measures. The multilevel models were performed on microbial taxa and alpha 
diversity with confident age-specific relations to behavioral measures (i.e., as determined by 
the Bayesian linear regressions described above). In the multilevel models, microbial and 
behavioral information as well as the actual age were level 1 variables, and the child was the 
level 2 variable. Note that missing values in behavioral measures and actual age were not 
imputed, and that in these analyses we used the same distributions and arguments as 
described earlier. Before performing a testing model, we first checked the intraclass 
correlation (ICC) of an intercept-only model. When the 95% CI of an ICC excluded the value 
zero in the intercept-only model, multilevel strategies were used. A trajectory relation was 
considered with confidence when there was no  
overlap between its 95% CI and zero. 

With respect to taxa, when their prevalence was higher than 10% at five time points 
(i.e., two, six, and 12 weeks, and one and three years), multilevel models were performed on 
the pooled data of all ages. When only the first three time points met the 10% criteria, 
multilevel models were carried out by pooling samples at these three ages together. When 
only the prevalences at the last two ages were higher than 10%, multilevel approaches were 
done in the pooled aged-one-and-three years samples. Rhat values were used to check chain 
convergence. 

Results 
Population characteristics and descriptives 
Demographic data and descriptives of study variables are shown in Table 1. Roughly 50% of 
the children were girls. Mothers were mostly highly educated (86.2%). Scores on the 
questionnaires measuring child problem behavior and executive functions did not differ 
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significantly between mothers and their partners, and they were significantly positively 
intercorrelated (Table S1). 

Table 1. Descriptives of study subjects. 

  Characteristics  

Categorical variable Ratio 
Sample 

size 

Child sex girl: boy = 34:30 64 

Delivery mode vaginal: C-section= 54:7 61 

Educational level (%) low: middle: high = 0:12.5:87.5 64 

Numeric variable 
Mean ± 

SD 
Minim

um 
Lower 

quartile 
Medi

an 
Upper 

quartile 
Maxim

um 
Sample 

size 

Age at age three in years  3.2 ± 0.1 3.1 3.1 3.2 3.2 3.5 63 

Gestational age in weeks 
39.8 ± 

1.5 
35.6 38.9 40 40.9 42.1 63 

Birth weight in grams 
3556 ± 
426.2 

2570 3270 3480 3885 4445 61 

Total breastfeeding duration in 
months 

9.6 ± 8.1 0 4 8 13.2 36 64 

Total exclusive breastfeeding 
duration in months 

3.9 ± 1.7 0 3 4 5 7 53 

Age at solid food introduction in 
months 

4.6 ± 1 3 4 4 5 7 59 

Average diet quality at age three 4 ± 1.2 2 3.3 3.9 4.8 7.2 64 

CBCL_M_Internalizing 7.1 ± 5.7 0 3 5.5 10.8 24 62 

CBCL_M_Externalizing 
11.8 ± 

7.3 
0 7 12 15.8 31 62 

SDQ_M_Internalizing 3.6 ± 2.5 0 2 3 5 11 62 

SDQ_M_Externalizing 5.5 ± 3 1 3.2 5 7 14 62 

BRIEF-P_M_TotalScore 
94.4 ± 

15.4 
69 83 92 106.5 146 63 

REEF_M_TotalScore 151.1 ± 31 74 133.2 153 172.8 215 62 

Flanker 1.6 ± 0.3 0.9 1.4 1.7 1.9 2 47 

Whisper 1.9 ± 0.3 0.9 1.8 2 2 2 60 

Gift Wrap 2.2 ± 0.9 0 1.5 2.5 3 3 60 

Gift Delay 3.9 ± 0.2 2.9 3.9 4 4 4 61 

CBCL_P_Internalizing 7.5 ± 5.5 0 4 6 11 22 49 

CBCL_P_Externalizing 
12.2 ± 

5.8 
1 8 12 17 24 49 

SDQ_P_Internalizing 3.5 ± 2.4 0 2 3 5 9 44 

SDQ_P_Externalizing 5.4 ± 2.9 0 3 5 7 12 50 

BRIEF-P_P_TotalScore 
97.2 ± 
17.8 

69 86.2 96 109.2 137 50 
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Gut microbiota composition and development over the first three years of 
life 
We analyzed microbial composition of 345 fecal samples taken at five time points. A total of 
42,056,591 high-quality reads were obtained after being processed with NG-Tax 2.0. Within 
these reads, 220 microbial taxa were identified at the genus level mainly belonging to the 
phyla Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Verrucomicrobia. 

For descriptive purposes, we compared alpha and beta diversity between ages 
(Figures 2; beta-diversity comparisons between the first three ages and between the last two 
ages are displayed in Figures S2 and S3) and delineated a general developmental trajectory 
of the gut microbiota over time (Figure 3a). Diversity comparisons reflected profound 
compositional differences between infancy and toddlerhood. These differences were 
visualized by the heatmap showing individual relative abundance data (Figure S4). LEfSe 
identified a total of 106 differentially abundant microbial taxa between ages (log-transformed 
LDA scores higher than two; Table S4). Due to the large number of significant taxa, only the 
taxa with log-transformed LDA scores higher than four are highlighted and displayed in 
Figure 3b, such as an unidentified genus within Enterobacteriaceae, Lactobacillus, 
Bifidobacterium, Faecalibacterium, and Blautia. 
  

REEF_P_TotalScore 
147 ± 
28.9 

78 133 148 164 212 49 

Notes. In the assessment round at age three, 64 participants were included in the study. In total, 66, 70, 73, 72, 
and 64 fecal samples were collected at ages two, six, and 12 weeks, and one, and three years, respectively. P, 
Partner; M, Mother; CBCL, the Child Behavioral Checklist; SDQ, the Strengths and Difficulties Questionnaire; 
BRIEF-P, Behavior Rating Inventory of Executive Functions - Preschool; REEF, Ratings of Everyday Executive 
Functioning. Differences were compared between mother and partner reports by Wilcoxon tests. None of them 
were significant before or after FDR adjustments.  
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Figure 2. Alpha and beta diversity of the gut microbiota in the first three years of life. (a-c) Alpha 
diversity as measured by Chao1, Shannon, and phylogenetic diversity indices. Wilcoxon rank-sum tests 
were conducted between ages and corrected with the FDR method (ns, not significant; *, <0.01). 
Age2w_mean±sd = 2.08 ± 0.28. Age6w_mean±sd = 6.23 ± 0.55. Age12w_mean±sd = 12.27 ± 0.42. Age1y_mean±sd = 1.04 ± 
0.08. Age3y_mean±sd = 3.18± 0.10. (d-h) Principal coordinate plots of beta diversity, based on different 
pairwise dissimilarity (Bray-Curtis and weighted Jaccard) and distance (UniFrac and Aitchison) 
matrices, with points and ellipses colored by ages (Lake blue, two weeks; Orange, six weeks; Purple, 12 
weeks; Pink, one year; Grass green, three years). 
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Figure 3. Characteristics of the gut microbiota in the first three years of life. (a) Average relative 
abundances of the gut microbiota at the genus level over time. Others represent genera with relative 
abundances lower than 1%. (b) Differentially abundant genus-level taxa between ages, identified by 
Linear Discriminant Analysis Effect Size (LEfSe) with log-transformed Linear Discriminant Analysis 
(LDA) scores higher than four. 

Age-specific analyses 
Determining the contribution of the overall gut microbiota to each behavioral 
measure through random forest models 
To explore whether the overall microbial composition in the first three years (i.e., at ages 
two, six and 12 weeks, and one and three years) contributes to problem behavior and 
executive functions at age three, we compared the similarity between the actual and the 
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predicted behavioral results. As shown in Table S5, 92% (46/50) of the models showed 
insignificant absolute correlation coefficients (i.e., lower than 0.3), indicating a low 
likelihood that the gut microbiota can contribute to behavioral outcomes. Regarding the 8% 
(4/50) models with correlation coefficients higher than 0.3, the similarity remained 
insignificant between the actual and predicted data, implying the same low likelihood. The 
random forest models showed that the overall gut microbiota did not contribute to problem 
behavior and executive functions in the present study. 

Preselecting potentially important gut microbiota contributing to each behavioral 
measure through random forest models 
As planned in our preregistration, we preselected the microbial taxa that may contribute to 
the behavioral outcomes the most (i.e., top important taxa) based on GCV values, by 
performing separate random forest models at each age. The top 20 important taxa at the 
genus level are depicted in Figure 4 and Figure 5, with the following observations: 

(1) Bacteroides and Clostridium sensu stricto 1 were the most frequent contributors 
to CBCL internalizing behavior; 

(2) Bacteroides and Bifidobacterium were the most frequent contributors to CBCL 
externalizing behavior, SDQ internalizing and externalizing behavior, and BRIEF-P 
executive functions; 

(3) Bacteroides and Blautia were the most frequent contributors to REEF executive 
functions; 

(4) Additionally, Bacteroides and Bifidobacterium were the most frequent 
contributors to the behavioral measures of inhibitory control (i.e. Flanker, Whisper, Gift 
Wrap, and Gift Delay) (Figure 6). 
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Figure 4. Heatmap showing the top 20 important microbial taxa over time and their associations to 
problem behavior at age three as reported by the mother. The top 20 important genus-level taxa within 
each age (i.e., 2w, two weeks; 6w, six weeks; 12w, 12 weeks; 1y, one year; 3y, three years) per behavioral 
measure are shown on the right side of the figure. Behavioral measures include: CBCL-I, internalizing 
behavior measured by the CBCL; SDQ-I, internalizing behavior measured by the SDQ; CBCL-E, 
externalizing behavior measured by the CBCL; SDQ-E, externalizing behavior measured by the SDQ. 
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The orange scale indicates the importance of the taxa, with darker color referring to increased 
importance. The importance was determined by the generalized cross-validation value, with a larger 
value change indicating more contribution of a taxon to the model, i.e., which taxon is more important. 
As not all taxa appeared in the top 20 list at each time point, these absent taxa are colored in gray. 
Numbers on the left side of the figure show how many times a taxon appeared to be in the top 20 list 
of a behavioral measure over time. The frequently appearing taxa are bolded and colored in orange 
(five times), yellow (four times), or green (three times). 
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Figure 5. Heatmap showing the top 20 important microbial taxa over time and their associations to 
executive functions at age three as reported by the mother. The top 20 important genus-level taxa 
within each age (i.e., 2w, two weeks; 6w, six weeks; 12w, 12 weeks; 1y, one year; 3y, three years) per 
cognitive measure are shown on the right side of the figure. The measures include: BRIEF-P, executive 
functions measured by the BRIEF-P; REEF, executive functions measured by the REEF. The orange 
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scale indicates the importance of the taxa, with darker color referring to increased importance. The 
importance was determined by the generalized cross-validation value, with a larger value change 
indicating more contribution of a taxon to the model, i.e., which taxon is more important. As not all 
taxa appeared in the top 20 list at each time point, these absent taxa are colored in gray. Numbers on 
the left side of the figure show how many times a taxon appeared to be in the top 20 list of a measure 
over time. The frequently appearing taxa are bolded and colored in orange (five times), yellow (four 
times), or green (three times).  
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Figure 6. Heatmap showing the top 20 important microbial taxa over time and their associations to 
observed inhibitory control behavior at age three. The top 20 important genus-level taxa within each 
age (i.e., 2w, two weeks; 6w, six weeks; 12w, 12 weeks; 1y, one year; 3y, three years) per inhibitory-control 
task are shown on the right side of the figure. The tasks include: FL, flanker; WHSP, whisper; GW, gift 
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wrap; GD, gift delay. The orange scale indicates the importance of the taxa, with darker color referring 
to increased importance. The importance was determined by the generalized cross-validation value, 
with a larger value change indicating more contribution of a taxon to the model, i.e., which taxon is 
more important. As not all taxa appeared in the top 20 list at each time point, these absent taxa are 
colored in gray. Numbers on the left side of the figure show how many times a taxon appeared to be in 
the top 20 list of a task over time. The frequently appearing taxa are bolded and colored in orange (five 
times), yellow (four times), or green (three times).  
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Associating the gut microbiota with behavioral measures by using Bayesian linear 
regression models 
To confirm whether the aforementioned top 20 important microbial taxa were associated 
with problem behavior and executive functions, we performed the Bayesian linear regression 
model on each genus-level taxa (relative abundance) and behavior pair. Table 2 shows the 
strongest observed associations of these pairs (i.e. estimates higher than 0.2 or lower than -
0.2). 

Table 2. Associations of the gut microbiota in the first three years of life with behavioral measures at 
age three. 

Behavior at 
age three 

Age of the gut 
microbiota 

Genus 
Esti

mate 
Estimate 

error 
95% CI 

Preval
ence% 

Relative 
abundance 

% 

mean ± SD 

Mother-
reported 

              

CBCL_Inter
nalizing 

12w Intestinibacter 0.23 0.12 
[0.01, 
0.47] 

16 0.2 ± 0.6 

3y Barnesiella 0.31 0.12 
[0.08, 
0.55] 

50 0.4 ± 0.6 

CBCL_Exter
nalizing 

2w Streptococcus 0.26 0.12 
[0.01, 
0.5] 

94 8.8 ± 10.1 

2w Parabacteroides -0.3 0.12 
[-0.51, -
0.06] 

35 1.8 ± 4.9 

1y 
Clostridium sensu 

stricto 1 
0.23 0.11 

[0.01, 
0.46] 

62 1.2 ± 3.5 

1y Butyricicoccus 0.23 0.12 
[0.01, 
0.48] 

56 0.4 ± 0.5 

1y Parabacteroides -0.22 0.12 
[-0.45, 
-0.01] 

44 0.8 ± 1.8 

3y Barnesiella 0.33 0.12 
[0.1, 
0.56] 

50 0.4 ± 0.6 

SDQ_Inter
nalizing 

1y Ruminococcus 2 -0.36 0.11 
[-0.58, 
-0.14] 

39 1.4 ± 2.4 

3y Bifidobacterium 0.27 0.13 
[0.01, 
0.53] 

100 14.6 ± 11.6 

3y Blautia -0.25 0.12 
[-0.48, 

0] 
100 11.1 ± 4.5 

3y 
[Ruminococcus] 
torques group 

-0.25 0.13 
[-0.51, -

0.01] 
84 0.8 ± 0.7 

3y Sutterella 0.25 0.13 
[0.01, 
0.5] 

61 0.3 ± 0.3 

SDQ_Exter
nalizing 

2w 
Enterobacteriaceae 
unidentified genus 

0.25 0.12 
[0.01, 
0.5] 

89 21.6 ± 24.1 

2w Parabacteroides -0.28 0.12 
[-0.51, -
0.05] 

35 1.8 ± 4.9 

6w Halomonas 0.28 0.11 
[0.06, 
0.5] 

11 0.1 ± 0.2 
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3y Butyricicoccus -0.35 0.12 
[-0.57, 
-0.11] 

89 0.4 ± 0.3 

3y Bifidobacterium 0.27 0.13 
[0.01, 
0.52] 

100 14.6 ± 11.6 

3y Oscillibacter 0.28 0.12 
[0.04, 
0.51] 

22 0 ± 0.1 

BRIEF-P 

2w Streptococcus 0.4 0.12 
[0.15, 
0.64] 

94 8.8 ± 10.1 

6w Halomonas 0.24 0.12 
[0.01, 
0.49] 

11 0.1 ± 0.2 

12w Streptococcus 0.31 0.12 
[0.07, 
0.55] 

88 5.1 ± 10.4 

12w Intestinibacter 0.3 0.11 
[0.08, 
0.53] 

16 0.2 ± 0.6 

1y Ruminococcus 2 -0.3 0.12 
[-0.54, 
-0.08] 

39 1.4 ± 2.4 

1y 
Clostridium sensu 

stricto 1 
0.27 0.12 

[0.03, 
0.5] 

62 1.2 ± 3.5 

3y Blautia -0.3 0.13 
[-0.57, 
-0.05] 

100 11.1 ± 4.5 

REEF 

2w Parabacteroides 0.25 0.12 
[0, 

0.47] 
35 1.8 ± 4.9 

6w Halomonas -0.24 0.12 
[-0.48, 
-0.01] 

11 0.1 ± 0.2 

1y 
Lachnospiraceae 

unidentified genus 
0.28 0.11 

[0.06, 
0.5] 

78 3.1 ± 4.1 

3y 
[Ruminococcus] 
torques group 

-0.24 0.13 
[-0.49, 
-0.01] 

84 0.8 ± 0.7 

Child-
reported 

              

Flanker 

6w Bacteroides 0.28 0.12 
[0.05, 
0.51] 

59 10.6 ± 16.3 

1y Anaerostipes 
-

0.29 
0.12 

[-0.51, -
0.07] 

96 3.8 ± 3.6 

1y Sutterella -0.24 0.12 
[-0.48, 
-0.01] 

46 0.3 ± 0.6 

3y Subdoligranulum -0.25 0.13 
[-0.5, 

0] 
95 2.5 ± 1.8 

3y 
Ruminococcaceae 

UCG-013 
0.26 0.12 

[0.03, 
0.51] 

73 0.2 ± 0.2 

Gift Wrap 

1y Subdoligranulum -0.31 0.12 
[-0.54, 
-0.08] 

31 0.7 ± 1.4 

1y Coprococcus 3 -0.26 0.12 
[-0.48, 
-0.02] 

14 0.1 ± 0.3 

1y Veillonella 0.24 0.12 
[0.01, 
0.47] 

71 3.3 ± 5 

1y 
Lachnospiraceae 
NK4A136 group 

-0.3 0.12 
[-0.55, 
-0.08] 

38 0.4 ± 0.7 

Notes. Associations of estimates with 95% credible intervals (CIs) excluding 0 are presented. Behavioral 
measures include: CBCL, the Child Behavioral Checklist; SDQ, the Strengths and Difficulties Questionnaire; 
BRIEF-P, Behavior Rating Inventory of Executive Functions - Preschool; REEF, Ratings of Everyday Executive 
Functioning. 
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Remarkably, there were several highly present taxa (i.e. prevalent in more than 80% 

of the samples, relative abundance higher than 10%) in relation to the outcome measures: 
Bifidobacterium at age three years was associated with more internalizing and externalizing 
behavior (est. = 0.27 for both), Blautia at three years was linked to less internalizing behavior 
(est. = -0.25), and an unidentified taxa within the Enterobacteriaceae family was related to 
more externalizing behavior (est. = 0.25). 

Next, we checked for consensus between the questionnaires assessing the same 
construct. For internalizing behavior, there was no consensus between the associations 
found for the CBCL and the SDQ. For externalizing behavior, more Parabacteroides at two 
weeks was associated with less externalizing behavior in both the CBCL (est. = -0.30) and the 
SDQ (est. = -0.28). An opposite finding was found for Butyricicoccus at one year in relation 
to more externalizing behavior by the CBCL (est. = 0.23), while at three years, it was 
associated with less externalizing behavior by the SDQ (est. = -0.35). 
Within the CBCL results, Barnesiella at age three years was associated with more 
internalizing (est. = 0.31) and externalizing behavior (est. = 0.33). Within the SDQ results, 
Bifidobacterium at age three years was associated with more internalizing and externalizing 
behavior (est. = 0.27 for both). 

Regarding executive functions, Ruminococcus 2 at one year and [Ruminococcus] 
torques group at age three years, were associated with better executive functions as measured 
by the BRIEF-P (est. = -0.30, note that higher scores on the BRIEF-P indicates worse executive 
functions) and worse executive functions measured by the REEF (est. = -0.24), respectively. 
Lastly, Halomonas at six weeks was associated with worse executive functions as measured 
by the BRIEF-P (est. = 0.24) and the REEF (est. = -0.24). 

Different associations were found for the Flanker and the Gift Delay tasks. For the 
Flanker, relations were identified at the age of six weeks, and one and three years, while for 
the Gift Wrap, associations were observed at age one year only. This may be due to a highly 
dynamic gut microbiota ecosystem in early life, of which composition at different ages may 
be variously linked to executive functions. 

There were some overlapping associations between the questionnaires of problem 
behavior and executive functions. Parabacteroides at two weeks was associated with better 
executive functions (REEF, est. = 0.25), and less externalizing behavior (CBCL and SDQ, est. 
= -0.30 and -0.28, respectively). Another consistent result was Streptococcus at two weeks in 
relation to worse executive functions (BRIEF-P, est. = 0.40) and more externalizing behavior 
(CBCL, est. = 0.26). 

We also measured behavioral relations to alpha diversity, including Chao 1, Shannon 
and phylogenetic diversity by using the Bayesian linear regression models (strongest results 
are displayed in Table 3). Interestingly, relations were only observed for alpha diversity at 
age two weeks. Higher Chao 1 values were associated with less internalizing behavior (CBCL) 
(est. = -0.28). Furthermore, Chao1 values were in positive relation to better executive 
function performance (REEF and Gift Wrap, est. = 0.31 and 0.43, respectively). Lastly, higher 
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phylogenetic diversity at age two weeks was also linked to better inhibitory control during 
the Gift Wrap task (est. = 0.32). 

Table 3. Associations of alpha diversity in the first three years of life with problem behavior, executive 
functioning and inhibitory controls at age three. 

Report
er 

behavior at age 
three 

Age of the gut 
microbiota 

Alpha 
diversity 

Estima
te 

Estimate 
error 95% CI 

Mother 

CBCL_Internalizi
ng 2w chao1 -0.28 0.12 

[-0.51, -
0.04] 

REEF 
2w chao1 0.31 0.13 

[0.07, 
0.57] 

Child Gift Wrap 
2w chao1 0.43 0.12 

[0.19, 
0.64] 

2w PD 0.32 0.12 
[0.08, 
0.56] 

Notes. Associations of estimates with 95% credible intervals (CIs) excluding 0 are presented. CBCL, the Child 
behavioral Checklist; REEF, Ratings of Everyday Executive Functioning. 

Trajectory analyses 
Relating the developmental trajectories of the gut microbiota to behavioral 
measures through multilevel Bayesian linear regression models 
Based on the results of age-specific Bayesian models and the 10% prevalence rule applied to 
microbial taxa (Table S6), we identified 16 pairs (including 12 pairs of taxa and behavioral 
measures, and four pairs of alpha diversity and behavioral measures) available at all five ages 
(i.e., two, six, and 12 weeks, and one and three years), three at the first three ages, and 12 at 
the last two ages (Table S7). Higher relative abundances of Streptococcus over the first three 
years of life were weakly related to worse executive functions reported by the BRIEF-P (est. 
= 0.05; higher scores on the BRIEF-P indicating worse performance), conforming to earlier 
age-specific findings. We also found that the trajectory of [Ruminococcus] torques group 
from age one to three was negatively related to internalizing behavior (SDQ, est. = -0.22), 
implying that higher relative abundances were associated with fewer internalizing 
difficulties during this period. No enduring associations were observed with confidence 
regarding alpha diversity. 

Discussion 
In this longitudinal study, we investigated associations of the gut microbiota during early 
life with problem behavior and executive functions, including inhibitory control, at child age 
three. Multiple associations with behavior and cognition were found for relative abundances 
of microbial taxa and alpha diversity throughout the first three years of life, in concordance 
with the early life programming theory (Tarry-Adkins & Ozanne, 2011). Table S8 provides an 
overview of microbial taxa and alpha diversity in relation to child behavior and cognition, 
along with a discussion of the existing literature. Below we discuss the most prominent 
findings. 
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We found evidence that increased relative abundance of Streptococcus, specifically 
at the age of two weeks and over the first three years after birth, was associated with worse 
executive functions at the age of three years. This result indicates that Streptococcus might 
affect cognitive development throughout early life. Considering that relations between early-
life relative abundances of Streptococcus and behavior and cognition in typically developing 
children have not been observed in previous literature, we examined studies on microbiota 
composition in children diagnosed with neurodevelopmental disorders as they mostly have 
comorbid behavioral and cognitive issues 
2014). According to a systematic review, children with ASD (autism spectrum disorder) 
frequently show an overgrowth of Streptococcus (Bundgaard-Nielsen et al., 2020). Although 
gut microbiota dysbiosis in ASD was seemingly partially attributed to an altered dietary 
pattern (Li et al., 2022; Welberg, 2022), diet was not correlated to the mental outcomes of 
our community samples. Regarding gene functions, according to the Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) database (Kanehisa, Sato, & Kawashima, 2022), Streptococcus 
species contain GABA synthesis and transportation relevant genes (e.g. gadC), and are 
involved in tryptophan metabolism. Particularly, reduced cerebral tryptophan has been 
associated with decreased cognitive flexibility and memory retrieval (Richard et al., 2009). 
In addition to Streptococcus, both age-specific and trajectory relations were discerned for 
the [Ruminococcus] torques group: higher relative abundances at the age of three years and 
throughout the period from one to three years of age were associated with fewer child 
internalizing problems. Conversely, one study showed excessive absolute abundances of 
fecal [Ruminococcus] torques group in children with ASD (L. Wang et al., 2013) and this taxon 
was strikingly increased in patients with inflammatory bowel disease (Png et al., 2010). Before 
speculating further on potential mechanisms, it would be insightful to discover whether 
similar results are observed regarding the trajectory changes of Streptococcus and 
[Ruminococcus] torques group in replication studies. 

With respect to microbial taxa that only showed age-specific associations, we 
observed higher relative abundances of Bifidobacterium at age three years in relation to more 
internalizing and externalizing behavior at the same age. In contrast, a systematic review 
showed decreased Bifidobacterium in ASD children compared to neurotypically developing 
controls (Xu, Xu, Li, & Li, 2019). Besides, supplementing ASD children with a prebiotic 
galacto-oligosaccharide increased Bifidobacterium populations in the gut and alleviated 
autistic symptoms (Grimaldi et al., 2017). However, opposite roles of Bifidobacterium have 
been described in major depressive disorder (MDD) (Cheung et al., 2019; Knudsen et al., 
2021). Such inconsistency also takes place within ADHD studies. Two studies reported that 
Bifidobacterium longus mitigated ADHD (Finegold et al., 2010; Pärtty, Kalliomäki, Wacklin, 
Salminen, & Isolauri, 2015), while another study found overgrowing Bifidobacterium species 
in ADHD subjects (Aarts et al., 2017). Apart from its ability to produce GABA, 
Bifidobacterium contributes to synthesising phenylalanine, which is a precursor of dopamine 
and noradrenaline (Kandel, Schwartz, Jessell, & Siegelbaum, 2000). Although several studies 
found altered Bifidobacterium levels in ADHD patients, little is known regarding the exact 
mechanisms (Biederman & Spencer, 1999; Gizer, Ficks, & Waldman, n.d.; Staller & Faraone, 



The gut microbiota and behavior in the first three years of life 

51 

2 

2007). In addition, in the current study, a higher relative abundance of Blautia at the age of 
three years was related to fewer internalizing difficulties (as well as to better executive 
functions at the same age). Blautia is suggested to play an important role in nutrient 
absorption and digestion (Eren et al., 2015), and in child gut microbiota development 
towards a normal adult-like configuration (Hsiao et al., 2014). In line with our findings, 
depleted Blautia was seen in ASD populations aged from two to 18 years old by several studies 
as concluded in a systematic review (Liu et al., 2019). However, elevated levels of Blautia were 
reported in relation to MDD in adults (Cheung et al., 2019) and ADHD in three-year-old 
children (Laue et al., 2021), indicating that different mechanisms may be involved depending 
on the psychopathology and chronological age. Lastly, we observed a positive relation 
between one unidentified Enterobacteriaceae genus at the age of two weeks and 
externalizing problems at the age of three years. Similarly, more Enterobacteriaceae species 
were cross-sectionally related to decreased cognitive functioning at the age of 45 months 
(Streit et al., 2021). 

Another of our findings was that higher alpha diversity at age two weeks was linked 
to fewer internalizing problems and better executive functions at age three years. In 
accordance with our internalizing behavior result, Laue et al. observed that higher alpha 
diversity in the first two months of life was related to less internalizing behavior in three-
year-old boys (Laue et al., 2021). Furthermore, van de Wouw et al. found lower alpha diversity 
in clinically diagnosed internalizing behavior (Van De Wouw et al., 2022). This may indicate 
that higher alpha diversity is related to improved subsequent mental outcomes in 
toddlerhood. On the contrary, Carlson et al. found higher alpha diversity at age one year 
related to worse cognition at age two years in typically developing toddlers (Carlson et al., 
2017). Speculatively, higher alpha diversity in the first postnatal weeks has a different 
meaning than higher alpha diversity at age one year, and this may explain the opposite 
findings by Carlson et al. Although underlying mechanisms behind the described links have 
not yet been elaborated, critical molecular pathways might involve neurotransmitters such 
as GABA (Altaib et al., 2021) and norepinephrine (mainly targeted at digestive system) 
(Barandouzi et al., 2022). 

Our study contributes to the growing body of literature on the gut microbiota, 
problem behavior, and executive functions. A strength of our study is the longitudinal design, 
which covered the period from birth to age three years and allowed for the assessment of 
multiple developmental stages of the gut microbiota. Another advantage was that 
questionnaires were filled in by both mother and partner. Partner reports were used for 
sensitivity analyses and because they showed positive correlations with maternal reports, 
they enhanced the reliability of our study measures. Furthermore, problem behavior and 
executive functions were assessed with multiple questionnaires (i.e., CBCL and SDQ for 
problem behavior, and BRIEF-P and REEF for executive functions), allowing us to determine 
conformity and consistency between various questionnaires. Finally, we used standardized 
behavioral tasks as a tool to objectively determine child executive functions. 

A limitation of our study is the possible overreliance on the compositional features 
of the gut microbiota using relative abundances instead of absolute abundances. This 
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approach may increase the chance of spurious associations as relative abundances are 
dependent on each other. Besides, 16S rRNA sequence data are limited at species-level 
resolution and profiling precise gene functions (Durazzi et al., 2021). Suggested potential 
underlying mechanisms regarding neurotransmitters need to be carefully addressed in 
follow-up studies, preferably preclinical experimental studies. Taken together, further 
applications, such as quantitative PCR, whole-genome shotgun metagenomic sequencing, 
targeted fecal metabolomics, and experimental studies in animal models, would improve the 
understanding of current correlational results and provide insight into causality. Another 
limitation of our study is the relatively small sample size and mostly highly educated study 
population, limiting the generalizability of the findings. The restricted sample size may also 
hamper deep inference with respect to taxa with low prevalence rates to some degree. Our 
findings on microbial relations to the mental outcomes and speculations on underlying 
mechanisms of these relations need to be confirmed in a larger, more representative cohort. 
Lastly, in addition to including microbial taxon abundances as continuous variables, 
transforming abundance data into binary variables (absence and presence) may cast more 
light on a panoramic view of such relations. 

To conclude, our results provide tentative evidence supporting the idea that in a 
child’s first years of life the gut microbiota might play a vital role in the development of the 
brain. Potential mechanisms are likely related to microbiota-derived metabolites (Ahmed et 
al., 2022). As the nature of this study was exploratory and the body of similar research needs 
to grow to a large extent, it is still premature to translate our correlational findings into 
clinical implications. Replications in other longitudinal studies on healthy community 
children are necessary to confirm our findings and to shed more light on key microbial taxa 
and latent pathways of associations between early gut microbiota and child behavior and 
cognition. 
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Supplemental information 

 

Figure S1. Directed Acyclic Graph for determining confounders. 
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Figure S2. Beta diversity of the gut microbiota at the age of two, six, and 12 weeks. (a-e) Principal 
coordinate plots of beta diversity, based on different pairwise dissimilarity (Bray-Curtis and weighted 
Jaccard) and distance (UniFrac and Aitchison) matrices, with points and ellipses colored by ages 
(Lake blue, two weeks; Orange, six weeks; Purple, 12 weeks). 
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Figure S3. Beta diversity of the gut microbiota at the age of one and three years. (a-e) Principal 
coordinate plots of beta diversity, based on different pairwise dissimilarity (Bray-Curtis and weighted 
Jaccard) and distance (UniFrac and Aitchison) matrices, with points and ellipses colored by ages 
(Pink, one year; Grass green, three years). 
  



Chapter 2 

56 

 
Figure S4. Heatmap showing relative abundances of the gut microbiota at the genus level over time. 
Bacteria with average relative abundances lower than 1% across the first three years, were assigned to 
‘Others’. Rows of bacteria were clustered based on Euclidean distance. 
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Table S1. Kendall correlations between behavioral measures. 

  

CBC
L_M
_Inte
rnali
zing 

CBC
L_M
_Ext
ernal
izing 

CBC
L_P_
Inter
naliz
ing 

CBC
L_P_
Exte
rnali
zing 

SDQ
_M_
Inter
naliz
ing 

SDQ
_M_
Exte
rnali
zing 

SDQ
_P_I
nter
nali
zing 

SDQ
_P_
Exte
rnali
zing 

BRI
EF-
P_
M_
Tot
alS
cor
e 

BR
IEF

-
P_
P_
Tot
alS
cor
e 

REE
F_M
_Tot
alSc
ore 

REE
F_P
_To
talS
core 

F
l
a
n
k
e
r 

G
if
t

W
ra
p 

G
if
t
D
el
a
y 

W
h
is
p
e
r 

CBC
L_M
_Inte
rnali
zing 

- 
               

CBC
L_M
_Ext
ernal
izing 

0.49
* 

- 
              

CBC
L_P_
Inter
naliz
ing 

0.4* 0.21 - 
             

CBC
L_P_
Exter
naliz
ing 

0.32* 0.29* 0.54
* 

- 
            

SDQ
_M_I
nter
naliz
ing 

0.4* 0.12 0.21 0.14 - 
           

SDQ
_M_
Exter
naliz
ing 

0.14 0.39* -0.02 0.22 0 - 
          

SDQ
_P_I
nter
naliz
ing 

0.3* 0.17 0.34
* 

0.24 0.31* -
0.06 

- 
         

SDQ
_P_E
xtern
alizi
ng 

0.11 0.26 0.16 0.35* 0.15 0.32* 0.18 - 
        

BRIE
F-
P_M
_Tot
alSco
re 

0.44
* 

0.53* 0.27 0.24 0.2 0.29
* 

0.18 0.22 - 
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BRIE
F-
P_P_
Total
Scor
e 

0.32* 0.21 0.38
* 

0.37* 0.27 0.21 0.38
* 

0.23 0.3
9* 

- 
      

REE
F_M
_Tot
alSco
re 

-0.19 -
0.27* 

-0.21 -0.18 -0.1 -0.16 -
0.09 

0.03 -
0.3
4* 

-
0.2
1 

- 
     

REE
F_P_
Total
Scor
e 

0.02 -0.19 -0.03 -0.23 -0.01 -
0.34

* 

-
0.09 

-0.25 -
0.13 

-
0.1
3 

0.24 - 
    

Flan
ker 

-0.01 0.02 -0.18 -0.02 0.08 0.01 0.04 0.09 0.0
1 

-
0.1
6 

0.07 0.04 - 
   

Gift
Wra
p 

-0.07 -0.03 0.06 0.05 0 -
0.09 

-
0.09 

0.17 0.0
2 

0.0
1 

0.15 0.1 0
.
0
5 

- 
  

Gift
Dela
y 

0.06 0.02 0.15 0.29
* 

0.14 -0.17 0.22 0.2 0.0
1 

0 0.18 0.07 0
.1
9 

0.
11 

- 
 

Whis
per 

-0.06 -0.04 -0.1 -
0.09 

-0.01 -0.1 -0.21 -0.21 -
0.1
4 

-
0.2
3 

0.21 0.19 0
.1
1 

-
0.
0
4 

0.
2
5* 

- 

M, Mother; P, Partner; CBCL, the Child Behavioral Checklist; SDQ, the Strengths and Difficulties Questionnaire; BRIEF-P, 
Behavior Rating Inventory of Executive Functions - Preschool; REEF, Ratings of Everyday Executive Functioning. Note that 
increased internalizing and externalizing scores refer to more corresponding behavioral problems. A higher score on the 
BRIEF-P indicates worse executive functions while a higher score on the REEF indicates better executive functions. Higher 
scores on the four behavioral tasks mean better performances in inhibitory control. * indicates a p value lower than 0.05.  
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Table S2. Reliability of parental questionnaires. 

Filler Questionnaire behavior total  

Mother 

CBCL 
Internalizing IC 0.83 
Externalizing 0.92 - 

SDQ 
Internalizing 0.65 - 
Externalizing 0.74 - 

BRIEF-P Executive functions 0.94 - 
REEF Executive functions IC 0.96 

Partner 

CBCL 
Internalizing IC 0.83 
Externalizing 0.84 - 

SDQ 
Internalizing 0.65 - 
Externalizing 0.72 - 

BRIEF-P Executive functions IC 0.95 
REEF Executive functions IC 0.95 

total values were used as 
the first important estimates in determining reliability. For those subscales and questionnaires with 

total

most of estimates were higher than 0.7, indicating good reliability of the scales. 
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Table S3. Proportion of missing values in problem behavior and executive functions. 

 

 

 

 

 

  

 Proportion of missing values 

  2w 6w 12w 1y 3y 

CBCL_M_Internalizing 16.7% 14.3% 13.7% 12.5% 3.1% 
CBCL_M_Externalizing 16.7% 14.3% 13.7% 12.5% 3.1% 
SDQ_M_Internalizing 16.7% 14.3% 13.7% 12.5% 3.1% 
SDQ_M_Externalizing 16.7% 14.3% 13.7% 12.5% 3.1% 
BRIEF-P_M_TotalScore 15.2% 12.9% 12.3% 11.1% 1.6% 

REEF_M_TotalScore 16.7% 14.3% 13.7% 12.5% 3.1% 
Flanker 40.9% 35.7% 37% 34.7% 26.6% 
Whisper 19.7% 17.1% 17.8% 15.3% 6.2% 

Gift Wrap 21.2% 20% 19.2% 16.7% 6.2% 

Gift Delay 19.7% 18.6% 17.8% 15.3% 4.7% 
Notes. M, Mother; CBCL, the Child Behavioral Checklist; SDQ, the Strengths and Difficulties Questionnaire; 
BRIEF-P, Behavior Rating Inventory of Executive Functions - Preschool; REEF, Ratings of Everyday Executive 
Functioning.  



The gut microbiota and behavior in the first three years of life 

61 

2 

Table S4. Differentially abundant microbial taxa at the genus level over time with linear discriminant 
analysis (LDA) scores higher than 2. 

Enriched age Genus LDA score 
2 w Enterobacteriaceae unidentified genus 4.93 
2 w Streptococcus 4.56 
2 w Staphylococcus 4.43 
2 w [Ruminococcus] gnavus group 4.3 
2 w Enterococcus 4.1 
2 w Clostridium sensu stricto 1 3.99 
2 w Parabacteroides 3.84 
2 w Finegoldia 2.49 
2 w Negativicoccus 2.3 
6 w Lactobacillus 4.31 
6 w Actinomyces 3.99 
6 w Hungatella 3.42 
6 w Megasphaera 3.4 
6 w Candidatus Stoquefichus 2.5 
6 w Halomonas 2.49 
6 w Aeribacillus 2.12 
12 w Bifidobacterium 5.3 
12 w Bacteroides 4.54 
12 w Rothia 2.85 
12 w Varibaculum 2.85 
12 w Ruminiclostridium 2.15 
1 y Faecalibacterium 4.69 
1 y Anaerostipes 4.32 
1 y Veillonella 4.23 
1 y Akkermansia 4.01 
1 y Lachnoclostridium 3.79 
1 y Erysipelatoclostridium 3.77 
1 y Lachnospira 3.75 
1 y [Eubacterium] eligens group 3.55 
1 y Prevotella 2 3.38 
1 y [Clostridium] innocuum group 3.38 
1 y Flavonifractor 3.2 
1 y Sutterella 3.16 
1 y Tyzzerella 4 3.09 
1 y Lachnospiraceae UCG-004 3.08 
1 y Eggerthella 2.98 
1 y Parasutterella 2.97 
1 y Clostridioides 2.67 
1 y Tyzzerella 3 2.6 
1 y CAG:352 2.54 
1 y Lactococcus 2.48 
3 y Blautia 4.78 
3 y Prevotella 9 4.56 
3 y Ruminococcus 2 4.31 
3 y Fusicatenibacter 4.09 
3 y Roseburia 4.08 
3 y Subdoligranulum 4.06 
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3 y Dialister 4.03 
3 y [Eubacterium] hallii group 3.88 
3 y Erysipelotrichaceae UCG-003 3.87 
3 y Dorea 3.85 
3 y Lachnospiraceae ND3007 group 3.79 
3 y Ruminococcus 1 3.74 
3 y Lachnospiraceae NK4A136 group 3.65 
3 y Intestinibacter 3.65 
3 y [Eubacterium] coprostanoligenes group 3.65 
3 y [Ruminococcus] torques group 3.58 
3 y Ruminococcaceae UCG-002 3.53 
3 y Alistipes 3.5 
3 y uncultured genus 3.49 
3 y Christensenellaceae R-7 group 3.45 
3 y Romboutsia 3.42 
3 y Phascolarctobacterium 3.41 
3 y Butyricicoccus 3.4 
3 y Coprococcus 2 3.4 
3 y uncultured bacterium 3.35 
3 y [Ruminococcus] gauvreauii group 3.33 
3 y Barnesiella 3.26 
3 y Coprococcus 3 3.25 
3 y Prevotella 7 3.2 
3 y Senegalimassilia 3.14 
3 y Coprococcus 1 3.06 
3 y Ruminococcaceae UCG-013 3.02 
3 y Holdemanella 2.99 
3 y Paraprevotella 2.99 
3 y Terrisporobacter 2.98 
3 y [Eubacterium] ventriosum group 2.98 
3 y Ruminococcaceae NK4A214 group 2.94 
3 y Sarcina 2.93 
3 y Ruminococcaceae UCG-005 2.93 
3 y Sellimonas 2.9 
3 y [Eubacterium] ruminantium group 2.81 
3 y Lachnospiraceae UCG-001 2.81 
3 y Ruminiclostridium 6 2.8 
3 y Lachnospiraceae FCS020 group 2.78 
3 y Ruminococcaceae UCG-014 2.76 
3 y Ruminococcaceae UCG-004 2.75 
3 y Adlercreutzia 2.67 
3 y Lachnospiraceae UCG-003 2.64 
3 y CAG:56 2.63 
3 y [Eubacterium] xylanophilum group 2.63 
3 y Alloprevotella 2.62 
3 y Gordonibacter 2.54 
3 y Ruminiclostridium 5 2.53 
3 y Ruminococcaceae UCG-003 2.52 
3 y Turicibacter 2.51 
3 y Butyrivibrio 2.5 
3 y Family XIII AD3011 group 2.45 
3 y Odoribacter 2.4 
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3 y Mollicutes RF39 uncultured bacterium 2.4 
3 y Oscillibacter 2.36 
3 y Anaeroplasma 2.23 
3 y Methanobrevibacter 2.22 
3 y Marvinbryantia 2.15 
3 y Butyricimonas 2.1 
3 y Ruminiclostridium 9 2.09 

  



Chapter 2 

64 

Table S5. Pearson correlations between actual and predicted results from random forest models. 

Behavior at age 
three 

Age of the gut 
microbiota 

Median of Pearson 
correlation coefficient 

Permutation 
p value 

Adjusted 
permutation p value 

CBCL_M_Intern
alizing 

2w 0.04 0.91 1.00 
6w 0.05 0.87 1.00 
12w 0.02 0.96 1.00 
1y -0.09 0.80 1.00 
3y -0.16 0.59 1.00 

CBCL_M_Exter
nalizing 

2w 0.00 0.99 1.00 
6w -0.33 0.32 1.00 
12w 0.13 0.71 1.00 
1y 0.09 0.78 1.00 
3y -0.11 0.73 1.00 

SDQ_M_Intern
alizing 

2w 0.05 0.88 1.00 
6w -0.03 0.91 1.00 
12w 0.28 0.37 1.00 
1y -0.16 0.67 1.00 
3y 0.06 0.85 1.00 

SDQ_M_Extern
alizing 

2w 0.05 0.88 1.00 
6w -0.29 0.37 1.00 
12w 0.10 0.78 1.00 
1y 0.02 0.94 1.00 
3y 0.14 0.67 1.00 

BRIEF-
P_M_TotalScore 

2w 0.12 0.70 1.00 
6w 0.07 0.85 1.00 
12w 0.10 0.77 1.00 
1y 0.06 0.82 1.00 
3y -0.09 0.76 1.00 

REEF_M_TotalS
core 

2w -0.15 0.65 1.00 
6w -0.07 0.84 1.00 
12w -0.15 0.66 1.00 
1y -0.01 0.99 1.00 
3y -0.11 0.74 1.00 

Flanker 2w -0.07 0.83 1.00 
6w 0.32 0.32 1.00 
12w 0.07 0.84 1.00 
1y -0.17 0.63 1.00 
3y 0.07 0.83 1.00 

Whisper 2w 0.09 0.82 1.00 
6w -0.06 0.88 1.00 
12w 0.23 0.52 1.00 
1y 0.28 0.37 1.00 
3y -0.03 0.93 1.00 

GiftWrap 2w 0.02 0.94 1.00 
6w 0.25 0.39 1.00 
12w 0.14 0.67 1.00 
1y -0.02 0.93 1.00 
3y -0.37 0.23 1.00 
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GiftDelay 2w -0.15 0.56 1.00 
6w -0.09 0.89 1.00 
12w 0.00 1.00 1.00 
1y 0.32 0.32 1.00 
3y 0.04 0.91 1.00 

N=1000 permutation tests were 
performed. 

   

FDR adjustments were conducted to the p values. 
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Table S6. Microbial taxa and alpha diversity with confident age-stratified relations to behavioral 
measures and taxa prevalence over time. 

Typ
e 

Behav
ior at 
age 

three 

Taxa or 
alpha 
diversity 

Pr
eva
len
ce  
at 
2w 

Pr
eva
len
ce  
at 
6w 

Pr
eva
len
ce  
at 
12
w 

Pr
eva
len
ce  
at 
1y 

Pr
eva
len
ce  
at 
3y 

Prevale
nce >10
% at all 

ages 

Prevalence > 
10% only at 

the first 
three ages 

Prevalence > 
10% only at 
the last two 

ages 

gen
us 

CBCL_
Intern
alizing Barnesiella 0 1 0 7 50 no no no 

gen
us 

CBCL_
Intern
alizing 

Intestinibac
ter 0 9 16 78 88 no no no 

gen
us 

CBCL_
Extern
alizing Barnesiella 0 1 0 7 50 no no no 

gen
us 

CBCL_
Extern
alizing 

Butyricicoc
cus 0 0 3 56 89 no no yes 

gen
us 

CBCL_
Extern
alizing 

Clostridium 
sensu 
stricto 1 33 50 44 62 83 yes no no 

gen
us 

CBCL_
Extern
alizing 

Parabacter
oides 35 34 36 44 83 yes no no 

gen
us 

CBCL_
Extern
alizing 

Streptococc
us 94 93 88 90 88 yes no no 

gen
us 

SDQ_I
nterna
lizing 

[Ruminoco
ccus] 
torques 
group 5 6 4 32 84 no no yes 

gen
us 

SDQ_I
nterna
lizing 

Bifidobacte
rium 79 87 93 99 100 yes no no 

gen
us 

SDQ_I
nterna
lizing Blautia 6 11 14 90 100 no no no 

gen
us 

SDQ_I
nterna
lizing 

Ruminococ
cus 2 0 0 0 39 94 no no yes 

gen
us 

SDQ_I
nterna
lizing Sutterella 8 10 12 46 61 no no no 

gen
us 

SDQ_
Extern
alizing 

Bifidobacte
rium 79 87 93 99 100 yes no no 
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gen
us 

SDQ_
Extern
alizing 

Butyricicoc
cus 0 0 3 56 89 no no yes 

gen
us 

SDQ_
Extern
alizing 

Enterobacte
riaceae 
unidentifie
d genus 89 93 97 68 31 yes no no 

gen
us 

SDQ_
Extern
alizing Halomonas 12 11 12 0 0 no yes no 

gen
us 

SDQ_
Extern
alizing 

Oscillibacte
r 0 0 0 4 22 no no no 

gen
us 

SDQ_
Extern
alizing 

Parabacter
oides 35 34 36 44 83 yes no no 

gen
us 

BRIEF-
P Blautia 6 11 14 90 100 no no no 

gen
us 

BRIEF-
P 

Clostridium 
sensu 
stricto 1 33 50 44 62 83 yes no no 

gen
us 

BRIEF-
P Halomonas 12 11 12 0 0 no yes no 

gen
us 

BRIEF-
P 

Intestinibac
ter 0 9 16 78 88 no no no 

gen
us 

BRIEF-
P 

Ruminococ
cus 2 0 0 0 39 94 no no yes 

gen
us 

BRIEF-
P 

Streptococc
us 94 93 88 90 88 yes no no 

gen
us REEF 

[Ruminoco
ccus] 
torques 
group 5 6 4 32 84 no no yes 

gen
us REEF Halomonas 12 11 12 0 0 no yes no 

gen
us REEF 

Lachnospir
aceae 
unidentifie
d genus 5 4 15 78 100 no no no 

gen
us REEF 

Parabacter
oides 35 34 36 44 83 yes no no 

gen
us 

Flanke
r 

Anaerostipe
s 0 1 3 96 100 no no yes 

gen
us 

Flanke
r Bacteroides 56 59 66 86 97 yes no no 

gen
us 

Flanke
r 

Ruminococ
caceae 
UCG-013 0 0 0 33 73 no no yes 

gen
us 

Flanke
r 

Subdoligran
ulum 2 0 0 31 95 no no yes 

gen
us 

Flanke
r Sutterella 8 10 12 46 61 no no no 
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gen
us 

GiftWr
ap 

Coprococcu
s 3 0 0 0 14 66 no no yes 

gen
us 

GiftWr
ap 

Lachnospir
aceae 
NK4A136 
group 0 0 0 38 89 no no yes 

gen
us 

GiftWr
ap 

Subdoligran
ulum 2 0 0 31 95 no no yes 

gen
us 

GiftWr
ap Veillonella 62 64 62 71 17 yes no no 

alph
a 

dive
rsity 

CBCL_
Intern
alizing chao1 - - - - - - - - 

alph
a 

dive
rsity REEF chao1 - - - - - - - - 
alph

a 
dive
rsity 

GiftWr
ap chao1 - - - - - - - - 

alph
a 

dive
rsity 

GiftWr
ap PD - - - - - - - - 

  



The gut microbiota and behavior in the first three years of life 

69 

2 

Table S7. The multilevel Bayesian results of selected genera and alpha diversity with behavioral 
measures. 

Behavior at 
age three 

Taxa or alpha 
diversity 

Age of the gut 
microbiota 

Rhat
<1.01 

Esti
mat

e 

Estimat
e error 

95% 
CI 

95% CI 
excluding 

0 
CBCL_Exter

nalizing 
Clostridium sensu 
stricto 1 

2w, 6w, 12w, 1y, 
3y 

yes 0 0 [-0.01, 
0.01] 

no 

CBCL_Exter
nalizing 

Parabacteroides 2w, 6w, 12w, 1y, 
3y 

no - - - - 

CBCL_Exter
nalizing 

Streptococcus 2w, 6w, 12w, 1y, 
3y 

yes 0.03 0.02 [0, 
0.07] 

no 

SDQ_Intern
alizing 

Bifidobacterium 2w, 6w, 12w, 1y, 
3y 

yes 0.09 0.07 [-0.04, 
0.22] 

no 

SDQ_Extern
alizing 

Bifidobacterium 2w, 6w, 12w, 1y, 
3y 

yes -0.04 0.07 [-0.17, 
0.09] 

no 

SDQ_Extern
alizing 

Enterobacteriaceae 
unidentified genus 

2w, 6w, 12w, 1y, 
3y 

yes 0.01 0.01 [-0.01, 
0.03] 

no 

SDQ_Extern
alizing 

Parabacteroides 2w, 6w, 12w, 1y, 
3y 

no - - - - 

BRIEF-P Clostridium sensu 
stricto 1 

2w, 6w, 12w, 1y, 
3y 

yes 0 0 [0, 
0.01] 

no 

BRIEF-P Streptococcus 2w, 6w, 12w, 1y, 
3y 

yes 0.05 0.02 [0.02, 
0.09] 

yes 

REEF Parabacteroides 2w, 6w, 12w, 1y, 
3y 

no - - - - 

Flanker Bacteroides 2w, 6w, 12w, 1y, 
3y 

no - - - - 

GiftWrap Veillonella 2w, 6w, 12w, 1y, 
3y 

yes 0.01 0 [0, 
0.02] 

no 

CBCL_Intern
alizing 

chao1 2w, 6w, 12w, 1y, 
3y 

yes -0.01 0.02 [-0.06, 
0.04] 

no 

REEF chao1 2w, 6w, 12w, 1y, 
3y 

yes 0.04 0.03 [-0.01, 
0.09] 

no 

GiftWrap chao1 2w, 6w, 12w, 1y, 
3y 

yes 0.02 0.03 [-0.03, 
0.07] 

no 

GiftWrap PD 2w, 6w, 12w, 1y, 
3y 

yes 0.05 0.03 [-0.01, 
0.12] 

no 

CBCL_Exter
nalizing 

Parabacteroides 2w, 6w, 12w no - - - - 

SDQ_Extern
alizing 

Halomonas 2w, 6w, 12w no - - - - 

SDQ_Extern
alizing 

Parabacteroides 2w, 6w, 12w no - - - - 

BRIEF-P Halomonas 2w, 6w, 12w no - - - - 
REEF Halomonas 2w, 6w, 12w no - - - - 
REEF Parabacteroides 2w, 6w, 12w no - - - - 

Flanker Bacteroides 2w, 6w, 12w yes 0.01 0.01 [-0.01, 
0.03] 

no 

CBCL_Exter
nalizing 

Butyricicoccus 1y, 3y yes -0.01 0.08 [-0.17, 
0.15] 

no 
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CBCL_Exter
nalizing 

Parabacteroides 1y, 3y no - - - - 

SDQ_Intern
alizing 

[Ruminococcus] 
torques group 

1y, 3y yes -0.22 0.07 [-0.35, 
-0.07] 

yes 

SDQ_Intern
alizing 

Ruminococcus 2 1y, 3y yes -0.1 0.08 [-0.26, 
0.05] 

no 

SDQ_Extern
alizing 

Butyricicoccus 1y, 3y yes -0.09 0.09 [-0.25, 
0.08] 

no 

SDQ_Extern
alizing 

Parabacteroides 1y, 3y yes -0.04 0.03 [-0.09, 
0.02] 

no 

BRIEF-P Ruminococcus 2 1y, 3y yes -0.11 0.08 [-0.25, 
0.04] 

no 

REEF [Ruminococcus] 
torques group 

1y, 3y yes -0.05 0.08 [-0.21, 
0.09] 

no 

REEF Parabacteroides 1y, 3y yes -0.01 0.03 [-0.06, 
0.05] 

no 

Flanker Anaerostipes 1y, 3y yes -0.05 0.09 [-0.23, 
0.11] 

no 

Flanker Bacteroides 1y, 3y yes -0.07 0.08 [-0.23, 
0.08] 

no 

Flanker Ruminococcaceae 
UCG-013 

1y, 3y yes 0.1 0.1 [-0.09, 
0.29] 

no 

Flanker Subdoligranulum 1y, 3y no - - - - 
GiftWrap Coprococcus 3 1y, 3y no - - - - 
GiftWrap Lachnospiraceae 

NK4A136 group 
1y, 3y yes -0.07 0.05 [-0.17, 

0.01] 
no 

GiftWrap Subdoligranulum 1y, 3y yes -0.03 0.06 [-0.16, 
0.06] 

no 

Notes. Multilevel Bayesian linear regression models were performed on taxa and alpha diversity over time. 
Relations in gray rows are confident with 95% CI excluding zero. Chains were regarded converged when Rhat 
values lower than 1.01. Models that did not meet the Rhat criteria under current settings were not considered in 
the present study. Given that Parabacteroides and Bacteroides did not meet the Rhat requirement in the pooled 
data of all five ages, we did extra trajectory analyses for them after splitting the data into two periods (2w, 6w, 
and 12w; 1y and 3y; colored in gray).  
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Table S8. Overview of the associations in our study in comparison with findings reported in literature. 

Microbial taxa and 
alpha diversity 

In the present 
study 

Literatur
e about 

problem 
behavior 

or 
executiv

e 
function

s and 
inhibitor
y control 

Other 
literature with 

similar 
findings 

Other 
literature 

with 
divergent 
findings 

Potential 
mechanis

ms 

Parabacteroides (2w)  Externalizing 
behavior 

NF   Parabacteroi
des in 
Children with 
ASD (Coretti 
et al., 2018; 
Inoue et al., 
2016; Plaza-
Díaz et al., 
2019) 

GABA  

   Executive 
functions 

NF Parabacteroide
s in ADHD 
(Prehn-
Kristensen et 
al., 2018) 

    

Parabacteroides (1y)  Externalizing 
behavior 

NF 
   

Ruminococcus 2 (1y)  Internalizing 
behavior 

NF Ruminococcus 
2 in MDD 
patients 
(Cheung et al., 
2019; Haiyin 
Jiang et al., 
2015) 

  Tryptophan
/ serotonin 

   Executive 
functions 

NF   Ruminococca
ceae in ADHD 
patients, 
inattention 
(Szopinska-
Tokov et al., 
2020) 

  

 [Ruminococcus] 
Torques group (3y) 

 Executive 
functions 

NF       

Barnesiella (3y)  Internalizing 
and 
externalizing 
behavior 

NF Barnesiella in 
(constipated) 
ASD (S. Liu et 
al., 2019) (Zhao 
et al., 2019) 

Barnesiella in 
ASD (Averina 
et al., 2020) 

 GABA 
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Butyricicoccus (1y)  Externalizing 
behavior 

NF Butyricicoccus 
in constipated 
ASD vs non-
constipated 
ASD (Dan et al., 
2020) 

  Butyrate 

Butyricicoccus (3y)  Externalizing 
behavior 

NF Butyricicoccus 
in ASD (S. Liu 
et al., 2019) 

  

Streptococcus (2w)  Externalizing 
behavior 

NF Streptococcus 
ASD 
(Bundgaard-
Nielsen et al., 
2020); 

Streptococcus 
in Bipolar 
disorder 
(Järbrink-Sehgal 
& Andreasson, 
2020) 

   GABA and 
tryptophan 

   Executive 
functions 

NF       

Streptococcus (12w)  Executive 
functions 

NF 
   

Clostridium sensu stricto 
1 (1y) 

 Externalizing 
behavior 

  Clostridium in 
ASD (De 
Angelis et al., 
2013; Kandeel et 
al., 2020) 

  Neurotoxins 

   Executive 
functions 

Clostridi
um at 2.5 
months 
with 
attention 
(Aatsinki 
et al., 
2020) 

      

Intestinibacter (12w)  Internalizing 
behavior 

NF Intestinibacter 
bartlettii more 
in children with 
neurodevelopm
ental disorders 

2020) 

 
Neurotoxins
. 

 
 Executive 

functions 
NF 

   



The gut microbiota and behavior in the first three years of life 

73 

2 

Bifidobacterium (3y)  Internalizing 
behavior 

NF Bifidobacteriu
m in MDD 
patients 
(Knudsen et al., 
2021) 

Bifidobacteri
um in ASD 
(Xu et al., 
2019);  

Bifidobacteri
um less ASD 
symptoms 
(Grimaldi et 
al., 2017);  

Bifidobacteri
um in MDD 
patients 
(Cheung et al., 
2019) 

GABA, 
dopamine 
and 
noradrenali
ne 

   Externalizing 
behavior 

NF Bifidobacteriu
m in ADHD 
patients (Aarts 
et al., 2017) 

Bifidobacteri
um longus 
positive on 
ADHD 
(Finegold et 
al., 2010; 
Pärtty et al., 
2015) 

  

Blautia (3y)  Internalizing 
behavior 

NF Blautia in ASD 
patients (F. Liu 
et al., 2019) 

Blautia in 
MDD (Cheung 
et al., 2019) 

NF 

 
 Executive 

functions 
NF 

 
Blautia with 

worse ADHD 
symptoms 
(Laue et al., 
2021) 

 

Halomonas (6w)  Externalizing 
behavior 

NF     GABA and 
tryptophan 

   Executive 
functions 

NF Halomonas in 
Alzheimers 
(Ling et al., 
2021) 

    

 Bacteroides (6w) 
 Inhibitory 

control 

 
Bacteroid
es with 
better 
cognition 
at 2 years 
(Carlson 
et al., 
2017; 
Tamana 
et al., 
2021)   GABA 

 Subdoligranulum (1 y 
and 3y) 

 Inhibitory 
control 

NF  
Subdoligranulu
m in patients 
with anxiety 

  NF 
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(Chen et al., 
2019) 

 Anaerostipes (1 y) 
 Inhibitory 

control NF 

 Anaerostipes 
in children with 
autism (Iglesias-
Vásquez et al., 
2022)  Butyrate  

 Lachnospiraceae 
NK4A136 (1y) 

 Inhibitory 
control 

NF     NF 

 Ruminococcaceae UCG-
013 (1y) 

 Inhibitory 
control NF   NF 

Sutterella (1y)  Inhibitory 
control 

 
Sutterella 
with 
better 
cognition 
at age 
three 
years 
(Rothenb
erg et al., 
2021) 

 Sutterella in 
children with 
autism (L. 
Wang et al., 
2013; B. L. 
Williams et al., 
2012) 

  NF 

 Coprococcus 3 (1y) 
 Inhibitory 

control NF  

 Coprococcus 
3 in healthy 
patients 
compared to 
patients with 
anxiety 
disorder 
(Chen et al., 
2019) Tryptophan  

 Veillonella (1y)  Inhibitory 
control 

 
Veillonell
a with 
better 
cognition 
at five 
years 
(Guzzardi 
et al., 
2022) 

    Immune 
system, 
interleukin 
pathways 

            

Alpha diversity (2w) Internalizing 
behavior 

alpha 
diversity 
with less 
internaliz
ing 
behavior 
in boys 
Laue et 

alpha diversity 
in ASD children 
(Chen et al., 
2021; Kang et 
al., 2018; S. Liu 
et al., 2019; Ma 
et al., 2019) 

 GABA and 
norepineph
rine  
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al. (2021);  
Alpha 

diversity 
in 
children 
above the 
clinical 
threshold 
for 
internaliz
ing 
behavior 
(van de 
Wouw et 
al., 2021) 

  Executive 
functions 

alpha 
diversity 
and 
worse 
cognition 
(Carlson 
et al. 
2017) 

alpha diversity 
in ADHD 
(Prehn-
Kristensen et 
al., 2018) 

No differences 
in alpha 
diversity 
between 
ADHD 
patients and 
healthy 
controls (Hai 
yin Jiang et al., 
2018; Richarte 
et al., 2021; 
Szopinska-
Tokov et al., 
2020; Wan et 
al., 2020). 

  

Notes. NF, Not Found (i.e., no comparable findings in the literature for behavioral problems or executive 
functions). 
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Abstract 
Background: Increasing evidence indicates that psychopathological disorders are 
associated with the gut microbiota. However, data is largely lacking from long-term 
longitudinal birth cohorts, especially those comprising low-risk healthy individuals. 
Therefore, this study aims to describe gut microbiota development in healthy children from 
birth till age ten, as well as to investigate potential associations with internalizing and 
externalizing behavior. 
 
Results: Fecal microbial composition of participants in an ongoing longitudinal study 
(N=193) was analysed at one, three and four months, and six and ten years of age by 16S 
ribosomal RNA gene sequencing. Based on these data, three clusters were identified in 
infancy, two of which were predominated by Bifidobacterium. In childhood, four clusters 
were observed, two of which increased in prevalence with age. One of the childhood clusters, 
similar to an enterotype, was highly enriched in genus-level taxon Prevotella 9. Breastfeeding 
had marked associations with microbiota composition up till age ten, implying an extended 
role in shaping gut microbial ecology. Microbial clusters were not associated with behavior. 
However, Prevotella 9 in childhood was positively related to mother-reported externalizing 
behavior at age ten; this was validated in child reports. 
 
Conclusions: This study validated previous findings on Bifidobacterium-enriched and -
depleted clusters in infancy. Importantly, it also mapped continued development of gut 
microbiota in middle childhood. Novel associations between gut microbial composition in 
the first ten years of life (especially Prevotella 9), and externalizing behavior at age ten were 
found. Replications in other cohorts, as well as follow-up assessments, will help determine 
the significance of these findings. 
 
Keywords: Infants; children; gut microbiota; development; internalizing behavior; 
externalizing behavior; Prevotella 9 
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Introduction 
The gut microbiota, including a vast number of bacteria (Hillman, Lu, Yao, & Nakatsu, 2017), 
inhabits the gut of coelomate animals and has co-evolved with the hosts (Nicholson et al., 
2012). These resident microorganisms play a crucial role in many aspects of health, including 
nutrition, immunity and neurophysiology (Cryan et al., 2019; Round & Mazmanian, 2009; 
Valdes, Walter, Segal, & Spector, 2018). Evidence is accumulating that the gut microbiota 
also plays a crucial role in aspects of mental health and behavior (Cryan et al., 2019). 
Therefore, maintaining normal diversity and function of the gut microbiota throughout 
development is essential for physical and mental health. The current study investigated gut 
microbial development from infancy to middle childhood, as well as potential relations of 
the gut microbiota with behavioral measures in healthy children. 

In humans, infancy is commonly recognized as a critically important period for 
microbiota to colonize the gut (Martin et al., 2016). Before weaning, a healthy gut microbiota 
community is predominated by Bifidobacterium (Christian Milani, Sabrina Duranti, 
Francesca Bottacini et al., 2017). Next to the Bifidobacterium-predominated type, researchers 
have identified several other infant gut microbial types using cluster analyses. The identified 
clusters are characterized by Bacteroides, Streptococcus, Enterobacteriaceae or 
Staphylococcaceae (Borewicz et al., 2019; Dogra et al., 2015; Matsuki et al., 2016), and are 
thought to develop as a result of complex extrinsic factors, such as child sex, birth weight, 
delivery mode, diet, and antibiotics (Cox et al., 2014; Ianiro, Tilg, & Gasbarrini, 2016; Jaggar, 
Rea, Spichak, Dinan, & Cryan, 2020; Morais et al., 2020; Rutayisire, Huang, Liu, & Tao, 2016; 
Scott, Gratz, Sheridan, Flint, & Duncan, 2013; Stewart et al., 2018; Unger, Stintzi, Shah, Mack, 
& O’Connor, 2015; J. Wang et al., 2016). Changes in extrinsic factors can also lead individuals 
to transition between different clusters (Derrien, Alvarez, & de Vos, 2019). While some 
studies suggested that by age three children have gut microbial profiles that strongly 
resemble those observed in adults (Koenig et al., 2011; Yatsunenko et al., 2012), other cross-
sectional studies concluded that an adult-like gut microbial ecosystem has not yet been 
completely established at this age (Agans et al., 2011; Hollister et al., 2015; Ringel-Kulka et al., 
2013). Compared to healthy adults, the fecal microbiota of healthy toddlers is characterized 
by a higher relative abundance of Bifidobacterium (Ringel-Kulka et al., 2013). Remarkably, 
Bifidobacterium remains more abundant in healthy school-aged children and older-aged 
adolescents, as compared to healthy adults (Agans et al., 2011; Hollister et al., 2015). All of 
these cross-sectional studies imply that gut microbiota development may extend longer into 
childhood than previously thought, potentially due to long-term impacts of early extrinsic 
factors. However, information on gut microbial development from longitudinal studies is 
largely lacking in healthy low-risk populations. 

Researchers have gradually revealed a bidirectional communication between the gut 
microbiota and the host brain along the microbiota-gut-brain axis (MGBA), based on 
accumulating evidence from both animal and human studies mostly focused on clinical 
mental disorders, such as major depressive disorders and bipolar depression (Aizawa et al., 
2016; Crumeyrolle-Arias et al., 2014; Cryan et al., 2019; Hu et al., 2019; Kelly et al., 2016; Lin et 
al., 2017; R. T. Liu, Walsh, & Sheehan, 2019; Painold et al., 2019; Taylor & Holscher, 2020; 
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Wallace & Milev, 2017; Zheng et al., 2016). In humans, childhood is regarded as an important 
phase for behavioral problems to start emerging. Numerous studies showed that elevated 
childhood behavioral problems, such as internalizing (i.e., behavioral problems influencing 
children’s internal psychological environment, such as anxiety, depression, somatization, 
and social withdrawal symptoms) and externalizing problems (i.e., behavioral problems 
manifested in outward behaviour such as antisocial behavior, aggression, hyperactivity, 
acting out, and hostility) (J. Liu, 2004), are associated with higher chances of developing 
mental disorders and risky lifestyles in adulthood, which may in turn result in premature 
mortality (Copeland, Wolke, Angold, & Costello, 2013; Jokela, Ferrie, & Kivimäki, 2009; 
Mason et al., 2004; von Stumm et al., 2011). However, investigations about the MGBA in 
childhood are still at an early stage. Most of the existing studies are cross-sectional and 
mainly focused on children diagnosed with psychological disorders, such as autism spectrum 
disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) (Coretti et al., 2018; 
Jiang et al., 2018; Strati et al., 2017). Three previous longitudinal studies on community 
samples have reported associations of the gut microbiota with temperament, cognition, and 
behavioral problems in children until age two years (Aatsinki et al., 2019; Carlson et al., 2018; 
Loughman et al., 2020). Two papers identified microbial clusters associated with different 
behavioral patterns (Aatsinki et al., 2019; Carlson et al., 2018), while the third found increased 
internalizing problems in a Prevotella-depleted group (Loughman et al., 2020). However, 
nearly no studies have longitudinally investigated theses links in populations beyond early 
childhood. 

The present study has two goals. First, we aimed to describe gut microbiota 
development from birth till age ten in a healthy low-risk community sample. To our 
knowledge, this has not been done before. We evaluated both short- and long-term 
associations of the gut microbial composition with extrinsic factors (i.e., birth weight, child 
sex, delivery mode, breastfeeding, and antibiotics) and determined whether the gut 
microbiota could be clustered into different successional patterns throughout the first ten 
years on the basis of variance in microbial composition. Second, we aimed to investigate 
potential associations of the gut microbiota with internalizing and externalizing behavior in 
middle childhood in the same cohort. For this second aim, we raised three broad hypotheses 
based on scarce literature: internalizing and externalizing behavior would (1) differ between 
microbial clusters; (2) explain general variance in microbial composition; (3) be related to 
alpha diversity or relative abundances of specific microbial taxa. 

Materials and Methods 
Participants 
Participants were identified from an on-going longitudinal Dutch study named BIBO (Basale 
Invloeden op de Baby Ontwikkeling) (Beijers, Jansen, Riksen-Walraven, & de Weerth, 2011), 
consisting of healthy low-risk individuals (N=193), with approval from the ethical committee 
of the Faculty of Social Sciences of the Radboud University (ECG300107, ECG13012012, 
SW2017-1303-497 and SW2017-1303-498). 
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Data collection procedures 
Parents were instructed to collect fecal samples in sterilized plastic tubes by using the scoop 
attached to the tube cap, when their children were one, three and four months of age, and 
six and ten years of age. Infancy samples were collected from diapers, and childhood samples 
were collected immediately after defecation from potties or toilets without contact with the 
toilet water. The tubes were then placed in clean plastic bags provided by investigators before 
temporarily kept in the freezer (-20°C). Samples were transported to the Laboratory of 
Microbiology at Wageningen University and stored at -80°C before being processed. A total 
number of 739 fecal samples were collected at these five timepoints. Participants with at least 
one fecal sample at these assessment moments were included in the present study (N=187). 

Behavioral measures were collected with questionnaires at six and ten years of age. 
Additionally, we recorded the following variables as extrinsic factors that may predict 
variance in the gut microbiota: child age, child sex, birth weight, delivery mode, frequency 
of breastfeeding and formula intake in the first 27 weeks of life (mothers were required to 
weekly record the average number of breastfeeding and formula intake per day), the age of 
first solid food introduction, and use of antibiotics in the first ten years of life (Beijers, 
Riksen-Walraven, & de Weerth, 2013; Zijlmans, Beijers, Riksen-Walraven, & de Weerth, 2017). 
Finally, we also measured dietary intake at age ten by a food frequency questionnaire. 

Measures 
Gut microbiota composition 
In brief, DNA extraction was performed using the Maxwell 16 Total RNA system (Promega, 
Wisconsin, USA) with 0.01 to 0.13g of fecal sample and Stool Transport and Recovery Buffer 
(STAR; Roche Diagnostics Corporation, Indianapolis, IN), as reported previously (F. Gu et 
al., 2018). Amplification was performed on the V4 region of 16S ribosomal RNA (rRNA) gene 
in duplicate, generating amplicons with a length of around 290bp (F. Gu et al., 2018). Each 
PCR reaction comprised of 10μl of 5xPhusion Green HF Buffer (Thermo Scientific, US), 1μl of 
10μM barcoded primers 515F-n(5’-GTGYCAGCMGCCGCGGTAA-3’) and 806R-n(5’- 
GGACTACNVGGGTWTCTAAT-3’) (Apprill, McNally, Parsons, & Weber, 2015; Parada, 
Needham, & Fuhrman, 2016), 1μl of 10mM dNTPs mix (Promega Corporation, US), 0.5μl of 
2U/μl Phusion Green Hot Start II High-Fidelity DNA polymerase (Thermo Scientific, US), 
36.5μl of Nuclease-free water and 1μl of 20ng/μl DNA template. PCR was carried out as 
previously described (F. Gu et al., 2018) with modification: initial denaturation (98°C, 30s), 
25 cycles of denaturation (98°C, 10s), annealing (50°C, 10s), extension (72°C, 10s) and 
elongation (72°C, 7min). The presence and length of PCR products was then verified by gel 
electrophoresis. PCR products were purified by the HighPrep® PCR kit (MagBio Genomics, 
Alphen aan den Rijn, Netherlands), according to the instructions of the kit. DNA 
concentration of purified samples was measured using a fluorometer (DS-11; DeNovix) with 
Qubit® dsDNA BR Assay Kit (Life Technologies, Leusden, Netherlands). 200ng of barcoded 
samples was pooled in libraries comprising 69 uniquely tagged samples, two of which were 
artificial control communities representative of human gut microbiota (Ramiro-Garcia et al., 
2018). The mixture was purified again by HighPrep® PCR kit to a final volume of 40μl. 
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16S rRNA gene sequencing was completed on the Illumina sequencing platform at 
Eurofins Genomics, Germany. NG-Tax was used for processing of 16S rRNA gene sequence 
data (Poncheewin et al., 2020; Ramiro-Garcia et al., 2018). Only reads with matching 
barcodes were kept. Subsequently, amplicon sequence variants (ASVs) were identified on a 
per sample basis. Taxonomic assignment of ASVs was performed referring to SILVA_132_SSU 
16S rRNA gene reference database (Quast et al., 2012). A total of 113,413,327 reads were 
obtained from the sequencing. 

Behavioral measures 

CBCL 
The Child Behavior Checklist 4-18 (CBCL; for children aged from four to 18) contains 118 
specific items of problem behavior, scored on a 3-point scale (Achenbach, 1994). The CBCL 
includes internalizing and externalizing subscales. Higher scores indicate more behavioral 
problems. Mothers were required to complete the CBCL when their children were six years 
old. 

SDQ 
The Strengths and Difficulties Questionnaire (SDQ) is a 25-item scale, evaluating problem 
behavior in children from ages four to 16, and scored on a 3-point scale (Goodman, 1997). 
The SDQ includes internalizing and externalizing subscales. Higher scores represent more 
behavioral problems. Although the SDQ is shorter than the CBCL, it has verified equivalent 
ability to assess problem behaviors (Goodman & Scott, 1999). Due to practical reasons, 
children were asked to complete the SDQ rather than the CBCL when they were ten years 
old. Mothers also completed the SDQ when their children were ten. Considering known 
discrepancies between mothers and children in assessing problem behaviors at this age (Van 
Roy, Groholt, Heyerdahl, & Clench-Aas, 2010), we included both maternal and child reports 
in the current study. 

Questionnaire reliability 
To check the internal consistency of the questionnaires, we calculated total estimates by 
using the R package psych (Revelle, 2021; Revelle & Condon, 2019). Given total estimates were 
incalculable for the CBCL, we computed Cronbach’s  values for this questionnaire instead. 
The resulting internal consistency estimates were shown as below: the maternal CBCL, 

internalizing = 0.82, externalizing = 0.84; the maternal SDQ, total-internalizing = 0.72, total-externalizing = 
0.80; the child SDQ, total-internalizing = 0.63, total-externalizing = 0.59. Hence, most estimates 
indicated acceptable or good internal consistency of the subscales. The estimates of the child 
SDQ were considered questionable, but in line with earlier Dutch studies, and thus used in 
the analyses (Maurice-Stam et al., 2018). 

Extrinsic factors 
Extrinsic factors included: (1) Child age when stool samples were collected; (2) Delivery mode 
(i.e., assisted vaginal delivery, non-assisted vaginal delivery and C-section); (3) Birth weight; 
(4) Breastfeeding (for samples collected at age one, three and four months, breastfeeding = 
average number of daily breastfeedings with respect to total number of daily milk feedings 
(in percentage) until stool collection day; for samples collected at age six and ten years, 
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breastfeeding = average number of daily breastfeedings with respect to total number of daily 
milk feedings (in percentage) in the first 27 weeks.); (5) Child age when solid food was first 
introduced; (6) Child sex (female or male); (7) Total number of antibiotic treatments from 
birth to stool collection day (infants and children); (8) Whether a child at age six or ten took 
antibiotics in the past one year (yes or no). 

Statistical analyses 
All analyses were performed in R (version 3.6.1) (R Core Team, 2020). 

First aim: Gut microbiota development in the first ten years of life 
Gut microbial clusters and transition patterns 
To investigate gut microbiota development, we identified gut microbial clusters based on 
their compositional features at the genus level by Dirichlet multinomial mixtures (DMM) 
models, known for their superior advantage of handling sparse data (Holmes, Harris, & 
Quince, 2012). Considering the reproducibility and stability of the optimal clusters, we split 
the samples into two parts, infancy (i.e., one, three and four months) and childhood (six and 
ten years), and performed separate DMM models afterwards. The optimal number of clusters 
was determined by lowest Laplace approximation scores. As the combination of clusters 
varied between runnings, we repeated DMM models multiple times and then selected the 
combinations that appeared the most frequently (Table S1 and Table S2). 

Characteristics of gut microbial clusters 
The relative abundances of the top 15 predominant genera in infancy and childhood were 
displayed in heatmaps by the ComplexHeatmap package (Z. Gu, Eils, & Schlesner, 2016). 
Phylogenetic alpha diversity was computed by using the picante package (W. Kembel, 2020) 
and compared between microbial clusters by Wilcoxon rank sum tests. Obtained p values 
from the comparisons were then adjusted by FDR. Beta diversity was compared between 
microbial clusters by using unweighted or weighted Unifrac distance of genera relative 
abundances via the vegan package (Oksanen, 2020). 

Additionally, the functional potential of the microbial community was predicted by 
Picrust2 (phylogenetic investigation of communities by reconstruction of unobserved states) 
approach (Douglas et al., 2020; Langille et al., 2013). Predicted gene family counts (i.e., Kyoto 
Encyclopedia of Genes and Genomes (KEGG) orthologs and MetaCyc pathways) for each 
sample were transferred into relative abundance data. Kruskal-Wallis tests for multiple-
group comparisons were first performed on relative abundances of predicted functions 
between microbial clusters in infancy and childhood, respectively. The predicted function, 
with an FDR-corrected p value lower than 0.05 and the average relative abundance higher 
than 0.5%, was further compared between every two microbial clusters by Wilcoxon rank 
sum tests. 

Effects of extrinsic factors 
First, redundancy analysis (RDA) was used to measure simple effects of extrinsic factors on 
the gut microbiota for each of five ages (i.e., one, three and four months, and six and ten 
years), and then infancy (i.e., one, three and four months) and childhood (i.e., six and ten 
years). Child age, delivery mode, birth weight, breastfeeding and child sex were considered 
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in infancy. Because only two infants took antibiotics in the first four months of life, we did 
not consider this factor in infancy RDA models. Similarly, as only one child started 
consuming solids before the stool collection at four months, this factor was not considered 
in infancy RDA models. As for samples in childhood, all extrinsic factors mentioned before 
were included. Quantitative extrinsic factors were converted to z-scores before use. 

Second, RDA was performed to measure conditional effects for extrinsic factors with 
significant simple effects. To avoid potential strong multicollinearity in RDA when assessing 
conditional effects, we required variance inflation factors (VIFs) of all extrinsic factors to be 
lower than three (Zuur, Ieno, & Elphick, 2010). 

Third, RDA tri-plots were drawn by the ggplot package (Wickham, 2016). All RDA 
models were built based on Bray-Curtis dissimilarity matrices calculated from log-
transformed relative abundances at the genus level, via the vegan package (Oksanen, 2020). 
Permutation tests (N = 1000) were used to determine the significance of variance explained 
by extrinsic factors. 

Second aim: Associations of the gut microbiota with internalizing and externalizing 
behavior in middle childhood 
Behavioral differences between microbial clusters 
To compare behavioral measures (i.e., internalizing and externalizing behavior) between 
microbial clusters, we conducted Wilcoxon rank sum tests with FDR adjustment. 

RDA models 
RDA models were established to determine how much variance in microbial composition 
could be explained by behavioral measures (i.e., internalizing and externalizing behavior) 
with and without accounting for extrinsic factors with significant conditional effects. 
Internalizing and externalizing behavior scores were standardized to z-scores before use. 
Then, RDA tri-plots were drawn by the ggplot package (Wickham, 2016). The same VIF 
requirements, matrices type and permutation tests as for extrinsic factors were also adopted 
here. 

PRC models 
Principle Response Curves (PRC) analysis is a method that enables contrasting time series of 
experimental groups with a time series of a reference group (van den Brink, den Besten, bij 
de Vaate, & ter Braak, 2009). Therefore, it was used to select the genera with relatively large 
differences in relative abundance across ages between behavior groups. Two behavior groups 
were set for each of the behavior types (internalizing and externalizing behavior). The 
experimental group (H) included the individuals with behavior scores in the top quartile, 
while the reference group (L+M) consisted of all remaining individuals. Relative abundance 
data was pre-processed with log-transformation. PRC models were generated using the 
vegan package (Oksanen, 2020). PRC diagrams were visualized by the ggplot 
package(Wickham, 2016). The first principal component of the variance explained by 
behavior groups in time, called canonical coefficient, was displayed on the y-axis. The age 
points were shown on the x-axis. Another vertical axis, named taxon weight, was drawn to 
elucidate the affinity of the different genera with the response. Wilcoxon rank sum tests with 
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FDR adjustment were further applied for comparing the differences of selected genera from 
PRC models between behavior groups at individual time points. 

MLM models 
Multilevel modelling (MLM) models were conducted to measure the associations of 
internalizing and externalizing behavior with diversity and selected genera when accounting 
for extrinsic factors. Selected genera included taxa with absolute values of taxon weights 
higher than 0.6 and prevalence above 0.2. For MLM models including samples in infancy, 
extrinsic factors consisted of age, breastfeeding, delivery mode, birth weight and gender. For 
MLM models in childhood, these factors, as well as antibiotics and age when solid food was 
introduced, were included. Quantitative extrinsic factors, behavior scores and diversity were 
converted to z-scores before use. Log transformation was applied to relative abundance data 
at the genus level. To avoid strong multicollinearity, generalized variance inflation factors 
(GVIFs) were required to be lower than three. MLM models were built by the lmerTest 
package (Kuznetsova, Brockhoff, Christensen, & Jensen, n.d.). 

Significance 
Statistically significant level was required with p value lower than 0.05. 

Results 
First aim: Gut microbiota development in the first ten years of life 
Gut microbial clusters and transition patterns 
To track gut microbiota development throughout infancy and childhood in the first ten years 
of life, we stratified the participants into microbial clusters based on their compositional 
features at the genus level by Dirichlet multinomial mixtures (DMM) models. Based on 
microbial community composition, three microbial clusters were obtained in infancy, and 
four clusters were found in childhood (Figure 1). While some individuals maintained the 
same microbial composition over infancy or childhood, others transitioned to a different 
microbial cluster when becoming older. At one month of age, 70.6% (113/160) of the infants 
belonged to Infancy_1, while fecal microbiota of 10.6% (17/160) and 18.8% (30/160) of the 
infants was classified as Infancy_2 and Infancy_3, respectively. Notably, the prevalence of 
Infancy_2 continuously increased with age throughout infancy, while the proportions of the 
other two clusters decreased. From infancy to childhood, no obvious transition pattern was 
observed. At age six, Childhood_1 included 34.5% (50/145) of the children, while the other 
three clusters evenly shared the rest. From age six to ten, for individuals belonging to 
Childhood_1, 44.0% (22/50) remained in the same cluster, and another 36.0% (18/50) 
converted to Childhood_3. Similar transition patterns were also discerned in Childhood_2, 
of which 37.5% (12/32) of children remained in the same cluster, and another 31.3% (10/32) 
transitioned to Childhood_4. Meanwhile, 61.9% (39/63) of the children, belonging to either 
Childhood_3 or Childhood_4, stayed in the same clusters at age ten. As a consequence, 63.3% 
(93/147) of children ended up in Childhood_3 and Childhood_4 when reaching age ten. 
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Figure 1. Gut microbial clusters and patterns of transitions between microbial clusters in the first ten 
years of life. Nodes represent clusters, with colors identifying a compositional cluster. Clusters were 
identified based on their compositional features at the genus level by Dirichlet multinomial mixtures 
(DMM) models. The size of the node indicates the number of individuals belonging to this cluster, 
which is displayed in the node. Lines are sized and colored based on the transition rate, with adjacent 
numbers representing the number of individuals transitioning from one cluster to another with 
increasing age. The numbers with transition rates below 6.0% are not shown. 

Characteristics of gut microbial clusters 
Both Infancy_1 and Infancy_2 clusters were predominated by Bifidobacterium, and 
significantly differed in relative abundances of Streptococcus, an unidentified genus within 
the Enterobacteriaceae and Enterococcus (Figure 2a). Infancy_1 showed higher relative 
abundances of Streptococcus and an unidentified genus within the Enterobacteriaceae, and 
lower relative abundance of Enterococcus, in relation to Infancy_2. Compared to Infancy_1 
and Infancy_2, Infancy_3 was depleted in Bifidobacterium but enriched in Streptococcus, 
Enterococcus and an unidentified genus from the Enterobacteriaceae. In childhood, 
Bifidobacterium was among the most predominant genera, albeit at varying relative 
abundances (Figure 2b). In Childhood_1 Bifidobacterium was most predominant as 
compared to other genera, whereas Childhood_2 was predominated by Prevotella 9 at an 
average relative abundance of 24.5 ± 14.4%, which was much higher than in other clusters 
(Chilhood_1, 4.1 ± 11.4%; Childhood_3, 0.1 ± 1.0%; Childhood_4, 3.3 ± 4.4%). 
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Figure 2. Heatmaps showing the relative abundances of the top 15 predominant genera in the microbial 
clusters in infancy (a) and childhood (b). 
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To further describe the features of microbial clusters, we compared the phylogenetic 
alpha diversity and beta diversity between them (Figure S1 and Figure S2). Significant 
differences in alpha diversity indices between microbial clusters reflected the results of DMM 
clustering in the current study. 

To describe potential functional differences between microbial clusters, we 
exploratorily applied the Picrust2 (phylogenetic investigation of communities by 
reconstruction of unobserved states) method (Douglas et al., 2020; Langille et al., 2013), 
based on 16S rRNA gene sequence data. In total, 2651 KEGG orthologs and 288 MetaCyc 
pathways were obtained over the study period. In infancy, 14 KEGG orthologs with average 
relative abundances higher than 0.5% were significantly different between microbial clusters 
after FDR adjustment (Table S3), while 13 KEGG orthologs differed significantly in childhood 
(Table S4). We found the function beta-galactosidase was predicted to be decreased in 
microbial cluster Infancy_3 (0.19 ± 0.16 %) compared with Infancy_1 and Infancy_2 (0.68 ± 
0.17 and 0.67 ± 0.19 %). In later life, beta-glucosidase was observed significantly increased in 
Childhood_2 (0.84 ± 0.17 %) as compared to the other three childhood microbial clusters 
(0.67 ± 0.16, 0.62 ± 0.07, and 0.6 ± 0.11 %). Regarding MetaCyc pathways with average relative 
abundances higher than 0.5%, 72 of them were significantly different after correction in 
infancy, and 88 differed significantly in childhood. These MetaCyc pathways mainly covered 
degradation and biosynthesis of carbohydrates and amino acids. In the first several months, 
pathways of Bifidobacterium shunt, mixed acid fermentation, L-arginine biosynthesis  and 

, and superpathway of aromatic amino acid biosynthesis were significantly reduced in 
Infancy_3 as compared to Infancy_1 and Infancy_2. Pathways of L-arginine biosynthesis  
and  were observed significantly depleted in Childhood_2 as compared to the other three 
microbial clusters in childhood. 

In addition to microbial compositional features, we also exploratorily investigated 
whether microbial clusters differed on population characteristics, namely delivery mode, 
child sex, breastfeeding, medications, diseases and etc., in infancy and childhood (Table S5 
and Table S6). Delivery mode was significantly different between infant microbial clusters, 
of which Infancy_3 showed highest rates in C-section and assisted vaginal delivery. Food 
frequency was also compared between microbial clusters in childhood, and no significant 
differences were observed (Table S7). 

Associations of gut microbial composition with extrinsic factors 
To determine to what extent extrinsic factors (i.e., birth weight, child sex, delivery mode, 
breastfeeding, and antibiotics) can explain the observed variation in microbiota composition, 
their simple effects (i.e., the impact of one factor on gut microbiota without taking other 
factors into account) were measured separately per time point, as well as for infancy and 
childhood samples, respectively (Table S8 and Table S9). In infancy, breastfeeding 
significantly explained 1.0%, 1.4% and 1.2% of adjusted variances without the biases in 
microbial composition, in separate analyses at age one, three and four months. None of the 
other factors tested, i.e., delivery mode, birth weight and child sex, significantly contributed 
to explaining the observed variation in microbial composition, in separate analyses at infancy 
time points. In childhood, no significant simple effects were observed at single time points. 
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In analyses pooling all infancy samples together, child age was found having the 
most predominant significant effect (1.0%), followed by breastfeeding and delivery mode (0.7% 
and 0.2%). With respect to simple effects of extrinsic factors in childhood, breastfeeding 
significantly explained around 0.3% of adjusted variance in microbial composition in the 
pooled data of ages six and ten. Similar to infancy, in the period from age six to ten, child 
age significantly explained the most observed variance in microbial composition (0.9%) as 
compared to other extrinsic factors of which only breastfeeding explained significant 
variance (0.3%). 

Next to it, we measured conditional effects (i.e., the impact of individual factors 
when partitioning out effects from other factors) of the significant extrinsic factors obtained 
from pooled data (Table 1). These extrinsic factors included: (1) Child age, delivery mode, 
and breastfeeding for infancy; (2) Child age and breastfeeding for childhood. After 
partitioning out total explained variance, selected infancy and childhood extrinsic factors 
were still able to significantly explain partial variance. 

Table 1. Conditional effects of extrinsic factors with significant simple effects on gut microbiota in 
infancy and childhood. 

  R2% Adjusted R2% VIF 
Number of 
individuals  

Number of 
genera 

1-4m      

Age 1.051 0.817 1.017 

411 155 Delivery mode 0.639 0.16 
1.724 (CS); 

1.723 (NAVD) 

Breastfeeding  0.791 0.556 1.017 

6-10y      

Age 1.554 0.869 1.001 
144 181 

Breastfeeding 1.017 0.329 1.001 

Significance was determined based on 1000 permutations. Asterisks indicate p value < 0.05. VIF: variance 
inflation factor. CS: C-section. NAVD: non-assisted vaginal delivery. 

 
To gain more insights into the associations between the gut microbiota and extrinsic 

factors with significant conditional effects, we performed analyses on the pooled infancy data 
and the pooled childhood data (Figure 3). During infancy, breastfeeding was positively 
associated with increased relative abundances of Bifidobacterium and an unidentified genus 
within the Enterobacteriaceae. Infants with C-section showed higher levels of Streptococcus 
and Enterococcus, and lower levels of Bifidobacterium. With increasing age from one to four 
months, Bifidobacterium, Actinomyces and Eggerthella also increased in relative abundances. 
Over childhood, age was positively related to higher relative abundances of unidentified 
genera from the Ruminococcaceae and Peptostreptococcaceae. In the same age period, 
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higher breastfeeding was associated with higher relative abundances of Prevotella 9 and 
Dialister. 
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Figure 3. RDA plots of extrinsic factors with significant conditional effects on gut microbial 
composition. (a) RDA plot based on microbiota profiles at the age of one, three and four months. (b) 
RDA plot based on microbiota profiles at the age of six and ten years. RDA plots are displayed based 
on Bray-Curtis distance matrices computed from log-transformed data at the genus level. Unidentified 
genera are shown at the family level. To clarify, we displayed adjusted variances along axes, which were 
corrected to be without biases. Generally, the value of adjusted variances is lower than that of original 
variances. CS: C-section. AVD: assisted vaginal delivery. NAVD: non-assisted vaginal delivery. BP: 
breastfeeding proportion. 

Second aim: Associations of the gut microbiota with internalizing and 
externalizing behavioral measures in middle childhood 
Microbial clusters and behavior 
We did not find any significant associations between microbial clusters and child 
internalizing and externalizing behavior (Figure S3 and Figure S4). 

RDA models 
Before exploring associations between the gut microbiota and behavioral measures, we first 
assessed which behavioral measures were capable of significantly explaining variance in 
microbial composition with and without accounting for the extrinsic factors studied in the 
first aim, by using Redundancy analysis (RDA) models. Without accounting for these factors, 
internalizing behavior, evaluated by the Strengths and Difficulties Questionnaire (SDQ) 
maternal reports at ten years of age, was able to explain the variance in microbial 
composition at one month of age (p = 0.050; Table S10). 
As for samples in childhood (Table S11), maternal-reported externalizing behavior, measured 
by the SDQ at age ten, significantly explained variance in gut microbial composition at age 
six. Remarkably, we found both internalizing and externalizing behavior, assessed by the 
maternal SDQ at age ten, were able to significantly explain variation in the gut microbiota 
in the period from age six to ten. When taking also significant extrinsic factors into account, 
i.e., child age and breastfeeding (Table 2), we found that the maternal SDQ reports of 
externalizing behavior at age ten still significantly explained variance in microbial 
composition during childhood. However, internalizing behavior was no longer significant in 
this model. 

Table 2. Partial variance in microbial composition in childhood explained by behavioral problems at 
age ten as reported by the mother (SDQ). 

  Behavior R2% Adjusted R2% p value VIF Number of genera 

6-10y       

SDQ_M_10y 
INT 0.851 0.127 0.148 1.062 

181 
EXT 1.098 0.379 0.005* 1.058 

Significance was determined based on 1000 permutations. Asterisk indicates p value < 0.05. VIF: variance 
inflation factor. CS: C-section. NAVD: non-assisted vaginal delivery. 
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To specifically explain the associations of pooled gut microbiota of ages six and ten 

with internalizing and externalizing behavior assessed by the maternal SDQ at age ten, 
partial RDA was performed by accounting for age and breastfeeding (Figure 4). Externalizing 
behavior showed positive associations with relative abundances of Prevotella 9 and 
Phascolarctobacterium. In addition, more internalizing behavior was related to reduced 
relative abundance of Akkermansia, and more externalizing behavior was associated with 
decreased relative abundance of Alistipes. Finally, a higher relative abundance of 
Terrisporobacter was found in individuals with higher internalizing behavior scores. 

 

Figure 4. Partial RDA plot indicating associations of genera in childhood with internalizing and 
externalizing behavior at age ten as reported by the mother (SDQ). RDA plots are displayed based on 
Bray-Curtis distance matrices calculated from log-transformed data at the genus level. Child age and 
breastfeeding were accounted for. To clarify, we displayed adjusted variances along axes, which were 
corrected to be without biases. Generally, the value of the adjusted variance was lower than that of the 
original variance. INT: internalizing behavior. EXT: externalizing behavior. 

PRC models 
In order to assess emerging associations of gut microbiota composition as measured during 
early infancy and childhood with internalizing and externalizing behavior at age ten, we 
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performed Principle Response Curves (PRC) analyses (Figure 5). This method can be used to 
assess temporal trajectories of dissimilarity between behavior groups with different scores, 
and to select genera with relatively large changes in relative abundances across the first ten 
years of life. With respect to internalizing behavior, measured by the maternal SDQ at age 
ten, no obvious differences were observed between high (H) and low / medium (L+M) score 
groups in the first four months of life, whereas the dissimilarity in microbial composition 
between groups started changing somewhere between four months and six years. 

 

Figure 5. Principle Response Curve analysis of internalizing (a) and externalizing behavior (b) at age 
ten as reported by the mother (SDQ). Behavior groups are set based on quartiles. H level includes 
individuals with scores in the top quartile, and L+M level includes the bottom three quartiles. L+M 
level is used as reference (Low+Medium; baseline). Canonical coefficients indicate the differences 
between H and L+M. The wider the distance between H and L+M, the more dissimilar they are to each 
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other. The taxon weight reflects for which taxa the compositional variation is best represented by the 
PRC model. The direction of abundance change is determined jointly by the signs of canonical 
coefficient and taxon weight. Same signs indicate increased relative abundance, while reverse signs 
represent reduced relative abundance. Genera with absolute values of taxon weights lower than 0.60 
are not displayed. Genera data was pre-processed with log-transformation. 

Similarly, with respect to externalizing behavior, measured by the same 
questionnaire at the same age, differences between behavior groups started emerging 
between four months and six years. Among the time points included in this study, the 
difference between groups of externalizing behavior was highest at age six, and then 
decreased again at age ten. Children belonging to the top quartile (H), tended to show higher 
levels of Prevotella 9 and Clostridium sensu stricto 1, and reduced relative abundances of the 
genera Alistipes, Akkermansia, Bacteroides and Streptococcus (Figure 5). As the coefficients 
for group H are negative compared to the baseline, negative taxon weights indicate positive 
correlations. 

Furthermore, we compared the differences in relative abundances of the genera 
selected from PRCs between behavior groups at each age. With respect to internalizing 
behavior, the genera Akkermansia, Alistipes, Sutterella, Barnesiella, and two genus-level 
groups of Eubacterium were observed reduced in individuals belonging to the H group at age 
ten, although not significantly after FDR adjustment. As for externalizing behavior, Alistipes 
was depleted, and Phascolarctobacterium, Coprococcus 2, Clostridium sensu stricto 1 and 
Prevotella 9 were increased in relative abundances in the H group at age six. After FDR 
correction, Clostridium sensu stricto 1 and Prevotella 9 were observed with p values lower 
than 0.10. At age ten, the relative abundance of Clostridium sensu stricto 1 remained higher 
in H group individuals, albeit insignificant after FDR correction. 

MLM models 
Multilevel models (MLM) were used due to their ability in processing time-series data. These 
models included the following extrinsic factors: child age, delivery mode, breastfeeding, 
birth weight, and child sex in infancy, and the same factors, as well as age of solid food 
introduction and antibiotic treatments, in childhood. For the maternal SDQ at age ten, we 
found that internalizing behavior was moderately positively related to phylogenetic alpha 
diversity during infancy (Table 3), while externalizing behavior was not related to alpha 
diversity or relative abundances of specific genera in infancy. In childhood, Alistipes was 
found to be significantly negatively associated with externalizing behavior assessed by the 
maternal SDQ at age ten. In addition, higher relative abundances of Prevotella 9 and 
Phascolarctobacterium were significantly associated with increased externalizing behavior. 
Interestingly, similar associations of Prevotella 9 and Phascolarctobacterium with 
externalizing behavior were further validated in the SDQ child reports at age ten (Table S12). 
MLM models were also conducted for behavior assessed by the maternal CBCL at age six, 
however, no consistent associations were found (Table S13). 
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Table 3. MLM models for internalizing and externalizing behavior at age ten as reported by the mother 
(SDQ). 

  SDQ_M_10y_Int SDQ_M_10y_Ext 

Response variable 
Estimat

e 
95% CI 

p 
value 

Estimat
e 

95% CI 
p 

value 

1-4m       

Phylogenetic diversity 0.127 
[-0.014, 
0.269] 

0.088 -0.052 
[-0.189, 
0.086] 

0.473 

Streptococcus 0.08 
[-0.075, 
0.234] 

0.327 -0.081 [-0.232, 0.071] 0.31 

Clostridium sensu stricto 1 -0.047 [-0.232, 0.138] 0.628 0 [-0.179, 0.180] 0.999 

6-10y       

Phylogenetic diversity -0.054 
[-0.248, 
0.139] 

0.61 0.084 [-0.110, 0.278] 0.426 

Streptococcus 0.166 
[-0.078, 
0.407] 

0.21 -0.192 
[-0.436, 
0.047] 

0.147 

Clostridium sensu stricto 1 0.18 
[-0.032, 
0.393] 

0.122 0.186 
[-0.025, 
0.397] 

0.107 

Bacteroides 0.089 
[-0.077, 
0.253] 

0.323 -0.172 
[-0.338, -

0.008] 
0.058 

Barnesiella -0.181 
[-0.440, 
0.079] 

0.2 -0.143 [-0.402, 0.114] 0.309 

Prevotella 9 0.222 
[-0.194, 
0.637] 

0.326 0.614 [ 0.192, 1.035] 0.009* 

Alistipes -0.088 [-0.319, 0.148] 0.489 -0.333 
[-0.566, -

0.101] 
0.010* 

Coprococcus 2 -0.024 
[-0.289, 
0.231] 

0.863 0.172 
[-0.083, 
0.427] 

0.219 

Ruminococcaceae NK4A214 
group 

0.034 
[-0.184, 
0.250] 

0.774 -0.145 [-0.355, 0.072] 0.212 

Phascolarctobacterium 0.065 
[-0.224, 
0.355] 

0.677 0.339 
[ 0.046, 
0.632] 

0.036* 

Sutterella -0.117 
[-0.365, 
0.124] 

0.378 0.101 [-0.145, 0.341] 0.448 

Akkermansia -0.254 
[-0.537, 
0.033] 

0.103 -0.158 [-0.439, 0.123] 0.304 

[Eubacterium] ruminantium 
group 

-0.097 [-0.321, 0.128] 0.428 0.046 [-0.174, 0.270] 0.703 

[Eubacterium] xylanophilum 
group 

-0.21 
[-0.415, -
0.005] 

0.063 0.071 [-0.131, 0.271] 0.52 

Ruminococcaceae UCG-002 -0.095 [-0.303, 0.107] 0.396 -0.056 [-0.257, 0.149] 0.615 

Ruminococcaceae UCG-005 -0.077 
[-0.349, 
0.199] 

0.606 -0.116 [-0.389, 0.158] 0.435 
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Numbers of individuals included in MLM models were listed in Table S14. Genera with prevalence lower than 
0.20 were not included in MLM models. Detailed information of genera prevalence can be reached in Table S15. 
Asterisk indicates p value < 0.05.  

Discussion 
In our study, three distinct microbial clusters were identified in samples taken during the 
first four months of life. This is in line with previous studies focusing on the first half year of 
life (Borewicz et al., 2019; Dogra et al., 2015; Matsuki et al., 2016), both for the number of 
clusters and the microbial cluster composition. Regarding Infancy_1 and Infancy_2, they 
were predominated by Bifidobacterium with numerical predominance values at 77.5 ± 20.9% 
and 75.2 ± 20.4%, which are similar to the numerical predominance values of 
Bifidobacterium-predominated clusters in the three previous studies (Borewicz et al., 2019; 
Dogra et al., 2015; Matsuki et al., 2016). Contrary to the Bifidobacterium-enriched clusters, 
Infancy_3 was depleted in Bifidobacterium but enriched in Streptococcus and an unidentified 
genus within Enterobacteriaceae; these characteristics were also found in previously reported 
clusters (Borewicz et al., 2019; Dogra et al., 2015; Matsuki et al., 2016). Notably, the 
identification of these Bifidobacterium-depleted clusters varies between studies. For instance, 
Dogra et al. found two, rather than one, Bifidobacterium-depleted clusters, enriched in 
Streptococcus and Enterobacteriaceae, respectively (Dogra et al., 2015). This may be due to 
the differences in clustering methods and study populations. Also, Borewicz et al. described 
a Bacteroides-predominated cluster that was absent in our study (Borewicz et al., 2019). High 
intra-individual variability of the gut microbiota may explain these different findings, since 
we used the same clustering method and included participants from the same country as 
Borewicz et al. Future large-scale studies and meta-analyses may help clarify these clustering 
issues in infant populations. 

Remarkably, the infant cluster transition patterns in our study were highly similar 
to those previously reported by other studies (Dogra et al., 2015; Hill et al., 2017). The 
prevalence of Bifidobacterium-enriched clusters was increased from one to four months of 
age, while the ratio of Infancy_3 was reduced. Infancy_3 was identified with the highest 
proportion of C-section and assisted vaginal deliveries, while no differences in breastfeeding 
were observed between infant clusters in our study. The shift towards a Bifidobacterium-
enriched microbial community in infants from the Infancy_3 cluster may imply a quick 
adaption to environmental changes, such as the initiation of breastfeeding. Given the 
similarity between Infancy_1 and Infancy_2, generating more specific profiles of 
Bifidobacterium species and strains may help enhance their differentiation. In sum, our study 
provides further support on the consistency of gut microbial clusters in infancy, regardless 
of differences between studies in sample size, collection period and clustering method. 

In fecal samples taken at six and ten years of age, we distinguished four microbial 
clusters and delineated how children transitioned between these clusters, with two clusters 
separately predominated by Bifidobacterium and Prevotella 9 and the other two enriched in 
Bifidobacterium, Blautia and Faecalibacterium. Our clusters showed similarities and 
differences to those of a recent study by Zhong et al. in healthy Dutch school-aged children 
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(mean age 7.3 years, ranging from six to nine) (Zhong et al., 2019). Our Childhood_1 closely 
resembled the Bifidobacterium-dominated cluster reported by Zhong et al. and showed a 
similar relative abundance of Bifidobacterium at 21.6 ± 12.0%. In adults, the relative 
abundance of Bifidobacterium normally ranges from 2-14% (Odamaki et al., 2016). The other 
three childhood clusters observed in our study were within this range. Although a 
Bifidobacterium-predominated microbiota is commonly known to be beneficial for infants, 
this type of cluster may lack maturity in children and adults (Derrien et al., 2019). Moreover, 
Childhood_1 displayed the lowest diversity among all four clusters (Fig. S1; also reported by 
Zhong et al). This finding further supports the notion of immaturity of Childhood_1, as the 
lower diversity may be paired to a corresponding lower functional potential that may not 
fully meet the requirements of complex carbohydrate utilization and butyrate production in 
later life (Zhong et al., 2019). Childhood_2 was similar to a Prevotella-predominated cluster 
observed by Zhong et al., and also to one of the three human adult enterotypes (Arumugam 
et al., 2011). These microbial community types exhibit approximately 20% of Prevotella, a 
genus positively associated with carbohydrate intake and fiber consumption (De Filippo et 
al., 2010; Wu et al., 2011). In contrast to the findings of Zhong et al., in our study, no 
Bacteroides-predominated cluster was found. Although Childhood_3 showed the highest 
level of Bacteroides across our clusters, the relative abundance of this genus (6.6 ± 4.4%) was 
lower than in the corresponding community type reported by Zhong et al. (near 20%). 
Childhood_3 was enriched in a group of near evenly distributed genera, including 
Bifidobacterium, Blautia, Faecalibacterium, and an unidentified genus within 
Lachnospiraceae (12.3 ± 6.2%, 10.2 ± 3.1%, 10.0 ± 3.5% and 8.49 ± 5.6%). Childhood_4 had 
similar levels of Bifidobacterium and Blautia (13.3 ± 10.2% and 8.9 ± 4.2%) as Childhood_3, 
while comprising lower levels of Faecalibacterium and an unidentified genus within 
Lachnospiraceae (5.9 ± 3.2% and 3.7 ± 4.4%) than Childhood_3. Both Childhood_3 and 
Childhood_4 showed more diverse and more evenly distributed microbiota than 
Bifidobacterium-predominated Childhood_1 and Prevotella 9-predominated Childhood_2; 
these features may allow more complex functions in Childhood_3 and Childhood_4, and 
hence may mark a mature gut microbiota community for children in middle childhood or at 
a later age. 

The differences between the studies may be attributed to age, as Zhong et al. 
included consecutive time points from age six to nine, while the present study was 
specifically focused on ages six and ten. This particular period, spanning four years and 
reaching into early puberty, may be of relevance for gut microbial development. Indeed, from 
age six to ten, we observed an overall progressive transition of children from Childhood_1 
and Childhood_2 to Childhood_3 and Childhood_4, both displaying higher alpha diversity 
than the other two clusters, hinting at a trend towards increasing microbial functional 
capacity from age six to ten. This also indicates that in healthy children gut microbial 
development appears to continue at least until early puberty. Though diet is regarded as an 
important factor influencing the gut microbiota, we did not find differences between 
childhood microbial clusters with respect to the children’s dietary intake. Note, however, 
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that this may be due to the fact that we only measured food frequency at age ten, while the 
gut microbiota was assessed at ages six and ten. 

We further investigated potential functional differences of the gut microbiota 
between microbial clusters in an exploratory manner by using the Picrust2 approach. In 
general, we noticed that multiple predicted metabolic functions (i.e., KEGG orthologs and 
MetaCyc pathways) varied between microbial clusters in infancy and childhood. For example, 
in infancy, we observed that the level of KEGG ortholog beta-galactosidase, an enzyme 
catalyzing the hydrolysis of beta-galactosides like lactose, was lower in Infancy_3 in 
comparison with the other two infant microbial clusters. Beta-galactosidase has been found 
prevalent in Bifidobacterium species (Hsu, Yu, & Chou, 2005). Consistent with this, Infancy_3 
showed the lowest level of Bifidobacterium; hence, the depletion of Bifidobacterium may 
explain the reduction of beta-galactosidase in Infancy_3. In childhood, we found that the 
relative abundance of the KEGG ortholog beta-glucosidase, an enzyme hydrolyzing various 
glycosides like cellulose coming from plant foods, was highest in microbial cluster 
Childhood_2. Childhood_2 was enriched in a fiber-favoring bacterium Prevotella 9. As a 
consequence, this cluster can be considered to have a higher ability of utilizing cellulose, 
which is in line with our finding. As for differences in MetaCyc pathways, we observed that 
the biosynthesis of precursors (i.e., aromatic amino acids) for neurotransmitters (i.e., 
serotonin, dopamine and norepinephrine), was decreased in Infancy_3. This microbial 
cluster also showed decreases in mixed acid fermentation and Bifidobacterium shunt, which 
might indicate a reduction in short-chain fatty acids (SCFAs) production. Though the role of 
SCFAs on the MGBA has not been clearly elucidated, they are speculated to have 
considerable impacts (Dalile, Van Oudenhove, Vervliet, & Verbeke, 2019). In both Infancy_3 
and Childhood_2, we noticed decreased levels in predicted functions of L-arginine 
biosynthesis I and II. L-arginine supplementation has been reported to stimulate glutamate 
decarboxylation in Lactococcus lactis, which in turn increases the production of the 
neurotransmitter gamma-aminobutyric acid (GABA) (Laroute et al., 2016). However, it is 
unknown if other microbial taxa have similar interactions of L-arginine with GABA. Finally, 
note that there are two main limitations of any function prediction tool based on marker 
genes such as Picrust2 (Douglas et al., 2020). The first is the bias caused by the reference 
database, and the second is that the resolution cannot distinguish strain-specific 
functionality. Hence, these findings of predicted functions must be seen as exploratory and 
interpreted with caution. 

Regarding extrinsic factors, breastfeeding was found to explain a moderate amount 
of variance in infant gut microbial composition, similarly to our previous findings in which 
breastfeeding explained 2-6% of the variance (Zijlmans, Korpela, Riksen-Walraven, de Vos, 
& de Weerth, 2015). In line with previous studies (M. A. E. Lawson et al., 2020; Stewart et al., 
2018; Yatsunenko et al., 2012), increased breastfeeding was found related to higher levels of 
Bifidobacterium in the first four months of life. Surprisingly, early-life breastfeeding was also 
associated with the gut microbiota in the period from six to ten years of age. This finding 
tied well with observations by Zhong et al., who uncovered a persistent effect of 
breastfeeding duration on the gut microbiota based on community samples at school age 
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(Zhong et al., 2019). Although it is widely accepted that breastfeeding only prominently 
affects the gut microbiota in infancy or early childhood (O’Callaghan & van Sinderen, 2016; 
Stewart et al., 2018), both Zhong’s and our findings may indicate an extended influence of 
breastfeeding on shaping microbial composition and even function. In addition, we found 
that breastfeeding was positively associated with increased Prevotella 9 in childhood. 
Prevotella, as a genus prevalent in populations consuming fiber (De Filippo et al., 2010), has 
been found tightly linked to glucose metabolism (Kovatcheva-Datchary et al., 2015). 
However, in this study, it is unknown if the increased level of Prevotella 9 is caused by 
breastfeeding or other relevant dietary factors. In a recent study based on another population, 
we found that longer exclusive breastfeeding duration was associated with a healthier child 
diet at age three years (Willemsen, Beijers, Arias Vasquez, & de Weerth, 2021), note though 
that, as mentioned before, diet at age ten was unrelated to child gut microbiota. Further 
studies aiming to validate this association and explore causality are hence needed to clarify 
these issues. 

Regarding associations between the gut microbiota and child behavior, we found no 
associations of the microbial clusters with internalizing and externalizing behavior measured 
by maternal and child reports at age six and ten. In earlier studies, clustering methods were 
also adopted with the aim of exploring links of the child gut microbiota with subsequent 
temperament at six months and cognition at two years (Aatsinki et al., 2019; Carlson et al., 
2018). Compared to these studies in which the microbial composition was analyzed at one 
selected time point, in the present study we used five time points in the first ten years of life 
to more comprehensively delineate relations between the microbial clusters and problem 
behavior. Although we did not find that microbial clusters were related to problem behavior 
in our study, this does not imply that clustering methods were inappropriate to use. Indeed, 
clustering methods are highly suitable for high-dimensional data. Also, it is worth noting 
that there can be a moderate relation between the gut microbiota and problem behavior, the 
substantiation of which might require larger datasets to reflect this relation. Furthermore, 
variation in microbial composition does not directly provide information about differences 
in microbial function involved in MGBA. In other words, different microbial communities 
may hold similar gene potential. Limited by the 16S rRNA sequencing technique, we were 
only able to explore function with the Picrust2 method in the current data. This method has 
shortcomings that can be avoided by using metagenomics in combination with 
metabolomics analyses in future studies. 

With respect to specific microbial taxa, based on several complementary statistical 
methods, including RDA, PRC and MLM models, we found that the relative abundances of 
Prevotella 9 and Phascolarctobacterium in samples taken at age six to ten were positively 
associated with increased mother-reported externalizing behavior at age ten, while a 
negative association was observed in the level of Alistipes with the same externalizing 
behavior at the same age. A previous longitudinal study in toddlers found that a higher 
relative abundance of Prevotella at one year of age was related to more problem behavior, 
particularly internalizing behavior (Loughman et al., 2020). The large age gap and different 
assessment moments may explain the differences between the two studies. Comparing our 
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findings with studies focusing on children with psychopathology, we find that autistic 
children (four to 11 years), commonly exhibiting co-occurring externalizing problems (Baker 
et al., 2018), showed increased abundances of microbial groups including Prevotella, 
Bacteroides and Porphyromonas, compared to healthy controls (De Angelis et al., 2013). In 
contrast, another study found that Prevotella was reduced in children with autism (three to 
16 years) (Kang et al., 2013). Apart from autism, ADHD has also been shown to be associated 
with externalizing behavior in adolescence (Kuja-Halkola, Lichtenstein, D’Onofrio, & 
Larsson, 2015). For children with ADHD, two previous studies reported no changes in 
Prevotella abundance (Jiang et al., 2018; L.-J. Wang et al., 2020), whereas Kristensen et al. 
found decreased levels of Prevotellaceae (Prehn-Kristensen et al., 2018). In sum, there is no 
well-defined link between Prevotella and behavioral problems and mental disorders, just as 
at the physical health level, Prevotella has been related to the consumption of beneficial 
plant-rich diets, but also to harmful chronic inflammation (Ley, 2016). As a large genus, more 
than 50 characterized species have been identified within Prevotella so far, greatly varying in 
their genetic potential (Ley, 2016; Tett, Pasolli, Masetti, Ercolini, & Segata, 2021). In this case, 
using metagenomic analyses to characterize the Prevotella population at higher taxonomic 
resolution, i.e., species or strain level, would be helpful to better understand a more specific 
potential interaction with host behavior. With respect to Phascolarctobacterium, a 
systematic review showed its relative abundance was higher in patients with major 
depressive disorder (MDD) than controls (Cheung et al., 2019), while Li et al. reported that 
it was positively related to improved mood in adults with the same dietary structure (Li et 
al., 2016). Though these studies reflect that Phascolarctobacterium is related to 
internalization-relevant mental problems, it is worth noting that internalizing and 
externalizing behavior can co-exist in children and may lead to opposite behavioral problems 
at a later age (Aronen & Soininen, 2000; McConaughy & Skiba, 1993; Zoccolillo, 1992). As for 
Alistipes, earlier studies found its role was divergent in MDD and ASD (Cheung et al., 2019; 
De Angelis et al., 2013; Strati et al., 2017). As described before, distinct behavioral issues can 
co-occur and even predict the opposite one in the same child; this does not only work for 
MDD but also for ASD which is often accompanied by greater aggression (R. A. Lawson et 
al., 2015). Given the complexity of mental problems, the associations of 
Phascolarctobacterium and Alistipes with externalizing behavior need to be interpreted with 
caution. 

Strengths of this study include the prospective longitudinal design with repeated 
gut microbial sampling in healthy community children. Additionally, behavioral measures 
were reported by both mothers and children and at two different ages, and a series of 
sophisticated and complementary statistical analyses were performed. A limitation of the 
study is the restricted taxonomic resolution of the 16S rRNA gene sequence data used in this 
study, that does not permit us to distinguish microbial taxa at the species or strain level. 

In sum, in this study we identified three microbial clusters in infancy and four in 
childhood and explored transitional trajectories of individuals through these clusters in the 
first ten years of life. These clusters exhibited similarities as well as differences to previously 
identified clusters. Among the different extrinsic factors studied, breastfeeding stood out by 
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having marked associations with the gut microbiota up till age ten, implying an extended 
role in shaping gut microbial ecology. With respect to problem behavior, high relative 
abundances of Prevotella 9 and Phascolarctobacterium and a low level of Alistipes in middle 
childhood were associated with increased externalizing behavior at age ten. In the future, 
strain-resolved metagenomic sequencing, as well as specific sets of qPCR assays, can provide 
a better understanding of the potential role of Prevotella 9 in child behavior. Additionally, 
determining behaviorally relevant fecal metabolites will help bridge the gap between 
association and causality. Finally, to take a step further in understanding the development 
of the gut microbiota throughout childhood, as well as its relations with child behavioral 
phenotypes, healthy longitudinal cohorts with a higher frequency of gut microbial sampling 
(e.g., yearly samples throughout childhood) are direly needed. 

Data availability statement 
As the findings in this study are supported by datasets from an ongoing longitudinal cohort, 
these datasets currently cannot be made publicly available but are available upon request 
from C.deW. (Carolina.deWeerth@radboudumc.nl) 

Acknowledgements 
The authors would like to thank the participants of the BIBO study and the students helping 
with data collection. Support for the present study come from a Netherlands Organization 
for Scientific Research VIDI grant (575-25-009, to C.deW.) and VICI grant (016.Vici.185.038, 
to C.deW.), and Eat2beNICE project of European Union’s Horizon 2020 research and 
innovation program (grant agreement No. 728018). Y.O. received a fellowship (No. 
201806350255) as financial support from the China Scholarship Council. 
  



The gut microbiota and behavior in the first ten years of life 

107 

3 

Supplemental information 

 

Figure S1. Box plots indicating phylogenetic diversity in the different microbial clusters. Diversity 
indices were calculated based on amplicon sequence variants in each microbial cluster. The boxes 
range from 25th to 75th percentiles, with center lines indicating medians. Outliers are displayed as 
points. Asterisks indicate p values < 0.05 (with FDR correction). 
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Figure S2. Beta diversity between microbial clusters. (a-b) Beta diversity was calculated from 
unweighted Unifrac distance obtained from relative abundance data at the genus level. (c-d) Beta 
diversity was computed from weighted Unifrac distance obtained from genera relative abundance data. 
Adonis reflects the significance of comparisons (N=1000 permutations). Betadisper refers to the 
significance of the homogeneity of variances of which a value higher than 0.05 means variances are 
homogeneous (N=1000 permutations). 
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Figure S3. Differences of internalizing behavior between microbial clusters. CBCL_M_Int_6y: 
internalizing behavior measured by maternal CBCL at age six. SDQ_M_Int_10y: internalizing behavior 
measured by maternal SDQ at age ten. SDQ_C_Int_10y: internalizing behavior measured by child SDQ 
at age ten. Wilcoxon rank sum tests were conducted with FDR adjustment. No significant differences 
were observed in internalizing behavior between the clusters.  
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Figure S4. Differences of externalizing behavior between microbial clusters. CBCL_M_Ext_6y: 
externalizing behavior measured by maternal CBCL at age six. SDQ_M_Ext_10y: externalizing behavior 
measured by maternal SDQ at age ten. SDQ_C_Ext_10y: externalizing behavior measured by child SDQ 
at age ten. Wilcoxon rank sum tests were conducted with FDR adjustment. No significant differences 
were observed in externalizing behavior between the clusters. 
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Table S1. The combination of infant DMM clusters in different runnings. 

Running Cluster Number  

1 V1 255 

1 V2 127 

1 V3 65 

2 V1 255 

2 V2 127 

2 V3 65 

3 V1 256 

3 V2 126 

3 V3 65 

4 V1 256 

4 V2 126 

4 V3 65 

5 V1 252 

5 V2 125 

5 V3 64 

5 V4 6 

6 V1 256 

6 V2 126 

6 V3 65 

7 V1 256 

7 V2 126 

7 V3 65 

8 V1 251 

8 V2 132 

8 V3 64 

9 V1 256 

9 V2 126 

9 V3 65 

10 V1 252 

10 V2 125 

10 V3 63 

10 V4 7 

The cluster combination in bold appeared the most frequently and was chosen in the study. 
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Table S2. The combination of childhood DMM clusters in different runnings. 

Running Cluster Number  

1 V1 86 

1 V2 81 

1 V3 67 

1 V4 58 

2 V1 85 

2 V2 79 

2 V3 77 

2 V4 51 

3 V1 85 

3 V2 79 

3 V3 77 

3 V4 51 

4 V1 78 

4 V2 76 

4 V3 56 

4 V4 49 

4 V5 33 

5 V1 89 

5 V2 80 

5 V3 68 

5 V4 55 

6 V1 85 

6 V2 79 

6 V3 77 

6 V4 51 

7 V1 85 

7 V2 79 

7 V3 77 

7 V4 51 

8 V1 85 

8 V2 79 

8 V3 77 

8 V4 51 

9 V1 85 

9 V2 79 

9 V3 77 

9 V4 51 

10 V1 85 
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10 V2 79 

10 V3 77 

10 V4 51 

The cluster combination in bold appeared the most frequently and was chosen in the study. 
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Table S3. Significantly different KEGG orthologs with relative abundances higher than 0.5% between 
infant microbial clusters. 

KEGG ortholog name 
Ave
rage 
(%) 

Inf
anc
y_1 

Inf
anc
y_2 

Inf
anc
y_3 

Kruskal-
Wallis 

test p.adj 

Wilcoxon rank sum test p.adj 
Infancy

_1 vs 
Infancy

_2 

Infancy
_1 vs 

Infancy
_3 

Infancy
_2 vs 

Infancy
_3 

LDH, ldh; L-lactate 
dehydrogenase [EC:1.1.1.27] 

0.53 
± 

0.15 

0.56 
± 

0.11 

0.58 
± 

0.1 

0.32 
± 

0.17 
<0.001 0.843 <0.001 <0.001 

fabG; 3-oxoacyl-[acyl-carrier 
protein] reductase 
[EC:1.1.1.100] 

0.65 
± 

0.12 

0.6
6 ± 
0.11 

0.61 
± 

0.11 

0.6
9 ± 
0.13 

<0.001 0.002 0.051 <0.001 

IMPDH, guaB; IMP 
dehydrogenase [EC:1.1.1.205] 

0.51 
± 

0.14 

0.55 
± 

0.1 

0.55 
± 

0.1 

0.25 
± 

0.07 
<0.001 0.598 <0.001 <0.001 

glk; glucokinase [EC:2.7.1.2] 
0.58 

± 
0.23 

0.6
4 ± 
0.19 

0.6
4 ± 
0.2 

0.25 
± 

0.07 
<0.001 0.961 <0.001 <0.001 

recG; ATP-dependent DNA 
helicase RecG [EC:3.6.4.12] 

1.01 
± 

0.41 

1.15 
± 

0.31 

1.08 
± 

0.34 

0.32 
± 

0.16 
<0.001 0.237 <0.001 <0.001 

uvrD, pcrA; DNA helicase II / 
ATP-dependent DNA helicase 
PcrA [EC:3.6.4.12] 

0.79 
± 

0.25 

0.8
4 ± 
0.22 

0.87 
± 

0.14 

0.43 
± 

0.21 
<0.001 0.891 <0.001 <0.001 

dnaJ; molecular chaperone 
DnaJ 

0.51 
± 

0.14 

0.55 
± 

0.1 

0.55 
± 

0.0
9 

0.26 
± 

0.0
8 

<0.001 0.843 <0.001 <0.001 

cspA; cold shock protein 
(beta-ribbon, CspA family) 

0.6 ± 
0.14 

0.58 
± 

0.1 

0.6
4 ± 
0.1 

0.57 
± 

0.25 
<0.001 <0.001 0.051 <0.001 

K06999; 
phospholipase/carboxylestera
se 

0.53 
± 

0.27 

0.61 
± 

0.22 

0.58 
± 

0.23 

0.0
9 ± 
0.0
8 

<0.001 0.531 <0.001 <0.001 

SPP; sucrose-6-phosphatase 
[EC:3.1.3.24] 

1.42 
± 

0.45 

1.44 
± 

0.43 

1.3 
± 

0.28 

1.57 
± 

0.6
6 

0.006 0.016 0.243 0.014 

dinJ; DNA-damage-inducible 
protein J 

0.75 
± 

0.33 

0.85 
± 

0.25 

0.83 
± 

0.2
6 

0.19 
± 

0.16 
<0.001 0.843 <0.001 <0.001 

K07496; putative transposase 
0.58 

± 
0.38 

0.6
6 ± 
0.34 

0.6
8 ± 
0.34 

0.0
8 ± 
0.13 

<0.001 0.843 <0.001 <0.001 
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bgaB, lacA; beta-galactosidase 
[EC:3.2.1.23] 

0.6 ± 
0.24 

0.6
8 ± 
0.17 

0.6
7 ± 
0.19 

0.19 
± 

0.16 
<0.001 0.925 <0.001 <0.001 

ecfA2; energy-coupling factor 
transport system ATP-binding 
protein [EC:3.6.3.-] 

0.59 
± 

0.14 

0.5
9 ± 
0.13 

0.63 
± 

0.0
9 

0.4
9 ± 
0.23 

<0.001 0.025 <0.001 <0.001 
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Table S4. Significantly different KEGG orthologs with relative abundances higher than 0.5% between 
childhood microbial clusters. 

KEGG 
ortholog 

name 

A
ve
ra
ge 
(
%
) 

C
hi
ld
h

oo
d_
1 

C
hi
ld
ho
od
_2 

C
hi
ld
h

oo
d_
3 

C
hi
ld
ho
od
_4 

Krus
kal-
Wall

is 
test 

p.adj 

Wilcoxon rank sum test p.adj 
Child
hood
_1 vs 

Child
hood

_2 

Child
hood
_1 vs 

Child
hood

_3 

Child
hood
_1 vs 

Child
hood

_4 

Child
hood
_2 vs 
Child
hood

_3 

Child
hood
_2 vs 
Child
hood

_4 

Child
hood
_3 vs 
Child
hood

_4 
fabG; 3-
oxoacyl-[acyl-
carrier protein] 
reductase 
[EC:1.1.1.100] 

0.
55 
± 
0.
05 

0.
51 
± 
0.
04 

0.
57 
± 
0.
03 

0.
56 
± 
0.
03 

0.
58 
± 
0.
05 

<0.0
01 

<0.001 <0.001 <0.001 0.1 0.342 0.008 

DNMT1, dcm; 
DNA (cytosine-
5)-
methyltransfera
se 1 [EC:2.1.1.37] 

0.
8 
± 

0.1 

0.
85 
± 

0.1 

0.
78 
± 
0.
06 

0.
82 
± 
0.
08 

0.
74 
± 

0.1
1 

<0.0
01 

<0.001 0.014 <0.001 0.001 0.131 <0.001 

E2.2.1.1, tktA, 
tktB; 
transketolase 
[EC:2.2.1.1] 

0.
8 
± 
0.
09 

0.
85 
± 

0.1 

0.
72 
± 
0.
08 

0.
82 
± 
0.
06 

0.
78 
± 
0.
08 

<0.0
01 

<0.001 <0.001 <0.001 <0.001 0.003 0.003 

pfkA, PFK; 6-
phosphofructok
inase 1 
[EC:2.7.1.11] 

0.
55 
± 
0.
05 

0.
55 
± 
0.
06 

0.
52 
± 
0.
05 

0.
58 
± 
0.
03 

0.
52 
± 
0.
05 

<0.0
01 

<0.001 0.004 <0.001 <0.001 0.521 <0.001 

xylB, XYLB; 
xylulokinase 
[EC:2.7.1.17] 

0.
53 
± 

0.1
2 

0.
61 
± 

0.1
3 

0.
44 
± 
0.
09 

0.
54 
± 
0.
07 

0.
48 
± 

0.1
1 

<0.0
01 

<0.001 <0.001 <0.001 <0.001 0.047 <0.001 

lacZ; beta-
galactosidase 
[EC:3.2.1.23] 

0.
56 
± 

0.1 

0.
58 
± 

0.1
1 

0.
58 
± 
0.
07 

0.
57 
± 
0.
09 

0.
54 
± 

0.1
1 

0.001 0.23 0.78 0.008 0.331 <0.001 0.003 

uvrD, pcrA; 
DNA helicase II 
/ ATP-
dependent 
DNA helicase 
PcrA 
[EC:3.6.4.12] 

0.
57 
± 
0.
03 

0.
57 
± 
0.
04 

0.
58 
± 
0.
02 

0.
56 
± 
0.
03 

0.
57 
± 
0.
04 

<0.0
01 

0.064 0.003 0.332 <0.001 0.021 0.033 

pflA, pflC, pflE; 
pyruvate 
formate lyase 
activating 

0.
55 
± 

0.
57 
± 

0.
53 
± 

0.
56 
± 

0.
54 
± 

<0.0
01 

<0.001 0.021 <0.001 <0.001 0.125 0.002 
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enzyme 
[EC:1.97.1.4] 

0.
05 

0.
05 

0.
04 

0.
03 

0.
04 

feoA; ferrous 
iron transport 
protein A 

0.
54 
± 
0.
07 

0.
55 
± 
0.
07 

0.
47 
± 
0.
09 

0.
58 
± 
0.
03 

0.
54 
± 
0.
05 

<0.0
01 

<0.001 0.003 0.209 <0.001 <0.001 <0.001 

feoB; ferrous 
iron transport 
protein B 

0.
55 
± 
0.
04 

0.
55 
± 
0.
04 

0.
53 
± 
0.
04 

0.
57 
± 
0.
03 

0.
54 
± 
0.
04 

<0.0
01 

0.011 <0.001 0.139 <0.001 0.227 <0.001 

bglX; beta-
glucosidase 
[EC:3.2.1.21] 

0.
67 
± 

0.1
6 

0.
67 
± 

0.1
6 

0.
84 
± 

0.1
7 

0.
62 
± 
0.
07 

0.
6 
± 

0.1
1 

<0.0
01 

<0.001 0.058 0.008 <0.001 <0.001 0.288 

SPP; sucrose-6-
phosphatase 
[EC:3.1.3.24] 

0.
94 
± 
0.
09 

0.
99 
± 
0.
09 

0.
88 
± 

0.1
1 

0.
97 
± 
0.
06 

0.
91 
± 
0.
06 

<0.0
01 

<0.001 0.018 <0.001 <0.001 0.125 <0.001 

K13653; AraC 
family 
transcriptional 
regulator 

0.
54 
± 

0.1
2 

0.
6 
± 

0.1
3 

0.
45 
± 
0.
09 

0.
56 
± 
0.
08 

0.
5 
± 

0.1
1 

<0.0
01 

<0.001 0.003 <0.001 <0.001 0.019 <0.001 
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Table S5. Population characteristics of the samples in infancy. 

  Infancy_1 Infancy_2 Infancy_3 Total 
FDR-adjusted p 

value  
Categori
cal 
variables 

        
Fisher's test 

(excluding no record 
item) 

Sample 
size  

        
  

Total  256 126 65 447  

1m 113 17 30 160 

< 0.001 

44.1 % 13.5 % 46.2 % 35.8 % 

3m 77 48 20 145 

30.1 % 38.1 % 30.8 % 32.4 % 

4m 66 61 15 142 

25.8 % 48.4 % 23.1 % 31.8 % 

Delivery 
mode 

        
  

Not 
assisted 
vaginal 
delivery 

225 106 42 373 

0.001 

87.9 % 84.1 % 64.6 % 83.4 % 

Assisted 
vaginal 
delivery 

14 9 9 32 

5.5 % 7.1 % 13.8 % 7.2 % 

C 
section 

8 9 11 28 

3.1 % 7.1 % 16.9 % 6.3 % 

No 
record 

9 2 3 14  

3.5 % 1.6 % 4.6 % 3.1 %  

Child 
sex  

        
  

female 114 62 28 204 

0.699 
44.5 % 49.2 % 43.1 % 45.6 % 

male 142 64 37 243 

55.5 % 50.8 % 56.9 % 54.4 % 

Sibling(s
) at birth 

        
  

Yes 152 79 22 253 

0.001 
59.4 % 62.7 % 33.8 % 56.6 % 

No 97 43 41 181 

37.9 % 34.1 % 63.1 % 40.5 % 

7 4 2 13  
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No 
record 

2.7 % 3.2 % 3.1 % 2.9 %  

Solid 
food 

        
  

Yes 0 1 0 1 

0.634 
0 % 0.8 % 0 % 0.2 % 

No 227 108 57 392 

88.7 % 85.7 % 87.7 % 87.7 % 

No 
record 

29 17 8 54  

11.3 % 13.5 % 12.3 % 12.1 %  

Pet(s)           

Yes 33 17 11 61 

0.703 
12.9 % 13.5 % 16.9 % 13.6 % 

No 207 103 51 361 

80.9 % 81.7 % 78.5 % 80.8 % 

No 
record 

16 6 3 25  

6.2 % 4.8 % 4.6 % 5.6 %  

Gastroen
teritis 

        
  

Yes 2 2 1 5 

0.699 
0.8 % 1.6 % 1.5 % 1.1 % 

No 242 115 63 420 

94.5 % 91.3 % 96.9 % 94 % 

No 
record 

12 9 1 22  

4.7 % 7.1 % 1.5 % 4.9 %  

Vomit           

Yes 43 12 8 63 

0.327 
16.8 % 9.5 % 12.3 % 14.1 % 

No 201 105 56 362 

78.5 % 83.3 % 86.2 % 81 % 

No 
record 

12 9 1 22  

4.7 % 7.1 % 1.5 % 4.9 %  

Diarrhea           

Yes 17 11 4 32 

0.699 
6.6 % 8.7 % 6.2 % 7.2 % 

No 227 106 60 393 

88.7 % 84.1 % 92.3 % 87.9 % 

12 9 1 22  
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No 
record 

4.7 % 7.1 % 1.5 % 4.9 %  

Other 
diseases 

        
  

General 6 3 1 10 

0.444* 

2.3 % 2.4 % 1.5 % 2.2 % 

Blood 1 0 0 1 

0.4 % 0 % 0 % 0.2 % 

Digestiv
e 

6 6 2 14 

2.3 % 4.8 % 3.1 % 3.1 % 

Locomot
or 

6 2 4 12 

2.3 % 1.6 % 6.2 % 2.7 % 

Respirat
ory 

3 5 0 8 

1.2 % 4 % 0 % 1.8 % 

Skin 2 1 1 4 

0.8 % 0.8 % 1.5 % 0.9 % 

Metaboli
c 

0 1 1 2 

0 % 0.8 % 1.5 % 0.4 % 

No 220 99 55 374 

85.9 % 78.6 % 84.6 % 83.7 % 

No 
record 

12 9 1 22  

4.7 % 7.1 % 1.5 % 4.9 %  

Antibioti
cs 

        
  

Yes 0 5 0 5 

0.012 
0 % 4 % 0 % 1.1 % 

No 197 95 54 346 

77 % 75.4 % 83.1 % 77.4 % 

No 
record 

59 26 11 96  

23 % 20.6 % 16.9 % 21.5 %  

Other 
medicati
ons 

        
  

Medicati
ons for 
asthma 

1 1 0 2 

0.327 

0.4 % 0.8 % 0 % 0.4 % 

Medicati
ons for 
eczema 

1 3 0 4 

0.4 % 2.4 % 0 % 0.9 % 

Other 
systemic 

17 3 7 27 

6.6 % 2.4 % 10.8 % 6 % 
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medicati
ons 
Other 
medicati
ons 
working 
locally 

2 1 0 3 

0.8 % 0.8 % 0 % 0.7 % 

No 223 109 57 389 

87.1 % 86.5 % 87.7 % 87 % 

No 
record 

12 9 1 22  

4.7 % 7.1 % 1.5 % 4.9 %  

Numeric 
variables 

        
Kruskal-Wallis test 

Birth 
weight 
(g) 

3594.5 ± 469.4 
(N = 250, 97.7%) 

3673.2 ± 488.4 
(N = 126, 100%) 

3642.5 ± 366.9 
(N = 65, 100%) 

3624.1 ± 461.8 
(N = 441, 98.7%) 

0.73 

Maternal 
age 
(years) 

32.2 ± 3.7 (N = 
246, 96.1%) 

33.3 ± 2.9 (N = 
118, 93.7%) 

32.5 ± 3.1 (N = 
62, 95.4%) 

32.6 ± 3.4 (N = 
426, 95.3%) 

0.075 

Gestatio
nal age 
(weeks) 

40.1 ± 1.2 (N = 
256, 100%) 

40.4 ± 1.2 (N = 
126, 100%) 

40 ± 1.2 (N = 
65, 100%) 

40.1 ± 1.2 (N = 
447, 100%) 

0.089 

Breastfe
eding 

0.9 ± 0.3 (N = 
242, 94.5%) 

0.5 ± 0.4 (N = 
120, 95.2%) 

0.8 ± 0.4 (N = 
62, 95.4%) 

0.7 ± 0.4 (N = 
424, 94.9%) 

<0.001 

CBCL_M
_6y_Int 

4.3 ± 4.5 (N = 
223, 87.1%) 

3.9 ± 4.4 (N = 
106, 84.1%) 

4 ± 3.6 (N = 51, 
78.5%) 

4.1 ± 4.3 (N = 
380, 85%) 

0.73 

CBCL_M
_6y_Ext 

6.5 ± 5.3 (N = 
223, 87.1%) 

6 ± 4.3 (N = 106, 
84.1%) 

6.5 ± 4.5 (N = 
51, 78.5%) 

6.3 ± 4.9 (N = 
380, 85%) 

0.823 

SDQ_M
_10y_Int 

2.9 ± 2.8 (N = 
212, 82.8%) 

3 ± 2.5 (N = 104, 
82.5%) 

2.7 ± 2.7 (N = 
49, 75.4%) 

2.9 ± 2.7 (N = 
365, 81.7%) 

0.73 

SDQ_M
_10y_Ext 

3.8 ± 3.3 (N = 
212, 82.8%) 

4.2 ± 3.3 (N = 
104, 82.5%) 

3.7 ± 2.6 (N = 
49, 75.4%) 

3.9 ± 3.2 (N = 
365, 81.7%) 

0.73 

SDQ_C_
10y_Int 

5 ± 2.9 (N = 221, 
86.3%) 

5 ± 3 (N = 106, 
84.1%) 

4.4 ± 2.5 (N = 
47, 72.3%) 

5 ± 2.9 (N = 374, 
83.7%) 

0.73 

SDQ_C_
10y_Ext 

6.3 ± 2.7 (N = 
221, 86.3%) 

6.4 ± 2.8 (N = 
106, 84.1%) 

6 ± 2.3 (N = 47, 
72.3%) 

6.3 ± 2.7 (N = 
374, 83.7%) 

0.773 

* The comparison was performed between the item "No" with the sum of items "General" to "Metabolic". 
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Table S6. Population characteristics of the samples in childhood. 

  Childhood_1 Childhood_2 Childhood_3 Childhood_4 Total 
FDR-

adjusted p 
value  

Categorical 
variables 

          

Fisher's test 
(excluding 
no record 

item) 
Sample size              

Total  85 51 79 77 292  

6y 50 32 33 30 145 

0.088 
58.8 % 62.7 % 41.8 % 39 % 49.7 % 

10y 35 19 46 47 147 

41.2 % 37.3 % 58.2 % 61 % 50.3 % 

Delivery 
mode 

          
  

No assisted 
vaginal 
delivery 

67 41 67 66 241 

0.968 

78.8 % 80.4 % 84.8 % 85.7 % 82.5 % 

Assisted 
vaginal 
delivery 

7 3 6 7 23 

8.2 % 5.9 % 7.6 % 9.1 % 7.9 % 

C section 8 3 2 3 16 

9.4 % 5.9 % 2.5 % 3.9 % 5.5 % 

No record 3 4 4 1 12  

3.5 % 7.8 % 5.1 % 1.3 % 4.1 %  

Child sex              

female 37 20 29 50 136 

0.041 
43.5 % 39.2 % 36.7 % 64.9 % 46.6 % 

male 48 31 50 27 156 

56.5 % 60.8 % 63.3 % 35.1 % 53.4 % 

Sibling(s) at 
birth 

          
  

Yes 46 32 34 43 155 

0.381 
54.1 % 62.7 % 43 % 55.8 % 53.1 % 

No 36 16 43 30 125 

42.4 % 31.4 % 54.4 % 39 % 42.8 % 

No record 3 3 2 4 12  

3.5 % 5.9 % 2.5 % 5.2 % 4.1 %  

The time 
when solid 
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food was 
first 
introduced 

after birth 
62 (22.19 ± 

3.25) 
42 (21.17 ± 

2.88) 
61 (22.39 ± 

3.01) 
56 (22.05 ± 

3.32) 
221 (22.02 ± 

3.14) 

0.381 
72.9 % 82.4 % 77.2 % 72.7 % 75.7 % 

>26 weeks 
after birth 

17 4 6 6 33 

20 % 7.8 % 7.6 % 7.8 % 11.3 % 

No record 6 5 12 15 38  

7.1 % 9.8 % 15.2 % 19.5 % 13 %  

Pet(s)             

Yes 12 5 6 12 35 

0.793 
14.1 % 9.8 % 7.6 % 15.6 % 12 % 

No 70 44 69 61 244 

82.4 % 86.3 % 87.3 % 79.2 % 83.6 % 

No record 3 2 4 4 13  

3.5 % 3.9 % 5.1 % 5.2 % 4.5 %  

If had 
antibiotics in 
the past one 
year 

          

  

Yes 7 4 9 9 29 

0.968 
8.2 % 7.8 % 11.4 % 11.7 % 9.9 % 

No 72 43 69 62 246 

84.7 % 84.3 % 87.3 % 80.5 % 84.2 % 

No record 6 4 1 6 17  

7.1 % 7.8 % 1.3 % 7.8 % 5.8 %  

Other 
medications 
after birth 
for samples 
at age 6y 

          

  

Antihistamin
es 

     
 

the past one 
year 

11 5 9 3 28 

0.905 

22 % 15.6 % 27.3 % 10 % 19.3 % 

>5 times in 
the past one 
year 

1 0 0 1 2 

2 % 0 % 0 % 3.3 % 1.4 % 

No 36 23 22 23 104 

72 % 71.9 % 66.7 % 76.7 % 71.7 % 

No record 2 4 2 3 11  



Chapter 3 

126 

4 % 12.5 % 6.1 % 10 % 7.6 %  

Non-
antibiotic 
medications 
for 
respiratory 
diseases 

 

the past one 
year 

13 7 8 8 36 

1 

26 % 21.9 % 24.2 % 26.7 % 24.8 % 

>5 times in 
the past one 
year 

4 2 1 1 8 

8 % 6.2 % 3 % 3.3 % 5.5 % 

No 31 19 22 18 90 

62 % 59.4 % 66.7 % 60 % 62.1 % 

No record 2 4 2 3 11  

4 % 12.5 % 6.1 % 10 % 7.6 %  

Medications 
for skin 

     
 

the past one 
year 

32 11 9 17 69 

0.1 

64 % 34.4 % 27.3 % 56.7 % 47.6 % 

>5 times in 
the past one 
year 

4 3 8 3 18 

8 % 9.4 % 24.2 % 10 % 12.4 % 

No 12 14 14 7 47 

24 % 43.8 % 42.4 % 23.3 % 32.4 % 

No record 2 4 2 3 11  

4 % 12.5 % 6.1 % 10 % 7.6 %  

Other 
systemic 
medications 

 

the past one 
year 

11 8 8 10 37 

0.968 

22 % 25 % 24.2 % 33.3 % 25.5 % 

>5 times in 
the past one 
year 

3 1 0 1 5 

6 % 3.1 % 0 % 3.3 % 3.4 % 

No 34 19 23 16 92 

68 % 59.4 % 69.7 % 53.3 % 63.4 % 

No record 2 4 2 3 11  

4 % 12.5 % 6.1 % 10 % 7.6 %  

Other 
medications 
working 
locally 
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the past one 
year 

20 14 13 16 63 

0.905 

40 % 43.8 % 39.4 % 53.3 % 43.4 % 

>5 times in 
the past one 
year 

4 0 2 2 8 

8 % 0 % 6.1 % 6.7 % 5.5 % 

No 24 14 16 9 63 

48 % 43.8 % 48.5 % 30 % 43.4 % 

No record 2 4 2 3 11  

4 % 12.5 % 6.1 % 10 % 7.6 %  

Others 
     

 

the past one 
year 

1 0 1 0 2 

1 
2 % 0 % 3 % 0 % 1.4 % 

No 47 28 30 27 132 

94 % 87.5 % 90.9 % 90 % 91 % 

No record 2 4 2 3 11  

4 % 12.5 % 6.1 % 10 % 7.6 %  

Other 
medications 
in the past 
one year for 
samples at 
age 10y 

          

  

Laxative 
     

 

Yes 4 1 4 5 14 

0.969 
11.4 % 5.3 % 8.7 % 10.6 % 9.5 % 

No 29 16 42 36 123 

82.9 % 84.2 % 91.3 % 76.6 % 83.7 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Diarrhea 
inhibitor 

     
 

Yes 1 1 1 1 4 

0.968 
2.9 % 5.3 % 2.2 % 2.1 % 2.7 % 

No 32 16 45 40 133 

91.4 % 84.2 % 97.8 % 85.1 % 90.5 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for ear 
infections 

     

 

Yes 4 0 1 1 6 0.487 
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11.4 % 0 % 2.2 % 2.1 % 4.1 % 

No 29 17 45 40 131 

82.9 % 89.5 % 97.8 % 85.1 % 89.1 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for strep 
throat and 
tonsillitis 

     

 

Yes 1 0 4 0 5 

0.487 
2.9 % 0 % 8.7 % 0 % 3.4 % 

No 32 17 42 41 132 

91.4 % 89.5 % 91.3 % 87.2 % 89.8 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for 
pneumonia 

     

 

No 33 17 46 41 137 Not 
applicable 94.3 % 89.5 % 100 % 87.2 % 93.2 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for 
bronchitis 

     

 

Yes 1 0 1 0 2 

0.968 
2.9 % 0 % 2.2 % 0 % 1.4 % 

No 32 17 45 41 135 

91.4 % 89.5 % 97.8 % 87.2 % 91.8 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for paranasal 
sinuses 

     

 

Yes 1 0 0 0 1 

0.793 
2.9 % 0 % 0 % 0 % 0.7 % 

No 32 17 46 41 136 

91.4 % 89.5 % 100 % 87.2 % 92.5 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  
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Medications 
for urinary 
tract 
infection 

     

 

No 33 17 46 41 137 Not 
applicable 94.3 % 89.5 % 100 % 87.2 % 93.2 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for impetigo 

     
 

Yes 2 1 0 3 6 

0.549 
5.7 % 5.3 % 0 % 6.4 % 4.1 % 

No 31 16 46 38 131 

88.6 % 84.2 % 100 % 80.9 % 89.1 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Medications 
for mycosis 

     
 

Yes 3 1 1 0 5 

0.411 
8.6 % 5.3 % 2.2 % 0 % 3.4 % 

No 30 16 45 41 132 

85.7 % 84.2 % 97.8 % 87.2 % 89.8 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Others 
     

 

Yes 7 5 11 13 36 

0.968 
20 % 26.3 % 23.9 % 27.7 % 24.5 % 

No 26 12 35 28 101 

74.3 % 63.2 % 76.1 % 59.6 % 68.7 % 

No record 2 2 0 6 10  

5.7 % 10.5 % 0 % 12.8 % 6.8 %  

Numeric 
variables 

          Kruskal-
Wallis test 

Birth weight 
(g) 

3638.7 ± 
456.8 (N = 
84, 98.8%) 

3562 ± 515.5 
(N = 48, 
94.1%) 

3626.3 ± 
491.2 (N = 
79, 100%) 

3596.6 ± 
430.8 (N = 
77, 100%) 

3611.2 ± 
468.3 (N = 

288, 98.6%) 

0.928 

Maternal age 
(years) 

32.6 ± 3.4 (N 
= 79, 92.9%) 

33.3 ± 4.3 (N 
= 46, 90.2%) 

32 ± 3.3 (N = 
70, 88.6%) 

32.6 ± 3.9 (N 
= 72, 93.5%) 

32.6 ± 3.7 (N 
= 267, 91.4%) 

0.753 

Gestational 
age (weeks) 

39.9 ± 1.1 (N 
= 85, 100%) 

40 ± 1.1 (N = 
51, 100%) 

40.2 ± 1.4 (N 
= 79, 100%) 

40 ± 1.4 (N = 
77, 100%) 

40 ± 1.3 (N = 
292, 100%) 

0.753 

Breastfeedin
g 

0.6 ± 0.4 (N 
= 83, 97.6%) 

0.6 ± 0.4 (N 
= 49, 96.1%) 

0.6 ± 0.4 (N 
= 75, 94.9%) 

0.7 ± 0.4 (N 
= 73, 94.8%) 

0.6 ± 0.4 (N 
= 280, 
95.9%) 

0.753 
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BMI 16.5 ± 2.1 (N 
= 81, 95.3%) 

16.4 ± 2 (N = 
49, 96.1%) 

16.4 ± 1.5 (N 
= 78, 98.7%) 

16.5 ± 1.7 (N 
= 70, 90.9%) 

16.4 ± 1.8 (N 
= 278, 
95.2%) 

0.901 

Diseases in 
the past one 
year 

      

General 2.4 ± 2.6 (N 
= 81, 95.3%) 

1.4 ± 1.3 (N = 
48, 94.1%) 

1.7 ± 2.2 (N = 
79, 100%) 

1.6 ± 1.8 (N = 
71, 92.2%) 

1.8 ± 2.1 (N = 
279, 95.5%) 

0.571 

Digestive 4.4 ± 4.9 (N 
= 81, 95.3%) 

3.7 ± 4.5 (N = 
48, 94.1%) 

2.7 ± 2.7 (N = 
79, 100%) 

3.9 ± 4.6 (N 
= 71, 92.2%) 

3.7 ± 4.3 (N = 
279, 95.5%) 

0.753 

Respiratory 4.2 ± 3.7 (N = 
81, 95.3%) 

3.8 ± 3.4 (N = 
49, 96.1%) 

3.6 ± 3.7 (N = 
79, 100%) 

3.6 ± 3.1 (N = 
71, 92.2%) 

3.8 ± 3.5 (N = 
280, 95.9%) 

0.753 

Skin 1.2 ± 3.4 (N = 
81, 95.3%) 

1.3 ± 3.4 (N = 
48, 94.1%) 

1.4 ± 3.1 (N = 
78, 98.7%) 

1.3 ± 3.3 (N = 
70, 90.9%) 

1.3 ± 3.3 (N = 
277, 94.9%) 

0.901 

Total 
number of 
antibiotic 
treatments 
after birth 

2.1 ± 2.7 (N = 
42, 49.4%) 

1.6 ± 1.7 (N = 
32, 62.7%) 

2.1 ± 2.8 (N = 
51, 64.6%) 

2.4 ± 2.1 (N = 
31, 40.3%) 

2 ± 2.4 (N = 
156, 53.4%) 

0.753 

CBCL_M_6y
_Int 

4.7 ± 4.6 (N 
= 83, 97.6%) 

3.4 ± 3.1 (N = 
49, 96.1%) 

3.5 ± 3.9 (N = 
76, 96.2%) 

4.9 ± 4.7 (N 
= 76, 98.7%) 

4.2 ± 4.3 (N 
= 284, 
97.3%) 

0.571 

CBCL_M_6y
_Ext 

6.3 ± 5.1 (N = 
83, 97.6%) 

7.1 ± 5.8 (N = 
49, 96.1%) 

6.3 ± 4.6 (N 
= 76, 96.2%) 

6.6 ± 5.6 (N 
= 76, 98.7%) 

6.5 ± 5.2 (N = 
284, 97.3%) 

0.928 

SDQ_M_10y
_Int 

3.1 ± 2.6 (N = 
83, 97.6%) 

3.2 ± 3.1 (N = 
48, 94.1%) 

2.7 ± 2.4 (N = 
74, 93.7%) 

2.5 ± 2.3 (N = 
72, 93.5%) 

2.8 ± 2.6 (N 
= 277, 

94.9%) 

0.753 

SDQ_M_10y
_Ext 

3.5 ± 3 (N = 
83, 97.6%) 

5.3 ± 4 (N = 
48, 94.1%) 

4.2 ± 3.1 (N = 
74, 93.7%) 

3.4 ± 2.8 (N 
= 72, 93.5%) 

4 ± 3.2 (N = 
277, 94.9%) 

0.454 

SDQ_C_10y_
Int 

4.8 ± 3.1 (N = 
81, 95.3%) 

4.3 ± 2.6 (N 
= 47, 92.2%) 

4.9 ± 2.6 (N 
= 78, 98.7%) 

4.8 ± 3.1 (N = 
76, 98.7%) 

4.8 ± 2.9 (N 
= 282, 

96.6%) 

0.885 

SDQ_C_10y_
Ext 

6.2 ± 2.9 (N 
= 81, 95.3%) 

6.6 ± 2.5 (N 
= 47, 92.2%) 

6.5 ± 2.6 (N 
= 78, 98.7%) 

6.2 ± 2.5 (N = 
76, 98.7%) 

6.4 ± 2.7 (N 
= 282, 

96.6%) 

0.885 
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Table S7. Food frequency outcomes for samples at age ten. 

It
e
m 

Question 
Childhood

_1 
Childhood

_2 
Childhood

_3 
Childhood

_4 
Total p 

p.
a
dj 

1 
Cooked 
vegetable 
(50g/day) 

1.6 ± 0.8 (N 
= 34, 97.1%) 

1.7 ± 0.6 (N 
= 18, 
94.7%) 

1.6 ± 1.2 (N 
= 42, 91.3%) 

1.9 ± 1.7 (N 
= 42, 
89.4%) 

1.7 ± 1.2 (N = 
136, 92.5%) 

0.
5
0 

0.
90 

2 
Raw vegetable 
(50g/day) 

0.7 ± 0.4 (N 
= 33, 
94.3%) 

0.8 ± 0.8 (N 
= 16, 
84.2%) 

0.9 ± 0.7 (N 
= 43, 
93.5%) 

0.8 ± 0.7 (N 
= 43, 91.5%) 

0.8 ± 0.7 (N 
= 135, 
91.8%) 

0.
8
3 

0.
90 

3 
Fruit and 
vegetable juice 
(glass/day) 

0.4 ± 0.5 (N 
= 34, 97.1%) 

0.4 ± 0.5 (N 
= 17, 89.5%) 

0.8 ± 1.9 (N 
= 40, 87%) 

0.3 ± 0.6 (N 
= 42, 
89.4%) 

0.5 ± 1.1 (N 
= 133, 
90.5%) 

0.
13 

0.
83 

4 
Mandarin 
(piece/day) 

0.2 ± 0.4 (N 
= 33, 
94.3%) 

0.1 ± 0.2 (N 
= 17, 89.5%) 

0.3 ± 0.5 (N 
= 43, 
93.5%) 

0.3 ± 0.4 (N 
= 39, 83%) 

0.2 ± 0.4 (N 
= 132, 
89.8%) 

0.
41 

0.
90 

5 
Other citrus fruit 
(piece/day) 

0.1 ± 0.1 (N 
= 32, 91.4%) 

0 ± 0.1 (N = 
16, 84.2%) 

0.1 ± 0.1 (N 
= 42, 91.3%) 

0 ± 0.1 (N = 
46, 97.9%) 

0.1 ± 0.1 (N 
= 136, 
92.5%) 

0.
81 

0.
90 

6 
Apple and pear 
(piece/day) 

0.6 ± 0.4 (N 
= 32, 91.4%) 

0.7 ± 0.6 (N 
= 18, 
94.7%) 

0.9 ± 0.7 (N 
= 43, 
93.5%) 

0.7 ± 0.5 (N 
= 44, 
93.6%) 

0.7 ± 0.6 (N 
= 137, 
93.2%) 

0.
6
7 

0.
90 

7 
Banana 
(piece/day) 

0.2 ± 0.2 (N 
= 34, 97.1%) 

0.3 ± 0.3 (N 
= 18, 
94.7%) 

0.2 ± 0.3 (N 
= 42, 91.3%) 

0.3 ± 0.3 (N 
= 44, 
93.6%) 

0.3 ± 0.3 (N 
= 138, 
93.9%) 

0.
6
7 

0.
90 

8 
Other fruit 
(piece/day) 

0.3 ± 0.4 (N 
= 33, 
94.3%) 

0.5 ± 0.5 (N 
= 16, 
84.2%) 

0.3 ± 0.4 (N 
= 42, 91.3%) 

0.4 ± 0.5 (N 
= 39, 83%) 

0.4 ± 0.4 (N 
= 130, 
88.4%) 

0.
5
9 

0.
90 

9 
Apple sauce 
(tablespoon/day) 

0.3 ± 0.5 (N 
= 31, 
88.6%) 

0.2 ± 0.2 (N 
= 13, 
68.4%) 

0.3 ± 0.5 (N 
= 35, 76.1%) 

0.4 ± 0.8 (N 
= 36, 
76.6%) 

0.3 ± 0.6 (N 
= 115, 78.2%) 

0.
9
0 

0.
90 

10 
Total fruit 
(piece/day) 

1.3 ± 0.5 (N 
= 29, 
82.9%) 

1.5 ± 1 (N = 
15, 78.9%) 

1.7 ± 1.1 (N 
= 40, 87%) 

1.7 ± 0.8 (N 
= 36, 
76.6%) 

1.6 ± 0.9 (N 
= 120, 
81.6%) 

0.
15 

0.
83 

11 
Total vegetable 
(50g/day) 

2.3 ± 1 (N = 
33, 94.3%) 

2.5 ± 1.1 (N 
= 16, 
84.2%) 

2.4 ± 1.4 (N 
= 42, 91.3%) 

2.8 ± 2 (N = 
42, 89.4%) 

2.5 ± 1.5 (N 
= 133, 
90.5%) 

0.
7
8 

0.
90 

Total fruit is the sum of items 4 to 8. Total vegetable is the sum of items 1 and 2. Considering item 9 was consumed 
in low volume, we did not sum it into total fruit. FDR adjustments were conducted for multiple Kruskal-Wallis 
tests. 
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Table S8. Simple effects of extrinsic factors on the gut microbiota in infancy. 

  R2% Adjusted R2% p value Number of individuals  Number of genera 

1m      

Delivery mode 1.61 0.243 0.055 

147 94 
Birth weight 0.679 0 0.467 

Breastfeeding 1.634 0.956 0.001* 

Child sex 0.628 0 0.7 

3m      

Delivery mode 1.791 0.281 0.095 

133 127 
Birth weight 0.855 0.098 0.186 

Breastfeeding 2.181 1.435 0.001* 

Child sex 0.765 0.007 0.394 

4m      

Delivery mode 1.805 0.271 0.104 

131 81 
Birth weight 0.948 0.18 0.106 

Breastfeeding 1.979 1.219 0.001* 

Child sex 0.66 0 0.807 

1-4m      

Child age 1.193 0.952 0.001* 

411 155 

Delivery mode 0.644 0.157 0.001* 

Birth weight 0.241 0 0.492 

Breastfeeding 0.938 0.696 0.001* 

Child sex 0.266 0.023 0.114 

A total of 1000 permutation tests were conducted to determine significance. Asterisks indicate p value < 0.05. 
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Table S9. Simple effects of extrinsic factors on the gut microbiota in childhood. 

  R2% 
Adjusted 

R2% 
p 

value 
Number of 
individuals  

Number of 
genera 

6y      

Delivery mode 
2.67

9 
0.084 0.377 

78 158 

Birth weight 1.17 0 0.664 

Breastfeeding 1.442 0.146 0.255 

Age of the first solid food introduction 
0.97

3 
0 0.944 

Child sex 1.437 0.14 0.27 

Total number of antibiotic treatments 1.1 0 0.8 

If had antibiotic treatment in past one 
year 

1.287 0 0.466 

10y      

Delivery mode 
2.84

9 
0 0.656 

66 168 

Birth weight 1.538 0 0.412 

Breastfeeding 1.744 0.208 0.231 

Age of the first solid food introduction 1.444 0 0.542 

Child sex 1.684 0.148 0.285 

Total number of antibiotic treatments 1.952 0.42 0.114 

If had antibiotic treatment in past one 
year 

1.68 0.144 0.27 

6-10y      

Child age 1.569 0.875 0.001* 

144 181 

Delivery mode 1.586 0.19 0.121 

Birth weight 
0.59

7 
0 0.834 

Breastfeeding 1.032 0.335 0.017* 

Age of the first solid food introduction 0.738 0.039 0.32 

Child sex 
0.86

4 
0.166 0.083 

Total number of antibiotic treatments 0.77 0.072 0.24 

If had antibiotic treatment in past one 
year 

0.87
4 

0.176 0.073 

A total of 1000 permutation tests were conducted to determine significance. Asterisks indicate p value < 0.05. 
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Table S10. Variance in microbial composition in infancy explained by internalizing or externalizing 
behavior without accounting for extrinsic factors. 

  Behavior R2% Adjusted R2% p value Number of individuals  Number of genera 

1m       

CBCL_M_6y 
INT 0.695 0 0.617 

136 

94 

EXT 0.863 0.123 0.122 

SDQ_M_10y 
INT 0.981 0.214 0.05 

131 
EXT 0.84 0.071 0.221 

SDQ_C_10y 
INT 0.642 0 0.906 

132 
EXT 0.782 0.019 0.335 

3m       

CBCL_M_6y 
INT 0.725 0 0.713 

122 

127 

EXT 0.702 0 0.822 

SDQ_M_10y 
INT 0.873 0.019 0.37 

118 
EXT 0.863 0.009 0.407 

SDQ_C_10y 
INT 0.797 0 0.547 

122 
EXT 0.881 0.055 0.314 

4m       

CBCL_M_6y 
INT 0.775 0 0.596 

122 

81 

EXT 0.626 0 0.965 

SDQ_M_10y 
INT 0.636 0 0.976 

116 
EXT 0.812 0 0.57 

SDQ_C_10y 
INT 0.602 0 0.988 

120 
EXT 0.732 0 0.751 

1-4m       

CBCL_M_6y 
INT 0.278 0.014 0.211 

380 

155 

EXT 0.286 0.022 0.144 

SDQ_M_10y 
INT 0.3 0.025 0.117 

365 
EXT 0.311 0.036 0.073 

SDQ_C_10y 
INT 0.261 0 0.57 

374 
EXT 0.283 0.015 0.231 

SDQ_M_10y: maternal SDQ at age 10. SDQ_C_10y: child SDQ at age 10. CBCL_M_6y: maternal CBCL at age 6. Number of 1000 
permutation tests were conducted to determine significance. 
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Table S11. Variance in microbial composition in childhood explained by internalizing or externalizing 
behavior without accounting for extrinsic factors. 

  Behavior R2% Adjusted R2% p value Number of individuals  Number of genera 

6y       

CBCL_M_6y 
INT 0.681 0 0.524 

143 

158 

EXT 0.736 0.032 0.338 

SDQ_M_10y 
INT 0.786 0.04 0.32 

135 
EXT 1.254 0.512 0.001* 

SDQ_C_10y 
INT 0.612 0 0.882 

137 
EXT 0.896 0.162 0.076 

10y       

CBCL_M_6y 
INT 0.509 0 0.99 

141 

168 

EXT 0.588 0 0.893 

SDQ_M_10y 
INT 0.769 0.061 0.253 

142 
EXT 0.839 0.131 0.128 

SDQ_C_10y 
INT 0.8 0.107 0.139 

145 
EXT 0.692 0 0.445 

6-10y       

CBCL_M_6y 
INT 0.328 0 0.687 

284 

181 

EXT 0.347 0 0.491 

SDQ_M_10y 
INT 0.485 0.123 0.011* 

277 
EXT 0.62 0.258 0.002* 

SDQ_C_10y 
INT 0.346 0 0.546 

282 
EXT 0.391 0.035 0.176 

SDQ_M_10y: maternal SDQ at age 10. SDQ_C_10y: child SDQ at age 10. CBCL_M_6y: maternal CBCL at age 6. Number of 1000 
permutation tests were conducted to determine significance. Asterisk indicates p value < 0.05. 

  



Chapter 3 

136 

Table S12. MLM models for internalizing and externalizing behavior assessed by child SDQ at age ten. 

  SDQ_C_10y_Int SDQ_C_10y_Ext 

Response variable Estimate 95% CI p value Estimate 95% CI p value 

1-4m       

Phylogenetic diversity 0.017 [-0.124, 0.157] 0.817 0.095 [-0.048, 0.238] 0.208 

Streptococcus -0.057 [-0.212, 0.098] 0.481 0.022 [-0.137, 0.179] 0.795 

Clostridium sensu stricto 1 -0.099 [-0.280, 0.081] 0.294 0.069 [-0.115, 0.254] 0.472 

6-10y       

Phylogenetic diversity 0.122 [-0.083, 0.329] 0.275 0.06 [-0.138, 0.257] 0.575 

Streptococcus -0.126 [-0.386, 0.135] 0.375 -0.044 [-0.292, 0.205] 0.742 

Clostridium sensu stricto 1 0.236 [ 0.015, 0.462] 0.055 0.142 [-0.071, 0.354] 0.221 

Bacteroides 0.051 [-0.127, 0.229] 0.6 -0.08 [-0.250, 0.091] 0.388 

Barnesiella 0.14 [-0.139, 0.420] 0.359 0.06 [-0.206, 0.327] 0.682 

Prevotella 9 -0.5 [-0.948, -0.053] 0.042* 0.656 [ 0.222, 1.087] 0.006* 

Alistipes 0.087 [-0.171, 0.344] 0.536 -0.144 [-0.391, 0.102] 0.285 

Coprococcus 2 -0.061 [-0.329, 0.208] 0.676 0.245 [-0.010, 0.502] 0.082 

Ruminococcaceae NK4A214 group -0.084 [-0.311, 0.144] 0.496 0.044 [-0.172, 0.260] 0.705 

Phascolarctobacterium -0.203 [-0.514, 0.109] 0.232 0.481 [ 0.180, 0.781] 0.004* 

Sutterella -0.24 [-0.498, 0.010] 0.085 0.033 [-0.208, 0.275] 0.802 

Akkermansia -0.182 [-0.482, 0.122] 0.269 -0.093 [-0.382, 0.193] 0.554 

[Eubacterium] ruminantium group -0.135 [-0.366, 0.102] 0.289 0.079 [-0.144, 0.301] 0.513 

[Eubacterium] xylanophilum group 0.051 [-0.168, 0.267] 0.666 -0.01 [-0.214, 0.199] 0.926 

Ruminococcaceae UCG-002 0.003 [-0.212, 0.223] 0.983 0.059 [-0.147, 0.266] 0.602 

Ruminococcaceae UCG-005 0.089 [-0.201, 0.382] 0.573 0.046 [-0.232, 0.325] 0.76 

Asterisk indicates p value < 0.05.  
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Table S13. MLM models for internalizing and externalizing behavior assessed by maternal CBCL at age 
six. 

  CBCL_M_6y_Int CBCL_M_6y_Ext 

Response variable Estimate 95% CI p value Estimate 95% CI p value 

1-4m       

Phylogenetic diversity 0.022 [-0.126, 0.170] 0.773 0.106 [-0.039, 0.252] 0.164 

Streptococcus 0.023 [-0.139, 0.186] 0.785 -0.036 [-0.197, 0.125] 0.667 

Clostridium sensu stricto 1 -0.149 [-0.343, 0.046] 0.146 0.19 [-0.002, 0.381] 0.06 

6-10y       

Phylogenetic diversity -0.046 [-0.253, 0.161] 0.68 0.075 [-0.126, 0.272] 0.487 

Streptococcus 0.064 [-0.190, 0.317] 0.642 -0.216 [-0.461, 0.033] 0.11 

Clostridium sensu stricto 1 0.053 [-0.176, 0.282] 0.672 0.055 [-0.170, 0.278] 0.648 

Bacteroides 0.072 [-0.101, 0.245] 0.444 0.007 [-0.160, 0.174] 0.935 

Barnesiella -0.015 [-0.294, 0.265] 0.919 0.023 [-0.251, 0.291] 0.878 

Prevotella 9 -0.194 [-0.674, 0.286] 0.455 0.238 [-0.213, 0.689] 0.33 

Alistipes 0.049 [-0.203, 0.304] 0.72 -0.02 [-0.266, 0.223] 0.88 

Coprococcus 2 -0.285 [-0.544, -0.028] 0.047* 0.196 [-0.062, 0.448] 0.159 

Ruminococcaceae NK4A214 group -0.016 [-0.235, 0.205] 0.897 -0.004 [-0.224, 0.213] 0.972 

Phascolarctobacterium -0.11 [-0.439, 0.218] 0.536 0.168 [-0.142, 0.477] 0.317 

Sutterella -0.125 [-0.377, 0.129] 0.365 -0.027 [-0.273, 0.218] 0.839 

Akkermansia 0.119 [-0.177, 0.413] 0.46 0.009 [-0.281, 0.298] 0.952 

[Eubacterium] ruminantium group -0.063 [-0.297, 0.173] 0.622 -0.004 [-0.238, 0.224] 0.972 

[Eubacterium] xylanophilum group -0.11 [-0.316, 0.099] 0.332 0.003 [-0.204, 0.208] 0.979 

Ruminococcaceae UCG-002 -0.083 [-0.291, 0.125] 0.465 0.136 [-0.071, 0.337] 0.222 

Ruminococcaceae UCG-005 -0.024 [-0.308, 0.262] 0.876 0.146 [-0.131, 0.419] 0.329 

Asterisk indicates p value < 0.05. 
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Table S14. Number of individuals included in MLM models in infancy and childhood. 

  Infancy Childhood 

  1m 3m 4m 1-4m 6y 10y 6-10y 

SDQ_M_10y 123 109 107 339 72 64 136 

SDQ_C_10y 123 113 111 347 74 66 140 

CBCL_M_6y 128 114 114 356 78 66 144 

SDQ_M_10y: maternal SDQ at age 10. SDQ_C_10y: child SDQ at age 10. CBCL_M_6y: maternal CBCL at age 6.  

Table S15. Prevalence of genera in individuals involved in MLM models. 

  SDQ_M_10y SDQ_C_10y CBCL_M_6y 
  1-4m 6-10y 1-4m 6-10y 1-4m 6-10y 
Streptococcus 0.92 0.73 0.92 0.72 0.92 0.72 
Clostridium sensu stricto 1 0.21 0.83 0.2 0.84 0.21 0.83 
Bacteroides 0.13 0.96 0.12 0.96 0.13 0.97 
Akkermansia 0.06 0.58 0.06 0.59 0.06 0.58 
Alistipes 0.01 0.78 0.01 0.79 0.01 0.79 
Prevotella 9 0.01 0.4 0.01 0.4 0.01 0.4 
Sutterella 0.01 0.44 0.01 0.45 0.01 0.44 
Barnesiella 0 0.64 0 0.66 0 0.65 
[Eubacterium] ruminantium group 0 0.26 0 0.27 0 0.28 
Coprococcus 2 0 0.67 0 0.69 0 0.69 
Ruminococcaceae NK4A214 group 0 0.59 0 0.59 0 0.59 
Ruminococcaceae UCG-002 0 0.88 0 0.88 0 0.88 
Ruminococcaceae UCG-005 0 0.59 0 0.61 0 0.6 
Phascolarctobacterium 0 0.33 0 0.34 0 0.33 
[Eubacterium] xylanophilum group 0 0.34 0 0.34 0 0.33 
SDQ_M_10y: maternal SDQ at age 10. SDQ_C_10y: child SDQ at age 10. CBCL_M_6y: maternal CBCL at age 6.  



The gut microbiota and behavior in the first ten years of life 

139 

3 

References 
Aatsinki, A.-K., Lahti, L., Uusitupa, H.-M., Munukka, E., Keskitalo, A., Nolvi, S., … Karlsson, L. (2019). Gut microbiota 

composition is associated with temperament traits in infants. Brain, Behavior, and Immunity, 80(January), 
849–858. https://doi.org/10.1016/j.bbi.2019.05.035 

Achenbach, T. M. (1994). Integrative guide for the 1991 CBCL/4-18, YSR, and TRF profiles. Department of Psychiatry 
University of Vermont. 

Agans, R., Rigsbee, L., Kenche, H., Michail, S., Khamis, H. J., & Paliy, O. (2011). Distal gut microbiota of adolescent 
children is different from that of adults. FEMS Microbiology Ecology, 77(2), 404–412. 
https://doi.org/10.1111/j.1574-6941.2011.01120.x 

Aizawa, E., Tsuji, H., Asahara, T., Takahashi, T., Teraishi, T., Yoshida, S., … Kunugi, H. (2016). Possible association 
of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. Journal 
of Affective Disorders, 202, 254–257. https://doi.org/10.1016/j.jad.2016.05.038 

Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer 
greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. 
https://doi.org/10.3354/ame01753 

Aronen, E. T., & Soininen, M. (2000). Childhood depressive symptoms predict psychiatric problems in young adults. 
The Canadian Journal of Psychiatry, 45(5), 465–470. https://doi.org/10.1177/070674370004500507 

Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., … Bork, P. (2011). Enterotypes of the 
human gut microbiome. Nature, 473(7346), 174–180. https://doi.org/10.1038/nature09944 

Baker, J. K., Fenning, R. M., Erath, S. A., Baucom, B. R., Moffitt, J., & Howland, M. A. (2018). Sympathetic under-
arousal and externalizing behavior problems in children with autism spectrum disorder. Journal of Abnormal 
Child Psychology, 46(4), 895–906. https://doi.org/10.1007/s10802-017-0332-3 

Beijers, R., Jansen, J., Riksen-Walraven, M., & de Weerth, C. (2011). Attachment and infant night waking: a 
longitudinal study from birth through the first year of life. Journal of Developmental & Behavioral Pediatrics, 
32(9), 635–643. https://doi.org/10.1097/DBP.0b013e318228888d 

Beijers, R., Riksen-Walraven, J. M., & de Weerth, C. (2013). Cortisol regulation in 12-month-old human infants: 
associations with the infants’ early history of breastfeeding and co-sleeping. Stress, 16(3), 267–277. 
https://doi.org/10.3109/10253890.2012.742057 

Borewicz, K., Suarez-Diez, M., Hechler, C., Beijers, R., de Weerth, C., Arts, I., … Smidt, H. (2019). The effect of 
prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Scientific Reports, 
9(1), 2434. https://doi.org/10.1038/s41598-018-38268-x 

Carlson, A. L., Xia, K., Azcarate-Peril, M. A., Goldman, B. D., Ahn, M., Styner, M. A., … Knickmeyer, R. C. (2018). 
Infant gut microbiome associated with cognitive development. Biological Psychiatry, 83(2), 148–159. 
https://doi.org/10.1016/j.biopsych.2017.06.021 

Cheung, S. G., Goldenthal, A. R., Uhlemann, A. C., Mann, J. J., Miller, J. M., & Sublette, M. E. (2019). Systematic 
review of gut microbiota and major depression. Frontiers in Psychiatry, 10(FEB). 
https://doi.org/10.3389/fpsyt.2019.00034 

Christian Milani, Sabrina Duranti, Francesca Bottacini, B., Eoghan Casey, B., Francesca Turroni, Jennifer Mahony, 
B., Clara Belzer, S. D. P., Silvia Arboleya Montes, E., Leonardo Mancabelli, Gabriele Andrea Lugli, A., … Lars 
Bode, Willem de Vos, Miguel Gueimonde, Abelardo Margolles, Douwe van Sinderen, M. V. (2017). The first 
microbial colonizers of the human gut: composition, activities, and health implications of the infant gut 
microbiota. Microbiology and Molecular Biology Reviews, 81(4), 1–67. Retrieved from https://bit.ly/2rxVSf9 

Copeland, W. E., Wolke, D., Angold, A., & Costello, E. J. (2013). Adult psychiatric outcomes of bullying and being 
bullied by peers in childhood and adolescence. JAMA Psychiatry, 70(4), 419. 
https://doi.org/10.1001/jamapsychiatry.2013.504 

Coretti, L., Paparo, L., Riccio, M. P., Amato, F., Cuomo, M., Natale, A., … Lembo, F. (2018). Gut microbiota features 
in young children with autism spectrum disorders. Frontiers in Microbiology, 9(December), 1–12. 
https://doi.org/10.3389/fmicb.2018.03146 

Cox, L. M., Yamanishi, S., Sohn, J., Alekseyenko, A. V., Leung, J. M., Cho, I., … Blaser, M. J. (2014). Altering the 
intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 
158(4), 705–721. https://doi.org/10.1016/j.cell.2014.05.052 

Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Daugé, V., … Rabot, S. (2014). Absence of 



Chapter 3 

140 

the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. 
Psychoneuroendocrinology, 42, 207–217. https://doi.org/10.1016/j.psyneuen.2014.01.014 

Cryan, J. F., O’Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., … Dinan, T. G. (2019). 
The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013. 
https://doi.org/10.1152/physrev.00018.2018 

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–
gut–brain communication. Nature Reviews Gastroenterology and Hepatology, 16(8), 461–478. 
https://doi.org/10.1038/s41575-019-0157-3 

De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., … Francavilla, R. (2013). 
Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not 
otherwise specified. PLoS ONE, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993 

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., … Lionetti, P. (2010). Impact of 
diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. 
Proceedings of the National Academy of Sciences, 107(33), 14691–14696. 
https://doi.org/10.1073/pnas.1005963107 

Derrien, M., Alvarez, A.-S., & de Vos, W. M. (2019). The gut microbiota in the first decade of life. Trends in 
Microbiology, 27(12), 997–1010. https://doi.org/10.1016/j.tim.2019.08.001 

Dogra, S., Sakwinska, O., Soh, S.-E., Ngom-Bru, C., Brück, W. M., Berger, B., … Holbrook, J. D. (2015). Dynamics of 
infant gut microbiota are influenced by delivery mode and gestational duration and are associated with 
subsequent adiposity. MBio, 6(1), 1–9. https://doi.org/10.1128/mBio.02419-14 

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., … Langille, M. G. I. (2020). 
PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685–688. 
https://doi.org/10.1038/s41587-020-0548-6 

Goodman, R. (1997). The Strengths and Difficulties Questionnaire: a research note. Journal of Child Psychology and 
Psychiatry, 38(5), 581–586. https://doi.org/10.1111/j.1469-7610.1997.tb01545.x 

Goodman, R., & Scott, S. (1999). Comparing the Strengths and Difficulties Questionnaire and the child behavior 
checklist: is small beautiful? Journal of Abnormal Child Psychology, 27(1), 17–24. 
https://doi.org/10.1023/a:1022658222914 

Gu, F., Borewicz, K., Richter, B., van der Zaal, P. H., Smidt, H., Buwalda, P. L., & Schols, H. A. (2018). In vitro 
fermentation behavior of isomalto/malto-polysaccharides using human fecal inoculum indicates prebiotic 
potential. Molecular Nutrition & Food Research, 62(12), 1800232. https://doi.org/10.1002/mnfr.201800232 

Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional 
genomic data. Bioinformatics, 32(18), 2847–2849. https://doi.org/10.1093/bioinformatics/btw313 

Hill, C. J., Lynch, D. B., Murphy, K., Ulaszewska, M., Jeffery, I. B., O’Shea, C. A., … Stanton, C. (2017). Evolution of 
gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 5(1), 4. 
https://doi.org/10.1186/s40168-016-0213-y 

Hillman, E. T., Lu, H., Yao, T., & Nakatsu, C. H. (2017). Microbial ecology along the gastrointestinal tract. Microbes 
and Environments, 32(4), 300–313. https://doi.org/10.1264/jsme2.ME17017 

Hollister, E. B., Riehle, K., Luna, R. A., Weidler, E. M., Rubio-Gonzales, M., Mistretta, T.-A., … Versalovic, J. (2015). 
Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome, 3(1), 36. 
https://doi.org/10.1186/s40168-015-0101-x 

Holmes, I., Harris, K., & Quince, C. (2012). Dirichlet multinomial mixtures: generative models for microbial 
metagenomics. PLoS ONE, 7(2), e30126. https://doi.org/10.1371/journal.pone.0030126 

Hsu, C. A., Yu, R. C., & Chou, C. C. (2005). Production of -galactosidase by Bifidobacteria as influenced by various 
culture conditions. International Journal of Food Microbiology, 104(2), 197–206. 
https://doi.org/10.1016/j.ijfoodmicro.2005.02.010 

Hu, S., Li, A., Huang, T., Lai, J., Li, J., Sublette, M. E., … Xu, Y. (2019). Gut microbiota changes in patients with bipolar 
depression. Advanced Science, 6(14), 1900752. https://doi.org/10.1002/advs.201900752 

Ianiro, G., Tilg, H., & Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: between good and evil. 
Gut, 65(11), 1906–1915. https://doi.org/10.1136/gutjnl-2016-312297 

Jaggar, M., Rea, K., Spichak, S., Dinan, T. G., & Cryan, J. F. (2020). You’ve got male: sex and the microbiota-gut-brain 
axis across the lifespan. Frontiers in Neuroendocrinology, 56(December 2019), 100815. 
https://doi.org/10.1016/j.yfrne.2019.100815 



The gut microbiota and behavior in the first ten years of life 

141 

3 

Jiang, H., Zhou, Y., Zhou, G., Li, Y., Yuan, J., Li, X., & Ruan, B. (2018). Gut microbiota profiles in treatment-naïve 
children with attention deficit hyperactivity disorder. Behavioural Brain Research, 347(March), 408–413. 
https://doi.org/10.1016/j.bbr.2018.03.036 

Jokela, M., Ferrie, J., & Kivimäki, M. (2009). Childhood problem behaviors and death by midlife: the British national 
child development study. Journal of the American Academy of Child & Adolescent Psychiatry, 48(1), 19–24. 
https://doi.org/10.1097/CHI.0b013e31818b1c76 

Kang, D.-W., Park, J. G., Ilhan, Z. E., Wallstrom, G., LaBaer, J., Adams, J. B., & Krajmalnik-Brown, R. (2013). Reduced 
incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE, 8(7), 
e68322. https://doi.org/10.1371/journal.pone.0068322 

Kelly, J. R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., … Dinan, T. G. (2016). Transferring the blues: 
depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric 
Research, 82, 109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019 

Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., … Ley, R. E. (2011). Succession of 
microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of 
Sciences, 108(Supplement_1), 4578–4585. https://doi.org/10.1073/pnas.1000081107 

Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T., … Bäckhed, F. (2015). Dietary 
fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell 
Metabolism, 22(6), 971–982. https://doi.org/10.1016/j.cmet.2015.10.001 

Kuja-Halkola, R., Lichtenstein, P., D’Onofrio, B. M., & Larsson, H. (2015). Codevelopment of ADHD and 
externalizing behavior from childhood to adulthood. Journal of Child Psychology and Psychiatry, 56(6), 640–
647. https://doi.org/10.1111/jcpp.12340 

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B., & Jensen, S. P. (n.d.). lmerTest: tests in linear mixed effects 
models. Retrieved from https://cran.r-project.org/web/packages/lmerTest/index.html 

Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., … Huttenhower, C. (2013). 
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature 
Biotechnology, 31(9), 814–821. https://doi.org/10.1038/nbt.2676 

Laroute, V., Yasaro, C., Narin, W., Mazzoli, R., Pessione, E., Cocaign-Bousquet, M., & Loubière, P. (2016). GABA 
production in Lactococcus lactis Is enhanced by Arginine and co-addition of malate. Frontiers in 
Microbiology, 7(JUL), 1–11. https://doi.org/10.3389/fmicb.2016.01050 

Lawson, M. A. E., O’Neill, I. J., Kujawska, M., Gowrinadh Javvadi, S., Wijeyesekera, A., Flegg, Z., … Hall, L. J. (2020). 
Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single 
ecosystem. The ISME Journal, 14(2), 635–648. https://doi.org/10.1038/s41396-019-0553-2 

Lawson, R. A., Papadakis, A. A., Higginson, C. I., Barnett, J. E., Wills, M. C., Strang, J. F., … Kenworthy, L. (2015). 
Everyday executive function impairments predict comorbid psychopathology in autism spectrum and 
attention deficit hyperactivity disorders. Neuropsychology, 29(3), 445–453. 
https://doi.org/10.1037/neu0000145 

Ley, R. E. (2016). Prevotella in the gut: choose carefully. Nature Reviews Gastroenterology & Hepatology, 13(2), 69–
70. https://doi.org/10.1038/nrgastro.2016.4 

Li, L., Su, Q., Xie, B., Duan, L., Zhao, W., Hu, D., … Liu, H. (2016). Gut microbes in correlation with mood: case study 
in a closed experimental human life support system. Neurogastroenterology & Motility, 28(8), 1233–1240. 
https://doi.org/10.1111/nmo.12822 

Lin, P., Ding, B., Feng, C., Yin, S., Zhang, T., Qi, X., … Li, Q. (2017). Prevotella and Klebsiella proportions in fecal 
microbial communities are potential characteristic parameters for patients with major depressive disorder. 
Journal of Affective Disorders, 207(April 2016), 300–304. https://doi.org/10.1016/j.jad.2016.09.051 

Liu, J. (2004). Childhood externalizing behavior: theory and implications. Journal of Child and Adolescent Psychiatric 
Nursing, 17(3), 93–103. https://doi.org/10.1111/j.1744-6171.2004.tb00003.x 

Liu, R. T., Walsh, R. F. L., & Sheehan, A. E. (2019). Prebiotics and probiotics for depression and anxiety: a systematic 
review and meta-analysis of controlled clinical trials. Neuroscience & Biobehavioral Reviews, 102(January), 13–
23. https://doi.org/10.1016/j.neubiorev.2019.03.023 

Loughman, A., Ponsonby, A.-L., O’Hely, M., Symeonides, C., Collier, F., Tang, M. L. K., … Vuillermin, P. (2020). Gut 
microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 52, 102640. 
https://doi.org/10.1016/j.ebiom.2020.102640 

Martin, R., Makino, H., Cetinyurek Yavuz, A., Ben-Amor, K., Roelofs, M., Ishikawa, E., … Knol, J. (2016). Early-life 



Chapter 3 

142 

events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut 
microbiota. PLOS ONE, 11(6), e0158498. https://doi.org/10.1371/journal.pone.0158498 

Mason, W. A., Kosterman, R., Hawkins, J. D., Herrenkohl, T. I., Lengua, L. J., & Mccauley, E. (2004). Predicting 
depression, social phobia, and violence in early adulthood from childhood behavior problems. Journal of the 
American Academy of Child & Adolescent Psychiatry, 43(3), 307–315. https://doi.org/10.1097/00004583-
200403000-00012 

Matsuki, T., Yahagi, K., Mori, H., Matsumoto, H., Hara, T., Tajima, S., … Kurokawa, K. (2016). A key genetic factor 
for fucosyllactose utilization affects infant gut microbiota development. Nature Communications, 7(1), 11939. 
https://doi.org/10.1038/ncomms11939 

Maurice-Stam, H., Haverman, L., Splinter, A., van Oers, H. A., Schepers, S. A., & Grootenhuis, M. A. (2018). Dutch 
norms for the Strengths and Difficulties Questionnaire (SDQ) - parent form for children aged 2-18years. 
Health and Quality of Life Outcomes, 16(1), 1–11. https://doi.org/10.1186/s12955-018-0948-1 

McConaughy, S. H., & Skiba, R. J. (1993). Comorbidity of externalizing and internalizing problems. School 
Psychology Review, 22(3), 421–436. https://doi.org/10.1080/02796015.1993.12085664 

Morais, L. H., Golubeva, A. V, Moloney, G. M., Moya-Pérez, A., Ventura-Silva, A. P., Arboleya, S., … Cryan, J. F. 
(2020). Enduring behavioral effects induced by birth by Caesarean section in the mouse. Current Biology, 1–
14. https://doi.org/10.1016/j.cub.2020.07.044 

Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota 
metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813 

O’Callaghan, A., & van Sinderen, D. (2016). Bifidobacteria and their role as members of the human gut microbiota. 
Frontiers in Microbiology, 7(JUN). https://doi.org/10.3389/fmicb.2016.00925 

Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J., … Osawa, R. (2016). Age-related changes 
in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiology, 
16(1), 90. https://doi.org/10.1186/s12866-016-0708-5 

Oksanen, J. F. e. al. (2020). vegan: community ecology package. Retrieved from 
https://github.com/vegandevs/vegan 

Painold, A., Mörkl, S., Kashofer, K., Halwachs, B., Dalkner, N., Bengesser, S., … Reininghaus, E. Z. (2019). A step 
ahead: exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar 
Disorders, 21(1), 40–49. https://doi.org/10.1111/bdi.12682 

Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers 
for marine microbiomes with mock communities, time series and global field samples. Environmental 
Microbiology, 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 

Poncheewin, W., Hermes, G. D. A., van Dam, J. C. J., Koehorst, J. J., Smidt, H., & Schaap, P. J. (2020). NG-Tax 2.0: a 
semantic framework for high-throughput amplicon analysis. Frontiers in Genetics, 10(January), 1–12. 
https://doi.org/10.3389/fgene.2019.01366 

Prehn-Kristensen, A., Zimmermann, A., Tittmann, L., Lieb, W., Schreiber, S., Baving, L., & Fischer, A. (2018). 
Reduced microbiome alpha diversity in young patients with ADHD. PLOS ONE, 13(7), e0200728. 
https://doi.org/10.1371/journal.pone.0200728 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., … Glöckner, F. O. (2012). The SILVA ribosomal 
RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 
D590–D596. https://doi.org/10.1093/nar/gks1219 

R Core Team. (2020). The R Project for statistical computing. Retrieved from https://www.r-project.org 
Ramiro-Garcia, J., Hermes, G. D. A., Giatsis, C., Sipkema, D., Zoetendal, E. G., Schaap, P. J., & Smidt, H. (2018). NG-

Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. 
F1000Research, 5(May), 1791. https://doi.org/10.12688/f1000research.9227.2 

Revelle, W. (2021). psych: procedures for psychological, psychometric, and personality research. Retrieved from 
https://personality-project.org/r/psych/ 

Psychological Assessment, 31(12), 1395–1411. 
https://doi.org/10.1037/pas0000754 

Ringel-Kulka, T., Cheng, J., Ringel, Y., Salojärvi, J., Carroll, I., Palva, A., … Satokari, R. (2013). Intestinal microbiota 
in healthy U.S. young children and adults-a high throughput microarray analysis. PLoS ONE, 8(5), e64315. 
https://doi.org/10.1371/journal.pone.0064315 

Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and 



The gut microbiota and behavior in the first ten years of life 

143 

3 

disease. Nature Reviews Immunology, 9(5), 313–323. https://doi.org/10.1038/nri2515 
Rutayisire, E., Huang, K., Liu, Y., & Tao, F. (2016). The mode of delivery affects the diversity and colonization pattern 

of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterology, 16(1), 
86. https://doi.org/10.1186/s12876-016-0498-0 

Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut 
microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/10.1016/j.phrs.2012.10.020 

Stewart, C. J., Ajami, N. J., O’Brien, J. L., Hutchinson, D. S., Smith, D. P., Wong, M. C., … Petrosino, J. F. (2018, 
October 24). Temporal development of the gut microbiome in early childhood from the TEDDY study. 
https://doi.org/10.1038/s41586-018-0617-x 

Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., … De Filippo, C. (2017). New evidences on 
the altered gut microbiota in autism spectrum disorders. Microbiome, 5(1), 24. https://doi.org/10.1186/s40168-
017-0242-1 

Taylor, A. M., & Holscher, H. D. (2020). A review of dietary and microbial connections to depression, anxiety, and 
stress. Nutritional Neuroscience, 23(3), 237–250. https://doi.org/10.1080/1028415X.2018.1493808 

Tett, A., Pasolli, E., Masetti, G., Ercolini, D., & Segata, N. (2021). Prevotella diversity, niches and interactions with 
the human host. Nature Reviews Microbiology, 19(9), 585–599. https://doi.org/10.1038/s41579-021-00559-y 

Unger, S., Stintzi, A., Shah, P., Mack, D., & O’Connor, D. L. (2015). Gut microbiota of the very-low-birth-weight 
infant. Pediatric Research, 77(1–2), 205–213. https://doi.org/10.1038/pr.2014.162 

Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 
361, k2179. https://doi.org/10.1136/bmj.k2179 

van den Brink, P. J., den Besten, P. J., bij de Vaate, A., & ter Braak, C. J. F. (2009). Principal response curves technique 
for the analysis of multivariate biomonitoring time series. Environmental Monitoring and Assessment, 152(1–
4), 271–281. https://doi.org/10.1007/s10661-008-0314-6 

Van Roy, B., Groholt, B., Heyerdahl, S., & Clench-Aas, J. (2010). Understanding discrepancies in parent-child 
reporting of emotional and behavioural problems: Effects of relational and socio-demographic factors. BMC 
Psychiatry, 10(1), 56. https://doi.org/10.1186/1471-244X-10-56 

von Stumm, S., Deary, I. J., Kivimäki, M., Jokela, M., Clark, H., & Batty, G. D. (2011). Childhood behavior problems 
and health at midlife: 35-year follow-up of a Scottish birth cohort. Journal of Child Psychology and Psychiatry, 
52(9), 992–1001. https://doi.org/10.1111/j.1469-7610.2011.02373.x 

W. Kembel, S. (2020). picante: integrating phylogenies and ecology. Retrieved from https://cran.r-
project.org/web/packages/picante/index.html 

Wallace, C. J. K., & Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. 
Annals of General Psychiatry, 16(1), 14. https://doi.org/10.1186/s12991-017-0138-2 

-wide 
association analysis identifies variation in vitamin D receptor and other host factors influencing the gut 
microbiota. Nature Genetics, 48(11), 1396–1406. https://doi.org/10.1038/ng.3695 

Wang, L.-J., Yang, C.-Y., Chou, W.-J., Lee, M.-J., Chou, M.-C., Kuo, H.-C., … Li, S.-C. (2020). Gut microbiota and 
dietary patterns in children with attention-deficit/hyperactivity disorder. European Child & Adolescent 
Psychiatry, 29(3), 287–297. https://doi.org/10.1007/s00787-019-01352-2 

Wickham, H. (2016). ggplot2 elegant graphics for data analysis (Second). 
Willemsen, Y., Beijers, R., Arias Vasquez, A., & de Weerth, C. (2021). Do breastfeeding history and diet quality 

predict inhibitory control at preschool age? Nutrients, 13(8), 2752. https://doi.org/10.3390/nu13082752 
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., … Lewis, J. D. (2011). Linking long-

term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108. 
https://doi.org/10.1126/science.1208344 

Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., … Gordon, J. I. (2012). 
Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227. 
https://doi.org/10.1038/nature11053 

Zheng, P., Zeng, B., Zhou, C., Liu, M., Fang, Z., Xu, X., … Xie, P. (2016). Gut microbiome remodeling induces 
depressive-like behaviors through a pathway mediated by the host’s metabolism. Molecular Psychiatry, 21(6), 
786–796. https://doi.org/10.1038/mp.2016.44 

Zhong, H., Penders, J., Shi, Z., Ren, H., Cai, K., Fang, C., … Kristiansen, K. (2019). Impact of early events and lifestyle 
on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome, 7(1), 2. 



Chapter 3 

144 

https://doi.org/10.1186/s40168-018-0608-z 
Zijlmans, M. A. C., Beijers, R., Riksen-Walraven, M. J., & de Weerth, C. (2017). Maternal late pregnancy anxiety and 

stress is associated with children’s health: a longitudinal study. Stress, 20(5), 495–504. 
https://doi.org/10.1080/10253890.2017.1348497 

Zijlmans, M. A. C., Korpela, K., Riksen-Walraven, J. M., de Vos, W. M., & de Weerth, C. (2015). Maternal prenatal 
stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 53, 233–245. 
https://doi.org/10.1016/j.psyneuen.2015.01.006 

Zoccolillo, M. (1992). Co-occurrence of conduct disorder and its adult outcomes with depressive and anxiety 
disorders: a review. Journal of the American Academy of Child & Adolescent Psychiatry, 31(3), 547–556. 
https://doi.org/10.1097/00004583-199205000-00024 

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. 
Methods in Ecology and Evolution, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x 

 



 

 

 
 

Chapter 4 
Gut microbiota and child behavior in early puberty: 

does child gender play a role? 

 

 

 

 

 

 

 

 

 

Yangwenshan Oua,b, Eline Rotsa, Clara Belzera, Hauke Smidta & Carolina de Weerthb 

 
aLaboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH 
Wageningen, The Netherlands 
bDonders Institute for Brain, Cognition and Behaviour, Department of Cognitive 
Neuroscience, Radboud University Medical Center, P.O. Box 9010, 6500 GL Nijmegen, The 
Netherlands 
 
  



Chapter 4 

146 

Abstract 
Background: A growing number of studies have indicated relations between the gut 
microbiota and mental health. However, to date, there is a scarcity of microbiota studies in 
community samples in early puberty. The current preregistered study (https://osf.io/wu2vt) 
investigated gut microbiota composition in relation to gender in low-risk children and 
explored behavioral associations with gut microbiota composition and metabolites in the 
same samples, together with the potential role of gender. 
 
Results: Fecal microbiota composition was analyzed in twelve-year-old children (N=137) by 
16S rRNA gene sequencing and quantitative PCR. Modest gender differences were observed 
in beta diversity. Bayesian models showed multiple behavioral relations to both relative and 
absolute abundances of individual taxa, including positive associations of Ruminococcaceae 
UCG-004 and Parasutterella with mother-reported internalizing behavior, and negative 
associations of Odoribacter and Parasutterella with mother-reported externalizing behavior 
and child-reported prosocial behavior, respectively. Additionally, Prevotella 9 was positively 
related to mother-reported externalizing behavior, confirming earlier findings on the same 
cohort at age ten years. Gender differences were observed in the relations of Parasutterella, 
Coprococcus 3, and Ruminococcaceae UCG-003 with internalizing, externalizing, and 
prosocial behavior, respectively. Limited behavioral relations were observed regarding fecal 
metabolites. 
 
Conclusions: Our findings describe links between the gut microbiota and child behavior, 
together with differences between child genders in these relations, in low-risk early pubertal 
children. Importantly, this study confirmed earlier findings in this cohort of positive 
relations between Prevotella 9 and externalizing behavior at age ten years. Results also show 
the merit of including absolute abundances in microbiota studies. 
 
Keywords: gut microbiota; microbiota-derived fecal metabolites; child behavior; child 
gender; puberty; Parasutterella; Prevotella 9; absolute abundance. 
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Introduction  
The human gut is colonized by a great number of microorganisms that are collectively 
referred to as the gut microbiota. These microorganisms play a critical role in human health 
(Fan & Pedersen, 2021). Many factors can influence gut microbiota composition (Hasan & 
Yang, 2019). Biological gender is likely to affect the microbiota but has received limited 
attention in the past (Ding & Schloss, 2014; Falony et al., 2016; Jaggar, Rea, Spichak, Dinan, 
& Cryan, 2020; Manosso et al., 2021). Furthermore, a growing number of studies show that 
the gut microbiota can affect and be affected by brain functions along the microbiota-gut-
brain axis (MGBA) (Cryan et al., 2019). However, to date only few studies have explored the 
gut microbiota and its relations to behavior in a low-risk community sample of children, 
especially in puberty. Therefore, the current study explored gender differences in gut 
microbiota composition in low-risk children at the onset of puberty, and then investigated 
potential associations between the gut microbiota and child behavior, taking child gender 
into account. 

Population-level studies have reported that biological gender is moderately related 
to adult gut microbiota composition (Ding & Schloss, 2014; Falony et al., 2016). According to 
a large cohort study of the Flemish Gut Flora Project, gender was ranked as the tenth 
important factor among 69 covariates (Falony et al., 2016). Another, clustering-based, study 
of the Human Microbiome Project revealed that adult males were three times more likely to 
harbor a community type enriched in Prevotella but depleted in Bacteroides, in comparison 
with women (Ding & Schloss, 2014). Additionally, other adult studies showed gender-
dependent differences in abundances of specific microbial taxa, such as Prevotella, 
Bifidobacterium, Akkermansia, and Ruminococcus (Mueller et al., 2006; Oki et al., 2016; 
Takagi et al., 2019). Although gender is commonly speculated to impact the gut microbiota 
from puberty on due to gonadal hormones, its association to microbiota composition has 
not been well explored in children at this age (Jaggar et al., 2020; Manosso et al., 2021; Valeri 
& Endres, 2021). A recent, albeit small, study found several differentially abundant microbial 
taxa between pubertal boys and girls, including higher relative abundances of Alistipes and 
Parabacteroides in girls (Yuan, Chen, Zhang, Lin, & Yang, 2020). 

Despite the scarcity of studies in these low-risk populations, some associations 
between gut microbiota composition and child behavior have been reported in the past years. 
Earlier studies showed that increased alpha diversity was related to decreased cognitive 
ability, fear reactivity, and internalizing problems in infants and pre-schoolers (Aatsinki et 
al., 2019; Carlson et al., 2018; Laue et al., 2021; Van De Wouw et al., 2022). Regarding specific 
microbial taxa, the genus Prevotella appears to stand out. For example, Loughman et al. 
found that more Prevotella at age one predicted less subsequent internalizing behavior at 
age two (Loughman et al., 2020). Furthermore, we previously reported a positive relation of 
Prevotella 9 with externalizing behavior in middle childhood (Ou, Belzer, Smidt, & de 
Weerth, 2022). Notably, gender may likely affect associations between the gut microbiota 
and child behavior in puberty, as gender-specific differences in behavior at this age are often 
observed, such as in internalizing and externalizing behavioral problems (Chaplin & Aldao, 
2013; Leadbeater, Kuperminc, Blatt, & Hertzog, 1999). 
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Specific microbiota-derived metabolites are often assumed to be important 
biological mediators in the complex bidirectional pathways of the MGBA (Cryan et al., 2019; 
Dalile, Van Oudenhove, Vervliet, & Verbeke, 2019; Mirzaei et al., 2021; Simpson et al., 2021), 
despite the fact that the underlying mechanisms remain largely unknown. Among these 
microbial metabolites, short-chain fatty acids (SCFAs), the major colonic fermentation 
products of indigestible fiber, are thought to influence the communication along the MGBA 
through immune, endocrine, and vagal pathways (Dalile et al., 2019; Mirzaei et al., 2021). 
SCFAs, especially butyrate, have been associated with alleviated anxious and depressive 
symptoms in mental disorders (Dalile et al., 2019; Simpson et al., 2021). Regarding branched-
chain fatty acids (BCFAs), increased fecal isobutyrate has been related to less internalizing 
behavior in pre-schoolers (Van De Wouw et al., 2022), while increased fecal isovalerate has 
been observed in depressed adults compared to neurotypical controls (Szczesniak, Hestad, 
Hanssen, & Rudi, 2016). Additionally, microbiota-derived lactate might lead to the increases 
in urine and blood lactate that are seen in depressed subjects; conversely, microbiota-
generated lactate may also support hippocampal neurogenesis as a potential anti-depressant 
molecule (Ortega et al., 2022). 

The present preregistered study (https://osf.io/wu2vt) was carried out on an 
ongoing longitudinal cohort of low-risk community children when they were 12 years old. 
The study had two aims: (1) to describe potential child gender-related differences in gut 
microbiota composition at the onset of puberty, and (2) to explore potential associations 
between gut microbiota composition (i.e., diversity and microbial taxon abundances), 
microbiota-derived fecal metabolites (i.e., SCFAs, BCFAs and lactate), and child behavioral 
measures (i.e., internalizing, externalizing, and prosocial behavior) at this age (Figure 1). 
Internalizing behavior refers to behavioral problems that influence internal psychological 
conditions, such as depression, anxiety, somatic states, and social withdrawal, whereas 
externalizing behavior is manifested as outward behavior, such as aggression, acting out, 
hyperactivity, hostility, and antisocial behavior. Prosocial behavior is interpreted as an 
intention to voluntarily help and benefit others. To obtain a panoramic view of the child’s 
behavior, both self-report and maternal report data were collected. Given the scarcity of 
previous studies in low-risk pubertal children, we did not set up specific hypotheses on the 
associations regarding the second aim. 
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Figure 1. Main research questions of the study. SCFAs, short-chain fatty acids; BCFAs, branched-chain 
fatty acids. 
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Although relative abundance data are frequently and widely used in human studies 
to describe gut microbiota composition, it has been pointed out that such data come with 
inherent limitations, including high false discovery rates, more correlational biases, and the 
insufficiency to fully capture individual differences among samples (Barlow, Bogatyrev, & 
Ismagilov, 2020; Jian, Luukkonen, Yki-Järvinen, Salonen, & Korpela, 2020). Therefore, along 
with relative abundance data, we also included absolute abundance data in the current study. 

Materials and Methods 
Study subjects 
The study consisted of low-risk children (N=137) aged around 12 years (12.7 ± 0.3) from the 
ongoing longitudinal Dutch study named BIBO (Basale Invloeden op de Baby Ontwikkeling; 
N=193 originally recruited in pregnancy) (Beijers, Jansen, Riksen-Walraven, & de Weerth, 
2011), with approval from the ethical committee of the Faculty of Social Sciences of Radboud 
University (ECG300107, ECG13012012, SW2017-1303-497 and SW2017-1303-498). The original 
recruitment criteria and procedures are described elsewhere (Beijers et al., 2011). 
Characteristics of the current sample are presented in Table 1. The present study was 
preregistered on the Open Science Framework via this link https://osf.io/wu2vt. 

Procedures of data collection 
Child stool samples were collected in sterilized plastic tubes by either children or their 
parents immediately after defecation. Samples were temporarily kept in home freezers at -
20°C until being delivered to the lab and stored at -80°C prior to being processed. Children 
as well as their mothers were asked to fill in online questionnaires separately by using 
personal links. In two cases, fathers filled in the questionnaire, as the mothers were 
unavailable during the data collection period. For an easy interpretation, they were still 
called maternal reports and included in the study. The questionnaires filled in by both 
children and mothers pertained behavior. Additionally, children filled in questionnaires 
about diet, and mother completed questionnaires about child health and demographics. 

Measures 
Gut microbiota composition 
Briefly, DNA was extracted from 0.01 to 0.13 g of fecal samples by using the Maxwell 16 Total 
RNA system (Promega, Wisconsin, USA) with Stool Transport and Recovery Buffer (STAR; 
Roche Diagnostics Corporation, Indianapolis, IN), as described previously (Gu et al., 2018). 
The V4 region of 16S ribosomal RNA (rRNA) gene of bacteria and archaea was amplified for 
each sample in duplicate, then amplicons were purified and adjusted to 200 ng each sample 
before being sequenced, by following steps delineated earlier (Ou et al., 2022). Amplicon 
sequence variants (ASVs) were identified from 16S rRNA gene sequence data through NG-
Tax 2.0 (Poncheewin et al., 2020; Ramiro-Garcia et al., 2018). ASVs were assigned to taxa 
referring to SILVA_132_SSU 16S rRNA gene reference database (Quast et al., 2012). 
Subsequently, we obtained a total of 32,081,185 reads with median reads of 226, 625 per 
sample. 
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To obtain total microbial abundances within individuals, qPCR reactions were 
-free 

-
universal primer (5’-GGACTACCAGGGTATCTAATCCTGTT) (Nadkarni, Martin, Jacques, & 
Hunter, 2002) -length 16S rRNA gene 
amplicons of Escherichia coli, diluted to 108 to 101 
reaction; (2) the qPCR program included 10 min of initial denaturation at 95 °C and 40 
quantification cycles, consisting of denaturation for 15 s at 95 °C, annealing for 30 s at 60 °C, 
and elongation for 15 s at 72 °C. The raw data were then pre-processed by the CFX Maestro 
Software. 

Fecal metabolites 
The supernatant of the mixture of 0.2 g fecal sample and 800 μL demineralized water was 
treated with Carrez reagents to remove protein (Nyanga, Nout, Smid, Boekhout, & 
Zwietering, 2013; Selak et al., 2016). Then, the deproteinized supernatant was analyzed by 
high performance liquid chromatography (HPLC; Shimadzu LC-2030C Plus), equipped with 
refractive index and UV light (210 nm) detectors. The separation was completed on a Shodex 
SH1011 column with a flow rate of 1 mL/min at 45°C. The eluent was 0.01 N sulphuric acid. 

Behavioral measures 
To assess problem behavior (i.e., internalizing and externalizing behavior) and prosocial 
behavior, children and mothers were asked to fill in the Strengths and Difficulties 
Questionnaire (SDQ) (Goodman, 1997). Higher scores on the internalizing and externalizing 
scales reflect difficulties, while higher scores on the prosocial scale indicate strengths. 

total estimates (Revelle & 
Condon, 2019), computed by the psych R package (Revelle, 2021). Most of the estimates were 
larger than 0.7 (Table S1), reflecting acceptable internal consistency and indicating that the 
scales were reliable. Only the child prosocial behavioral scale showed a questionable 
estimate, but this conformed to previous Dutch research (van Widenfelt, Goedhart, Treffers, 
& Goodman, 2003), and thus was included in the current study. Internalizing, externalizing, 
and prosocial behavioral scales were positively correlated between child and maternal 
reports with Spearman correlation coefficients of 0.55, 0.51, and 0.24, respectively (Figure S1). 

Additional variables 
In addition to the child gender (girl or boy) (Chaplin & Aldao, 2013; Fabes, Carlo, Kupanoff, 
& Laible, 1999), we considered the following variables as potential confounders (Bongers, 
Koot, van der Ende, & Verhulst, 2003; Falony et al., 2016; O’Neil et al., 2014), which may 
influence both the microbial predictor and the behavioral outcome: (1) child age in days (one 
missing value was identified among 137 samples, and replaced with the average value of the 
remaining available data); (2) two food factors (i.e., Factor 1: healthy foods; Factor 2: snacks) 
based on a 25-item food frequency questionnaire (Table S2), scored on a seven-point scale 
and collected during the online questionnaire fill-in procedure. 

Besides, as a potential intermediate between diet and behavior (Monshouwer et al., 
2006; Zhao, 2013), zBMI was calculated from child height, weight, child gender, and age 
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according to the WHO Growth Reference via the zscore R package (missing values were 
processed as described in Supplementary materials) (Myatt & Guevarra, 2019). 

Additionally, three potential covariates of the gut microbiota (i.e., variables 
considered to only impact the microbial predictor) (Cryan et al., 2019; Derrien, Alvarez, & de 
Vos, 2019), were collected by a child health questionnaire (Beijers, Jansen, Riksen-Walraven, 
& De Weerth, 2010), during the online questionnaire fill-in procedure: Whether a child (1) 
took antibiotics, (2) had diarrhea, and (3) had constipation in the past one year. These 
variables were dummy-scored as no = 0 and yes = 1. 

Statistical analyses 
All analyses were performed in R studio (version 4.1.1; this version is an update of the version 
3.6.1 that was described in the preregistration). 

Gut microbiota data transformation 
Both relative (0-100%) and absolute abundances (counts per gram of wet feces) at the genus 
level were calculated for each sample. Absolute abundance of a genus-level taxon in each 
sample was obtained by multiplying the relative abundance of this taxon by the total 
microbial abundance in this sample (Jian et al., 2020). The absolute abundance was then 
corrected for 16S rRNA gene copy-number variation referring to the rrnDB database 
(Stoddard, Smith, Hein, Roller, & Schmidt, 2015), by dividing this abundance value by the 
16S rRNA gene copy number. 

First aim: Child gender-related differences in gut microbiota composition 
Alpha diversity (i.e., Chao1, Shannon, and phylogenetic diversity) was calculated based on 
ASV count data by using the ape and picante R packages (Paradis, 2020; W. Kembel, 2020), 
and was then compared between boys and girls by means of Wilcoxon rank sum tests with 
FDR adjustment. 

Beta diversity was compared between genders by using different methods in 
calculating distance/dissimilarity matrices via the vegan (Oksanen, 2020) and phyloseq 
(McMurdie & Holmes, 2013) R packages. These methods included unweighted UniFrac, 
weighted UniFrac, unweighted Jaccard, Bray-Curtis, and Aitchison. Except for the Aitchison 
distance (i.e., The Euclidean distance based on clr-transformed count data), for the rest of 
the beta-diversity methods, we either transformed original ASV counts into relative 
abundances, or applied log transformation to absolute abundances beforehand. Then, we 
measured the univariate and cumulative variance (R2%) in the gut microbiota explained by 
the additional variables and behavioral measures, by performing redundancy analysis (RDA). 

Differentially abundant genus-level microbial taxa between genders were identified 
through Wilcoxon rank sum tests with FDR correction for both relative and absolute 
abundances. 

Second aim: Associations between the gut microbiota and internalizing, 
externalizing, and prosocial behavioral measures 
Through the brms (Bürkner, 2017) and bayestestR (Makowski, Ben-Shachar, & Lüdecke, 2019) 
R packages, we performed Bayesian linear regression models to analyze if each behavioral 
measure could be predicted by gut microbiota composition (i.e., alpha diversity, and relative 
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abundances and log-transformed absolute abundances both at the genus level) or 
microbiota-derived fecal metabolites (i.e., SCFAs, BCFAs, lactate, total SCFAs, total BCFAs, 
and the ratio of total BCFAs to total SCFAs). Numeric variables were standardized before 
being used in the models. To avoid over-sparsity and retain more microbial taxa, we 
performed the models on taxa prevalent in more than 10% of all subjects. Several different 
models were conducted as follows: 

(1) Model 0 Bi ~ Gj was used to measure the independent relation between the 
outcome variable (Bi is the matrix of behavioral measures, with “i” indicating one measure 
assessed either by child or maternal reports) and the predictor (Gj is the matrix of alpha 
diversity, microbial abundances, and fecal metabolites, with “j” being a diversity parameter, 
a taxon, or a metabolite); 

(2) According to the principals based on a causal diagram, namely the directed 
acyclic graph (Cinelli, Forney, & Pearl, 2020), we accounted for potential confounders in 
Model 1 Bi ~ Gj + child gender + child age + food Factor 1 + food Factor 2; 

(3) To remove the potential intermediate effect of zBMI between diet and behavior, 
we additionally included it in Model 2 Bi ~ Gj + child gender + child age + food Factor 1 + food 
Factor 2 + zBMI; 

(4) Antibiotics, diarrhea, and constipation were regarded as covariates of microbial 
predictors only as described above, and thus were treated as neutral variables unnecessary 
to account for (Cinelli et al., 2020). However, since these variables have been included in 
other mental health related studies, we performed sensitivity analyses to test the consistency 
between our models by using Model 3 Bi ~ Gj + child gender + child age + food Factor 1 + food 
Factor 2 + zBMI + Antibiotics + Diarrhea + Constipation. 

To explore child gender-related differences in the associations between the gut 
microbiota and behavioral measures, we added an additional interaction term of child 
gender and the predictor to the models displayed earlier: 

(1) Model 1 with the interaction Bi ~ Gj + child gender + child age + food Factor 1 + 
food Factor 2 + Gj: child gender; 

(2) Model 2 with the interaction Bi ~ Gj + child gender + child age + food Factor 1 + 
food Factor 2 + zBMI + Gj: child gender; 

(3) Model 3 with the interaction Bi ~ Gj + child gender + child age + food Factor 1 + 
food Factor 2 + zBMI + Antibiotics + Diarrhea + Constipation + Gj: child gender. 

Significance 
For non-multiple tests, a p value lower than 0.05 was defined as significant. The significance 
was corrected by the FDR method for multiple tests, with adjusted p lower than 0.1 accepted 
as significant. Regarding Bayesian models, parameter estimates were regarded as significant 
when the 95% credible intervals (CIs) excluded 0. 

Results 
Demographics and descriptives 
Population demographics and descriptives are presented in Table 1. About 47% (64/137) of 
the study subjects were girls. Girls significantly showed more child-reported internalizing 
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difficulties and more mother-reported prosocial behavior than boys. No gender differences 
were observed in other behavioral measures and variables. Finally, child reports reflected 
significantly more internalizing and externalizing behavior than maternal reports. 

Table 1. Population demographics and descriptives at the age of 12 years. 

    Total N = 137 Girls N = 64  Boys N = 73  p.adj 

Numeric variable Mean ± SD 
Wilcoxon test 

Girl vs 
Boy 

Child vs Maternal reports†  

Age in days 4638 ± 115 4620 ± 109 4654 ± 118 0.165 - 

Food Factor 1 0 ± 0.82 0.05 ± 0.83 -0.04 ± 0.81 0.400 - 

Food Factor 2 0 ± 0.8 -0.1 ± 0.87 0.09 ± 0.73 0.344 - 

zBMI -0.24 ± 1.09 -0.18 ± 1.01 -0.29 ± 1.17 0.543 - 

Child Internalizing 3.49 ± 2.9 4.41 ± 3.23 2.68 ± 2.31 0.001* <0.001* 

Externalizing 5.27 ± 3 5.75 ± 2.92 4.85 ± 3.04 0.165 <0.001* 

Prosocial 8.42 ± 1.38 8.55 ± 1.38 8.3 ± 1.37 0.356 0.830 

Mother Internalizing 2.38 ± 2.55 2.56 ± 2.62 2.22 ± 2.49 0.520 - 

Externalizing 3.42 ± 2.88 2.94 ± 2.58 3.85 ± 3.08 0.165 - 

Prosocial 8.39 ± 1.52 8.91 ± 1.08 7.95 ± 1.71 0.002* - 

Categorical variable No / Yes 
Chi-square test  

Girl vs Boy 

Antibiotics 129 / 8 61 / 3 68 / 5 0.862 

Diarrhea 53 / 84 30 / 34 23 / 50 0.287 

Constipation 118 /19 53 / 11 65 / 8 0.632 

† refers to comparisons for the total N = 137 children. 

* indicates FDR-adjusted p < 0.1.     
 
Child gender-related differences in gut microbiota composition 
A total of 186 genus-level microbial taxa were observed. Alpha and beta diversity, as well as 
abundances of individual taxa, were compared between boys and girls. No significant gender 
differences were observed in alpha diversity as measured by Chao1, Shannon, and 
phylogenetic diversity indices (Figure S2). Regarding beta diversity, significant 
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compositional differences between genders were observed using weighted UniFrac distance 
and Bray-Curtis dissimilarity based on relative abundance data, and using the Aitchison 
distance based on absolute abundance data (Figure S3 and Figure S4, respectively). Gender 
and zBMI as well as mother-reported internalizing behavior jointly and significantly 
explained 3.6% of cumulative variance in the gut microbiota, when using the Bray-Curtis 
dissimilarity based on relative abundance data (Figure S5a and b). As for Bray-Curtis 
dissimilarity based absolute abundance data, only zBMI significantly explained 1.9% of 
variance (Figure S5c). No genus-level microbial taxa were differentially abundant after 
correcting for multiple tests. 

Associations between the gut microbiota and internalizing, externalizing, 
and prosocial behavioral measures: without child gender-related differences 
in associations 
Alpha diversity and behavior 
The associations between alpha diversity and behavioral measures were assessed by Bayesian 
linear regression models (behavioral measures in relation to additional variables are 
displayed in Figure S6). Chao1 and Shannon diversity showed negative relations to child-
reported prosocial behavior (Figure 2), indicating that higher alpha diversity was linked to 
less prosocial behavior at the age of 12 years. However, it should be noted that the 
significance of the relations differed between models. 
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Figure 2. The relations between alpha diversity and behavioral measures. Relations were determined 
by Bayesian linear regression models, with differently colored lines and circles indicating 95% CIs and 
mean values of estimates (from top to bottom: purple, Model 0; lake blue, Model 1; Red, Model 2; Black, 
Model 3), respectively. Solid circles indicate that zero is not included in 95% CIs, suggesting significant 
relations. Hollow circles indicate that zero is included in 95% CIs, suggesting insignificant relations. 
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Relative abundances and behavior 
The associations were evaluated for a total of 84 genus-level microbial taxa, which were 
prevalent in more than 10% of participants. Overall, 1.2% to 13.1% of microbiota-behavior 
associations were significant when using relative abundances (Table 2). In both child and 
maternal reports, more associations were significant in internalizing behavior (4.8% to 13.1%) 
than other behavioral measures (1.2% to 4.8%). The numbers of significant relations varied 
between models and reports, indicating that different additional variables and reporters 
influenced the significances of microbial predictors. As displayed in Table 3, 57.1% to 72.6% 
of associations were in the same direction using child and maternal reports, and few same-
directional relations were significant. 
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Table 2. Number of significant estimates as measured by Bayesian models. 

  Significant associations N 

 Child Mother 

  Internalizing  Externalizing Prosocial Internalizing  Externalizing Prosocial 

Significant associations between genus-level microbial taxa and behavior (without the interaction of gender) 

Relative abundance 

Model 0 8 (9.5%) 1 (1.2%) 3 (3.6%) 11 (13.1%) 3 (3.6%) 3 (3.6%) 

Model 1 4 (4.8%) 1 (1.2%) 3 (3.6%) 7 (8.3%) 3 (3.6%) 1 (1.2%) 

Model 2 6 (7.1%) 2 (2.4%) 3 (3.6%) 9 (10.7%) 3 (3.6%) 2 (2.4%) 

Model 3 6 (7.1%) 2 (2.4%) 4 (4.8%) 8 (9.5%) 1 (1.2%) 1 (1.2%) 

Absolute abundance 

Model 0 5 (6%) 3 (3.6%) 5 (6%) 3 (3.6%) 4 (4.8%) 3 (3.6%) 

Model 1 5 (6%) 5 (6%) 7 (8.3%) 3 (3.6%) 7 (8.3%) 2 (2.4%) 

Model 2 4 (4.8%) 4 (4.8%) 7 (8.3%) 3 (3.6%) 6 (7.1%) 3 (3.6%) 

Model 3 5 (6%) 5 (6%) 7 (8.3%) 3 (3.6%) 4 (4.8%) 3 (3.6%) 

Significant gender- related differences in associations between taxa and behavior (with the interaction of 
gender) 

Relative abundance 

Model 1 4 (4.8%) 5 (6%) 10 (11.9%) 2 (2.4%) 11 (13.1%) 6 (7.1%) 

Model 2 4 (4.8%) 6 (7.1%) 11 (13.1%) 2 (2.4%) 10 (11.9%) 5 (6%) 

Model 3 3 (3.6%) 6 (7.1%) 8 (9.5%) 2 (2.4%) 10 (11.9%) 7 (8.3%) 

Absolute abundance 

Model 1 8 (9.5%) 2 (2.4%) 6 (7.1%) 6 (7.1%) 4 (4.8%) 10 (11.9%) 

Model 2 7 (8.3%) 1 (1.2%) 8 (9.5%) 5 (6%) 5 (6%) 9 (10.7%) 

Model 3 8 (9.5%) 2 (2.4%) 7 (8.3%) 3 (3.6%) 5 (6%) 9 (10.7%) 

The Bayesian estimates were assessed in N = 84 genus-level microbial taxa prevalent in more than 10% of all 
participants. Proportions in brackets are the ratios of the number to 84. 
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Table 3. Similarity of Bayesian estimates between child and maternal reports. 

 Child vs Mother 

 Same direction N* Same direction and significant N† 

  Internalizing  Externalizing Prosocial Internalizing  Externalizing Prosocial 

Associations between genus-level microbial taxa and behavior (without the interaction of gender)  

Relative abundance 

Model 0 51 (60.7%) 60 (71.4%) 49 (58.3%) 3 (3.6%) 1 (1.2%) 0 (0%) 

Model 1 51 (60.7%) 61 (72.6%) 48 (57.1%) 0 (0%) 0 (0%) 0 (0%) 

Model 2 52 (61.9%) 60 (71.4%) 49 (58.3%) 1 (1.2%) 0 (0%) 0 (0%) 

Model 3 53 (63.1%) 60 (71.4%) 50 (59.5%) 0 (0%) 0 (0%) 0 (0%) 

Absolute abundance 

Model 0 57 (67.9%) 61 (72.6%) 55 (65.5%) 0 (0%) 1 (1.2%) 1 (1.2%) 

Model 1 57 (67.9%) 58 (69%) 50 (59.5%) 0 (0%) 3 (3.6%) 1 (1.2%) 

Model 2 58 (69%) 57 (67.9%) 50 (59.5%) 0 (0%) 2 (2.4%) 1 (1.2%) 

Model 3 56 (66.7%) 57 (67.9%) 50 (59.5%) 0 (0%) 3 (3.6%) 2 (2.4%) 

Gender-related differences in associations between taxa and behavior (with the interaction of gender) 

Relative abundance 

Model 1 60 (71.4%) 67 (79.8%) 46 (54.8%) 0 (0%) 2 (2.4%) 2 (2.4%) 

Model 2 58 (69%) 66 (78.6%) 46 (54.8%) 0 (0%) 3 (3.6%) 1 (1.2%) 

Model 3 69 (82.1%) 67 (79.8%) 45 (53.6%) 0 (0%) 3 (3.6%) 1 (1.2%) 

Absolute abundance 

Model 1 62 (73.8%) 61 (72.6%) 49 (58.3%) 1 (1.2%) 0 (0%) 1 (1.2%) 

Model 2 62 (73.8%) 62 (73.8%) 52 (61.9%) 0 (0%) 0 (0%) 1 (1.2%) 

Model 3 61 (72.6%) 61 (72.6%) 49 (58.3%) 2 (2.4%) 1 (1.2%) 1 (1.2%) 

The Bayesian estimates were assessed in N = 84 genus-level microbial taxa prevalent in more than 10% of all 
participants. Proportions in brackets are the ratios of the number to 84.  
* indicates that the mean values of the estimates are in the same direction for child and maternal reports.  
† refers to significant estimates that are in the same direction for child and maternal reports. 
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Relations between microbial taxa and behavior that were significant for at least one 
behavioral scale are displayed in Figure 3. Below, we present all taxa that were significantly 
associated with a behavioral measure as reported by either child or mother: 

Internalizing behavior 
Christensenellaceae R-7 group, Ruminococcus torques group, Romboutsia, and 

Turicibacter were positively related to internalizing behavior in child reports. Microbial taxa, 
including Eubacterium xylanophilum group, genus CAG:56 within Lachnospiraceae family, 
Roseburia, Ruminococcaceae UCG-004, Ruminococcus 1, and Parasutterella, were positively 
associated with mother-reported internalizing behavior. 

Externalizing behavior 
Across all tested models, Barnesiella was negatively associated with child-reported 

externalizing behavior, and similarly, a reverse relation was noted between Odoribacter and 
externalizing behavior in maternal reports. Additionally, we found Prevotella 9 positively 
associated with mother-reported externalizing behavior in all tested conditions except for 
Model 3 (sensitivity analysis). 

Prosocial behavior 
Blautia and Parasutterella were negatively linked to child-reported prosocial 

behavior, whereas Lachnospiraceae ND3007 group exhibited positive relations to maternal 
reports of prosocial behavior. 
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Figure 3. The relations between genus-level microbial taxon relative abundances and behavioral 
measures. Relations were determined by Bayesian linear regression models, with differently colored 
lines and circles indicating 95% CIs and mean values of estimates (from top to bottom: purple, Model 
0; lake blue, Model 1; Red, Model 2; Black, Model 3), respectively. Solid circles indicate that zero is not 
included in 95% CIs, suggesting significant relations. Hollow circles indicate that zero is included in 
95% CIs, suggesting insignificant relations. Only microbial taxa prevalent in more than 10% of all 
subjects and significant for at least one behavioral scale, are displayed in the figure. 

Absolute abundances and behavior 
Regarding absolute abundance-based outcomes, 2.4% to 8.3% of microbiota-behavior 
associations were significant (Table 2). More associations were significant in prosocial 
behavior (6% to 8.3%) than other behavioral measures (3.6% to 6%) as measured by child 
reports, while in maternal reports, more relations were significant in externalizing behavior 
(4.8% to 8.3%) compared to other measures (2.4% to 3.6%). Different numbers of 
significances were observed between models and reports, similar to the findings based on 
relative abundances. More than half of the tested microbial taxa showed the same direction 
in microbiota-behavior associations between child-mother reports (Table 3). Of these, 
several taxa, which were mainly related to externalizing behavior, showed same-directional 
associations that are significant. 

Microbial taxa, with significant relations to at least one behavioral scale, are 
displayed in Figure 4. Significant taxa in all models are summarized below: 

Internalizing behavior 
Fusicatenibacter and Butyricicoccus were inversely associated with internalizing 

behavior in child reports. A negative relation was also discerned between Coprococcus 3 and 
internalizing behavior reported by mother. Additionally, mother-reported internalizing 
behavior was positively linked to Ruminococcaceae UCG-004 and Parasutterella. 

Externalizing behavior 
Ruminococcaceae UCG-013 and Tyzzerella 3 were reversely related to child-reported 

externalizing behavior. In contrast, Lachnospiraceae FSC020 group showed positive relations. 
Regarding maternal reports, negative associations were observed between Odoribacter and 
externalizing behavior, while positive relations were discerned in Lachnospiraceae FSC020 
group, conforming to the findings in child reports. 

Prosocial behavior 
Child-reported prosocial behavior was negatively linked to the absolute abundances 

of four microbial taxa, including Parasutterella, Alistipes, Parabacteroides, and Eubacterium 
xylanophilum group, of which the last taxon also exhibited reverse relations to mother-
reported prosocial behavior. 
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Figure 4. The relations between genus-level microbial taxon absolute abundances and behavioral 
measures. Relations were determined by Bayesian linear regression models, with differently colored 
lines and circles indicating 95% CIs and mean values of estimates (from top to bottom: purple, Model 
0; lake blue, Model 1; Red, Model 2; Black, Model 3), respectively. Solid circles indicate that zero is not 
included in 95% CIs, suggesting significant relations. Hollow circles indicate that zero is included in 
95% CIs, suggesting insignificant relations. Only microbial taxa prevalent in more than 10% of all 
subjects and significant for at least one behavioral scale, are displayed in the figure. 

Differences between relative and absolute abundances 
The numbers of significant microbiota-behavior associations differed between relative and 
absolute abundances (Table 2). A higher number of significant associations in child-mother 
reported internalizing behavior were observed with relative abundances (4.8% to 13.1%) than 
with absolute abundances (3.6% to 6%). Contrarily, absolute abundances predicted more 
significances in externalizing and prosocial behavior in both reports. More than half of the 
microbial taxa (ranging from 52.4% to 76.2%) displayed the same direction in microbiota-
behavior relations between abundance measures (Table 4). However, few of these same-
directional relations were significant for both abundance data. 

Table 4. Similarity of Bayesian estimates between relative and absolute abundances. 

 Relative vs Absolute abundances 

 Same direction N* Same direction and significant N† 

  Internalizing  Externalizing Prosocial Internalizing  Externalizing Prosocial 

Associations between genus-level microbial taxa and behavior (without the interaction of gender)  

Child 

Model 0 64 (76.2%) 56 (66.7%) 60 (71.4%) 0 (0%) 0 (0%) 1 (1.2%) 

Model 1 56 (66.7%) 59 (70.2%) 55 (65.5%) 0 (0%) 0 (0%) 1 (1.2%) 

Model 2 56 (66.7%) 60 (71.4%) 55 (65.5%) 0 (0%) 0 (0%) 1 (1.2%) 

Model 3 50 (59.5%) 59 (70.2%) 61 (72.6%) 1 (1.2%) 0 (0%) 1 (1.2%) 

Mother 

Model 0 52 (61.9%) 48 (57.1%) 55 (65.5%) 2 (2.4%) 1 (1.2%) 0 (0%) 

Model 1 57 (67.9%) 44 (52.4%) 63 (75%) 2 (2.4%) 2 (2.4%) 0 (0%) 

Model 2 55 (65.5%) 45 (53.6%) 62 (73.8%) 2 (2.4%) 1 (1.2%) 0 (0%) 

Model 3 57 (67.9%) 44 (52.4%) 63 (75%) 2 (2.4%) 1 (1.2%) 0 (0%) 
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Gender-related differences in associations between taxa and behavior (with the interaction of gender) 

Child 

Model 1 61 (72.6%) 64 (76.2%) 63 (75%) 1 (1.2%) 1 (1.2%) 2 (2.4%) 

Model 2 58 (69%) 66 (78.6%) 66 (78.6%) 1 (1.2%) 1 (1.2%) 4 (4.8%) 

Model 3 59 (70.2%) 65 (77.4%) 63 (75%) 1 (1.2%) 1 (1.2%) 1 (1.2%) 

Mother 

Model 1 65 (77.4%) 70 (83.3%) 59 (70.2%) 1 (1.2%) 0 (0%) 3 (3.6%) 

Model 2 65 (77.4%) 71 (84.5%) 60 (71.4%) 1 (1.2%) 0 (0%) 2 (2.4%) 

Model 3 64 (76.2%) 72 (85.7%) 59 (70.2%) 0 (0%) 0 (0%) 3 (3.6%) 

The Bayesian estimates were assessed in N = 84 genus-level microbial taxa prevalent in more than 10% of all 
participants. Proportions in brackets are the ratios of the number to 84.  
* indicates that the mean values of the estimates are in the same direction for relative and absolute 
abundances.  
† refers to significant estimates that are in the same direction for relative and absolute abundances. 
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Microbiota-derived metabolites and behavior 
In addition to gut microbiota composition, we also assessed behavioral links to microbiota-
derived fecal metabolites, including lactate, acetate, propionate, isobutyrate, butyrate, 
isovalerate, valerate, total SCFAs (including acetate, propionate, and butyrate), total BCFAs 
(including isobutyrate and isovalerate), and the ratio of total BCFAs to total SCFAs 
(concentrations of the metabolites and correlations between the metabolites are displayed 
in Table S3 and Figure S7, respectively). No significant links were observed, except the 
negative relations between child-reported externalizing behavior and the ratio of total 
BCFAs to total SCFAs (but insignificant for the independent relation as measured by Model 
0) (Figure 5). 
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Figure 5. The relations between microbiota-derived fecal metabolites and behavioral measures. 
Relations were determined by Bayesian linear regression models, with differently colored lines and 
circles indicating 95% CIs and mean values of estimates (from top to bottom: purple, Model 0; lake 
blue, Model 1; Red, Model 2; Black, Model 3), respectively. Solid circles indicate that zero is not included 
in 95% CIs, suggesting significant relations. Hollow circles indicate that zero is included in 95% CIs, 
suggesting insignificant relations. 

Associations between the gut microbiota and internalizing, externalizing, 
and prosocial behavioral measures: gender-related differences in 
associations 
To test whether child gender-related differences exist in behavioral relations to the microbial 
predictors, we performed similar Bayesian models with an extra interaction term consisting 
of gender (dummy-scored as girl = 0 and boy = 1) and the predictor on the same community 
samples. 

Alpha diversity and behavior 
No gender-biased relations were found between alpha diversity and behavioral measures 
(Figure S8). 

Relative abundances and behavior 
Child gender-related differences in the associations were measured on a total of 84 genus-
level microbial taxa present in more than 10% of all participants. Depending on the behavior 
and the model, 3.6% to 13.1% of child-reported outcomes differed significantly between boys 
and girls, and 2.4% to 13.1% of mother-reported relations varied significantly between 
genders (Table 2). Furthermore, 53.6% to 82.1% of the associations were in the same direction 
for child and maternal reports, but few of these same-directional relations were significant 
for both reports (Table 3). 

Microbial taxa showing significant gender-related differences in associations with 
behavioral measures at least once, are displayed in Figure S9. The taxa maintaining 
significance in all tested models are presented below: 

Internalizing behavior 
In child reports, high relative abundances of Ruminococcus gauvreauii group and 

Ruminoclostridium 5 were related to more internalizing behavior, while more Parasutterella 
was associated with fewer internalizing difficulties, in boys compared to girls. In maternal 
reports, more Lachnospiraceae UCG-004 was associated with more internalizing problems, 
while high levels of Lachnospiraceae FCS020 group were related to less internalizing 
behavior, in boys compared to girls. 

Externalizing behavior 
Gender biases were observed in the relations between a total of five microbial taxa 

and child-reported externalizing behavior: in boys, high relative abundances of 
Ruminococcus gauvreauii group and Sutterella were linked to more externalizing problems, 
while high levels of Christensenellaceae R-7 group and Coprococcus 1 and 3 were related to 
fewer externalizing difficulties. In maternal reports, links belonging to a total of nine taxa 
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varied between both genders: more taxa within Eubacterium xylanophilum group, 
Lachnospiraceae NK4A136 group, and Sutterella were associated with more externalizing 
problems in boys compared to girls; more Alistipes, Streptococcus, Coprococcus 3, 
Ruminoclostridium 9, Ruminococcaceae UCG-005, and Dialister were related to less 
externalizing behavior in boys compared to girls. 

Prosocial behavior 
We found seven microbial taxa in gender-specific relation to child-reported 

prosocial behavior: the increase of one group within the Lachnospiraceae family was 
associated with more prosocial behavior in boys compared to girls, while other taxa (i.e., 
Coprococcus 1, Ruminoclostridium 9, another group within Lachnospiraceae family, 
Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-002 and 003) showed reverse 
relations. In maternal reports, high levels of Family XIII AD3011 group and an unidentified 
bacterium within the Enterobacteriaceae family were linked to more prosocial behavior, 
while more Ruminococcaceae UCG-003 and UCG-013 were associated with lower prosociality, 
in boys compared to girls. 

Absolute abundances and behavior 
Overall, 1.2% to 9.5% of genus-level microbial taxa were observed with significant gender 
differences in relation to child-reported behavior (Table 2). Maternal reports showed that 
3.6% to 11.9% of taxa significantly exhibited such gender biases. The same-directional gender 
differences were observed in 58.3% to 73.8% of the relations between child and maternal 
reports, although few taxa were significant in both reports. 

In the following, we present taxa with significant gender-dependent relations in all 
tested models (Figure S10): 

Internalizing behavior 
In child reports, high absolute abundances of Lachnospiraceae ND3007 group and 

Faecalibacterium were related to more internalizing behavior, while more Parasutterella 
predicted less internalizing behavior, in boys compared to girls. More Butyricicoccus and 
Ruminococcaceae UCG-013 were associated with more mother-reported internalizing 
difficulties in boys compared to girls. 

Externalizing behavior 
High absolute abundances of Coprococcus 3 predicted less child-reported 

externalizing behavior in boys than girls. Similar gender-related differences were also 
discerned in associations between maternal reports and three microbial taxa, including 
Family XIII AD3011 group, an unidentified bacterium within the Tenericutes phylum, and an 
uncultured bacterium within Mollicutes order, with higher absolute abundances associated 
with less externalizing behavior in boys. Also, high levels of Lachnospiraceae UCG-004 were 
associated with more mother-reported externalizing problems in boys. 

Prosocial behavior 
In child reports, high absolute abundances of microbial taxa (i.e., Fusicatenibacter, 

Lachnospiraceae UCG-004, an uncultured bacterium within the Mollicutes order, 
Paraprevotella, and Ruminococcaceae UCG-003) were associated with lower prosociality in 
boys compared to girls. In maternal reports, several taxa (i.e., Lachnospiraceae ND3007, 
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Lachnospiraceae NK4A136 group, Ruminococcus gauvreauii group, Lachnospira, and 
Ruminococcaceae UCG-003) showed similar gender-related differences. Contrarily, high 
levels of an unidentified bacterium within the Enterobacteriaceae family, 
Erysipelatoclostridium, and Desulfovibrio were linked to more prosocial behavior in boys 
compared to girls. 

Differences between relative and absolute abundances 
The numbers of significant gender-related differences in microbiota-behavior associations 
varied between relative and absolute abundances (Table 2). Relative abundances showed 
more gender-specific differences in child-reported externalizing and prosocial behavior, as 
well as mother-reported externalizing behavior, whereas absolute abundances showed more 
differences in child-reported internalizing behavior, and mother-reported internalizing and 
prosocial behavior. Despite few gender-related differences being same-directional and 
significant between abundances, 69% to 85.7% of differences were in the same direction 
between abundance measures (Table 4). 

Microbiota-derived fecal metabolites and behavior 
Gender-related differences were not observed in the relations between metabolites and 
behavioral scales measured by child reports (Figure S11). Contrarily, gender differences were 
found for maternal reports, including a negative association between externalizing behavior 
and isovalerate, and positive associations between prosocial behavior and isovalerate and 
valerate. 

Discussion 
Our study aimed to examine child gender differences in gut microbiota composition in 
children at an early stage of puberty, and to explore the associations between their behavior 
and gut microbiota composition and microbiota-derived fecal metabolites, also 
contemplating potential gender-related differences in these associations. Regarding the first 
aim, our results did not reflect gender-specific differences in alpha diversity or genus-level 
microbial taxon abundances but showed modest gender-dependent variations in beta 
diversity at this age. As for the second aim, multiple relations were observed between child 
behavior and taxon relative and absolute abundances, while associations were almost absent 
between behavior and microbial diversity as well as microbiota-derived fecal metabolites. 

Biological gender differences have been observed in adult gut microbiota 
composition in population-level studies (Ding & Schloss, 2014; Vandeputte et al., 2016), along 
with changes in abundances of specific microbial taxa, such as Prevotella, Bifidobacterium, 
Akkermansia, and Ruminococcus (Mueller et al., 2006; Oki et al., 2016; Takagi et al., 2019). 
This discrepancy is assumed to most probably be attributed to gonadal hormones (Valeri & 
Endres, 2021). However, relatively little is known on children at the onset of puberty, when 
multiple simultaneous changes are being initiated in physiology and behavior. Here too, 
differences in gonadal hormones were put forward as a hypothesis, leading to divergence in 
gut microbiota composition between boys and girls in early puberty (Valeri & Endres, 2021). 
In our study, we found slight gender-specific variance in beta diversity and no differences in 
alpha diversity or abundances of individual genus-level microbial taxa (both relative and 
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absolute abundances). In line with this, Falony et al. reported a significant but small amount 
of compositional variance (beta diversity) explained by biological gender, in two population-
based adult cohorts (Falony et al., 2016). Importantly, our findings on alpha diversity align 
with those of a previous study in children at around age 11 (Yuan et al., 2020). Regarding 
relative abundances, Yuan et al. found 11 differentially abundant taxa (e.g., 
Phascolarctobacterium, Parabacteroides, and Alistipes, which were enriched in girls) 
between genders in a group of five- to 15-year-old Chinese children, by using the same 
statistical approach as we performed (i.e., Wilcoxon rank sum test, also called Mann Whitney 
U test) but without FDR corrections (Yuan et al., 2020). Furthermore, adult studies reflected 
apparently higher relative abundances of Prevotellaceae taxa in males, and higher levels of 
Bifidobacterium, Akkermansia, and Ruminococcaceae taxa in females (Oki et al., 2016; Takagi 
et al., 2019). Taken together, these results suggest that puberty might be the start for the gut 
microbiota to differentiate between genders. It awaits to be further explored if these subtle 
microbial differences in early puberty become stronger during later puberty and then 
stabilize when gonadal hormones reach a steady state in adulthood. 

Our analyses on associations between microbiota and behavior showed no relations 
between alpha diversity and problem behavior, but negative links between alpha diversity 
and prosocial behavior in these pubertal children. In a study in infants, Carlson et al. showed 
increased alpha diversity at the age of one year to be associated with lower cognitive ability 
at the age of two years (Carlson et al., 2018). Notably, cognition, especially moral cognition, 
can evoke a boost of prosocial behavior (Eisenberg, Fabes, & Spinrad, 2006), and this might 
support our findings of a reverse relation between alpha diversity and prosociality. Other 
studies on infants and pre-schoolers found increased alpha diversity in relation to less 
internalizing behavior (Laue et al., 2021; Van De Wouw et al., 2022), a link that was not found 
in our study. However, this comparison between infants and preschoolers and pubertal 
children is not without risks, as in puberty both the gut microbiota and the brain are thought 
to experience a second period of rapid growth and change after the first years of life, 
potentially influencing some gut-brain interactions. 

In correspondence with previous studies, our results also suggest multiple 
associations between microbial taxa and child behavior. More than half of these relations 
were observed to have the same direction between child and maternal reports or between 
relative and absolute abundances, despite only a minority of them being significant relations. 
Moreover, the different reporters and abundance types produced a various number of 
significant relations, depending on the behavioral scales. In the following, we discuss three 
microbial taxa (i.e., Ruminococcaceae UCG-004, Parasutterella, and Odoribacter) for which 
both relative and absolute abundances exhibited significant relations to at least one 
behavioral measure. Next, we specifically discuss the relations of Prevotella 9, as it has been 
put forward as a noteworthy microbial taxon in our earlier research (Ou et al., 2022).  

In the present study, we found that higher relative and absolute abundances of 
Ruminococcaceae UCG-004 were related to more child internalizing behavior reported by 
mothers. Although rarely being reported in research about internalizing difficulties, 
increased relative abundances of Ruminococcaceae UCG-004 were found to be strongly 
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associated with more inattention symptoms in patients with attention-deficit/hyperactivity 
disorder (ADHD) at ages of 13 to 29 years (Szopinska-Tokov et al., 2020). An animal study 
also showed elevated anxiety-like behavior in germ-free mice receiving fecal microbiota 
transplantation (FMT) from ADHD donors (Tengeler et al., 2020). As cellulolytic bacteria 
(Flint, Bayer, Rincon, Lamed, & White, 2008), taxa within the Ruminococcaceae family are 
widely present in the human gut and several are known to be butyrate producers (Dalile et 
al., 2019). At the family level, depleted Ruminococcaceae was observed in patients with ASD 
(Liu et al., 2019) and bipolar disorder (Painold et al., 2019), and in mice with FMT from ADHD 
subjects (Tengeler et al., 2020). However, findings were not consistent between the taxa 
within this family (Tengeler et al., 2020), likely indicating divergent interplay mechanisms 
between Ruminococcaceae taxa. 

In addition to Ruminococcaceae UCG-004, relative and absolute abundances of 
Parasutterella were positively related to mother-reported internalizing behavior. Moreover, 
both abundances of Parasutterella were negatively associated with child-reported prosocial 
behavior. Interestingly, overgrowing Parasutterella has been observed in patients with major 
depressive disorder (MDD) (Jiang et al., 2015). Furthermore, depressive symptoms might be 
at least partly attributed to higher proinflammatory cytokines stimulated by 
lipopolysaccharides from this Gram-negative bacterium (Amirkhanzadeh Barandouzi, 
Starkweather, Henderson, Gyamfi, & Cong, 2020). Recently, Yao et al. found that the 
interaction between Parasutterella abundances and dietary sugar consumption was 
modestly associated with less anxious symptoms and alleviated anxiety severity in adults 
(Yao et al., 2022). Additionally, Parasutterella could actively engage in the metabolism of bile 
acids (critical to digestion and absorption of fats) and tryptophan (an essential amino acid 
prevalent in dairy products and nuts, and a precursor of serotonin), further emphasizing the 
importance of dietary effects on child behavior (Ju, Kong, Stothard, & Willing, 2019). 

Additionally, we found relative and absolute abundances of Odoribacter in reverse 
relations to mother-reported externalizing behavior. In accordance with these findings, 
Odoribacter depletions have been observed in children with ASD (Kang et al., 2018) and have 
been related to worse performance in elevated plus maze tests performed on mice with early 
adversity (Rincel et al., 2019). Notably, Odoribacter has the genetic potential for producing 
-aminobutyric acid (GABA; a primary inhibitory neurotransmitter) (Yunes et al., 2016). 

Reduced cerebral GABA concentrations have been found in children with ADHD (Edden, 
Crocetti, Zhu, Gilbert, & Mostofsky, 2012) and ASD (Rojas, Singel, Steinmetz, Hepburn, & 
Brown, 2014). 

Apart from aforementioned genus-level microbial taxa, another noteworthy relation 
was found between higher relative abundances of Prevotella 9 and more mother-reported 
externalizing difficulties. This complies with our earlier findings in the same cohort that 
increased Prevotella 9 at ages six and ten years was associated with more externalizing 
problems at age ten (Ou et al., 2022). Even though the underlying mechanism remains 
unclear yet, an altered gut inflammatory status might be behind these associations (Fung, 
2020). Recently, Iljazovic et al. found that one Prevotella species exacerbated gut 
inflammation in mice, characterized by reduced concentrations of SCFAs and raised levels 
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of pro-inflammatory cytokines (Iljazovic et al., 2021). However, it is important to be aware of 
the divergent roles that Prevotella spp. may play in various scenarios. Additionally, Prevotella 
was observed to be highly prevalent in non-westerners consuming plant-rich diets, and 
therefore supposed to exert beneficial effects on host health (Ley, 2016). Regarding child 
mental health, Loughman et al. observed a reduction in Prevotella in one-year-old infants 
related to more internalizing problems at age two (Loughman et al., 2020). Putting aside the 
specifics, previous and current results on relations between Prevotella and problem behavior 
point at this microbial taxon as an interesting target for future studies. 

Regarding microbiota-derived fecal metabolites, we did not find any associations to 
the studied behavior, except for the reverse relations of the ratios (i.e., total BCFAs to total 
SCFAs) to child-reported externalizing behavior. Although this may appear striking, it is 
worth noting that despite fecal SCFAs being widely recognized as beneficial to general health, 
their roles in mental health have not been fully determined (Dalile et al., 2019; Mirzaei et al., 
2021). For instance, increased propionate may partly underlie the pathology of ASD in some 
children (Mirzaei et al., 2021). In line with this, an in vivo study showed ASD-like symptoms 
in rats after intracerebroventricular injections of propionate (Shultz et al., 2009). 
Additionally, depression in adults was related to reduced levels of Oscillibacter species 
(Naseribafrouei et al., 2014), of which the main end product is valerate, structurally 
resembling GABA. However, follow-up assessments did not show decreased fecal valerate in 
depressed adults but increased levels of its isomer, isovalerate (Szczesniak et al., 2016). Until 
now, evidence is limited and less uniform in human research. In addition to being used as 
energy source by colonic epithelial cells, importantly, SCFAs can activate receptors on 
immune, enteroendocrine, and vagal nerve cells, indirectly impacting brain physiology and 
functions via a complex signaling network (Dalile et al., 2019). Finally, it is relevant to know 
that the production of some fecal metabolites, such as the SCFAs and BCFAs investigated in 
the present study, is largely influenced by the amount, category, and even structure of dietary 
ingredients (Deehan et al., 2020). This suggests that in future studies it will be essential to 
more comprehensively record metabolite levels and food consumption, such as by means of 
24-hour recalls. 

Regardless of the growing evidence linking the gut microbiota to child behavior, 
relatively few investigations have been conducted to examine gender differences in these 
relations (Aatsinki et al., 2019; Christian et al., 2015). In our study, different associations 
between the gut microbiota and behavioral outcomes were found in boys and girls, as 
explained by the significant interactions of child gender and the microbiota-related variables. 
In particular, we found three robust gender-related differences in microbiota-behavior 
associations, which were identical between relative and absolute abundances. These 
relations were between Parasutterella and child-reported internalizing behavior, 
Coprococcus 3 and child-reported externalizing behavior, and Ruminococcaceae UCG-003 
and prosocial behavior reported by children and mothers. In addition to microbial 
abundances, we also observed fecal isovalerate levels in different relations to mother-
reported externalizing and prosocial behavior. According to a study by Christian et al., 
surgency (an early temperamental trait that is predictive of subsequent externalizing 
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symptoms (Rothbart, Ahadi, & Hershey, 1994)) was positively related to alpha and beta 
diversity as well as Ruminococcaceae abundances in boys, and fear reactivity (another early 
temperamental trait negatively correlated with later externalizing problems (Rothbart et al., 
1994)) was positively associated with Rikenellaceae abundances in girls before age three 
(Christian et al., 2015). Also Aatsinki et al. observed gender specificities between microbial 
taxa with varying compositional features in child temperament (Aatsinki et al., 2019). 
Additionally, higher relative abundances of Actinobacteria were observed in female MDD 
adults, while lower relative abundances of Bacteroidetes were found in male MDD adults 
(Chen et al., 2018). In sum, our findings and those of previous research accentuate the 
importance of considering child gender from early puberty onwards as an influential factor 
on associations between microbiota and behavior. The mechanisms underlying such 
relations need to be explored comprehensively in forthcoming research. 

Our study should be considered with some strengths and limitations. The strengths 
include: (1) the use of preregistration; (2) the use of a relatively large group of low-risk early 
pubertal children; (3) the inclusion of both child and maternal reports; (4) the quantification 
of the concentrations of microbiota-derived fecal metabolites; (5) the utilization of multiple 
Bayesian linear regression models; (6) the focus on gender as a potential covariate to gut 
microbiota composition and a possible moderator of microbiota-behavior relations in 
children; and (7) the use of both relative and absolute abundances, emphasizing the 
necessity to take the total microbial load into account. Our limitations include: (1) due to 
financial constraints, only a restricted number of microbiota-derived fecal metabolites were 
analyzed. Future inclusion of other previously reported relevant metabolites, such as 
serotonin and GABA, or the use of non-targeted metabolomic approaches to profile all fecal 
metabolites, is recommended. Moreover, compared to feces, peripheral blood samples 
(unavailable in the current cohort) are thought to reflect biologically meaningful metabolite 
levels more straightforwardly; (2) primer bias may occur during qPCR (Jian et al., 2020); (3) 
the food frequency questionnaire provides fewer details of daily food consumption than 
other instruments; and (4) causal relationships cannot be determined in a cross-sectional 
observational study. 

In conclusion, subtle and slight differences were observed in gut microbiota 
composition between boys and girls at an early stage of puberty. Whether these differences 
remain stable or become larger in adolescence remains to be determined. Gut microbiota 
composition was associated with problem and prosocial behavior in this low-risk community 
cohort, in gender-specific manners in some cases. Finally, this study validated our earlier 
findings in middle childhood that Prevotella 9 levels were positively associated with 
externalizing behavior. Considering the scarcity of investigations on the gut microbiota-
behavior relations in low-risk pubertal populations, our study adds novel and relevant results 
that can serve as a basis for future research in this field. 
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Supplemental information 
Imputation of missing values in zBMI 
For a total of 43 participants who did not provide height and weight information at the 
studied age, we performed imputations following these equations: (1) when height and 
weight information was provided at both earlier and later ages (i.e., ten and 13 years, N=35), 
height and weight values for the current study were calculated based on yheight = a * xAge + b 
and yweight = a * xAge + b, where a is the slope and b is the intercept obtained from the linear 
equation of early and later ages, while xAge indicates the age in days for the present study; (2) 
when height and weight values were recorded at either age ten years or age 13 years (N=8), 
the available data are directly used to calculate zBMI for the present study without 
imputation. 
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Figure S1. Spearman correlations between the SDQ scales. The distribution of each behavioral measure 
is displayed on the diagonal. Bivariate scatter plots of every two behavioral measures were shown on 
the bottom of the diagonal, with a fitted regression line in green. Correlation coefficients are shown on 
the top of the diagonal, plus their significances represented with asterisks (*, p < 0.05; **, p < 0.01; ***, 
p < 0.001). Scales along x and y axes indicate behavioral scores. SDQ: the Strengths and Difficulties 
Questionnaire; C: child; M: maternal. 
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Figure S2. Alpha diversity in boys and girls, as measured by three different indices, including (a) Chao1, 
(b) Shannon, and (c) Phylogenetic diversity. 

  



The gut microbiota and behavior in early puberty 

179 

4 

 

Figure S3. PCoA plots of relative abundance-based beta diversity at the genus level between genders. 
Adonis p values lower than 0.05 indicate significant differences in beta diversity between boys and girls. 
Betadisper p values lower than 0.05 suggest heterogeneous dispersions between boys and girls. Notes 
for the Aitchison distance, original ASV count data were clr-transformed and then calculated with the 
Euclidean distance. 
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Figure S4. PCoA plots of absolute abundance-based beta diversity at the genus level between genders. 
Adonis p values lower than 0.05 indicate significant differences in beta diversity between boys and girls. 
Betadisper p values lower than 0.05 suggest heterogeneous dispersions between boys and girls. Note 
that unweighted UniFrac and Jaccard distances only consider the absence and presence of taxa, 
therefore the plots are the same to the ones using relative abundance data and are not displayed here. 
Except for the Aitchison distance using count data, absolute abundances were log-transformed before 
being used in PCoA plots. 
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Figure S5. Univariate and cumulative variance (R2%) in the gut microbiota explained by the additional 
variables and behavioral measures based on distance-based redundancy analysis. R2% on the Bray-
Curtis distance of relative abundance data, with child- and mother-reported variables displayed in (a) 
and (b), respectively. Left bars indicate univariate R2% explained by an individual variable only. Black, 
p < 0.05; Purple, p 2% explained jointly by variables with p < 
0.05, which were determined through the ordiR2step R function and colored in red. Variables with p 
0.05 were not included in the cumulative model and colored in gray. (c) R2% on the Bray-Curtis 
distance of log-transformed absolute abundance data. Considering zBMI was the only variable 
exhibiting univariate R2% with p < 0.05, we presented univariate R2% of child- and mother-reported 
behavior in one graph and did not further calculate cumulative R2%. C, child; M, mother. 
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Figure S6. The independent relations between behavioral measures and child gender as well as 
additional variables. Relations were determined by Bayesian linear regression models, with lines and 
circles indicating 95% CIs and mean values of estimates. Solid circles indicate that zero is not included 
in 95% CIs, suggesting significant relations. Hollow circles indicate that 95% CIs include 0, suggesting 
insignificant relations. 
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Figure S7. Spearman correlations between concentrations of microbiota-derived fecal metabolites 
across all subjects. Ratio indicates the ratio of total BCFAs (including isobutyrate and isovalerate) to 
total SCFAs (including acetate, propionate, and butyrate). The distribution of each metabolite is 
displayed on the diagonal. Bivariate scatter plots of every two metabolites are shown on the bottom of 
the diagonal, with a fitted regression line in green. Correlation coefficients are shown on the top of the 
diagonal, plus their significances represented with asterisks (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 
Scales along x and y axes indicate metabolite concentrations (or the ratio of total BCFAs to total SCFAs). 
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Figure S8. Gender-related differences in the relations between alpha diversity and the three behavioral 
measures. The interaction terms of child gender and alpha diversity were determined by Bayesian 
linear regression models, with differently colored lines and circles indicating 95% CIs and mean values 
of estimates (from top to bottom: lake blue, Model 1 with the interaction; Red, Model 2 with the 
interaction; Black, Model 3 with the interaction), respectively. Hollow circles indicate that zero is 
included in 95% CIs, suggesting insignificant relations. Gender was dummy-scored as girl = 0 and boy 
= 1. 
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Figure S9. Gender-related differences in the relations between genus-level microbial taxon relative 
abundances and the three behavioral measures. The interaction terms of child gender and relative 
abundances were determined by Bayesian linear regression models, with differently colored lines and 
circles indicating 95% CIs and mean values of estimates (from top to bottom: lake blue, Model 1 with 
the interaction; Red, Model 2 with the interaction; Black, Model 3 with the interaction), respectively. 
Solid circles indicate that zero is not included in 95% CIs, suggesting significant relations. Hollow 
circles indicate that zero is included in 95% CIs, suggesting insignificant relations. Only microbial taxa 
prevalent in more than 10% of all subjects and significant for at least one behavioral scale, are displayed 
in the figure. Gender was dummy-scored as girl = 0 and boy = 1. For instance, high relative abundances 
of Ruminococcus gauvreauii group predicted more child-reported internalizing behavior in boys than 
girls. 
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Figure S10. Gender-related differences in the relations between genus-level microbial taxon absolute 
abundances and the three behavioral measures. The interaction terms of child gender and absolute 
abundances were determined by Bayesian linear regression models, with differently colored lines and 
circles indicating 95% CIs and mean values of estimates (from top to bottom: lake blue, Model 1 with 
the interaction; Red, Model 2 with the interaction; Black, Model 3 with the interaction), respectively. 
Solid circles indicate that zero is not included in 95% CIs, suggesting significant relations. Hollow 
circles indicate that zero is included in 95% CIs, suggesting insignificant relations. Only microbial taxa 
prevalent in more than 10% of all subjects and significant for at least one behavioral scale, are displayed 
in the figure. Gender was dummy-scored as girl = 0 and boy = 1. For instance, high absolute abundances 
of Faecalibacterium predicted more child-reported internalizing behavior in boys than girls. 
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Figure S11. Gender-related differences in the relations between microbiota-derived fecal metabolites 
and the three behavioral measures. The interaction terms of child gender and fecal metabolites were 
determined by Bayesian linear regression models, with differently colored lines and circles indicating 
95% CIs and mean values of estimates (from top to bottom: lake blue, Model 1 with the interaction; 
Red, Model 2 with the interaction; Black, Model 3 with the interaction), respectively. Solid circles 
indicate that zero is not included in 95% CIs, suggesting significant relations. Hollow circles indicate 
that zero is included in 95% CIs, suggesting insignificant relations. Gender was dummy-scored as girl 
= 0 and boy = 1. For instance, high concentrations of isovalerate predicted less mother-reported 
externalizing behavior in boys than girls. 
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Table S1. Internal consistency of the SDQ subscales. 

  Subscale total estimate 

Child reports 

Internalizing  0.74 

Externalizing 0.74 

Prosocial 0.56 

Maternal reports 

Internalizing  0.77 

Externalizing 0.76 

Prosocial 0.71 
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Table S2. Food frequency questionnaire items and their loadings in factor analysis. 

No. Item Factor 1 (healthy foods) Factor 2 (snacks) 

1 Fruit 0.53 -0.04 

2 Vegetables 0.41 -0.02 

3 Skimmed milk 0.06 -0.02 

4 Whole milk 0.08 0.19 

5 Cheese 0.27 -0.22 

6 Yoghurt 0.58 0.22 

7 Ice 0.09 0.26 

8 Processed meats 0.08 0.34 

9 Other meats -0.11 0.16 

10 Fried fish 0.09 0.20 

11 Other fish 0.28 0.16 

12 Non-dairy drinks with sugar -0.32 0.38 

13 Non-dairy drinks without sugar 0.03 0.25 

14 Breakfast cereals 0.30 0.06 

15 White bread -0.23 0.18 

16 Brown bread 0.19 0.04 

17 Rice 0.15 0.18 

18 Pasta 0.18 0.18 

19 Chips and nuts -0.09 0.57 

20 Cafeteria snacks -0.10 0.36 

21 Cake -0.02 0.35 

22 Candy 0.03 0.25 

23 Ketchup 0.14 0.17 

24 Peanut butter or chocolate spread -0.04 0.28 

25 Jam or honey 0.35 0.07 

To reduce the number of food items, we carried out a factor analysis to determine the optimal number of 
factors. Two factors were the optimal number for the current study. As yoghurt, fruit and vegetables were the 
main positive contributors to the Factor 1, we named this factor "healthy foods". Chips, nuts, and non-dairy 
drinks with sugar were the main positive contributors to the Factor 2, thus we named it "snacks". Both factors 
were used as diet-derived variables in this study. 
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Table S3. Concentrations of microbiota-derived fecal metabolites with tests for gender-related 
differences. 

Metabolite 
Prevale
nce % 

All (Mean 
± SD %) 

Girls (Mean 
± SD %) 

Boys (Mean 
± SD %) 

p 
p.a
dj 

Lactate 82 2.867 ± 3.96 3.036 ± 3.602 2.718 ± 4.268 
0.3
31 

0.9
97 

Acetate 100 
32.033 ± 

14.319 
31.779 ± 
14.762 

32.255 ± 
14.019 

0.9
57 

0.9
97 

Propionate 100 
13.317 ± 
5.972 

12.805 ± 
6.508 

13.766 ± 
5.465 

0.0
93 

0.9
29 

Isobutyrate 86 3.01 ± 4.846 3.095 ± 5.838 2.935 ± 3.811 
0.8
07 

0.9
97 

Butyrate 97 
8.985 ± 
6.572 

8.721 ± 5.971 9.217 ± 7.09 
0.9
97 

0.9
97 

Isovalerate 91 2.17 ± 1.454 2.155 ± 1.519 2.183 ± 1.406 
0.8
6 

0.9
97 

Valerate 72 
1.084 ± 
0.964 

1.062 ± 0.989 1.104 ± 0.948 
0.6
68 

0.9
97 

Total SCFAs (including acetate, 
propionate, and butyrate) 

100 
58.667 ± 
24.437 

57.389 ± 
25.718 

59.787 ± 
23.378 

0.5
02 

0.9
97 

Total BCFAs (including isobutyrate 
and isovalerate) 

95 
5.179 ± 
5.344 

5.25 ± 6.266 5.117 ± 4.426 
0.7
27 

0.9
97 

The ratio of total BCFAs to total 
SCFAs 

- 
0.358 ± 
0.289 

0.367 ± 0.316 0.35 ± 0.266 
0.7
41 

0.9
97 

participants. The p values refer to the significance of Wilcoxon tests between genders before the FDR 
adjustment, while p.adj values indicate the adjusted significance. 
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Abstract 
Background: Relationships between the gut microbiota and host mental health have been 
suggested by a growing number of case-control and cross-sectional studies, while supporting 
evidence is limited in large community samples followed during an extended period. 
Therefore, we focused on child gut microbiota development in the first 14 years of life and 
explored its relations to problem behavior and social anxiety in puberty, a period of high 
relevance for the development of mental health problems. 
 
Results: Fecal microbiota composition was analysed by 16S ribosomal RNA gene amplicon 
sequencing in a total of 1003 samples from 193 children. Through a clustering method, four 
distinct microbial clusters were newly identified in puberty. Most children within three of 
these clusters remained in the same clusters from the age of 12 to 14 years, suggesting stability 
in microbial development and transition during this period. These three clusters were 
compositionally similar to enterotypes (i.e., a robust classification of the gut microbiota 
based on its composition across different populations) enriched in Bacteroides, Prevotella, 
and Ruminococcus, respectively. Two Prevotella 9-predominated clusters, including one 
reported by us earlier in middle childhood and the other one in puberty, were associated 
with more externalizing behavior at age 14. One Faecalibacterium-depleted pubertal cluster 
was related to more social anxiety at age 14. This finding was confirmed by a cross-sectionally 
negative relation between Faecalibacterium and social anxiety in the 14-year-olds. 
 
Conclusions: The findings of this study continue to map gut microbiota development in a 
relatively large community sample followed from birth onwards, importantly extending our 
knowledge to puberty. Results indicate that Prevotella 9 and Faecalibacterium may be 
relevant microbial taxa in relation to externalizing behavior and social anxiety, respectively. 
These correlational findings need validations from other similar cohort studies, as well as 
well-designed mechanistic pre-clinical investigations before inferring cause and effect. 
 
Keywords: Gut microbiota development; puberty; externalizing behavior; social anxiety; 
Prevotella 9; Faecalibacterium. 
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Introduction  
The gut microbiota plays a critical role in many fundamental aspects of health, and its 
normal development at early ages is required to maintain host fitness during childhood and 
later in life (Fan & Pedersen, 2021; Margolis, Cryan, & Mayer, 2021). Longitudinal studies have 
uncovered that the gut microbiota develops in a relatively dynamic pattern in infancy and 
toddlerhood (Hermes, Eckermann, de Vos, & de Weerth, 2020; Roswall et al., 2021; Stewart 
et al., 2018). Importantly, this ecological succession may not come to an end within the first 
three years of life as previously believed (Koenig et al., 2011; Yatsunenko et al., 2012), but 
changes continue at least till middle childhood, likely as a result of external influential 
factors (Ou, Belzer, Smidt, & de Weerth, 2022). However, to date it is unclear if microbial 
community succession processes continue in puberty, a period with large physical, hormonal, 
emotional, and social changes. 

The gut microbiota is tightly involved in mental health and disorders (Cryan et al., 
2019). Effects of the bidirectional communication along the microbiota-gut-brain axis 
(MGBA) are thought to be more profound during sensitive developmental windows, such as 
infancy and puberty (Cryan et al., 2019; de Weerth, 2017; Margolis et al., 2021). In puberty, 
children tend to manifest more internalizing and externalizing behavioral problems. 
Internalizing problem behavior influences the internal psychological environment 
(withdrawal, anxious, and depressive features), while externalizing problem behavior is 
exhibited in the external environment (impulsive, aggressive, and hyperactive features) (Liu, 
2004). Notably, problem behavior in infancy and middle childhood has been related to gut 
microbial alpha diversity and relative abundances of individual microbial taxa (Laue et al., 
2021; Loughman et al., 2020; Ou et al., 2022; Van De Wouw et al., 2022). Whether similar 
links exist in puberty remains under-explored till now. In puberty, typically developing 
children seek to strengthen bonds with their peers and become increasingly independent 
from their parents (Collins, 1997; Schacter & Margolin, 2019). These changes in child behavior 
increase the risk of developing social anxiety, a complaint that falls under internalizing 
behavior and plays an important role as a potential antecedent of other internalizing 
symptoms, such as depression and loneliness (Hilimire, DeVylder, & Forestell, 2015). 
Regarding the MGBA, lower alpha diversity levels and higher Bacteroides and Escherichia-
Shigella relative abundances have been reported in patients with generalized anxiety 
disorder (GAD) (Y. huan Chen et al., 2019; Jiang et al., 2018; Mason et al., 2020), but 
information on gut microbial links to social anxiety symptoms in community children in 
puberty is as yet lacking. 

Therefore, our first aim was to describe gut microbiota development from birth to 
puberty in a low-risk longitudinal cohort (N=193 at birth). To this end, pubertal clusters were 
determined in samples from the ages of 12 and 14 years and combined to the previously 
determined microbial clusters from infancy (ages one, three, and four months) and middle 
childhood (ages six and ten years) (Ou et al., 2022). Thereafter, associations between the gut 
microbiota in the first 14 years of life and problem behavior and social anxiety at age 14 were 
investigated. The associations were analysed in two ways: (1) relations of microbial clusters 
and phylogenetic diversity over time with child behavioral measures at age 14; (2) cross-
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sectional relations between individual taxon relative abundances and behavioral measures 
at age 14. 

Materials and Methods 
Study subjects 
The study included fecal samples collected at the ages of one, three, and four months, and 
six, ten, 12, and 14 years, from an ongoing longitudinal cohort named BIBO (N=193 originally 
recruited in pregnancy), with approval from the ethical committee of the Faculty of Social 
Sciences of Radboud University, Nijmegen, the Netherlands (ECG300107, ECG13012012, 
SW2017-1303-497 and SW2017-1303-498). The original recruitment criteria and procedures 
are described elsewhere (Beijers, Jansen, Riksen-Walraven, & de Weerth, 2011). The present 
study was preregistered on the OSF platform (https://osf.io/8ymav). 

Data collection procedures 
The original process and criteria of recruitment are described elsewhere (Beijers et al., 2011). 
Data collection procedures till age ten have been described previously (Ou et al., 2022), and 
the descriptions of data collection at age 12 can be found through the link 
(https://osf.io/wu2vt). A total of 143 children participated in the round at age 14, of which a 
number of 125 provided fecal samples. Child characteristics and descriptives as well as their 
missingness are displayed in Table 1. 

Gut microbiota composition 
Regarding the fecal samples at age 14, we used the same DNA isolation protocol as used for 
earlier samples (Ou et al., 2022). In brief, 0.01 to 0.13 g of fecal samples were used for 
microbial DNA extraction through the Maxwell 16 Total RNA system (Promega, Wisconsin, 
USA). Duplicate amplicons of the V4 region of bacterial and archaeal 16S ribosomal RNA 
(rRNA) genes were purified and adjusted to 200 ng per sample prior to being sequenced. 

The sequence data in puberty (i.e., N = 139 and 125 samples available at the ages of 
12 and 14, respectively) were included and processed using the NG-Tax 2.0 pipeline to identify 
amplicon sequence variants (ASVs) (Poncheewin et al., 2020; Ramiro-Garcia et al., 2018). 
Those ASVs were taxonomically assigned based on the SILVA_138_SSU 16S rRNA gene 
reference database (Quast et al., 2012). A total of 52,054,996 reads were obtained, with a 
median of 182,740 reads per sample. Taxa observed in puberty were used in microbial cluster 
identification and behavioral relation investigation as outlined below. Regarding microbial 
data till age ten (i.e., N = 739 samples at ages of one, three, and four months, and six and ten 
years), we directly used the microbial clusters (i.e., three clusters in infancy and four clusters 
in middle childhood) and phylogenetic diversity presented in our earlier study (Ou et al., 
2022). 

Behavioral measures 
Children at age 14 were asked to fill in the Strengths and Difficulties Questionnaire (SDQ) 
for problem behavior (Goodman, 1997) and the Social Anxiety Scale for Adolescents (SAS-A) 
for their social anxiety complaints (la Greca, Dandes, Wick, Shaw, & Stone, 1988). The SDQ 
includes internalizing and externalizing subscales. Each subscale includes ten items, scored 
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on a three-point scale (zero to two), leading to a final score ranging from zero to 20. The 
SAS-A includes 18 items used for anxiety evaluation and four filler items not used for 
calculating the score. Each SAS-A item is scored on a five-point scale (one to five), leading 
to a total social anxiety score ranging from 18 to 90. Higher scores on internalizing and 
externalizing behavior, and social anxiety reflect more difficulties. These behavioral 
measures were confirmed to have total values 
(Revelle & Condon, 2019), namely: internalizing = 0.71, externalizing = 0.68, and social 
anxiety = 0.94, as calculated with the psych R package (Revelle, 2021). Internalizing behavior 
and social anxiety were highly correlated (Spearman’s Rho = 0.72, p < 0.001), while 
externalizing behavior was not correlated to internalizing behavior and social anxiety 
(Spearman’s Rho = 0.11 and 0.10, respectively). 

Potential covariates 
We also measured variables known to be related to the gut microbiota and host behavior, at 
child age 14: (1) age in years; (2) child gender (boy and girl); (3) tanner stages, including 
thelarche or testicular development and pubarche (both are self-assessed on a five-point 
scale, with score one indicating a prepubertal status and score five referring to complete 
sexual maturity); (4) zBMI calculated with the WHO Growth Reference via the zscore R 
package (Myatt & Guevarra, 2019); (5) whether a child was sick in the week before the home 
visit (Beijers et al., 2011); (6) whether a child took antibiotics in the past one year (Beijers et 
al., 2011); (7.1) diet quality, measured by an online self-report questionnaire named Eetscore 
(de Rijk et al., 2022), which assesses the adherence to the Dutch dietary guideline. The total 
score can range from zero to 160 points, with higher scores representing better adherence to 
the guideline and hence a generally healthier diet; (7.2) consumption of omega-3 fatty acids; 
(7.3) consumption of probiotics; (8) physical activity, measured by Physical Activity 
Questionnaire for Adolescents (PAQ-A) (Kowalski, Crocker, & Kowalski, 1997). The final 
PAQ-A activity summary score ranges from one to five, with score one indicating low 
physical activity and score five indicating high physical activity; (9) the use of alcohol, 
tobacco, and drugs, measured by Brief Screener for Tobacco, Alcohol, and Other Drugs 
(BSTAD) (Kelly et al., 2014); (10) stool consistency as measured by the seven-point Bristol 
stool scale, with type one indicating the most lumpy and type seven referring to the most 
liquid(O’Donnell, Virjee, & Heaton, 1990). Types three and four (i.e., sausage- or snake-like 
with either cracks on surface or being smooth and soft) are considered as normal stool types 
in general populations (Heaton et al., 1992); (11) maternal and paternal education levels 
ranging from one to eight, with higher scores indicating higher levels of education; (12) 
overnight sleep duration in hours, measured by the Pittsburg Sleep Quality self-report 
questionnaire (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989); (13) pets (yes or no). 

Statistical analyses 
All analyses were performed in R studio (version 4.1) with the phyloseq, microbiome, picante, 
dplyr, data.table, tidyr, moments, faraway, gtsummary, ComplexHeatmap, ggpubr, 
microbiomeMarker, and MASS R packages. 
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First aim: Gut microbiota development in the first 14 years of life 
We used microbial clusters (i.e., conserved compositional patterns of the gut microbiota) 
to describe gut microbiota development from birth till age 14. Microbial clusters from birth 
till age ten were identified through Dirichlet multinomial mixture (DMM) models (Holmes, 
Harris, & Quince, 2012) in our earlier research (Ou et al., 2022), and therefore we directly 
included them in the current study. Here we analyzed microbial data at ages 12 and 14 
together by using the same clustering methods. The optimal number of pubertal microbial 
clusters was determined by the lowest Laplace approximation score. 

Development and transition of pubertal microbial clusters were displayed together 
with the infant and childhood microbial clusters reported previously. ASV-based 
phylogenetic diversity and genus-level beta diversity (using weighted UniFrac distance) were 
compared between pubertal microbial clusters. LEfSe (i.e., Linear discriminant analysis 
Effect Size) was used to identify differentially abundant microbial taxa between pubertal 
clusters. Multiple comparisons were corrected with the false discovery rate (FDR) method. 

Additionally, we assessed if pubertal microbial clusters were associated with the 
potential covariates aforementioned. To this end, we used redundancy analysis (RDA) to 
evaluate to what extent the microbial variance at age 14 was explained by potential covariates. 
Both simple and marginal effects were measured. Simple effects refer to variance explained 
by one variable without considering any other variables. Marginal effects mean variance 
explained by one variable after variance explained by other variables was taken out. 

Second aim: Associations between the gut microbiota across the first 14 years of life 
and behavioral measures at age 14 
Generalized linear models (GLMs) were implemented to assess relations of microbial clusters 
and phylogenetic diversity over time with behavioral measures (i.e., internalizing and 
externalizing behavior, and social anxiety) at age 14. Additionally, GLMs were also conducted 
to measure cross-sectional relations between individual taxon relative abundances at the 
genus level and the behavioral measures at age 14. We also described how much microbial 
variance at age 14 was explained by behavioral measures at the same age through RDA. 

To select the best fitting distributions for behavioral outcomes, we measured their 
distribution normality and skewness. Internalizing behavior and social anxiety were right-
skewed (skewness = 0.97 and 0.60) and non-normally distributed (normality assessed by the 
Shapiro–Wilk test, p < 0.01 for both, indicating non-normal distribution), and therefore 
negative binomial distribution was used in GLMs (Green, 2021). Externalizing behavior was 
normally distributed (p = 0.08 > 0.05) and not skewed (skewness = 0.12), so the normal 
distribution was used in GLMs. 

Two different models were conducted as follows: 
(1) a crude model of Bi ~ Mj was used to measure the independent relation between 

behavioral measures and microbial parameters. “Bi” represents the matrix of behavioral 
measures, with “i” referring to either internalizing or externalizing behavior, or social anxiety. 
“Mj” indicates microbial parameters, with “j” being either microbial clusters, phylogenetic 
diversity, or relative abundances of an individual genus-level taxon prevalent in more than 
10% of 14-year-old samples. 
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(2) an adjusted model of Bi ~ Mj + potential covariates was implemented when its 
corresponding crude model was found to have an original unadjusted p < 0.05. Before 
conducting adjusted models, we assessed independent relations between the behavioral 
measures and their potential covariates with GLMs (Table S1). Those with original p < 0.05 
were used in the adjusted models (Cinelli, Forney, & Pearl, 2020), including: (a) child gender, 
diet quality, and overnight sleep duration were included for internalizing behavior; (b) 
overnight sleep duration and alcohol intake were included for externalizing behavior; (c) 
child gender, diet quality, overnight sleep duration, and paternal education levels were 
included for social anxiety. The variance inflation factor (VIF) values of Mj and potential 
covariates in all adjusted models were lower than three, indicting no multicollinear issues 
(Zuur, Ieno, & Elphick, 2010). 

Multiple GLM tests were corrected by FDR methods. 

Significance 
The significance was defined as p < 0.05 for non-multiple tests or FDR-adjusted p < 0.05 for 
multiple tests. 

Results 
Population characteristics and descriptives 
Approximately half of the children participating in the round of age 14 were boys (Table 1). 
Compared to boys, girls developed significantly quicker in sexual maturity and had more 
self-reported internalizing behavior and social anxiety. Furthermore, girls exhibited 
insignificant but slightly higher zBMI values, better diet quality, lower Bristol scores, and 
fewer sleeping hours (unadjusted p < 0.10). Regarding microbial variance explained by 
potential covariates (Table S2), overnight sleep duration accounted for 3.05% total variation 
(simple effect, p < 0.01), followed by drinking alcohol (simple effect, R2% = 1.72% but 
insignificant with p = 0.07). The significance remained for overnight sleep duration after 
partitioning the variance explained by other variables (marginal effect, R2% = 2.07% and p = 
0.03). 
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Table 1. Population characteristics and descriptives at age 14. 

Variable 
Overall, N = 

1431 
Boy, N = 

771 
Girl, N = 

661 
p-

value2 
Adjusted p-

value3 

Age in years 14.46 (0.17) 
14.46 
(0.16) 

14.45 
(0.19) 0.4 0.7 

Thelarche or testicular development 3.81 (0.78) 
3.69 

(0.80) 
3.95 

(0.73) 0.044 0.2 

Pubarche 3.64 (0.85) 3.35 (0.74) 
3.97 

(0.86) <0.001 <0.001 

zBMI -0.09 (1.00) 
-0.18 
(1.04) 

0.02 
(0.95) 0.093 0.2 

Sick in the week before the home visit 
(yes/overall) 7 / 138 (5.1%) 

3 / 73 
(4.1%) 

4 / 65 
(6.2%) 0.7 0.8 

(Missing) 5 4 1   
Oral antibiotics in the past one year 
(yes/overall) 2 / 143 (1.4%) 

0 / 77 
(0%) 

2 / 66 
(3.0%) 0.2 0.5 

Diet quality 86.94 (16.84) 
84.06 
(17.74) 

90.15 
(15.29) 0.079 0.2 

(Missing) 12 8 4   

Omega-3 fatty acids (yes/overall) 
5 / 138 
(3.6%) 

2 / 73 
(2.7%) 

3 / 65 
(4.6%) 0.7 0.8 

(Missing) 5 4 1   

Probiotics (yes/overall) 0 / 138 (0%) 
0 / 73 
(0%) 

0 / 65 
(0%) - - 

(Missing) 5 4 1   

Physical activity 2.34 (0.55) 2.33 (0.57) 
2.34 

(0.54) >0.9 >0.9 

(Missing) 7 5 2   
Drinking alcohol in the past one year 
(yes/overall) 29 / 141 (21%) 

17 / 75 
(23%) 

12 / 66 
(18%) 0.5 0.7 

(Missing) 2 2 0   
Smoking cigarettes in the past one year 
(yes/overall) 4 / 141 (2.8%) 

1 / 75 
(1.3%) 

3 / 66 
(4.5%) 0.3 0.6 

(Missing) 2 2 0   
Taking drugs in the past one year 
(yes/overall) 5 / 141 (3.5%) 

2 / 75 
(2.7%) 

3 / 66 
(4.5%) 0.7 0.8 

(Missing) 2 2 0   

Bristol score4 3.12 (0.96) 3.23 (0.91) 
2.98 

(1.00) 0.058 0.2 

(Missing) 23 13 10   

Maternal education level 5.94 (1.33) 5.79 (1.51) 6.12 (1.06) 0.4 0.7 

Paternal education level 5.39 (1.83) 5.34 (1.95) 
5.45 

(1.69) >0.9 >0.9 

(Missing) 8 4 4   
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Overnight sleep duration in hours 8.24 (1.06) 8.37 (1.12) 
8.10 

(0.99) 0.086 0.2 

(Missing) 6 5 1   

Pets (yes/overall) 
96 / 143 
(67%) 

49 / 77 
(64%) 

47 / 66 
(71%) 0.3 0.6 

Internalizing behavior 4.14 (3.03) 3.02 (2.39) 
5.44 

(3.20) <0.001 <0.001 

(Missing) 1 1 0   

Externalizing behavior 6.33 (2.94) 6.16 (3.09) 
6.52 

(2.76) 0.7 0.8 

(Missing) 1 1 0   

Social anxiety 41.20 (12.62) 
38.14 
(12.17) 

44.63 
(12.32) 0.001 0.008 

(Missing) 5 4 1     

1Mean (SD); n / N (%) 

2Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test 

3False discovery rate correction for multiple testing 
4Bristol stool consistency scale was used as a numeric variable here. The distribution of Bristol stool 
consistency types in categorical format is displayed in Figure S1. 

 

Gut microbiota development in the first 14 years of life 
Microbial clusters and their transition 
Four microbial clusters were identified from N = 264 pubertal samples at the ages of 12 and 
14 years based on their compositional features (Figure 1a), determined by the lowest Laplace 
value in DMM models (Figure S2). No significant differences were observed in potential 
covariates between these clusters after FDR corrections (Table S3). However, Puberty_2 and 
Puberty_4 tended to include more boys (67%, 38/57 boys in Puberty_2; 60%, 52/87 boys in 
Puberty_4), and Puberty_3 consisted of fewer boys (37%, 17/46); Pearson's Chi-squared test 
p = 0.009 and adjusted p = 0.2. Besides, children within Puberty_1 likely took more oral 
antibiotics (8.1%, 6/74 had oral antibiotics in Puberty_1, and less than 5% in the other three 
clusters); Fisher's exact test p = 0.034 and adjusted p = 0.2. Furthermore, 38% (10/26) of 14-
year-old children within Puberty_2 drank alcohol in the past one year, which was more 
frequent than those belonging to other pubertal clusters at this age (less than 20%); Fisher's 
exact test p = 0.016 and adjusted p = 0.2. 
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Figure 1. Microbial clusters. (a) Transition between microbial clusters in the first 14 years of life. 
Microbial clusters were determined by the DMM clustering method according to their compositional 
characteristics at the genus level. The clusters in infancy (i.e., ages of one, three, and four months) and 
middle childhood (i.e., ages of six and ten years) were reported previously (Ou et al., 2022), and the 
clusters in puberty (i.e., ages of 12 and 14 years) were determined in the present study. Microbial clusters 
are presented as nodes, with the size and the number indicating how many samples belong to the 
corresponding cluster. The four pubertal clusters are colored in pink, grass green, lake blue, and purple, 
respectively. Transition rates between clusters are shown as sized lines. The lines from ages ten to 14 
are highlighted in orange, accompanied with transition rates (>10%) in percentages. (b) Phylogenetic 
diversity of pubertal microbial clusters. Wilcoxon tests were implemented between clusters with the 
FDR correction (adjusted p: ns, not significant; *, <0.05; **, < 0.01). (c) Beta diversity between pubertal 
microbial clusters. It was calculated by weighted UniFrac distance based on relative abundance data of 
genus-level microbial taxa. (d) Differentially abundant genus-level taxa between microbial clusters in 
puberty. These taxa were identified through LEfSe (Linear discriminant analysis Effect Size) with FDR-
adjusted p < 0.05 and LDA (Linear discriminant analysis) effect size > 4. Taxon relative abundances in 
individuals are shown in the heatmap on the left side. The barplot on the right side represents LDA 
scores, with colors indicating enriched clusters. 

At age 12, 26%, 22%, 16%, and 36% (36, 31, 22, and 50/139) of children belonged to 
microbial clusters Puberty_1, Puberty_2, Puberty_3, and Puberty_4, respectively. At age 14, 
proportions of Puberty_1 and Puberty_3 increased (30% and 19%; 38 and 24/125, respectively), 
while ratios of Puberty_2 and Puberty_4 decreased (21% and 30%; 26 and 37/125, respectively). 

In puberty, N = 116 children provided both samples at the ages of 12 and 14. Of these 
children, 22% remained in Puberty_1, another 22% remained in Puberty_4, and 14% 
remained in Puberty_2. In contrast, children within Puberty_3 at age 12 showed a more 
diverse developing track from ages 12 to 14. Among N = 130 completed cases at the ages of 
ten and 12, 16% and 15% of these children transitioned from childhood microbial clusters 3 
and 4 to Puberty_4, while 15% of them developed from childhood cluster 1 to Puberty_1. 

Compositional features of pubertal microbial clusters 
Puberty_1 showed the lowest phylogenetic diversity followed by Puberty_2, and Puberty_3 
and Puberty_4 exhibiting the highest phylogenetic diversity (Figure 1b). Besides, we observed 
different compositional variances (i.e., heterogeneity of dispersion) among pubertal clusters 
(betadisper p = 0.005; Figure 1c). Specifically, Puberty_4 differed from Puberty_2 and 
Puberty_3 (betadisper p = 0.001 for both). The adonis function (p = 0.001) further showed 
general dissimilarity in microbial composition between pubertal clusters. Pairwise 
comparisons between clusters confirmed this result (adonis p = 0.001 for all). Additionally, 
we found 31 samples within Puberty_2 (including N = 14 at age 12 and N = 17 at age 14) located 
dispersedly (as shown on the right side of the vertical dashed line), in comparison with other 
samples in puberty. 

Nine, 15, 28, 43, and 105 microbial taxa were found differentially abundant between 
pubertal clusters at the levels of phylum, class, order, family, and genus, based on LEfSe 
analysis (effect size > 2 and FDR-adjusted p < 0.05), respectively. Particularly, Puberty_1 was 
enriched in Bacteroides, an unidentified genus within Lachnospiraceae family, 
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Faecalibacterium, Blautia, and Fusicatenibacter, Puberty_2 was predominated by Prevotella 
9, Pubety_3 was enriched in Bifidobacterium, Akkermansia, Subdoligranulum, 
Christensenellaceae R-7 group, and Dialister, and Puberty_4 was enriched in Ruminococcus 
and Oscillospiraceae UCG-002 (Figure 1d). 

Associations between the gut microbiota across the first 14 years of life and 
behavioral measures at age 14 
Relations of microbial clusters and phylogenetic diversity over time with child 
behavioral measures at age 14 
First, independent relations between microbial predictors at each time point or period (i.e., 
either microbial clusters or phylogenetic diversity in infancy including one, three, and four 
months, childhood including six and ten years, or puberty including 12 and 14 years) and 
behavioral outcomes at age 14 (i.e., internalizing and externalizing behavior, and social 
anxiety) were determined by crude generalized linear models (GLMs), without accounting 
for any covariates. Next, we adjusted GLMs with potential covariates for the behavioral 
outcomes. This was based on covariates that displayed original p values lower than 0.05 in 
crude GLMs (Table 2; See detailed GLM results regarding clusters and phylogenetic diversity 
in Table S4 and Table S5, respectively). 
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Table 2. Main findings of the relations between either microbial clusters or phylogenetic diversity in 
the first 14 years of life and behavioral outcomes at age 14. 

Age 
Cluster or 
diversity 

Crude model Adjusted model 

Estimate (Std. 
Error) 

p 
Adjust

ed p 
Estimate (Std. 

Error) 
p 

Adjust
ed p 

VI
F 

Internalizing 
behavior 

                

Infancy Infancy_2 0.2 (0.1) 
0.04

4 
0.102 0.2 (0.1) 

0.0
07 

0.021 
1.0
2 

Infancy 
Phylogenetic 
diversity 

<0.1 (<0.1) 
0.01

6 
0.030 <0.1 (<0.1) 

0.0
02 

0.004 
1.0
3 

Externalizing 
behavior 

                

6y Childhood_2 1.9 (0.7) 
0.00

8 
0.023 1.6 (0.7) 

0.0
25 

0.060 
1.1
3 

12y Puberty_2 1.9 (0.7) 
0.01

2 
0.033 1.7 (0.7) 

0.0
21 

0.054 
1.0
6 

14y Puberty_2 1.8 (0.7) 
0.01

2 
0.034 1.0 (0.7) 

0.19
0 

0.308 
1.1
8 

Childhood Childhood_2 1.7 (0.5) 
0.00

2 
0.009 1.4 (0.5) 

0.0
08 

0.023 
1.0
7 

Puberty Puberty_2 1.9 (0.5) 
<0.0

01 
0.001 1.3 (0.5) 

0.01
0 

0.029 
1.0
8 

Social anxiety                 

3m Infancy_2 0.1 (0.1) 
0.03

3 
0.078 0.2 (0.1) 

0.0
03 

0.012 
1.0
8 

14y Puberty_3 0.2 (0.1) 
0.01

7 
0.044 0.2 (0.1) 

0.01
5 

0.040 
1.1
7 

Puberty Puberty_3 0.1 (0.1) 
0.04

8 
0.107 0.2 (0.1) 

0.0
04 

0.012 
1.1
1 

Notes. Only clusters or phylogenetic diversity with original p < 0.05 in crude GLMs are displayed here. As 
microbial cluster is a categorical variable, comparisons were implemented between the first cluster and other 
clusters at the corresponding time point or period. Phylogenetic diversity was used as a numeric variable. In 
adjusted models, child gender, diet quality, and overnight sleep duration were included for internalizing 
behavior; overnight sleep duration and alcohol intake were included for externalizing behavior; and child gender, 
diet quality, overnight sleep duration, and paternal education levels were included for social anxiety. VIF < 3 
indicates no multicollinearity in adjusted models. 

 
In adjusted GLMs, we observed more internalizing behavior in cluster Infancy_2 in 

the period from ages one to four months (estimate = 0.2 and adjusted p = 0.021), but not at 
separate time points. Similarly, we found more externalizing behavior in Childhood_2 and 
Puberty_2 during their corresponding periods in adjusted GLMs (estimates = 1.4 and 1.3, 
respectively; adjusted p = 0.023 and 0.029, respectively). Besides, more social anxiety was 
found in Infancy_2 at the age of three months and Puberty_3 at the age of 14 years and in the 
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period of puberty ( p < 0.05 after accounting for covariates). 
With respect to phylogenetic diversity, the only significant finding was observed in infancy, 
with a mildly positive relation to social anxiety at age 14 (estimate < 0.1; adjusted p = 0.004 
in the adjusted GLM). 

Additionally, we explored differences in behavioral relations between disperse 
Puberty_2 samples and other samples in puberty based on beta diversity (Table S6). To this 
end, we performed the same crude and adjusted GLMs described above. Disperse Puberty_2 
samples at age 14 showed significantly more internalizing behavior at the same age without 
accounting for covariates (estimate = 0.4 and adjusted p = 0.02), while the difference became 
marginally significant after considering covariates (estimate = 0.3 and adjusted p = 0.079). 
Similarly, after partialling out potential influences of covariates, disperse Puberty_2 samples 
in the period of puberty did not exhibit more externalizing behavior (crude GLM: estimate 
= 1.3 and adjusted p = 0.041; adjusted GLM: estimate = 0.6 and adjusted p = 0.338). 

Cross-sectional relations between the gut microbiota and behavioral measures in 14-
year-old children 
RDAs showed that externalizing behavior was the only behavioral measure that significantly 
explained microbial variance in the 14-year-olds without considering other variables (simple 
effect, R2% = 1.93% and p = 0.04; Table S2). However, after partitioning the variance explained 
by overnight sleep duration and drinking alcohol, externalizing behavior did not remain 
significant (marginal effect, R2% = 0.58% and p = 0.71). We further measured cross-sectional 
relations between relative abundances of individual genus-level taxa and the behavioral 
measures at age 14. Table 3 presents the results of taxa in which the original significance in 
crude GLMs was p < 0.05. 
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Table 3. Main findings of the relations between taxon relative abundances at the genus-level and 
behavioral measures in children at age 14. 

  Crude model Adjusted model Fold 
chan
ge of 
estim
ates  

(crud
e / 

adjus
ted)  

Mean 
of 

relativ
e 

abund
ance 
(SD) 

% 

Prevale
nce % Genus 

Estimate 
(Std. Error) 

p 
Adjus
ted p 

Estimate 
(Std. Error) 

p 
Adjus
ted p 

VIF 

Internalizing 
behavior 

                    

Agathobacter 81.1 (34.4) 
0.0
20 

0.038 49.3 (32.5) 
0.1
32 

0.212 1.02 1.65 
0.1 

(0.2) 
44.8 

Barnesiella -28.4 (12.3) 
0.0
23 

0.044 -20.3 (11.1) 
0.0
71 

0.123 1.02 1.40 
0.4 

(0.5) 
70.4 

Collinsella -9.6 (4.7) 
0.0
45 

0.083 -4.1 (4.3) 
0.3
40 

0.455 1.07 2.34 
0.7 

(1.4) 
52.0 

Faecalibacterium -3.1 (1.2) 
0.01

2 
0.023 -2.2 (1.2) 

0.0
73 

0.126 1.12 1.41 
9.3 

(5.0) 
99.2 

Intestinibacter 17.5 (8.4) 
0.0
39 

0.073 14.6 (7.7) 
0.0
60 

0.106 1.01 1.20 
0.6 

(0.7) 
72.8 

Lachnospira 36.4 (15.0) 
0.01

7 
0.033 18.9 (18.4) 

0.3
05 

0.421 1.07 1.93 
0.3 

(0.4) 
57.6 

Turicibacter 31.8 (13.7) 
0.0
22 

0.043 26.0 (12.5) 
0.0
39 

0.073 1.01 1.22 
0.2 

(0.4) 
32 

Externalizing 
behavior  

                    

Erysipelatoclostridiu
m 

-648.0 
(288.8) 

0.0
27 

0.051 
-649.8 
(276.0) 

0.0
20 

0.039 1.00 1.00 
<0.1 
(0.1) 

15.2 

Holdemanella 51.2 (15.2) 
0.0
01 

0.002 45.8 (14.7) 
0.0
02 

0.005 1.01 1.12 
0.7 

(1.6) 
24.8 

Lachnospiraceae 
ND3007 group 

-72.5 (26.4) 
0.0
07 

0.014 -55.5 (28.5) 
0.0
54 

0.097 1.11 1.31 
0.9 
(1.0) 

90.4 

Oscillospiraceae 
NK4A214 group 

81.6 (27.0) 
0.0
03 

0.006 67.2 (26.2) 
0.0
12 

0.023 1.02 1.21 
0.6 

(0.9) 
84.8 

Phascolarctobacteriu
m 

55.8 (21.2) 
0.01

0 
0.019 54.8 (20.6) 

0.0
09 

0.018 1.00 1.02 
0.6 
(1.2) 

34.4 

Prevotella 9 4.2 (2.0) 
0.0
38 

0.071 1.8 (2.0) 
0.3
88 

0.507 1.11 2.33 
7.2 

(12.9) 
44.8 

Eubacterium 
uncultured 
bacterium 

57.1 (26.2) 
0.0
31 

0.059 52.3 (25.4) 
0.0
42 

0.077 1.01 1.09 
1.0 

(1.0) 
79.2 

Social anxiety                     

Collinsella -4.6 (1.8) 
0.01

2 
0.024 -3.7 (1.8) 

0.0
45 

0.083 1.07 1.24 
0.7 

(1.4) 
52.0 

Erysipelatoclostridiu
m 

80.5 (28.1) 
0.0
05 

0.010 73.8 (30.0) 
0.0
16 

0.030 1.02 1.09 
<0.1 
(0.1) 

15.2 

Faecalibacterium -2.2 (0.5) 
<0.
001 

<0.001 -1.8 (0.5) 
0.0
01 

0.002 1.10 1.22 
9.3 

(5.0) 
99.2 

Lachnospiraceae 
ND3007 group 

-7.3 (2.8) 
0.01

0 
0.020 -5.7 (3.0) 

0.0
60 

0.107 1.13 1.28 
0.9 
(1.0) 

90.4 

Turicibacter 13.4 (5.9) 
0.0
26 

0.049 8.6 (6.1) 
0.1
60 

0.251 1.03 1.56 
0.2 

(0.4) 
32.0 

Notes. Only microbial taxa, of which the original p < 0.05 in crude GLMs, are displayed here. In adjusted models, child gender, 
diet quality, and overnight sleep duration were included for internalizing behavior; overnight sleep duration and alcohol intake 
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were included for externalizing behavior; and child gender, diet quality, overnight sleep duration, and paternal education levels 
were included for social anxiety. VIF < 3 indicates no multicollinearity in adjusted models. 

 
In crude GLMs, we found higher relative abundances of Agathobacter, Lachnospira, 

and Turicibacter in relation to more internalizing problems, while higher relative 
abundances of Barnesiella and Faecalibacterium were associated with less internalizing 
behavior (adjusted p < 0.05). However, none of them were significant after considering 
covariates. 

With respect to externalizing behavior, in crude GLMs, we observed that higher 
relative abundances of Holdemanella, Oscillospiraceae NK4A214 group, 
Phascolarctobacterium were related to more externalizing behavior, while higher relative 
abundances of Erysipelatoclostridium and Lachnospiraceae ND3007 group were associated 
with fewer externalizing issues (adjusted p < 0.05, except for Erysipelatoclostridium with an 
adjusted p = 0.051). After accounting for covariates and multiple tests, the significance 
remained for Holdemanella, Oscillospiraceae NK4A214 group, and Phascolarctobacterium. 
Moreover, the estimate turned into significance for Erysipelatoclostridium in the adjusted 
model (adjusted p = 0.039 but with a low average relative abundance < 0.1%). Despite the 
insignificance, we noticed that the relation between Prevotella 9 and externalizing behavior 
changed strikingly after correcting for covariates (estimate from 4.2 to 1.8 with a fold change 
= 2.33). 

Regarding social anxiety in crude GLMs, positive relations were observed for 
Erysipelatoclostridium and Turicibacter, while negative associations were found for 
Collinsella, Faecalibacterium, and Lachnospiraceae ND3007 (adjusted p < 0.05). After 
adjusting GLMs with covariates, differences remained significant for Erysipelatoclostridium 
and Faecalibacterium. Note that Faecalibacterium was highly prevalent across 14-year-old 
children (99.2%) with an average relative abundance at 9.3%. 

Discussion 
In this study, we focused on a community sample of children in a longitudinal birth cohort 
(followed from one month to 14 years). Through the DMM method, we identified four 
distinct microbial clusters among these children in puberty, extending our knowledge on gut 
microbiota development and transition in this sensitive time window. By including microbial 
clusters determined in the first decade of life (Ou et al., 2022), we found that two Prevotella 
9-enriched microbial clusters (i.e., Chilhood_2 and Puberty_2) were related to more 
externalizing behavior at age 14. Furthermore, Puberty_3, which was characterized by less 
Faecalibacterium compared to Faecalibacterium-enriched Puberty_1, was associated with 
more social anxiety at age 14. Additionally, higher relative abundances of Faecalibacterium 
were cross-sectionally linked to less social anxiety at age 14, supporting the Puberty_3 
findings. 

Our results indicated some similarities between microbial clusters in middle 
childhood and puberty (Ou et al., 2022). Puberty_1 resembled Childhood_1 and similarly 
showed low phylogenetic diversity. Puberty_2 was predominated by Prevotella 9, and this 
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was also a notable feature of Childhood_2. Furthermore, high phylogenetic diversity was 
observed in Puberty_3 and Puberty_4, seemingly in conformity with Childhood_3 and 
Childhood_4. Compared to the dynamic succession of microbial clusters in the first decade 
of life, the transition between pubertal clusters was steadier in this group of children. From 
the age of 12 to 14 years, most children within Puberty_1, Puberty_2, and Puberty_4 remained 
in the same clusters. Importantly, these three clusters were enriched in Bacteroides, 
Prevotella 9, and Ruminococcus, respectively, and this fits well with the three enterotypes 
reported in 2011, which seemed independent of age across different populations (Arumugam 
et al., 2011). Therefore, it is possible that Puberty_1, Puberty_2, and Puberty_4 represent a 
more mature stadium of the gut microbiota. Conversely, Puberty_3 might correspond to a 
less mature phase, as its transition from age 12 was relatively divergent (i.e., the transition 
was almost equally towards Puberty_1, Puberty_2, and Puberty_3, indicating the presence of 
a more unstable cluster without a dominant transitional pattern). 

Despite the weak differences between the genders in pubertal microbial clusters (i.e., 
the differences did not survive FDR corrections), some of these differences appear worth 
noting. For example, Pubety_2 and Puberty_4 tended to have more boys, while Puberty_3 
tended to have more girls. Puberty_3 was enriched in Bifidobacterium -glucuronidase 
activity, able to deconjugate inactive bound estrogen into active non-bound estrogen (Yoon 
& Kim, 2021). Deconjugated estrogen can be reabsorbed by the gut and circulate in the 
bloodstream. After being conjugated by the liver, a portion of inactive estrogen reaches the 
gut and in turn may likely affect microbiota composition (Valeri & Endres, 2021). Estrogen, 
together with androgen, triggers the natural process of sexual maturation in puberty 
(Emmanuel & Bokor, 2022). It has been suggested that gut microbiota composition may 
differ between disparate pubertal stages in a gender-dimorphic pattern (Korpela et al., 2021; 
Yuan, Chen, Zhang, Lin, & Yang, 2020). However, such discrepancy was not observed in our 
study, which considered pubertal status alone but not its interaction with child gender. 
Another unexpected finding was that general diet did not appear to explain the different 
pubertal clusters, while alcohol consumption did. At age 14, Prevotella 9-predominant 
Puberty_2 showed a higher ratio of consuming alcohol. This was in line with a recent finding 
that increased alcohol consumption, even moderate, was related to higher relative 
abundances of Prevotella 9 in adult populations (Kwan et al., 2022). Given the fact that 
sample size shrank after stratifying 14-year-old children based on microbial clusters and 
alcohol intake, our findings must be validated with another larger group of matched children. 

Regarding microbial relations to behavioral measures, children within Prevotella 9-
predominant Childhood_2 and Puberty_2 clusters exhibited more externalizing behavior at 
the age of 14 years. Although a positive cross-sectional relation was not observed between 
Prevotella 9 and externalizing behavior at age 14 after accounting for alcohol consumption 
and overnight sleep duration, such a trend conformed to our earlier findings in middle 
childhood (Ou et al., 2022). In line with this, children with ADHD (attention deficit 
hyperactivity disorder), who are often characterized by impulsive and hyperactive 
externalizing symptoms, showed an overgrowth of Prevotella species including P. amnii, P. 
buccae, and P. copri, in comparison with typically developing children (Li et al., 2022). In 
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particular, higher relative abundances of P. buccae were related to more impulsivity and 
hyperactivity problems, despite another study reporting less Prevotella in children with 
ADHD (Prehn-Kristensen et al., 2018). Other findings which indirectly support links between 
Prevotella and behavior in the externalizing range, are those reporting a Prevotella depletion 
in one-year-old infants with more subsequent inward-directed behavioral issues at two years 
of age (Loughman et al., 2020), and in GAD-active (generalized anxiety disorder) adults 
compared to healthy controls (Y. huan Chen et al., 2019). Furthermore, many ASD (autism 
spectrum disorder) cases show reductions in Prevotella, as concluded in a recent systematic 
review (Bundgaard-Nielsen et al., 2020), while youth with early life adversity (ELA) display 
higher relative abundances of Prevotella (Reid et al., 2021). Before drawing any firm 
conclusions, we have to be aware of the wide species- and strain-level variability in Prevotella, 
which to a large extent may obscure the consistency between studies (Tett, Pasolli, Masetti, 
Ercolini, & Segata, 2021). Moreover, potential influences of covariates (e.g., age, gender, diet, 
and lifestyle) and different etiologies behind mental problems should be considered carefully 
when comparing results. 

More social anxiety was observed in microbial cluster Puberty_3, mainly at the age 
of 14 years. However, the most enriched taxa in this cluster (i.e., Bifidobacterium, 
Akkermansia, Subdoligranulum, Christensenellaceae R-7 group, and Dialister) were not 
cross-sectionally related to social anxiety at age 14. Nevertheless, higher Bifidobacterium has 
been frequently reported in MDD (major depressive disorder) (Simpson et al., 2021), and 
lower Subdoligranulum and Dialister were found in GAD (Y. huan Chen et al., 2019; Jiang et 
al., 2018), compared to healthy controls. When looking into other taxa, we found that lower 
Faecalibacterium, which was less enriched in Puberty_3 and highly prevalent at age 14, was 
associated with more social anxiety difficulties, in line with the finding of Puberty_3. 
Similarly, decreased Faecalibacterium has been observed in GAD patients (Jiang et al., 2018), 
and related to increased duration and intensity of social exclusion experiences in young 
adults (Kim et al., 2022). Furthermore, recent meta-analytic research described reduced 
Faecalibacterium in multiple mental disorders (L. L. Chen et al., 2021; Simpson et al., 2021), 
such as MDD, bipolar disorder, and ASD, despite a conflicting ASD result reported by 
another meta-analytic study (Iglesias-Vázquez, Van Ginkel Riba, Arija, & Canals, 2020). As a 
gut commensal bacterium, Faecalibacterium is present in more than 90% of individuals in 
adult populations (De Filippis, Pasolli, & Ercolini, 2020). Its most studied and abundant 
species, Faecalibacterium prausnitzii, can produce anti-inflammatory molecules represented 
by butyrate (Leylabadlo et al., 2020). Apart from regulation of inflammation, butyrate may 
suppress food intake and mediate cognition by influencing the concentrations of gut 
hormones (O’Riordan et al., 2022). Taken together, these findings suggest that 
Faecalibacterium may constitute a potentially important microbial marker for mental health. 

A strength of our preregistered study is the use of a unique longitudinal community 
cohort followed from birth till age 14 years. This allows tracking gut microbiota development 
throughout infancy and childhood, assessing its predictive value for relevant behavioral 
measures in puberty. Importantly, we simplified the complex interplay between the gut 
microbiota and behavior by condensing the taxonomic data into identifiable microbial 
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clusters. Furthermore, this study accounted for multiple potential covariates of behavioral 
measures when exploring their relations to the gut microbiota, decreasing the correlational 
bias to some extent. However, some limitations and perspectives should also be mentioned. 
First, the study was restricted by not considering the interaction of child gender with 
pubertal stages, mainly due to insufficient statistical power to further stratify groups. Second, 
although a collection of covariates was included, the gut microbiota and host behavior can 
still be affected by many unobserved or even unknown variables. Especially for an 
observational study, it is hence necessary to further validate the findings in another 
longitudinal community cohort or in carefully designed animal experiments. Third, it 
remains a statistical challenge to explore relations between repeatedly measured microbiota 
data and a continuous numeric outcome variable. Currently, statistically sophisticated 
approaches to identify differentially abundant taxa over time were mainly created for group 
comparisons (Kodikara, Ellul, & Lê Cao, 2022). Future research should aim to profile 
microbial trajectories across time and identify distinct ones (Hejblum, Skinner, & Thiébaut, 
2015), that can then be linked to host outcome phenotypes, or preferably, to host 
phenotypical development. Despite recent attempts at describing gut microbiota 
development, the step of associating variations in trajectories to host behavioral phenotypes 
is yet to be taken (Roswall et al., 2021). A final limitation of our study lies in the fact that 16S 
rRNA gene amplicon sequences are unable to provide results at the microbial species level. 

Summarizing, in the current study, we identified four distinct microbial clusters in 
puberty, three of which were compositionally similar to enterotypes previously described at 
population level across different ages (Arumugam et al., 2011) and transitioned stably from 
age 12 to 14. Child gender may be a factor driving the formation of microbial clusters in 
puberty, although we did not find much evidence supporting this idea. The Prevotella 9-
predominated clusters, including Childhood_2 and Puberty_2, were related to more 
externalizing behavior at age 14, while the Faecalibacterium-depleted Puberty_3 cluster was 
associated with more social anxiety at the same age. The cross-sectional negative relation 
between Faecalibacterium and social anxiety in 14-year-old children further supported this 
finding. Causal associations were not determined in this observational longitudinal study. 
Mechanistic research on a single taxon or an interactive group of taxa is needed to make it 
possible to describe causal relations between the gut microbiota and child pubertal mental 
health. 
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Supplemental information 

 

Figure S1. The distribution of Bristol stool consistency types of the samples at age 14. Among N = 125 
participants providing stool samples at age 14, N = 7 (boy: girl = 3: 4) reported type 1 stools (separate 
hard lumps like nuts) during collection, N = 16 (boy: girl = 7: 9) reported type 2 stools (sausage shaped 
but lumpy), N = 1 girl reported a stool between types 2 and 3 (like a sausage or snake but with cracks 
on its surface), N = 58 (boy: girl = 29: 29) reported type 3 stools, N = 2 (boy: girl = 1: 1) reported stools 
between types 3 and 4 (like a sausage or snake, smooth and soft), N = 31 (boy: girl = 21: 10) reported 
type 4 stools, N = 1 boy reported a stool between types 4 and 5 (soft blobs with clear cut edges), N = 2 
(boy: girl = 1: 1) reported type 5 stools, N = 1 boy reported a type 6 stool (fluffy pieces with ragged edges, 
a mushy stool), and N = 1 girl reported a type 7 stool (watery, no solid pieces). 
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Figure S2. The number of Dirichlet components. Dirichlet Multinomial Mixtures models were 
conducted N = 10 times. Eighty percent (8/10) of the models showed consistent bacterial clusters of 
which the optimal number was four, as indicated by the lowest Laplace value. 
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Table S1. Independent relations between behavioral measures and their potential covariates at age 14. 

Behavior 
Mo
del 

Potential covariate Parameter 
Estimate 

(Std. Error) 
p 

Adjus
ted p 

Internalizing 
behavior 

Cru
de 

Age in years  Intercept 6.7 (5.2) 
0.19

7 
0.305 

Internalizing 
behavior 

Cru
de 

Age in years  Age in years  <0.1 (0.4) 
0.3
09 

0.439 

Internalizing 
behavior 

Cru
de 

Child gender: girl Intercept 1.1 (0.1) 
<0.
001 

<0.001 

Internalizin
g behavior 

Cru
de 

Child gender: girl Child gender: girl 0.6 (0.1) 
<0.
001 

<0.00
1 

Internalizing 
behavior 

Cru
de 

Thelarche or testicular 
development  

Intercept 1.6 (0.3) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Thelarche or testicular 
development  

Thelarche or testicular 
development  

<0.1 (0.1) 
0.5
23 

0.616 

Internalizing 
behavior 

Cru
de 

Pubarche Intercept 1.0 (0.3) 
<0.
001 

0.001 

Internalizing 
behavior 

Cru
de 

Pubarche Pubarche 0.1 (0.1) 
0.12

1 
0.198 

Internalizing 
behavior 

Cru
de 

zBMI Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

zBMI zBMI <0.1 (0.1) 
0.6
91 

0.739 

Internalizing 
behavior 

Cru
de 

Sick in the week before 
the home visit: yes 

Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Sick in the week before 
the home visit: yes 

Sick in the week before 
the home visit: yes 

0.2 (0.3) 
0.3
8 

0.494 

Internalizing 
behavior 

Cru
de 

Oral antibiotics in the 
past one year: yes 

Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Oral antibiotics in the 
past one year: yes 

Oral antibiotics in the 
past one year: yes 

<0.1 (0.6) 
0.3
74 

0.492 

Internalizing 
behavior 

Cru
de 

Diet quality  Intercept 0.6 (0.3) 
0.0
62 

0.109 

Internalizin
g behavior 

Cru
de 

Diet quality  Diet quality  <0.1 (<0.1) 
0.0
19 

0.035 

Internalizing 
behavior 

Cru
de 

Omega 3 fatty acids: yes Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Omega 3 fatty acids: yes Omega 3 fatty acids: yes 0.4 (0.3) 
0.2
26 

0.339 

Internalizing 
behavior 

Cru
de 

Physical activity  Intercept 1.8 (0.3) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Physical activity  Physical activity  <0.1 (0.1) 
0.13

1 
0.211 

Internalizing 
behavior 

Cru
de 

Drinking alcohol in the 
past one year: yes 

Intercept 1.5 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Drinking alcohol in the 
past one year: yes 

Drinking alcohol in the 
past one year: yes 

<0.1 (0.2) 
0.4
02 

0.517 

Internalizing 
behavior 

Cru
de 

Smoking cigarettes in the 
past one year: yes 

Intercept 1.4 (0.1) 
<0.
001 

<0.001 
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Internalizing 
behavior 

Cru
de 

Smoking cigarettes in the 
past one year: yes 

Smoking cigarettes in the 
past one year: yes 

0.2 (0.4) 
0.6
04 

0.672 

Internalizing 
behavior 

Cru
de 

Taking drugs in the past 
one year: yes 

Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Taking drugs in the past 
one year: yes 

Taking drugs in the past 
one year: yes 

0.2 (0.3) 
0.5
6 

0.64 

Internalizing 
behavior 

Cru
de 

Bristol score  Intercept 1.4 (0.2) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Bristol score  Bristol score  <0.1 (0.1) 
0.8
92 

0.935 

Internalizing 
behavior 

Cru
de 

Maternal education level  Intercept 1.2 (0.3) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Maternal education level  Maternal education level  <0.1 (<0.1) 
0.3
55 

0.486 

Internalizing 
behavior 

Cru
de 

Paternal education level  Intercept 1.1 (0.2) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Paternal education level  Paternal education level  0.1 (<0.1) 
0.11
6 

0.193 

Internalizing 
behavior 

Cru
de 

Overnight sleep duration  Intercept 3.0 (0.4) 
<0.
001 

<0.001 

Internalizin
g behavior 

Cru
de 

Overnight sleep 
duration  

Overnight sleep 
duration  

<0.1 (0.1) 
<0.
001 

0.001 

Internalizing 
behavior 

Cru
de 

Pet: yes Intercept 1.4 (0.1) 
<0.
001 

<0.001 

Internalizing 
behavior 

Cru
de 

Pet: yes Pet: yes 0.1 (0.1) 
0.5
06 

0.607 

Externalizing 
behavior 

Cru
de 

Age in years  Intercept <0.1 (20.6) 
0.8
65 

0.916 

Externalizing 
behavior 

Cru
de 

Age in years  Age in years  0.7 (1.4) 
0.6
34 

0.698 

Externalizing 
behavior 

Cru
de 

Child gender: girl Intercept 6.2 (0.3) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Child gender: girl Child gender: girl 0.4 (0.5) 
0.4
67 

0.573 

Externalizing 
behavior 

Cru
de 

Thelarche or testicular 
development  

Intercept 6.9 (1.2) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Thelarche or testicular 
development  

Thelarche or testicular 
development  

<0.1 (0.3) 
0.6
65 

0.719 

Externalizing 
behavior 

Cru
de 

Pubarche Intercept 7.7 (1.1) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Pubarche Pubarche <0.1 (0.3) 
0.2
08 

0.317 

Externalizing 
behavior 

Cru
de 

zBMI Intercept 6.3 (0.2) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

zBMI zBMI 0.2 (0.2) 
0.3
37 

0.466 

Externalizing 
behavior 

Cru
de 

Sick in the week before 
the home visit: yes 

Intercept 6.4 (0.3) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Sick in the week before 
the home visit: yes 

Sick in the week before 
the home visit: yes 

0.5 (1.2) 
0.6
66 

0.719 

Externalizing 
behavior 

Cru
de 

Oral antibiotics in the 
past one year: yes 

Intercept 6.4 (0.2) 
<0.
001 

<0.001 
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Externalizing 
behavior 

Cru
de 

Oral antibiotics in the 
past one year: yes 

Oral antibiotics in the 
past one year: yes 

<0.1 (2.1) 
0.17

1 
0.268 

Externalizing 
behavior 

Cru
de 

Diet quality  Intercept 7.7 (1.3) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Diet quality  Diet quality  <0.1 (<0.1) 
0.2
87 

0.414 

Externalizing 
behavior 

Cru
de 

Omega 3 fatty acids: yes Intercept 6.4 (0.3) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Omega 3 fatty acids: yes Omega 3 fatty acids: yes <0.1 (1.3) 
0.4
46 

0.554 

Externalizing 
behavior 

Cru
de 

Physical activity  Intercept 6.2 (1.1) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Physical activity  Physical activity  <0.1 (0.5) 
0.91

8 
0.944 

Externalizing 
behavior 

Cru
de 

Drinking alcohol in the 
past one year: yes 

Intercept 6.0 (0.3) 
<0.
001 

<0.001 

Externalizin
g behavior 

Cru
de 

Drinking alcohol in the 
past one year: yes 

Drinking alcohol in the 
past one year: yes 

1.6 (0.6) 
0.0
06 

0.012 

Externalizing 
behavior 

Cru
de 

Smoking cigarettes in the 
past one year: yes 

Intercept 6.3 (0.2) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Smoking cigarettes in the 
past one year: yes 

Smoking cigarettes in the 
past one year: yes 

1.0 (1.5) 
0.4
85 

0.589 

Externalizing 
behavior 

Cru
de 

Taking drugs in the past 
one year: yes 

Intercept 6.3 (0.3) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Taking drugs in the past 
one year: yes 

Taking drugs in the past 
one year: yes 

0.8 (1.3) 
0.5
69 

0.64 

Externalizing 
behavior 

Cru
de 

Bristol score  Intercept 5.7 (0.9) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Bristol score  Bristol score  0.2 (0.3) 
0.5
61 

0.64 

Externalizing 
behavior 

Cru
de 

Maternal education level  Intercept 6.3 (1.1) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Maternal education level  Maternal education level  <0.1 (0.2) 
0.9
96 

1 

Externalizing 
behavior 

Cru
de 

Paternal education level  Intercept 6.3 (0.8) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Paternal education level  Paternal education level  <0.1 (0.1) 
0.9
92 

1 

Externalizing 
behavior 

Cru
de 

Overnight sleep duration  Intercept 12.7 (1.9) 
<0.
001 

<0.001 

Externalizin
g behavior 

Cru
de 

Overnight sleep 
duration  

Overnight sleep 
duration  

<0.1 (0.2) 
0.0
01 

0.002 

Externalizing 
behavior 

Cru
de 

Pet: yes Intercept 6.0 (0.4) 
<0.
001 

<0.001 

Externalizing 
behavior 

Cru
de 

Pet: yes Pet: yes 0.5 (0.5) 
0.3
74 

0.492 

Social anxiety 
Cru
de 

Age in years  Intercept 5.9 (2.2) 
0.0
08 

0.014 

Social anxiety 
Cru
de 

Age in years  Age in years  <0.1 (0.1) 
0.3
25 

0.456 

Social anxiety 
Cru
de 

Child gender: girl Intercept 3.6 (<0.1) 
<0.
001 

<0.001 



Chapter 5 

224 

Social 
anxiety 

Cru
de 

Child gender: girl Child gender: girl 0.2 (0.1) 
0.0
03 

0.005 

Social anxiety 
Cru
de 

Thelarche or testicular 
development  

Intercept 3.9 (0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Thelarche or testicular 
development  

Thelarche or testicular 
development  

<0.1 (<0.1) 
0.2
87 

0.414 

Social anxiety 
Cru
de 

Pubarche Intercept 3.6 (0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Pubarche Pubarche <0.1 (<0.1) 
0.4
43 

0.554 

Social anxiety 
Cru
de 

zBMI Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

zBMI zBMI <0.1 (<0.1) 
0.91

5 
0.944 

Social anxiety 
Cru
de 

Sick in the week before 
the home visit: yes 

Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Sick in the week before 
the home visit: yes 

Sick in the week before 
the home visit: yes 

<0.1 (0.1) 
0.5
67 

0.64 

Social anxiety 
Cru
de 

Oral antibiotics in the 
past one year: yes 

Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Oral antibiotics in the 
past one year: yes 

Oral antibiotics in the 
past one year: yes 

<0.1 (0.2) 
0.0
9 

0.155 

Social anxiety 
Cru
de 

Diet quality  Intercept 3.4 (0.1) 
<0.
001 

<0.001 

Social 
anxiety 

Cru
de 

Diet quality  Diet quality  <0.1 (<0.1) 
0.0
26 

0.047 

Social anxiety 
Cru
de 

Omega 3 fatty acids: yes Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Omega 3 fatty acids: yes Omega 3 fatty acids: yes 0.2 (0.1) 
0.13

9 
0.221 

Social anxiety 
Cru
de 

Physical activity  Intercept 3.9 (0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Physical activity  Physical activity  <0.1 (<0.1) 
0.11
2 

0.19 

Social anxiety 
Cru
de 

Drinking alcohol in the 
past one year: yes 

Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Drinking alcohol in the 
past one year: yes 

Drinking alcohol in the 
past one year: yes 

<0.1 (0.1) 
0.2
3 

0.34 

Social anxiety 
Cru
de 

Smoking cigarettes in the 
past one year: yes 

Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Smoking cigarettes in the 
past one year: yes 

Smoking cigarettes in the 
past one year: yes 

0.1 (0.2) 
0.5
25 

0.616 

Social anxiety 
Cru
de 

Taking drugs in the past 
one year: yes 

Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Taking drugs in the past 
one year: yes 

Taking drugs in the past 
one year: yes 

0.1 (0.1) 
0.3
72 

0.492 

Social anxiety 
Cru
de 

Bristol score  Intercept 3.6 (0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Bristol score  Bristol score  <0.1 (<0.1) 
0.4
09 

0.52 

Social anxiety 
Cru
de 

Maternal education level  Intercept 3.5 (0.1) 
<0.
001 

<0.001 
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Social anxiety 
Cru
de 

Maternal education level  Maternal education level  <0.1 (<0.1) 
0.0
9 

0.155 

Social anxiety 
Cru
de 

Paternal education level  Intercept 3.5 (0.1) 
<0.
001 

<0.001 

Social 
anxiety 

Cru
de 

Paternal education 
level  

Paternal education 
level  

<0.1 (<0.1) 
0.0
08 

0.016 

Social anxiety 
Cru
de 

Overnight sleep duration  Intercept 4.3 (0.2) 
<0.
001 

<0.001 

Social 
anxiety 

Cru
de 

Overnight sleep 
duration  

Overnight sleep 
duration  

<0.1 (<0.1) 
0.0
03 

0.005 

Social anxiety 
Cru
de 

Pet: yes Intercept 3.7 (<0.1) 
<0.
001 

<0.001 

Social anxiety 
Cru
de 

Pet: yes Pet: yes <0.1 (0.1) 1 1 

Notes. Relations with original unadjusted p values < 0.05 are italicized and bold. Regarding Bristol stool 
consistency, we also treated it as a categorical variable consisting of two categories (i.e., Bristol scores <3 and 

ted stools with Bristol scores higher than 4 as displayed in Figure S1. Similar to 
the numeric Bristol variable presented in the table, the categorical one was not significantly related to 
internalizing behavior, externalizing behavior, and social anxiety (unadjusted p values = 0.489, 0.385, and 
0.779, respectively). 
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Table S2. Explained microbial variances at age 14 by potential covariates and behavioral measures. 

  Variable 
R2

% 
F 

p-value 
(Pr>F) 

Number of available 
samples 

Simple 
effect(s) 

Age in years 
0.4
0 

0.4
9 

0.83 125 

Child gender (boy/girl) 
1.4
7 

1.8
4 

0.10 125 

Thelarche or testicular development 
0.6
9 

0.8
5 

0.49 125 

Pubarche 
0.6
4 

0.7
9 

0.55 125 

zBMI 
1.2
0 

1.4
9 

0.18 125 

Sick in the week before the home visit 
(yes/no) 

0.5
0 

0.6
2 

0.66 124 

Oral antibiotics in the past one year 
(yes/no) 

0.4
9 

0.6
0 

0.68 125 

Diet quality 
0.9
9 

1.17 0.29 119 

Omega-3 fatty acids (yes/no) 
0.6

1 
0.7
3 

0.61 120 

Physical activity 
0.4
2 

0.5
0 

0.84 119 

Drinking alcohol in the past one year 
(yes/no) 

1.72 2.13 0.07 124 

Smoking cigarettes in the past one 
year (yes/no) 

0.2
7 

0.3
3 

0.95 124 

Taking drugs in the past one year 
(yes/no) 

0.2
7 

0.3
3 

0.93 124 

Bristol score (numeric) 
0.7
8 

0.9
3 

0.45 
120 

Bristol score (categories: Bristol scores 
 

0.7
9 

0.9
4 

0.44 

Maternal education level 
1.4
7 

1.8
4 

0.10 125 

Paternal education level 
0.6
8 

0.8
1 

0.53 120 

Overnight sleep duration in hours 
3.0
5 

3.71 <0.01 120 

Pets (yes/no) 
1.2
9 

1.61 0.14 125 

Internalizing behavior 1.35 
1.6
8 

0.12 125 

Externalizing behavior 1.93 
2.4
2 

0.04 125 

Social anxiety 1.23 
1.4
7 

0.17 120 
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Marginal 
effect(s) 

Overnight sleep duration in hours 
2.0
7 

2.5
2 

0.03 

119 
Drinking alcohol in the past one year 
(yes/no) 

1.8
0 

2.2
0 

0.05 

Externalizing behavior 
0.5
8 

0.7
1 

0.60 

Notes. UniFrac distance was calculated on the genus-level relative abundance data prior to redundancy 
analysis. Regarding simple effects, redundancy analysis was performed on each variable separately, and 
therefore without considering any other variables. Marginal effects assess R2% explained by one variable when 
R2% explained by other variables was took out. To measure marginal effects, we selected variables with p values 
lower than 0.1 in simple effects and assessed them together in one model. In this case, overnight sleep duration 
in hours, drinking alcohol in the past one year (yes/no), and externalizing behavior were chosen accordingly. P 
values were obtained based on N = 999 permutation tests. We treated Bristol stool consistency data as either a 

children reported a type between two known consecutive types (e.g., a type between type 3 and type 4) and 
only N = 5 children reported stools with Bristol scores higher than 4 as shown in Figure S1. 
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Table S3. Differences of potential covariates between pubertal clusters. 

 
 
 

12y 
and 
14y 

Characteristic Overall
,  

N = 2641 

Puberty_
1,  

N = 741 

Puberty_
2,  

N = 571 

Puberty_
3,  

N = 461 

Puberty_
4,  

N = 871 

p-
value2 

q-
value3 

Age in years 13.5 
(0.9) 

13.6 (0.9) 13.5 (0.9) 13.6 (0.9) 13.4 (0.9) 0.4 0.6 

Child gender 
     

0.009 0.2 

boy 142 / 
264 

(54%) 

35 / 74 
(47%) 

38 / 57 
(67%) 

17 / 46 
(37%) 

52 / 87 
(60%) 

  

girl 122 / 
264 

(46%) 

39 / 74 
(53%) 

19 / 57 
(33%) 

29 / 46 
(63%) 

35 / 87 
(40%) 

  

Thelarche or testicular 
development 

3.3 (0.9) 3.5 (0.9) 3.3 (1.1) 3.3 (0.9) 3.3 (0.8) 0.5 0.6 

(Missing) 1 0 1 0 0 

Pubarche 3.1 (1.1) 3.3 (1.1) 2.9 (1.1) 3.0 (1.1) 3.0 (1.0) 0.2 0.4 

(Missing) 1 0 1 0 0 

BMI 19.1 (3.1) 19.4 (3.0) 19.7 (3.6) 19.2 (3.4) 18.4 (2.5) 0.061 0.3 

(Missing) 2 0 1 0 1 

Oral antibiotics in the past 
one year (yes/overall)4 

9 / 264 
(3.4%) 

6 / 74 
(8.1%) 

0 / 57 
(0%) 

2 / 46 
(4.3%) 

1 / 87 
(1.1%) 

0.034 0.2 

 
 
 

12y 

Characteristic Overall
,  

N = 1391 

Puberty_
1,  

N = 361 

Puberty_
2,  

N = 311 

Puberty_
3,  

N = 221 

Puberty_
4,  

N = 501 

p-
value2 

q-
value3 

Food factor 15 0.0 (0.8) -0.2 (0.7) 0.0 (1.0) 0.0 (0.8) 0.2 (0.8) 0.2 0.4 

(Missing) 2 0 1 0 1 
  

Food factor 25 0.0 (0.8) -0.1 (0.9) 0.0 (0.8) 0.1 (0.7) 0.1 (0.8) 0.5 0.6 

(Missing) 2 0 1 0 1     
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14y 

Characteristic Overall
,  

N = 1251 

Puberty_
1,  

N = 381 

Puberty_
2,  

N = 261 

Puberty_
3,  

N = 241 

Puberty_
4,  

N = 371 

p-
value2 

q-
value3 

Diet quality5 87.0 
(17.3) 

83.5 (16.2) 86.6 (17.6) 90.9 (16.0) 88.5 (19.0) 0.5 0.6 

(Missing) 6 2 0 1 3 
  

Omega-3 fatty acids 
(yes/overall)6 

4 / 120 
(3.3%) 

1 / 36 
(2.8%) 

1 / 26 
(3.8%) 

0 / 24 
(0%) 

2 / 34 
(5.9%) 

0.8 0.8 

(Missing) 5 2 0 0 3 
  

Physical activity 2.3 (0.5) 2.3 (0.5) 2.4 (0.5) 2.2 (0.5) 2.5 (0.5) 0.2 0.4 

(Missing) 6 3 0 0 3 
  

Drinking alcohol in the 
past one year (yes/overall) 

22 / 124 
(18%) 

5 / 37 
(14%) 

10 / 26 
(38%) 

1 / 24 
(4.2%) 

6 / 37 
(16%) 

0.016 0.2 

(Missing) 1 1 0 0 0 
  

Smoking cigarettes in the 
past one year (yes/overall) 

3 / 124 
(2.4%) 

0 / 37 
(0%) 

0 / 26 
(0%) 

1 / 24 
(4.2%) 

2 / 37 
(5.4%) 

0.4 0.6 

(Missing) 1 1 0 0 0 
  

Taking drugs in the past 
one year (yes/overall) 

4 / 124 
(3.2%) 

0 / 37 
(0%) 

0 / 26 
(0%) 

1 / 24 
(4.2%) 

3 / 37 
(8.1%) 

0.2 0.4 

(Missing) 1 1 0 0 0 
  

Bristol score 3.1 (1.0) 3.0 (1.2) 3.0 (0.9) 3.0 (0.9) 3.4 (0.7) 0.1 0.4 

(Missing) 5 1 0 1 3 
  

Maternal education level 5.9 (1.3) 5.6 (1.5) 6.0 (1.4) 6.0 (1.2) 6.0 (1.3) 0.6 0.6 

Paternal education level 5.4 (1.8) 5.4 (1.8) 5.0 (2.1) 5.2 (1.8) 5.7 (1.7) 0.6 0.6 

(Missing) 5 1 1 3 0 
  

Overnight sleep duration 
in hours 

8.2 (1.1) 8.3 (0.9) 7.8 (1.4) 8.3 (0.9) 8.5 (1.0) 0.2 0.4 

(Missing) 5 2 0 0 3 
  

Pets 82 / 125 
(66%) 

23 / 38 
(61%) 

21 / 26 
(81%) 

16 / 24 
(67%) 

22 / 37 
(59%) 

0.3 0.5 

1Mean (SD); n / N (%) 

2Kruskal-Wallis rank sum test; Pearson's Chi-squared test; Fisher's exact test 

3False discovery rate correction for multiple testing 

4Non-oral antibiotics were excluded 

5Diet was compared separately for clusters at the age of 12 and 14 years, as different food questionnaires were used. Two food 
factors were obtained from one of our earlier studies, with factor 1 representing healthy foods and factor 2 referring to snacks. 
6Another diet relevant variable, i.e., probiotic consumption, is not shown, as no children took probiotics at age 14. 
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Table S4. Relations between microbial clusters in the first 14 years of life and behavioral outcomes at 
age 14. 

Behavior Age Model Parameter 
Estimate 
(Std. Error) 

p 
Adjust
ed p 

VIF 

Internalizing 
behavior 

1m Crude Intercept 1.3 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

1m Crude Clusters: Infancy_2 0.1 (0.2) 0.597 0.749 NA 

Internalizing 
behavior 

1m Crude Clusters: Infancy_3 <0.1 (0.2) 0.965 0.976 NA 

Internalizing 
behavior 

3m Crude Intercept 1.3 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

3m Crude Clusters: Infancy_2 0.2 (0.1) 0.144 0.259 NA 

Internalizing 
behavior 

3m Crude Clusters: Infancy_3 <0.1 (0.2) 0.735 0.83 NA 

Internalizing 
behavior 

4m Crude Intercept 1.4 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

4m Crude Clusters: Infancy_2 0.1 (0.1) 0.393 0.566 NA 

Internalizing 
behavior 

4m Crude Clusters: Infancy_3 <0.1 (0.2) 0.809 0.893 NA 

Internalizing 
behavior 

6y Crude Intercept 1.5 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

6y Crude Clusters: Childhood_2 0.1 (0.2) 0.71 0.829 NA 

Internalizing 
behavior 

6y Crude Clusters: Childhood_3 <0.1 (0.2) 0.055 0.118 NA 

Internalizing 
behavior 

6y Crude Clusters: Childhood_4 <0.1 (0.2) 0.974 0.979 NA 

Internalizing 
behavior 

10y Crude Intercept 1.5 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

10y Crude Clusters: Childhood_2 <0.1 (0.2) 0.812 0.893 NA 

Internalizing 
behavior 

10y Crude Clusters: Childhood_3 <0.1 (0.2) 0.495 0.658 NA 

Internalizing 
behavior 

10y Crude Clusters: Childhood_4 <0.1 (0.2) 0.614 0.749 NA 

Internalizing 
behavior 

12y Crude Intercept 1.6 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

12y Crude Clusters: Puberty_2 <0.1 (0.2) 0.468 0.651 NA 

Internalizing 
behavior 

12y Crude Clusters: Puberty_3 0.1 (0.2) 0.726 0.83 NA 

Internalizing 
behavior 

12y Crude Clusters: Puberty_4 <0.1 (0.2) 0.157 0.269 NA 

Internalizing 
behavior 

14y Crude Intercept 1.4 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

14y Crude Clusters: Puberty_2 0.3 (0.2) 0.131 0.245 NA 
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Internalizing 
behavior 

14y Crude Clusters: Puberty_3 0.1 (0.2) 0.495 0.658 NA 

Internalizing 
behavior 

14y Crude Clusters: Puberty_4 <0.1 (0.2) 0.291 0.437 NA 

Internalizing 
behavior 

Infanc
y 

Crude Intercept 1.3 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

Infanc
y 

Crude Clusters: Infancy_2 0.2 (0.1) 0.044 0.102 NA 

Internalizing 
behavior 

Infanc
y 

Crude Clusters: Infancy_3 <0.1 (0.1) 0.735 0.83 NA 

Internalizing 
behavior 

Childh
ood 

Crude Intercept 1.5 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_2 <0.1 (0.1) 0.874 0.942 NA 

Internalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_3 <0.1 (0.1) 0.103 0.202 NA 

Internalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_4 <0.1 (0.1) 0.716 0.83 NA 

Internalizing 
behavior 

Pubert
y 

Crude Intercept 1.5 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_2 0.1 (0.1) 0.586 0.742 NA 

Internalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_3 0.1 (0.1) 0.473 0.653 NA 

Internalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_4 <0.1 (0.1) 0.099 0.199 NA 

Externalizing 
behavior 

1m Crude Intercept 6.3 (0.3) <0.001 <0.001 NA 

Externalizing 
behavior 

1m Crude Clusters: Infancy_2 0.5 (0.9) 0.608 0.749 NA 

Externalizing 
behavior 

1m Crude Clusters: Infancy_3 <0.1 (0.7) 0.703 0.827 NA 

Externalizing 
behavior 

3m Crude Intercept 6.4 (0.4) <0.001 <0.001 NA 

Externalizing 
behavior 

3m Crude Clusters: Infancy_2 <0.1 (0.6) 0.997 0.997 NA 

Externalizing 
behavior 

3m Crude Clusters: Infancy_3 <0.1 (0.9) 0.386 0.561 NA 

Externalizing 
behavior 

4m Crude Intercept 6.0 (0.4) <0.001 <0.001 NA 

Externalizing 
behavior 

4m Crude Clusters: Infancy_2 0.9 (0.6) 0.126 0.243 NA 

Externalizing 
behavior 

4m Crude Clusters: Infancy_3 <0.1 (0.9) 0.281 0.427 NA 

Externalizing 
behavior 

6y Crude Intercept 5.4 (0.4) <0.001 <0.001 NA 

Externalizing 
behavior 

6y Crude Clusters: Childhood_2 1.9 (0.7) 0.008 0.023 NA 

Externalizing 
behavior 

6y Crude Clusters: Childhood_3 0.9 (0.7) 0.184 0.301 NA 

Externalizing 
behavior 

6y Crude Clusters: Childhood_4 0.6 (0.7) 0.382 0.56 NA 
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Externalizing 
behavior 

10y Crude Intercept 5.6 (0.5) <0.001 <0.001 NA 

Externalizing 
behavior 

10y Crude Clusters: Childhood_2 1.4 (0.9) 0.136 0.248 NA 

Externalizing 
behavior 

10y Crude Clusters: Childhood_3 0.5 (0.7) 0.481 0.658 NA 

Externalizing 
behavior 

10y Crude Clusters: Childhood_4 0.7 (0.7) 0.312 0.466 NA 

Externalizing 
behavior 

12y Crude Intercept 6.0 (0.5) <0.001 <0.001 NA 

Externalizing 
behavior 

12y Crude Clusters: Puberty_2 1.9 (0.7) 0.012 0.033 NA 

Externalizing 
behavior 

12y Crude Clusters: Puberty_3 1.0 (0.8) 0.219 0.348 NA 

Externalizing 
behavior 

12y Crude Clusters: Puberty_4 <0.1 (0.7) 0.427 0.61 NA 

Externalizing 
behavior 

14y Crude Intercept 5.8 (0.5) <0.001 <0.001 NA 

Externalizing 
behavior 

14y Crude Clusters: Puberty_2 1.8 (0.7) 0.012 0.034 NA 

Externalizing 
behavior 

14y Crude Clusters: Puberty_3 0.5 (0.7) 0.497 0.658 NA 

Externalizing 
behavior 

14y Crude Clusters: Puberty_4 <0.1 (0.7) 0.557 0.71 NA 

Externalizing 
behavior 

Infanc
y 

Crude Intercept 6.3 (0.2) <0.001 <0.001 NA 

Externalizing 
behavior 

Infanc
y 

Crude Clusters: Infancy_2 0.4 (0.4) 0.222 0.35 NA 

Externalizing 
behavior 

Infanc
y 

Crude Clusters: Infancy_3 <0.1 (0.5) 0.204 0.327 NA 

Externalizing 
behavior 

Childh
ood 

Crude Intercept 5.5 (0.3) <0.001 <0.001 NA 

Externalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_2 1.7 (0.5) 0.002 0.009 NA 

Externalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_3 0.7 (0.5) 0.136 0.248 NA 

Externalizing 
behavior 

Childh
ood 

Crude Clusters: Childhood_4 0.7 (0.5) 0.13 0.245 NA 

Externalizing 
behavior 

Pubert
y 

Crude Intercept 5.9 (0.3) <0.001 <0.001 NA 

Externalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_2 1.9 (0.5) <0.001 0.001 NA 

Externalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_3 0.7 (0.5) 0.176 0.291 NA 

Externalizing 
behavior 

Pubert
y 

Crude Clusters: Puberty_4 <0.1 (0.5) 0.331 0.489 NA 

Social anxiety 1m Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 
Social anxiety 1m Crude Clusters: Infancy_2 0.1 (0.1) 0.53 0.692 NA 
Social anxiety 1m Crude Clusters: Infancy_3 <0.1 (0.1) 0.908 0.96 NA 
Social anxiety 3m Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 
Social anxiety 3m Crude Clusters: Infancy_2 0.1 (0.1) 0.033 0.078 NA 
Social anxiety 3m Crude Clusters: Infancy_3 <0.1 (0.1) 0.813 0.893 NA 
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Social anxiety 4m Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 
Social anxiety 4m Crude Clusters: Infancy_2 <0.1 (0.1) 0.754 0.846 NA 
Social anxiety 4m Crude Clusters: Infancy_3 <0.1 (0.1) 0.922 0.968 NA 
Social anxiety 6y Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 
Social anxiety 6y Crude Clusters: Childhood_2 <0.1 (0.1) 0.904 0.96 NA 
Social anxiety 6y Crude Clusters: Childhood_3 <0.1 (0.1) 0.152 0.264 NA 
Social anxiety 6y Crude Clusters: Childhood_4 <0.1 (0.1) 0.824 0.899 NA 
Social anxiety 10y Crude Intercept 3.7 (0.1) <0.001 <0.001 NA 
Social anxiety 10y Crude Clusters: Childhood_2 <0.1 (0.1) 0.957 0.974 NA 
Social anxiety 10y Crude Clusters: Childhood_3 <0.1 (0.1) 0.55 0.706 NA 
Social anxiety 10y Crude Clusters: Childhood_4 <0.1 (0.1) 0.908 0.96 NA 
Social anxiety 12y Crude Intercept 3.7 (0.1) <0.001 <0.001 NA 
Social anxiety 12y Crude Clusters: Puberty_2 <0.1 (0.1) 0.609 0.749 NA 
Social anxiety 12y Crude Clusters: Puberty_3 <0.1 (0.1) 0.661 0.783 NA 
Social anxiety 12y Crude Clusters: Puberty_4 <0.1 (0.1) 0.65 0.775 NA 
Social anxiety 14y Crude Intercept 3.6 (<0.1) <0.001 <0.001 NA 
Social anxiety 14y Crude Clusters: Puberty_2 0.1 (0.1) 0.101 0.201 NA 
Social anxiety 14y Crude Clusters: Puberty_3 0.2 (0.1) 0.017 0.044 NA 
Social anxiety 14y Crude Clusters: Puberty_4 <0.1 (0.1) 0.633 0.76 NA 

Social anxiety 
Infanc
y 

Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 
Infanc
y 

Crude Clusters: Infancy_2 0.1 (<0.1) 0.058 0.123 NA 

Social anxiety 
Infanc
y 

Crude Clusters: Infancy_3 <0.1 (0.1) 0.873 0.942 NA 

Social anxiety 
Childh
ood 

Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 
Childh
ood 

Crude Clusters: Childhood_2 <0.1 (0.1) 0.951 0.974 NA 

Social anxiety 
Childh
ood 

Crude Clusters: Childhood_3 <0.1 (0.1) 0.16 0.269 NA 

Social anxiety 
Childh
ood 

Crude Clusters: Childhood_4 <0.1 (0.1) 0.951 0.974 NA 

Social anxiety 
Pubert
y 

Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 
Pubert
y 

Crude Clusters: Puberty_2 <0.1 (0.1) 0.449 0.63 NA 

Social anxiety 
Pubert
y 

Crude Clusters: Puberty_3 0.1 (0.1) 0.048 0.107 NA 

Social anxiety 
Pubert
y 

Crude Clusters: Puberty_4 <0.1 (<0.1) 0.933 0.972 NA 

Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Intercept 1.6 (0.3) <0.001 <0.001 NA 

Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Clusters: Infancy_2 0.2 (0.1) 0.007 0.021 1.02 

Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Clusters: Infancy_3 <0.1 (0.1) 0.937 0.972 1.02 

Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Child gender: girl 0.4 (0.1) <0.001 <0.001 1.05 

Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Diet quality <0.1 (<0.1) 0.001 0.002 1.07 
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Internalizing 
behavior 

Infanc
y 

Adjuste
d 

Overnight sleep duration <0.1 (<0.1) <0.001 <0.001 1.03 

Externalizing 
behavior 

6y 
Adjuste
d 

Intercept 10.0 (2.0) <0.001 <0.001 NA 

Externalizing 
behavior 

6y 
Adjuste
d 

Clusters: Childhood_2 1.6 (0.7) 0.025 0.06 1.13 

Externalizing 
behavior 

6y 
Adjuste
d 

Clusters: Childhood_3 1.1 (0.7) 0.094 0.192 1.13 

Externalizing 
behavior 

6y 
Adjuste
d 

Clusters: Childhood_4 0.8 (0.7) 0.261 0.4 1.13 

Externalizing 
behavior 

6y 
Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.4 (0.7) 0.04 0.094 1.05 

Externalizing 
behavior 

6y 
Adjuste
d 

Overnight sleep duration <0.1 (0.2) 0.017 0.044 1.09 

Externalizing 
behavior 

12y 
Adjuste
d 

Intercept 10.8 (2.0) <0.001 <0.001 NA 

Externalizing 
behavior 

12y 
Adjuste
d 

Clusters: Puberty_2 1.7 (0.7) 0.021 0.054 1.06 

Externalizing 
behavior 

12y 
Adjuste
d 

Clusters: Puberty_3 1.2 (0.8) 0.15 0.264 1.06 

Externalizing 
behavior 

12y 
Adjuste
d 

Clusters: Puberty_4 <0.1 (0.7) 0.725 0.83 1.06 

Externalizing 
behavior 

12y 
Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.5 (0.6) 0.023 0.057 1.03 

Externalizing 
behavior 

12y 
Adjuste
d 

Overnight sleep duration <0.1 (0.2) 0.01 0.028 1.04 

Externalizing 
behavior 

14y 
Adjuste
d 

Intercept 10.9 (2.1) <0.001 <0.001 NA 

Externalizing 
behavior 

14y 
Adjuste
d 

Clusters: Puberty_2 1.0 (0.7) 0.19 0.308 1.18 

Externalizing 
behavior 

14y 
Adjuste
d 

Clusters: Puberty_3 0.4 (0.7) 0.627 0.758 1.18 

Externalizing 
behavior 

14y 
Adjuste
d 

Clusters: Puberty_4 <0.1 (0.7) 0.49 0.658 1.18 

Externalizing 
behavior 

14y 
Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.1 (0.7) 0.137 0.248 1.13 

Externalizing 
behavior 

14y 
Adjuste
d 

Overnight sleep duration <0.1 (0.2) 0.017 0.044 1.06 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Intercept 10.5 (1.4) <0.001 <0.001 NA 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Clusters: Childhood_2 1.4 (0.5) 0.008 0.023 1.07 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Clusters: Childhood_3 1.1 (0.5) 0.023 0.056 1.07 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Clusters: Childhood_4 0.9 (0.5) 0.047 0.105 1.07 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.6 (0.5) 0.001 0.003 1.03 

Externalizing 
behavior 

Childh
ood 

Adjuste
d 

Overnight sleep duration <0.1 (0.2) <0.001 <0.001 1.05 

Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Intercept 10.8 (1.4) <0.001 <0.001 NA 
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Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Clusters: Puberty_2 1.3 (0.5) 0.01 0.029 1.08 

Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Clusters: Puberty_3 0.7 (0.5) 0.17 0.284 1.08 

Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Clusters: Puberty_4 <0.1 (0.5) 0.434 0.615 1.08 

Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.3 (0.5) 0.006 0.019 1.06 

Externalizing 
behavior 

Pubert
y 

Adjuste
d 

Overnight sleep duration <0.1 (0.2) <0.001 0.002 1.04 

Social anxiety 3m 
Adjuste
d 

Intercept 3.4 (0.3) <0.001 <0.001 NA 

Social anxiety 3m 
Adjuste
d 

Clusters: Infancy_2 0.2 (0.1) 0.003 0.012 1.08 

Social anxiety 3m 
Adjuste
d 

Clusters: Infancy_3 <0.1 (0.1) 0.61 0.749 1.08 

Social anxiety 3m 
Adjuste
d 

Child gender: girl 0.1 (0.1) 0.147 0.262 1.05 

Social anxiety 3m 
Adjuste
d 

Diet quality <0.1 (<0.1) 0.082 0.168 1.26 

Social anxiety 3m 
Adjuste
d 

Overnight sleep duration <0.1 (<0.1) 0.259 0.4 1.05 

Social anxiety 3m 
Adjuste
d 

Paternal education level <0.1 (<0.1) 0.126 0.243 1.16 

Social anxiety 14y 
Adjuste
d 

Intercept 3.5 (0.3) <0.001 <0.001 NA 

Social anxiety 14y 
Adjuste
d 

Clusters: Puberty_2 0.2 (0.1) 0.04 0.093 1.17 

Social anxiety 14y 
Adjuste
d 

Clusters: Puberty_3 0.2 (0.1) 0.015 0.04 1.17 

Social anxiety 14y 
Adjuste
d 

Clusters: Puberty_4 <0.1 (0.1) 0.549 0.706 1.17 

Social anxiety 14y 
Adjuste
d 

Child gender: girl 0.1 (0.1) 0.05 0.11 1.06 

Social anxiety 14y 
Adjuste
d 

Diet quality <0.1 (<0.1) 0.522 0.686 1.2 

Social anxiety 14y 
Adjuste
d 

Overnight sleep duration <0.1 (<0.1) 0.249 0.389 1.15 

Social anxiety 14y 
Adjuste
d 

Paternal education level <0.1 (<0.1) 0.007 0.021 1.17 

Social anxiety 
Pubert
y 

Adjuste
d 

Intercept 3.6 (0.2) <0.001 <0.001 NA 

Social anxiety 
Pubert
y 

Adjuste
d 

Clusters: Puberty_2 0.1 (0.1) 0.074 0.154 1.11 

Social anxiety 
Pubert
y 

Adjuste
d 

Clusters: Puberty_3 0.2 (0.1) 0.004 0.012 1.11 

Social anxiety 
Pubert
y 

Adjuste
d 

Clusters: Puberty_4 0.1 (<0.1) 0.159 0.269 1.11 

Social anxiety 
Pubert
y 

Adjuste
d 

Child gender: girl 0.1 (<0.1) 0.016 0.042 1.08 

Social anxiety 
Pubert
y 

Adjuste
d 

Diet quality <0.1 (<0.1) 0.069 0.145 1.18 
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Social anxiety 
Pubert
y 

Adjuste
d 

Overnight sleep duration <0.1 (<0.1) 0.005 0.017 1.09 

Social anxiety 
Pubert
y 

Adjuste
d 

Paternal education level <0.1 (<0.1) 0.003 0.011 1.14 

Notes. Adjusted models were implemented only when microbial predictor estimates had original unadjusted p < 
0.05 in crude models. In case of multicollinearity, VIF values were measured in adjusted models, and hereby not 
applicable (NA) for crude models.  
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Table S5. Relations between phylogenetic diversity in the first 14 years of life and behavioral outcomes 
at age 14. 

Behavior Age Model Parameter 
Estimate (Std. 
Error) 

p 
Adjusted 
p 

VIF 

Internalizing 
behavior 

1m Crude Intercept 1.1 (0.2) <0.001 <0.001 NA 

Internalizing 
behavior 

1m Crude 
Phylogenetic 
diversity 

0.1 (0.1) 0.346 0.531 NA 

Internalizing 
behavior 

3m Crude Intercept 1.1 (0.2) <0.001 <0.001 NA 

Internalizing 
behavior 

3m Crude 
Phylogenetic 
diversity 

0.1 (<0.1) 0.139 0.224 NA 

Internalizing 
behavior 

4m Crude Intercept 1.3 (0.2) <0.001 <0.001 NA 

Internalizing 
behavior 

4m Crude 
Phylogenetic 
diversity 

<0.1 (0.1) 0.551 0.712 NA 

Internalizing 
behavior 

6y Crude Intercept 1.7 (0.5) 0.001 0.001 NA 

Internalizing 
behavior 

6y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.57 0.715 NA 

Internalizing 
behavior 

10y Crude Intercept 1.7 (0.4) <0.001 <0.001 NA 

Internalizing 
behavior 

10y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.439 0.631 NA 

Internalizing 
behavior 

12y Crude Intercept 1.5 (0.4) <0.001 <0.001 NA 

Internalizing 
behavior 

12y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.989 0.989 NA 

Internalizing 
behavior 

14y Crude Intercept 1.5 (0.4) <0.001 <0.001 NA 

Internalizing 
behavior 

14y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.737 0.869 NA 

Internalizing 
behavior 

Infancy Crude Intercept 1.2 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

Infancy Crude 
Phylogenetic 
diversity 

0.1 (<0.1) 0.099 0.163 NA 

Internalizing 
behavior 

Childho
od 

Crude Intercept 1.7 (0.3) <0.001 <0.001 NA 

Internalizing 
behavior 

Childho
od 

Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.355 0.533 NA 

Internalizing 
behavior 

Puberty Crude Intercept 1.5 (0.3) <0.001 <0.001 NA 

Internalizing 
behavior 

Puberty Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.806 0.902 NA 

Externalizing 
behavior 

1m Crude Intercept 6.3 (0.8) <0.001 <0.001 NA 

Externalizing 
behavior 

1m Crude 
Phylogenetic 
diversity 

<0.1 (0.2) 0.924 0.953 NA 

Externalizing 
behavior 

3m Crude Intercept 6.5 (0.8) <0.001 <0.001 NA 
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Externalizing 
behavior 

3m Crude 
Phylogenetic 
diversity 

<0.1 (0.2) 0.794 0.902 NA 

Externalizing 
behavior 

4m Crude Intercept 6.0 (0.9) <0.001 <0.001 NA 

Externalizing 
behavior 

4m Crude 
Phylogenetic 
diversity 

0.1 (0.3) 0.764 0.885 NA 

Externalizing 
behavior 

6y Crude Intercept 5.8 (1.8) 0.002 0.003 NA 

Externalizing 
behavior 

6y Crude 
Phylogenetic 
diversity 

<0.1 (0.2) 0.866 0.937 NA 

Externalizing 
behavior 

10y Crude Intercept 5.1 (1.6) 0.002 0.003 NA 

Externalizing 
behavior 

10y Crude 
Phylogenetic 
diversity 

0.1 (0.1) 0.467 0.656 NA 

Externalizing 
behavior 

12y Crude Intercept 5.8 (1.6) <0.001 0.001 NA 

Externalizing 
behavior 

12y Crude 
Phylogenetic 
diversity 

<0.1 (0.1) 0.701 0.842 NA 

Externalizing 
behavior 

14y Crude Intercept 5.4 (1.6) 0.001 0.003 NA 

Externalizing 
behavior 

14y Crude 
Phylogenetic 
diversity 

0.1 (0.1) 0.642 0.785 NA 

Externalizing 
behavior 

Infancy Crude Intercept 6.3 (0.5) <0.001 <0.001 NA 

Externalizing 
behavior 

Infancy Crude 
Phylogenetic 
diversity 

<0.1 (0.1) 0.938 0.953 NA 

Externalizing 
behavior 

Childho
od 

Crude Intercept 5.4 (1.2) <0.001 <0.001 NA 

Externalizing 
behavior 

Childho
od 

Crude 
Phylogenetic 
diversity 

0.1 (0.1) 0.488 0.671 NA 

Externalizing 
behavior 

Puberty Crude Intercept 5.6 (1.1) <0.001 <0.001 NA 

Externalizing 
behavior 

Puberty Crude 
Phylogenetic 
diversity 

0.1 (0.1) 0.55 0.712 NA 

Social anxiety 1m Crude Intercept 3.6 (0.1) <0.001 <0.001 NA 

Social anxiety 1m Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.521 0.701 NA 

Social anxiety 3m Crude Intercept 3.5 (0.1) <0.001 <0.001 NA 

Social anxiety 3m Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.065 0.11 NA 

Social anxiety 4m Crude Intercept 3.5 (0.1) <0.001 <0.001 NA 

Social anxiety 4m Crude 
Phylogenetic 
diversity 

0.1 (<0.1) 0.057 0.099 NA 

Social anxiety 6y Crude Intercept 3.7 (0.2) <0.001 <0.001 NA 

Social anxiety 6y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.885 0.942 NA 

Social anxiety 10y Crude Intercept 3.7 (0.2) <0.001 <0.001 NA 

Social anxiety 10y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.854 0.937 NA 

Social anxiety 12y Crude Intercept 3.6 (0.2) <0.001 <0.001 NA 

Social anxiety 12y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.404 0.592 NA 
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Social anxiety 14y Crude Intercept 3.6 (0.2) <0.001 <0.001 NA 

Social anxiety 14y Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.575 0.715 NA 

Social anxiety Infancy Crude Intercept 3.6 (0.1) <0.001 <0.001 NA 

Social anxiety Infancy Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.016 0.03 NA 

Social anxiety 
Childho
od 

Crude Intercept 3.7 (0.1) <0.001 <0.001 NA 

Social anxiety 
Childho
od 

Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.922 0.953 NA 

Social anxiety Puberty Crude Intercept 3.6 (0.1) <0.001 <0.001 NA 

Social anxiety Puberty Crude 
Phylogenetic 
diversity 

<0.1 (<0.1) 0.316 0.496 NA 

Social anxiety Infancy 
Adjust
ed 

Intercept 3.5 (0.2) <0.001 <0.001 NA 

Social anxiety Infancy 
Adjust
ed 

Phylogenetic 
diversity 

<0.1 (<0.1) 0.002 0.004 1.03 

Social anxiety Infancy 
Adjust
ed 

Child gender: girl 0.1 (<0.1) 0.018 0.034 1.05 

Social anxiety Infancy 
Adjust
ed 

Diet quality <0.1 (<0.1) 0.03 0.053 1.25 

Social anxiety Infancy 
Adjust
ed 

Overnight sleep 
duration 

<0.1 (<0.1) 0.003 0.006 1.05 

Social anxiety Infancy 
Adjust
ed 

Paternal education 
level 

<0.1 (<0.1) <0.001 0.001 1.16 

Notes. Adjusted models were implemented only when microbial predictor estimates had original unadjusted p < 
0.05 in crude models. In case of multicollinearity, VIF values were measured in adjusted models, and hereby not 
applicable (NA) for crude models.  
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Table S6. Differences in behavioral relations between disperse Puberty_2 samples and other samples 
in puberty. 

Behavior Age Model Parameter 
Estimate 
(Std. Error) 

p 
Adjusted 
p 

VIF 

Internalizing 
behavior 

12y Crude Intercept 1.5 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

12y Crude 
Group: disperse samples 
in Puberty_2 

<0.1 (0.2) 0.699 0.726 NA 

Internalizing 
behavior 

14y Crude Intercept 1.3 (0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

14y Crude 
Group: disperse samples 
in Puberty_2 

0.4 (0.2) 0.011 0.02 NA 

Internalizing 
behavior 

Pub
erty 

Crude Intercept 1.4 (<0.1) <0.001 <0.001 NA 

Internalizing 
behavior 

Pub
erty 

Crude 
Group: disperse samples 
in Puberty_2 

0.2 (0.1) 0.106 0.136 NA 

Externalizing 
behavior 

12y Crude Intercept 6.2 (0.3) <0.001 <0.001 NA 

Externalizing 
behavior 

12y Crude 
Group: disperse samples 
in Puberty_2 

1.1 (0.9) 0.214 0.251 NA 

Externalizing 
behavior 

14y Crude Intercept 6.0 (0.3) <0.001 <0.001 NA 

Externalizing 
behavior 

14y Crude 
Group: disperse samples 
in Puberty_2 

1.5 (0.7) 0.054 0.079 NA 

Externalizing 
behavior 

Pub
erty 

Crude Intercept 6.1 (0.2) <0.001 <0.001 NA 

Externalizing 
behavior 

Pub
erty 

Crude 
Group: disperse samples 
in Puberty_2 

1.3 (0.6) 0.026 0.041 NA 

Social anxiety 12y Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 12y Crude 
Group: disperse samples 
in Puberty_2 

<0.1 (0.1) 0.936 0.936 NA 

Social anxiety 14y Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 14y Crude 
Group: disperse samples 
in Puberty_2 

0.1 (0.1) 0.059 0.079 NA 

Social anxiety 
Pub
erty 

Crude Intercept 3.7 (<0.1) <0.001 <0.001 NA 

Social anxiety 
Pub
erty 

Crude 
Group: disperse samples 
in Puberty_2 

0.1 (0.1) 0.185 0.227 NA 

Internalizing 
behavior 

14y 
Adjuste
d 

Intercept 1.9 (0.5) <0.001 0.001 NA 

Internalizing 
behavior 

14y 
Adjuste
d 

Group: disperse samples 
in Puberty_2 

0.3 (0.2) 0.057 0.079 1.11 

Internalizing 
behavior 

14y 
Adjuste
d 

Child gender: girl 0.5 (0.1) <0.001 <0.001 1.05 

Internalizing 
behavior 

14y 
Adjuste
d 

Diet quality <0.1 (<0.1) 0.369 0.399 1.08 

Internalizing 
behavior 

14y 
Adjuste
d 

Overnight sleep duration <0.1 (0.1) 0.02 0.034 1.12 

Externalizing 
behavior 

Pub
erty 

Adjuste
d 

Intercept 11.4 (1.5) <0.001 <0.001 NA 
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Externalizing 
behavior 

Pub
erty 

Adjuste
d 

Group: disperse samples 
in Puberty_2 

0.6 (0.6) 0.3 0.338 1.05 

Externalizing 
behavior 

Pub
erty 

Adjuste
d 

Drinking alcohol in the 
past one year: yes 

1.6 (0.5) 0.001 0.002 1.02 

Externalizing 
behavior 

Pub
erty 

Adjuste
d 

Overnight sleep duration <0.1 (0.2) <0.001 <0.001 1.05 

Notes. A positive estimate for parameter group indicates higher behavioral scores in disperse Puberty_2 
samples, in comparison with other samples in puberty. Adjusted models were implemented only when 
microbial predictor estimates had original unadjusted p < 0.05 in crude models. In case of multicollinearity, VIF 
values were measured in adjusted models, and hereby not applicable (NA) for crude models.  
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In the research described in this thesis, we (1) described gut microbiota development in low-
risk community children from birth to the age of 14 years, along with microbiota-related 
factors, and (2) explored relations between the gut microbiota and mental health in aspects 
of problem behavior, executive functions, prosociality, and social anxiety, in the same 
children. In the following sections, I will discuss our keys findings, including enduring 
development of the gut microbiota, the extended role of early-life breastfeeding in relation 
to microbial composition, and the microbiota-behavior interplay in low-risk children. This 
discussion will be followed by addressing necessary steps on the path from correlation to 
causation, the selection of confounders, and the use of integrative analytical approaches. 

Gut microbiota development is a long dynamic journey 
It is widely believed that child gut microbiota reaches a status of maturity, which highly 
resembles adult microbial profiles, within the first three years of life (Yatsunenko et al., 2012). 
However, according to the findings reported in this thesis (Chapter 3 and Chapter 5) and 
earlier studies (Agans et al., 2011; Cheng et al., 2016; Hollister et al., 2015; Ringel-Kulka et al., 
2013), a stable maturation stage may arrive later than previously expected, probably as a 
result of numerous extrinsic factors. 

Herein, we identified three gut microbial clusters in infancy, four in middle 
childhood, and another four in puberty, which exhibited different compositional features. 
Remarkably, infant clusters conformed to Bifidobacterium-enriched and -depleted groups 
which were reported earlier (Borewicz et al., 2019; Dogra et al., 2015; Hill et al., 2017; Matsuki 
et al., 2016; Roswall et al., 2021; Stewart et al., 2018). 

Based on Figure 1 in Chapter 3 and Figure 1a in Chapter 5, we observed four 
potentially predominant transitional patterns (TPs; characterized as displaying a transitional 
rate higher than 10% between every two consecutive microbial clusters) that proceed from 
the clusters determined in middle childhood (ages of six and ten years) to those observed in 
puberty (ages of 12 and 14 years). In addition to these main TPs (TP1, TP2, TP4, and TP5; with 
the numberings determined by the order of clusters; Figure 1a), we found a fifth TP (TP3) 
predominated by Prevotella 9, although TP3 did not exceed the 10% transitional rate. TP3 
included transitions between Childhood_2 and Puberty_2 in this period. Whether these 
predominant TPs exist in another cohort or different populations awaits to be confirmed in 
the future. 
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Figure 1. Features of microbial clusters in middle childhood and puberty. (a) transitional patterns of 
microbial clusters. TP1, TP2, TP4, and TP5 were potentially predominant transitional patterns with 
transitional rates higher than 10% between every two consecutive microbial clusters. TP3 was not a 
predominant transitional pattern but numerically enriched in Prevotella 9. (b) average relative 
abundances of microbial taxa at the genus level in microbial clusters in middle childhood (average over 
ages six and ten years) and puberty (average over ages 12 and 14 years). Others represent genus-level 
taxa with relative abundances lower than 1%. 
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Some compositional features were commonly shared between childhood and 
pubertal clusters within several of the transitional trajectories (Figure 1b). TP1 and TP5 were 
characterized by continuously low and high phylogenetic diversity, respectively. 
Furthermore, TP3 was enriched in Prevotella 9, a fiber-favoring but proinflammation-
relevant taxon (Tett, Pasolli, Masetti, Ercolini, & Segata, 2021). In contrast, TP2 and TP4 
exhibited transitional modes with more pronounced fluctuations. Interestingly, these two 
patterns converged to the same developing pattern at the age of ten to 14 years, although 
they started from different microbial clusters at the age of six years. However, it is not yet 
clear which specific factors drive such a notable shift and bring out subsequent consistency. 
To sum up, on the one hand, the stability of TP1, TP3, and TP5 suggests that some children 
may start establishing a stable gut microbiota ecosystem from middle childhood and 
maintain this stability when transitioning into puberty. On the other hand, the fluctuations 
in TP2 and TP4 imply that some children may maintain a more dynamic gut microbial 
ecosystem due to larger changes in environmental factors, either known or unknown (Falony 
et al., 2016; Gacesa et al., 2022; Rothschild et al., 2018; Zhernakova et al., 2016). Future studies 
may benefit from exploring how transitional trajectories of the gut microbiota are associated 
with environmental factors of the host, in particular whether factor strengths and durations 
would stimulate microbial changes in composition and functionality to a different extent. 

Finally, one cluster in puberty, i.e., Puberty_3, failed to show the stability observed 
in all other pubertal clusters. Instead of staying at the same cluster, children within 
Puberty_3 exhibited divergent transitions from age 12 to 14. Additionally, Puberty_3 was 
numerically enriched in Bifidobacterium, a taxon thought to be abundant in early-aged 
children but decreasing till adulthood (Derrien, Alvarez, & de Vos, 2019), suggesting that 
Puberty_3 might reflect a more immature state. Replications are warranted to confirm these 
findings on predominant transitional patterns in healthy developing children. 

Extended role of breastfeeding in shaping gut microbiota 
composition 
The developing gut microbiota in middle childhood was associated with early-life 
breastfeeding (Chapter 3). This long-lasting relation with breastfeeding confirmed earlier 
prospective findings by Zhong et al. and Cioffi et al. in children at an average age of seven 
and 11 years, respectively (Cioffi, Tavalire, Neiderhiser, Bohannan, & Leve, 2020; Zhong et al., 
2019). Together, this evidence implies an extended role of breastfeeding in forming gut 
microbiota composition. Note, however, that our longitudinal data showed that the variation 
in microbial composition explained by breastfeeding diminished from infancy to middle 
childhood, suggesting an enduring but declining relation between breastfeeding and the gut 
microbiota. 

Notably, although statistical tests showed significant relations between 
breastfeeding and microbial composition in this thesis, breastfeeding only explained a 
moderate amount of interindividual variation in microbiota during infancy and middle 
childhood (adjusted R2% = 0.556% and 0.329%, respectively). This is in line with previous 
findings (Stewart et al., 2018; Zijlmans, Korpela, Riksen-Walraven, de Vos, & de Weerth, 2015) 
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and with the results of several large-scale population studies, each comprising thousands of 
participants, that found no more than 20% of microbial variation to be collectively explained 
by environmental and genetic factors, with a large part of the variance in the gut microbiota 
remaining unexplained (Falony et al., 2016; Gacesa et al., 2022; Rothschild et al., 2018; 
Zhernakova et al., 2016). This “missing variance” may be attributed to additional factors that 
are currently unknown or undetectable. 

The gut microbiota is related to behavior in low-risk community 
children 
The interplay between the gut microbiota and brain functioning has been observed in many 
animal models and human case-control studies (Bundgaard-Nielsen et al., 2020; Cheung et 
al., 2019; Cryan et al., 2019; Hai yin Jiang et al., 2018; Sukmajaya, Lusida, Soetjipto, & Setiawati, 
2021). However, it remains undetermined if the gut microbiota is related to the development 
of mental health in low-risk community children. In this thesis, we explored the relations 
between the gut microbiota and child behavior, based on both cross-sectional and 
longitudinal studies. Multiple potential microbiota-behavior links were unveiled herein. 
Among them, two genus-level microbial taxa, i.e., Prevotella 9 and Phascolarctobacterium, 
appear to stand out. 

Prevotella 9 at the ages of six and ten years was positively related to mother- and 
child-reported externalizing behavior at the age of ten years (Chapter 3). Such positive links 
were also discerned between this taxon at the age of 12 years and mother-reported 
externalizing behavior at the same age (Chapter 4), and between Prevotella 9-enriched 
clusters in middle childhood and puberty and child-reported externalizing behavior at the 
age of 14 years (Chapter 5). A previous study reported increased Prevotella spp. at the age of 
one year being related to fewer internalizing difficulties at the age of two years (Loughman 
et al., 2020), whereas two other studies did not find such a relation in children (Laue et al., 
2021; Van De Wouw et al., 2022). Divergent results of Prevotella spp. were also observed in 
children with mental disorders often characterized by externalizing behavior, such as autism 
spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) (Bundgaard-
Nielsen et al., 2020; De Angelis et al., 2013; Hai-yin Jiang et al., 2018; Kang et al., 2013; Li et 
al., 2022; Prehn-Kristensen et al., 2018; Wang et al., 2020). This discrepancy between findings 
might be due to large interindividual heterogeneity amongst studies and functionally-
diverse species within Prevotella (Tett et al., 2021). 

Phascolarctobacterium in middle childhood was positively associated with mother-
reported externalizing behavior at age ten (Chapter 3), and a similarly positive link was 
found cross-sectionally between this taxon and child-reported externalizing behavior at age 
14 (Chapter 5). To our knowledge, Phascolarctobacterium has not been positively related to 
externalizing problems previously (Laue et al., 2021; Loughman et al., 2020; Van De Wouw 
et al., 2022). However, two systematic reviews about ASD and major depressive disorder 
(MDD), found overgrowing Phascolarctobacterium in patients (Cheung et al., 2019; Iglesias-
Vázquez, Van Ginkel Riba, Arija, & Canals, 2020), whereas one study consisting of three 
aircraft crew members, found more Phascolarctobacterium being linked to better mood 
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conditions (Li et al., 2016). Researchers have speculated that Phascolarctobacterium might 
affect outward-directed behavioral issues by producing the short-chain fatty acid propionate 
(Ikeyama et al., 2020). This speculation needs to be validated in future experiments. 

Repeated consistent results at different time points reported in this thesis suggest 
Prevotella 9 and Phascolarctobacterium as potential taxa that participate in the microbiota-
behavior interplay. Once our findings on these taxa can be confirmed in another similar 
cohort sufficient in sample size and bias control, we can make a step towards addressing 
underlying mechanisms and causal relations to behavioral conditions. 

Moving from correlation to causation 
As presented in this thesis, our observational studies uncovered multiple interesting 
correlations between the gut microbiota and child behavior. However, as the well-known 
phrase says, “correlation does not imply causation”. It remains a great challenge to translate 
correlational findings into conclusive proofs of causality, especially along the human 
microbiota-gut-brain axis (MGBA). To add more insight on this axis, a workflow for 
exploring causal relations is introduced (Figure 2). 
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Figure 2. The workflow of shifting sequence-based correlative results into causality. MGBA, microbiota-
gut-brain axis; GLP-1, glucagon-like peptide 1; PYY, peptide YY. (created with https://biorender.com/) 
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Step 1 shows two common types of microbial composition-based correlations, 
including differentially abundant taxa between groups and linear relations between taxa and 
observable traits. Although these correlations have been reported in an increasing number 
of studies, little convergence in correlation direction and strength has been reached till now. 

Step 2 introduces several approaches to verify the consistency of the observed 
correlations. A useful strategy to synthesize diverse outcomes from the literature into a 
general opinion is meta-analysis. Meta-analyses have been conducted on behavioral profiles 
on which considerable evidence has been collected to date, such as on ASD (Bundgaard-
Nielsen et al., 2020; Iglesias-Vázquez et al., 2020), MDD (Cheung et al., 2019), ADHD 
(Bundgaard-Nielsen et al., 2020; Sukmajaya et al., 2021), and temperament (Alving-Jessep, 
Botchway, Wood, Hilton, & Blissett, 2022). Although, to my knowledge, meta-analyses have 
not yet been applied to assessing microbiota-behavior links in community samples due to 
the limited number of studies, such analyses are highly recommended, once there are 
sufficient data. When meta-analyses are not feasible, the robustness of results within one 
study can be enhanced by performing repeated measures or including a validation data set. 

Relative abundance-based correlations are widely used in describing microbial links 
to mental outcomes. However, relative abundance data have some inherent limitations, 
including increased correlational biases and false discovery rates. This may lead to an 
insufficient power to fully capture inter-individual variations in microbial composition 
(Barlow, Bogatyrev, & Ismagilov, 2020; Jian, Luukkonen, Yki-Järvinen, Salonen, & Korpela, 
2020; Vandeputte et al., 2017). Therefore, instead of only using relative abundances, it is 
recommended to additionally include absolute abundances (or microbial load; measured by 
e.g., quantitative PCR or flow cytometry) when attempting to convert statistically significant 
findings into biological interpretations. 

Once the consistency of the observed correlations is verified, we can give more 
attention to the inference of molecular mechanisms. To this end, an integrative use of omics-
driven approaches is suggested in Step 3. Microbial gene functions can be the first accessible 
indicators for explaining the complex gut-brain interplay. For broadly used 16S rRNA gene 
sequence data, prediction tools, such as Picrust2 (Chapter 3), Tax4Fun2, and PanFP 
(Douglas et al., 2020, 2019; Jun, Robeson, Hauser, Schadt, & Gorin, 2015; Wemheuer et al., 
2020), can leverage the data to the maximum. Although these prediction tools have been 
criticized for reference bias and limited resolution (Douglas et al., 2020), the increasing 
availability of reference data renders them more feasible alternatives to the still quite 
expensive shotgun metagenomic sequencing. Additionally, other omic techniques can be 
incorporated into the selection process of key pathways and possible biomarkers (Manzoni 
et al., 2018): (1) transcriptomics provides information on sample-specific gene expression 
features; (2) proteomics measures the entire set of proteins in target samples and therefore 
can be used to discover potential biomarkers; and (3) metabolomics studies metabolites in 
target samples and hence can help increase the understanding of relevant molecular 
pathways in specific conditions. 

Before validating the inferred molecular mechanisms of candidate taxa, Step 4 
emphasizes the importance of isolation, cultivation, and characterization of specific 
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microorganisms. Availability of cultured representatives of target microorganisms is a 
prerequisite to meet the demand of experimental designs and even therapeutic strategies. A 
study in 2005 reported that approximately 80% of human gut bacteria have not been cultured 
yet (Eckburg, 2005). With high-throughput cultivation approaches being developed rapidly, 
it will be technically possible in the coming decades to produce personalized collections of 
gut microbial taxa with known genotypical and phenotypical characteristics (Clavel, Horz, 
Segata, & Vehreschild, 2022). In addition to collecting single microorganisms, it is also 
important to intensify research on studying interactions between various microorganisms: 
not only predominant bacteria, but also other microbes, such as fungi and archaea (Clavel et 
al., 2022). Fungi regulate gut immunity and are involved in gut-related diseases, such as 
inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer (Richard & 
Sokol, 2019). After millions of years of coevolution, gut fungi and bacteria have developed 
various types of interactions, including mutualistic, commensal, and competitive relations 
(Richard & Sokol, 2019). Archaea in the human gut, mainly composed of methanogens, 
produce methane (i.e., a potential neuromodulator and immunoregulator) and affect host 
gut motility (Borrel, Brugère, Gribaldo, Schmitz, & Moissl-Eichinger, 2020). Also archaea 
interact with bacteria in the gut by utilizing bacteria-derived products and consuming 
hydrogen which improves energy yield and shifts metabolic outcomes (Borrel et al., 2020). 
These complex interactions between host, bacteria, fungi, and archaea constitute important 
challenges, but also underline the value of efforts aimed at obtaining a more detailed picture 
of these dynamic interactions. Only then will we be able to determine more precisely how 
different microorganisms influence host phenotypes. 

Step 5 presents currently available in vitro and in vivo models used in validating 
pathways (e.g., immunity, endocrine system, and vagus nerve as three main pathways) along 
the MGBA (Cryan et al., 2019; Morais, Schreiber, & Mazmanian, 2021). Depending on study 
designs, different in vitro and in vivo models can be selected, such as organoids and animals 
(e.g., rodents, zebrafish, fruit fly, and nematodes), respectively (Cryan et al., 2019; Horvath 
et al., 2022; Nagpal & Cryan, 2021). For instance, organoids are self-organized three-
dimensional tissue constructs that show in vivo-like structure and regional specification 
(Moysidou & Owens, 2021). To model microbial interactions with gut organoids, microbes 
or microbe-derived metabolites are injected into the inner part of organoids, and 
morphological and physiological traits of organoids are determined (Moysidou & Owens, 
2021). Additionally, in vivo rodent models mimic potential causes and phenotypic outcomes 
of certain mental disorders (e.g., ASD, and depression and anxiety disorders), adding 
invaluable credits to causality exploration (Nagpal & Cryan, 2021; Nestler & Hyman, 2010). 
For example, probiotic Lactobacillus reuteri was applied to specific-gene mutant rodent 
models with behavioral deficits, and this taxon rescued social deficits and improved oxytocin 
levels (Nagpal & Cryan, 2021). According to the FAO/WHO definition, a probiotic strain 
must be (1) sufficiently characterized, (2) safe for the intended purpose, (3) supported by at 
least one human clinical study, and (4) alive at an adequate amount during shelf life (Binda 
et al., 2020). Although not all candidate taxa may seem qualified probiotics, metabolites 
derived from them may be interesting biomarkers or even drugs for various mental disorders. 
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Despite the feasibility given by model organisms in exploring causality, it is 
important to reiterate that observable behavioral traits are different between model 
organisms and human beings, which to some extent impedes the translation from bench to 
bedside (Cryan et al., 2019). For this reason, well-established validity standards must be 
applied to animal studies beforehand (Morais et al., 2021). Moreover, it has to be noted that 
the gut microbiota is a highly complex and interactive consortium, and studies of this 
community should not be restricted to specific microorganisms. How microbes interact with 
each other and jointly influence host phenotypes at a molecular level is an essential part of 
the puzzle that should receive more attention over the coming years. 

Challenges in selecting confounders 
For observational studies aiming to infer potential causal relations, it remains a major 
concern to reduce confounding effects (VanderWeele, 2019). Confounders are variables that 
influence both predictor and outcome variables. It is not a simple endeavor to identify 
confounders in studies focused on associations between complex systems with numerous 
variables (e.g., the gut microbiota and host behavior), as knowledge about the relations 
between these variables is often insufficient and unavailable. 

In the following paragraphs, I present several considerations for choosing 
confounders, with the goal of inspiring the field: 

(1) It is common in this field to choose potential confounders by referring to what 
has been previously reported in the literature. However, for the studies presented in this 
thesis, the current scarcity of research about associations of the gut microbiota with problem 
behavior meant that very few references were available for confounder selection. Also, as the 
gut microbiota and behavior are sensitive to many variables (known vs unknown; detectable 
vs undetectable), it is nearly impossible to include all of them. To visualize such complex 
relations, a directed acyclic graph (DAG) can be helpful, as it provides insight into variables 
that have to be accounted for (Textor, Hardt, & Knüppel, 2011). Criteria to identify such 
variables with the use of DAGs have been elaborated by Cinelli et al. (Cinelli, Forney, & Pearl, 
2020). In microbiota research, Eckermann et al. used a DAG to graphically describe potential 
confounders of the relation between the gut microbiota and executive functions. This in turn 
provided a strong rationale for choosing confounders (Eckermann, Ou, Lahti, & de Weerth, 
2022). 

(2) When assessing a confounding effect, statistical significance is often determined 
based on a simple p value. The p value is used to decide whether to accept or reject the null 
hypothesis. Although being widely adopted so far, more and more researchers have called 
for an end of simply using such a conventional and dichotomous way when declaring if an 
outcome rebuts or supports a hypothesis (Amrhein, Greenland, & McShane, 2019). Instead 
of being overdependent on a p value, more attention should be given to a confidence interval 
(or a credible interval), which provides the range of plausible values of a relation (Schober & 
Schwarte, 2018). 

(3) Collinearity can happen when two or more variables are strongly inter-related. 
Although researchers are aware of this phenomenon, the degree of collinearity has not been 
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frequently reported in previous microbiota studies. Including confounders with high 
collinearity levels can distort the interpretation of outcomes, and for this reason pre-
checking collinearity is needed. 

(4) Presenting both crude relations without confounders and adjusted relations with 
confounders is a common practice in epidemiological research (Kong, Zhang, Cao, Mao, & 
Lu, 2020; Verkouter et al., 2019; Vissing, Chawes, Rasmussen, & Bisgaard, 2018). This provides 
information about how confounders influence associations and increases the interpretability 
of outcomes. For this reason, it is advisable to show both relations when studying 
microbiota-behavior links.  

In sum, there is no gold standard method for confounder selection and no consensus 
on which confounders have to be included in studies linking gut microbiota to behavior in 
children. As a consequence, different studies often comprise a varied set of confounders, 
making comparisons and meta-analyses often hard to implement. Following the suggestions 
presented above can help improve the solidity and comparability of the results of this 
research field. 

Exploring the MGBA through integrative analytical approaches 
The gut microbiota is a highly complex system. Compositional analysis by amplicon 
sequencing generates a vast amount of data, which are usually high-dimensional, 
phylogenetically-structured, zero-inflated, and over-dispersed (Chen & Chen, 2018). These 
microbial features pose great difficulties when examining microbial communities. Using a 
suitable method that can better handle such features can improve the interpretation of 
outcomes. In the following, I discuss the pros and cons of several complementary and 
sophisticated biostatistical approaches, used to explain microbial relations to behavioral 
measures in this thesis: (1) constrained methods such as redundancy analysis (RDA), (2) 
random forest algorithm (RF), (3) the framework of Dirichlet multinomial mixtures (DMM), 
(4) generalized linear models (GLMs), and (5) Bayesian linear models. 

RDA directly shows how much variation in microbial composition is explained by 
behavioral measures. By drawing a triplot including samples, microbial taxa, and behavioral 
measures, we can deduce which taxa fit an RDA model the best and how taxa are potentially 
related to mental outcomes. This then provides information for follow-up validations of 
specific taxa. However, as RDA assumes linear relations between microbial data and 
behavioral measures, it is not suitable to explain complex non-linear relations. As a more 
appropriate alternative, another constrained ordination analysis, i.e., canonical correlation 
analysis (CCA), can be used for analyzing unimodal relations. 

Compared to RDA (or CCA) models, RF models can identify both linear and non-
linear relations between microbial data and behavioral outcomes. However, RF models work 
best with a large number of samples, and hence their results must be interpreted with 
caution when sample size is limited. When working with adequate samples, RF models 
provide useful information regarding the importance of specific microbial taxa, and permit 
selection of relevant taxa for downstream validations. 
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DMM can compress complex high-dimensional microbial data into a simplified low-
dimensional matrix and is therefore considered to be a useful tool in identifying microbial 
patterns with different compositional features. This can largely facilitate the comparisons of 
mental outcomes between compositional patterns. However, it is important to note that 
reduction of dimensionality increases the risk of unexpectedly losing relevant information 
in the data. 

In addition to the three multivariate analytical approaches aforementioned, GLMs 
and Bayesian linear models can be used to explore univariate relations between single 
microbial taxa and behavioral measures, which have been used in our research and previous 
studies (Hermes, Eckermann, de Vos, & de Weerth, 2020; Valles-Colomer et al., 2019). In 
general, running a GLM is quicker and computationally less demanding compared to 
running a Bayesian linear model. However, Bayesian models outperform GLMs in several 
aspects (Dunson, 2001): (1) using a posterior distribution as an alternative to a p value; (2) 
able to incorporate previous information from literature by including a prior probability 
distribution; and (3) extreme flexibility in straightforwardly fitting models to a complex data 
set with missing observations and multidimensional outcomes. Using these models can help 
shed light on specific taxa that have the potential of being key biomarkers. 

Note that single models may never adequately represent all aspects of the highly 
complex MGBA. For this reason, an integrative use of analytical approaches in exploring the 
MGBA in observational studies appears highly advisable. Up till now, an increasing number 
of techniques have been developed to achieve specific goals in the field of the gut microbiota. 
One major goal is the identification of differentially abundant microbial taxa between 
different groups of participants. For this aim, methods such as LEfSe (Linear discriminant 
analysis Effect Size), MaAsLin2 (Microbiome Multivariable Associations with Linear Models), 
ANCOM (Analysis of Composition of Microbiomes), and ALDEx2 (ANOVA-like Differential 
Expression analysis), have been designed. However, determinations of differentially 
abundant taxa can vary drastically between methods due to varying concepts, algorithms, 
and requirements, and hence it is necessary to consider such discrepancy when comparing 
findings between studies (Nearing et al., 2022). Moreover, due to a recent growing body of 
longitudinal microbiota cohorts, longitudinal methods have been developed to capture both 
intra-individual dynamics and inter-individual differences between groups of interest 
(Kodikara, Ellul, & Lê Cao, 2022). For example, a time-course gene set analysis has been 
developed and is able to detect a change of a group of genes over time (Hejblum, Skinner, & 
Thiébaut, 2015). In 2021, Roswall et al. implemented this time-course analysis to a 
longitudinal child cohort and distinguished four microbial developmental trajectories from 
birth to the age of five years (Roswall et al., 2021). However, to date, longitudinal methods 
have not been frequently applied to real microbiota data, and their performance awaits to be 
validated. Summarizing, to obtain the most thorough description and information-rich view 
of the MGBA in observational studies, it is highly recommended to implement multiple 
complementary and sophisticated statistical approaches. 
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Concluding remarks and future perspectives 
As reflected in this thesis, the development of the gut microbiota is a long-term process. 
Numerous factors, both known (explaining no more than 20% of microbial variation) and 
unknown, shape gut microbial communities to adapt to the ever-changing environment 
during sensitive time windows (Falony et al., 2016; Gacesa et al., 2022; Rothschild et al., 2018; 
Zhernakova et al., 2016). The results reported here showed that as a consequence of these 
factors, the gut microbiota, represented by microbial clusters with varying compositional 
features, developed in different trajectory patterns from birth till the age of 14. The frequency 
of inter-cluster transitions decreased distinctly in puberty compared to the first ten years of 
life, likely suggesting that a stable gut microbiota is consolidating at this age. Although our 
results regarding gut microbiota development are based on relatively large-sized community 
samples followed over an extended period, it is important to confirm our findings in other 
even larger populations in the future. A design including repeated measures of the gut 
microbiota is also advisable, as day-to-day variations of microbial relative and absolute 
abundances appear to be substantially larger within individuals than between individuals 
(Vandeputte et al., 2021). Furthermore, a more frequent use of whole-genome shotgun 
metagenomic sequencing is recommended, due to its enhanced detection of microbial taxa 
at the species level and improved prediction of microbial gene functions (Ranjan, Rani, 
Metwally, McGee, & Perkins, 2016). Additionally, instead of overreliance on relative 
abundances (characterized by some inherent limitations, such as more correlational biases, 
high false discovery rates, and the insufficiency to describe inter-individual differences), 
absolute abundances should be considered more often in future microbiota research (Barlow 
et al., 2020; Jian et al., 2020). Moreover, a time-course analysis may be an ideal approach to 
distinguish developmental trajectories of the gut microbiota in a longitudinally-designed 
study (Hejblum et al., 2015; Roswall et al., 2021). 

In the current thesis, breastfeeding was found to show a long-lasting relation to the 
gut microbiota. In addition to feeding types, factors such as age, delivery mode, introduction 
of solid food, also explained microbial variance, albeit only to a limited extent. It is 
noteworthy that more than 80% of microbial variance cannot yet be explained by known 
environmental and genetic factors, as concluded in large-scale population research (Falony 
et al., 2016; Gacesa et al., 2022; Rothschild et al., 2018; Zhernakova et al., 2016). This, together 
with a lack of knowledge on the nature of interactions between the gut microbiota, and 
between the microbiota and the environment, indicate a necessity to deeply explore such 
microbial interplay. 

To conclude, main contributions of this thesis were the associations found between 
the gut microbiota and behavioral development in community children from birth to 14 years 
of age. Nevertheless, it is important to stress the fact that correlation does not imply 
causation. At this highly exploratory stage of the field, few studies exhibit consistency in 
directions of such relations. Therefore, the first priority is to carry out bias-controlled 
replication studies to reach consensus on the type and direction of associations. Once 
consistency is determined, more attention can be given to causal relations. To infer 
mechanistic causations, it is advisable to adopt integrative omics-driven approaches, such as 
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metagenomics for predicting gene functions and metabolomics for profiling functional 
metabolites. These approaches require strong bioinformatic and biostatistic support. The 
selected gene functions and potential functional metabolites can then be carefully validated 
in suitable in vitro and in vivo models (Cryan et al., 2019; Horvath et al., 2022; Nagpal & Cryan, 
2021). As I summarized earlier, although relative abundances are useful in describing 
microbial compositional features, more biologically insightful interpretations regarding the 
MGBA can be acquired through absolute abundances (or microbial load). Finally, yet 
importantly, the gut microbiota is a highly complex and interactive ecosystem, and for this 
reason future research should not only focus on a specific microbe but also look at how 
microbial interactions jointly influence host mental development and health. 
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The human gut is inhabited by a huge number of microorganisms that are intimately 
involved in many fundamental aspects of host fitness. In the past two decades, increasing 
attention has been paid to the role of microorganisms in the microbiota-gut-brain axis. 
Through this axis and during sensitive periods such as infancy and puberty, the gut 
microbiota may hold more conspicuous relations to the gradually maturing host brain than 
at any other time point. The research described in this thesis focused on (1) the development 
of the gut microbiota as well as factors related to this development from birth to puberty, 
and on (2) how the gut microbiota was associated with child mental development and health 
in two longitudinal Dutch community cohorts (BINGO and BIBO). 

Chapter 1 first briefly introduced the gut microbiota, touching upon its definition, 
relevant determining factors, development in early ages, and importance in health and 
disease, in particular its potential links to cognition and problem behavior in infancy and 
childhood. Furthermore, this chapter introduced experimental approaches used in 
deciphering gut microbiota composition and statistical methods used in disentangling 
microbial relations to host observable traits. 

Chapter 2 explored relations between the gut microbiota and problem behavior and 
executive functions in the first three years of life in the BINGO cohort. By performing age-
specific and time trajectory analyses, multiple associations were discerned. Increased relative 
abundance of the genus Streptococcus, specifically at age two weeks and generally over the 
first three years, was related to worse performances in executive functions at age three years. 
Furthermore, relative abundance of [Ruminococcus] torques, a group that has been linked to 
inflammation, was inversely related to internalizing difficulties at age three years and over 
the period from age one to three years. In addition, three robust age-specific relations were 
observed: higher relative abundances of Bifidobacterium at age three years were linked to 
more problem behavior at the same age; higher Blautia relative abundances were associated 
with fewer internalizing difficulties in aged-three children; and increased relative 
abundances of an unidentified taxon within the Enterobacteriaceae family at age two weeks 
were related to more externalizing behavior at age three years. Moreover, evidence was 
found that higher alpha diversity at age two weeks was related to fewer internalizing 
problems and better executive functions at age three. 

Chapter 3 described transition patterns of developing gut microbiota in the first ten 
years of life in children of the BIBO cohort. Three distinguishable microbial community 
patterns were identified in infancy, and another four microbiota patterns were pinpointed 
in childhood via clustering analyses. One infant microbial cluster increased in prevalence 
with age, and two childhood microbial clusters became more widespread from age six to ten 
years. Regarding compositional features, two infant microbial clusters were predominated 
by Bifidobacterium, and one childhood cluster was strongly enriched in Prevotella 9, 
resembling a human enterotype seemingly independent of age. Notably, breastfeeding 
contributed to variation in microbiota composition up to age ten, implying a potential 
enduring influence on gut microbial ecology. No associations were observed between 
microbial clusters and problem behavior in this study. However, we found that increased 
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relative abundance of Prevotella 9 in childhood was related to more mother-reported child 
externalizing behavior at age ten, which was further verified by child reports. 

In Chapter 4, we designed a cross-sectional study for twelve-year-old BIBO children. 
This study explored gut microbiota compositional differences between boys and girls at the 
onset of puberty, and investigated gut microbiota composition as well as microbiota-derived 
metabolites in relation to child behavior, also taking gender into account. Importantly, both 
relative and absolute abundance data of the gut microbiota were included. We observed 
subtle gender-specific differences in gut microbiota beta diversity but not in alpha diversity 
or individual taxon abundances. Regarding microbial relations to child behavior, 
Ruminococcaceae UCG 004 and Parasutterella displayed positive relations to mother-
reported internalizing behavior, being consistent between relative and absolute abundance 
measures. Also, increased Odoribacter was related to less mother-reported externalizing 
behavior, and increased Parasutterella was associated with less child-reported prosocial 
behavior. Moreover, we detected a positive trend between Prevotella 9 and mother-reported 
externalizing difficulties, confirming our earlier findings on the same community group in 
middle childhood. Finally, Parasutterella, Coprococcus 3, and Ruminococcaceae UCG 003 
showed gender-dependent relations to internalizing, externalizing, and prosocial behavior, 
respectively. Concentrations of fecal short-chain fatty acids and branched-chain fatty acids 
did not exhibit relations to any behavioral measures. Except for valerate and isovalerate, no 
gender-related differences were observed in associations between microbiota-derived 
metabolites and behavioral scales. 

In Chapter 5, to extend our knowledge on long-term microbial relations to child 
behavior, we linked the gut microbiota in the first 14 years of life to problem behavior and 
social anxiety at age 14. First, we delineated gut microbiota development over this period, by 
incorporating microbial clusters that were reported in Chapter 3 with newly-identified ones 
at the age of 12 and 14 years. Four distinct microbial clusters were observed in puberty, three 
of which resembled age-independent enterotypes in compositional features. Most children 
within these three clusters stayed in the same clusters from age 12 to 14, implying stability in 
microbial development and transition during this period. Two Prevotella 9-predominated 
clusters, including one in middle childhood and the other one in puberty, showed more 
externalizing behavior at age 14. Additionally, children from one Faecalibacterium-depleted 
cluster in puberty exhibited more difficulties regarding social anxiety at age 14. This was 
confirmed by a negative relation between Faecalibacterium and social anxiety in aged-
fourteen children. 

Chapter 6 discussed the main findings of this thesis and the challenges encountered. 
Our studies depicted continued development of the gut microbiota from birth to puberty 
and shed light on latent relations between the gut microbiota and child mental development 
and health during sensitive time windows. To translate our correlation-based results into 
causality, these findings must be first carefully verified in other bias-controlled research. 
Once consistent outcomes are achieved, further inference on underlying mechanisms can be 
achieved by incorporating omics-driven approaches. Such analyses might point towards 
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specific pathways along the microbiota-gut-brain axis that can be targeted for ensuing 
validations in suitable model organisms.
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