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well-watered controls. The soc1ful mutant and the p35S:AHL15 
overexpression line were least affected by drought based on 
the rosette phenotype (less wilting of leaves, less reduction of 
rosette size) and the small reduction of chlorophyll content 
when compared with the control individuals. The droughted 
individuals of Sha showed intermediate phenotypic drought 
stress-related signs compared with the control batch, such as a 
minor reduction in leaf rosette size, more wilting of leaves, and 
a slightly higher decrease of chlorophyll content (Fig. 1A, B). 
In contrast, the rosette leaves were more reduced in size in the 
droughted individuals of Col-0, Kel-4, and Cvi compared with 
the well-watered control plants (Fig. 1A); likewise, leaves and 
inflorescence stems in the droughted batch of these three geno-
types were considerably more wilted compared with the control 
plants (Fig. 1A), along with the stronger chlorophyll reduction 
in the rosette leaves (Fig. 1B). With regards to Chl b reduc-
tion during the drought experiment, two significantly different 
genotype groups could be defined: one group comprising Col-
0, Cvi, and Kel-4 (62, 67, and 46% reduction, respectively) and 
the other comprising Sha, soc1ful, and p35S:AHL15 (31, 13, 
and 27% reduction, respectively) (F=15.83, P=0.00212). For 
Chl a reduction, significant differences were detected among 
the genotypes (F=181.6, P=1.84e−06), except for soc1ful and 
p35S:AHL15 that presented a similar reduced value (10% and 
12% reduction). This is also the case for total chlorophyll (Chl 
a+b) reduction (F=168.1, P=2.32e−06) (Fig. 1B).

In order to estimate how each Arabidopsis genotype senses 
drought stress at the molecular level, we measured the ex-
pression of four selected drought marker genes at the end of 
the 15–17 d drought treatment. In the ecotypes with an in-
termediate level of stem lignification (Col-0 and Kel-4) and 
the one with the least lignified stems (Cvi), all four drought-
responsive genes were up-regulated under drought compared 
with well-watered conditions (Fig. 1C). In contrast, the four 
drought-response genes in the more lignified genotypes Sha, 
the overexpression line p35S:AHL15, and soc1ful were sig-
nificantly less induced under drought treatment. Interestingly, 
p35S:AHL15 showed no difference in ABI2 and AREB1 ex-
pression level between drought and control conditions (–0.45 
and –1.37 log2 fold change, respectively). Regarding the 
changes in the expression of each gene between drought and 
control conditions among genotypes studied, we found that 
the change of RD29A expression was similar between Col-0 
and Cvi (~6.9 log2 old change). Still, these two genotypes were 
significantly different from the rest (2.8–4.7 log2 fold change) 
(F=10.2, P=0.00021). For DREB2A, two significantly dif-
ferent groups were defined: one comprising Col-0, Cvi, and 
Kel-4 (4.55, 5.6, and 5.57, respectively) and the other compris-
ing Sha, soc1ful, and p35S:AHL15 (3.37, 2.75, and 2.87, respec-
tively) (F=21.05, P=2.71e−06). The changes of AREB1 were 
significantly different among genotypes (F=13.28, P=4.63e−05), 
except for Col-0, Cvi, and Kel-4 (3.48, 3.22 and 3.19 log2 fold 
change, respectively). Likewise, for ABI2, there was a significant 
difference among genotypes (F =40.95, P=3.2e−08), except  

for Col-0 and Kel-4 (6.22 and 5.93), and Sha and soc1ful (4.57 
and 3.58 log2 fold change) (Fig. 1C).

Leaf water potential (�l) and stomatal conductance 
(gs) dynamics during drought

Ψl under well-watered conditions was similar in every gen-
otype, ranging between –0.5 MPa and –0.6 MPa (Fig. 2A). 
However, gs of control plants was significantly different among 
the genotypes studied (F=236.12, P<0.0001, Fig. 2B). Cvi 
(least lignified wild type) had the highest gs (384 mmol m−2 
s−1), followed by Col-0, Sha, and Kel-4, while the more lig-
nified soc1ful and p35S:AHL15 genotypes presented the 
lowest gs value (up to 216 mmol m−2 s−1); only gs values of 
Sha and Kel-4 were not statistically different from each other 
(Fig. 2B). In addition, we noticed that Col-0 closed its sto-
mata at a less negative leaf water potential compared with the 
other genotypes. It reached 90% of stomatal closure (gs90) at 
–0.9 MPa, followed by Kel-4 (–1.13 MPa), and the more ligni-
fied Sha (–1.27 MPa), soc1ful (–1.43 MPa), and p35S:AHL15 
(–1.6 MPa). The least lignified Cvi reached more negative Ψl, 
even before closing its stomata (–1.75 MPa; Fig. 2A). When 
following stomatal conductance and leaf water potential de-
cline during the drought experiment, we found that the lig-
nified soc1ful and Sha genotypes never reached critical water 
potential values (i.e. the P50) even after 17 d of drought, while 
other genotypes reached their respective P50 between 10 d and 
14 d (Supplementary Fig. S2A, B).

Stem vulnerability to embolism

When comparing all six genotypes, the most lignified soc-
1ful was the most embolism resistant, with P50 of –3.07 MPa 
(Fig. 3; Table 1), whereas the least lignified Cvi remained the 
most vulnerable (P50= –1.58 MPa). For the two added geno-
types, Kel-4 (wild type with intermediate lignified stems) was 
among the most vulnerable genotypes with P50= –1.69 MPa, 
whereas p35S:AHL15 (overexpression line) was intermediate, 
almost identical to the common wild-type Col-0 with P50= 
–2.13 MPa. The P12 (stem water potential at onset of embo-
lism) values of most of the genotypes studied were different 
from each other (F=420.6; P<2e−16), but Cvi and Kel-4 pre-
sented similar P12 (P=0.5424). For P88, p35S:AHL15 and Kel-4 
were different from other genotypes (F=75.09; P<2e−16) (Sup-
plementary Fig. S3). The slope of the vulnerability curve was 
similar across the genotypes, except Col-0, which had a lower 
slope (see Fig. 3).

Water potential and SSM during drought

Assuming that leaf water potential values are similar to stem water 
potential values in the tiny Arabidopsis herbs, we calculated the 
SSM as the difference between Ψgs90 and P50. The SSMs of all 
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Fig. 1. (A) Phenotypic variation in response to drought. The phenotype of six Arabidopsis genotypes subjected to drought, by water withholding at the end 
of a 3 week period, and their untreated counterparts. (B) The variation in chlorophyll contents (Chl a, Chl b, and Chl a+b) among genotypes studied. The 
y-axis represents the percentage reduction of chlorophyll content in drought compared with the well-watered control batch. (C) qRT–PCR analysis of the 
expression of selected drought-responsive genes (RD29A, DREB2A, ABI2, and AREB1) across six Arabidopsis genotypes. The y-axis represents the log2 
fold change of the gene expression between drought and control conditions. The genes are significantly less up-regulated by drought in Sha, p35S:AHL15, 
and soc1ful plants. A Newman–Keuls post-hoc test was performed, showing the differences in chlorophyll reduction and gene expression level between 
each genotype. Different letters indicate significant differences in means of replications among genotypes; P-value <0.05. The error bars show the SEs based 
on three biological replications for Cvi, Sha, and soc1ful, and two biological and two technical replications for Col-0, Kel-4, and p35S:AHL15.
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genotypes studied were positive (from +0.53 MPa to +1.64 MPa), 
except for the least lignified Cvi with a narrow and negative SSM 
(–0.17  MPa) (Fig. 4). Accordingly, Cvi also closed its stomata 
and reached a leaf water potential equivalent to P50 the soon-
est (10 d; Table 1). SSM was the widest in the most lignified soc-
1ful (+1.64 MPa), followed by Col-0 and Sha (+1.24 MPa and 
+1.22 MPa, respectively; Table 1; Fig. 4). Kel-4 and p35S:AHL15 
had intermediate SSMs (+0.56 MPa and +0.53 MPa, respectively).

The differences in anatomical features among 
genotypes studied

When comparing the anatomical dataset across the six geno-
types, we found that the lignified soc1ful and Sha genotypes 

had the thickest intervessel pit membranes (TPM), followed by 
an intermediate pit membrane thickness of p35S:AHL15 and 
Col-0 (F=3.857; P=0.0672), and thinner pit membranes in 
Kel-4 and the least lignified Cvi (F=4.467; P=0.0506) (Supple-
mentary Fig. S4A). Results of vessel wall thickness (TV) showed 
the same pattern as that described for intervessel pit membrane 
thickness (F=2.546; P=0.13 and F=0.554; P=0.468, respec-
tively) (Supplementary Fig. S4B). Vessel grouping index (VG) 
was markedly higher in the p35S:AHL15 overexpression line 
than in all the other genotypes (F=27.38; P=5.46e−13) (Supple-
mentary Fig. S4C), which was also the case for the proportion 
of lignified area per total stem area (PLIG; F=28.8; P=2.25e−13) 
(Supplementary Fig. S4D). The lignified p35S:AHL15 over-
expression line also had a higher proportion of fibre wall area 
per fibre cell area (PFWFA) than Kel-4, Col-0, and Cvi, but the 
fibres were less thick walled compared with the lignified geno-
types soc1ful and Sha (F=49.05; P<2e−16) (Supplementary Fig. 
S4E). Surprisingly, p35S:AHL15 showed no wood formation 
at the stem segment investigated (Supplementary Fig. S1E) and 
was less lignified than soc1ful, although AHL15–SOC1–FUL 
belong to the same pathway. The vessel diameter (D) of Kel-4 
was significantly narrower than that of the other genotypes. 
Among the remaining genotypes, Cvi (least lignified wild type) 
had the widest mean D, which was significantly different from 
the p35S:AHL15 overexpression line, but there was no statis-
tical difference in D with Col-0, Cvi, Sha, and soc1ful (F= 9.46; 
P=2.52e−06) (Supplementary Fig. S4F). For theoretical vessel 
implosion resistance (TVW/DMAX)2, the lignified soc1ful and 
Sha showed the highest values as well, while there was no dif-
ference among p35S:AHL15, Kel-4, Col-0, and Cvi (F=3.955; 
P=0.0166). Finally, vessel density (VD) of p35S:AHL15, Col-0, 
Cvi, Sha, and soc1ful was similar (F=1.899; P=0.13) and signif-
icantly higher than that of Kel-4.

B

A

Fig. 2. Drought-response traits for the six A. thaliana genotypes studied. 
(A) The relationship between leaf water potential (Ψl) and stomatal 
conductance (gs). (B) gs (mmol s−1 m−2) in control well-watered plants for 
the different Arabidopsis genotypes (leaf water potential > –0.7 MPa). 
Larger symbols within boxes correspond to means, and smaller symbols 
outside boxes to outlier values. The error bars show the SE based on 
three biological replications. Colours refer to the genotype studied: Col-0, 
red; Cvi, turquoise; Sha, purple; soc1ful, green; p35S:AHL15, blue; Kel-4, 
brown.

Fig. 3. Mean vulnerability curves present the percentage loss of 
conductivity (PLC) as a function of xylem pressure (MPa) of each genotype 
studied. Shaded bands represent the SEs based on 5–10 vulnerability 
curves per genotype. Colours refer to the genotype studied: Col-0, red; 
Cvi, turquoise; Sha, purple; soc1ful, green; p35S:AHL15, blue; Kel-4, 
brown.
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other genotypes (Ψgs90 was reached after 14 d of non-water-
ing, Table 1). Although we had not quantified carbon uptake 
during drought, we observed that stomatal closure in soc1ful 
occurred gradually over a longer period during drought, 
probably extending photosynthetic activities without risking 
a detrimental level of drought-induced embolism (Fig. 2A; 
Supplementary Fig. S2). This is further supported by a low re-
duction of chlorophyll content in rosette leaves of droughted 
soc1ful individuals compared with the well-watered control 
batch (Fig. 1B), Moreover, this mutant line had the widest 
positive SSM (Fig. 4), which is essential in estimating a plant’s 
drought response (Choat et al., 2012; Delzon and Cochard, 
2014; Anderegg et al., 2016; Eller et al., 2018; Oliveira et al., 
2021; Skelton et al., 2021). Finally, as reported in Thonglim 
et al. (2020), this mutant also produced the thickest intervessel 
pit membranes and largest wood cylinder at the base of the 
inflorescence stem. Both traits are thought to play an impor-
tant role in preventing embolism spread (Lens et al., 2022). In 
contrast, the least lignified Cvi was the most vulnerable gen-
otype as it showed the least negative stem P50 combined with 
a rapid drop in leaf water potential during drought, leading to 
rapid wilting (Fig. 1A) and a strong decrease of chlorophyll 
content (Fig. 1B). In addition, Cvi had the highest initial gs, 
and it closed its stomata at low water potential, which led to 
more water loss due to transpiration (Fig. 2A; Supplemen-
tary Fig. S2). Although it reached Ψgs90 earlier than the more 
tolerant genotypes (Table 1), it seemed like Cvi could not 
close its stomata in time because all the water was already 
consumed, giving rise to a rapid water potential drop during 
drought (Supplementary Fig. S2A). Due to its less negative 
stem P50, the Ψgs90 exceeded stem P50, leading to the only 
negative SSM among the six genotypes studied (Fig. 4). This 
implies that Cvi experiences a considerable decrease in stem 
hydraulic conductivity right after or even before stomatal clo-
sure. In addition to all these physiological parameters pointing 
to the most sensitive drought response among the genotypes 
studied, Cvi also had the least lignified inflorescence stems 
with the thinnest intervessel pit membranes (Thonglim et al., 
2020).

The role of embolism resistance and stomatal 
regulation in drought tolerance and its impact on the 
stomatal safety margin

The previous section highlights the importance of embo-
lism resistance as well as SSMs in determining drought tol-
erance, as has been demonstrated across many other lineages 
of plants (Meinzer et al., 2009; McDowell, 2011; Choat et al., 
2012; Johnson et al., 2012; Cochard et al., 2013; Lens et al., 
2013; Skelton et al., 2015, 2021; Martin-StPaul et al., 2017; 
Creek et al., 2020; Dayer et al., 2020). However, our dataset 
suggests that stem P50—which is probably a good proxy for 
whole-plant P50 based on our few leaf P50 measurements in 
the p35S:AHL15 overexpression line and based on other  

herbaceous species showing no difference in P50 across organs 
(e.g. Skelton et al., 2017)—outperforms SSM in explaining 
the responses to drought among the genotypes studied. This 
is because stomatal regulation in Arabidopsis genotypes that 
were equally drought tolerant could be substantially different, 
while P50 showed a more consistent pattern with whole-plant 
drought tolerance. However, it seems that the rate of gs in Ara-
bidopsis under well-watered conditions is more critical than 
the speed of stomatal closure, as shown by Cvi, Col-0, and 
Kel-4 (Table 1; Supplementary Fig. S2B). Indeed, Ψgs90 is not 
the driving force behind drought tolerance since the more 
drought-tolerant genotypes closed their stomata slightly later 
than the sensitive ones. In other words, Cvi, Col-0, and Kel-4 
lost more water because of a higher transpiration rate, but they 
closed their stomata sooner than the more drought-tolerant 
genotypes (Table 1). These results align with previous studies 
stating that stomatal behaviour only shows how each species 
respond to drought stress, but not how much they tolerate 
drought (Roman et al., 2015; Combe et al., 2016; Martínez-
Vilalta and Garcia-Forner, 2017). Bearing this in mind, our ob-
servation shows that the two mutant genotypes studied in the 
Col-0 background (soc1ful and p35S:AHL15)—both belong-
ing to the same regulatory SOC1–FUL–AHL15–cytokinin 
pathway that induces wood formation in stems (Rahimi et al., 
2022)—also have by far the lowest initial gs values across all 
six genotypes studied, including the Col-0 ecotype (Fig. 2B). 
This makes it a promising gene regulatory pathway to discover 
how drought-responsive traits in stems (increased lignification 
or woodiness) and leaves (reduced gs) are linked to each other 
at the genetic level.

Our dataset aligns with earlier studies showing that safety 
margins across (mainly woody) angiosperms are overall posi-
tive, and considerable levels of embolisms only happen under 
remarkable, intense drought events (Choat et al., 2012; Delzon 
and Cochard, 2014; Martin-StPaul et al., 2017; Creek et al., 
2020; Dayer et al., 2020; Skelton et al., 2021; Guan et al., 2022; 
Lens et al., 2022). The positive SSMs in five out of six genotypes 
indicate that stomatal closure typically occurs before embolism 
in order to prevent water loss and delay hydraulic dysfunc-
tion (Martin-StPaul et al., 2017; Creek et al., 2020). In contrast, 
Cvi—the only genotype with a negative SSM—closed its sto-
mata at 70% loss of maximum conductance, highlighting its 
high sensibility to drought.

Multiple strategies to acquire drought tolerance

In addition to the drought-responsive traits discussed in soc-
1ful and Cvi, different combinations among these traits were 
observed in the remaining genotypes. This shows that even in a 
species with a short life cycle, multiple strategies can be applied 
to acquire a certain level of drought tolerance. For instance, Sha 
and p35S:AHL15 had a similarly high level of drought toler-
ance based on their phenotype after 3 weeks of water shortage 
(Fig. 1A), but their drought-responsive traits were different. Sha 
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Fig. 5. (A) Relative importance of stem anatomical traits on P50 variation. The P50 variation is mainly explained by intervessel pit membrane thickness 
(TPM) and vessel wall thickness (TV) based on the R2 contribution averaged over orderings among regressors [based on the Lindemann, Merenda, and 
Gold (LMG) method]. (B) Negative correlation between TPM and P50. (C) Negative correlation between (TVW/DMAX)2 and P50. (D) Negative correlation 
between TV and P50. (E) Negative correlation between PFWFA and P50. The error bars show the SEs based on three biological replications for TPM and nine 
biological replications for other anatomical traits. Colours and styles refer to the genotype studied: Col-0, red circles; Cvi, turquoise upright triangles; Sha, 
inverted purple triangles soc1ful, green stars; p35S:AHL15, blue squares; Kel-4, brown diamonds.
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had high embolism resistance in stems combined with a rela-
tively high initial transpiration rate in leaves that rapidly declines 
during drought, allowing a relatively stable leaf water potential 
(also confirmed by Bouchabke et al., 2008) and a large SSM. On 
the other hand, p35S:AHL15 had the lowest gs of all the geno-
types studied (Fig. 2A), which means it can keep its leaf water 
potential relatively high during drought, whereas its stem P50 
was intermediate and led to a smaller SSM compared with Sha 
(Figs 2–4). Another example is given by p35S:AHL15 (overex-
pression line) and Col-0 common wild type, which both had a 
similar stem P50 (–2.1 MPa; Fig. 3). However, Col-0 was more 
drought sensitive than p35S:AHL15, even though the former 
closed its stomata earlier during drought, resulting in a wider 
SSM (Fig. 4). The reason for Col-0 being more drought sen-
sitive is that stomatal conductance is much higher, leading to 
more water loss and consequently a more rapid decline in leaf 
water potential during the drought experiment, while the leaf 
water potential during drought in p35S:AHL15 drops more 
slowly (Supplementary Fig. S2). Thus, a wider SSM does not 
always lead to a prolonged survival during drought since the 
rate of gs is not accounted for in the SSM. In other words, 
the width of the safety margin does not necessarily match all 
aspects of stomatal regulation and the resulting leaf water po-
tential dynamics during drought (Martínez-Vilalta and Garcia-
Forner, 2017; Martin-StPaul et al., 2017; Knipfer et al., 2020).

Expression levels of drought-responsive genes agree 
with drought-response traits

To assess the level of drought stress and compare it among 
the genotypes, we assessed the expression of selected drought-
responsive genes on the final day of the drought treatment (15–
17 d). As expected, the four drought-responsive genes RD29A, 
DREB2A, ABI2, and AREB1 were most up-regulated in the 
more sensitive genotypes Col-0, Kel-4, and Cvi, and less up-
regulated in the more tolerant genotypes Sha, p35S:AHL15, 
and soc1ful (Fig. 1C). To study the casual relationship between 
physiological responses (e.g. stomatal closure) and gene ac-
tivity (e.g. ABA biosynthesis genes), future work should focus 
on conducting a high-resolution time-course gene expression 
analysis, which is beyond the scope of this study.

Intervessel pit membrane thickness as an important 
anatomical driver of embolism resistance, and the 
potential effect of stem lignification on P50

Our extended database confirms our previous results that 
intervessel pit membrane thickness is the anatomical trait that 
explains best the variation in P50 across all six genotypes studied 
(Fig. 5A). These results are in line with several other angiosperm 
studies showing a strong positive correlation between embo-
lism resistance and TPM, both at the interspecies level (Jansen 
et al., 2009; Lens et al., 2011, 2022; Plavcová and Hacke, 2012; 
Plavcová et al., 2013; Scholz et al., 2013b; Li et al., 2016; Dória 

et al., 2018; Trueba et al., 2019; Guan et al., 2022) and within 
species (Schuldt et al., 2016). The functional explanation for 
this relationship was intensively discussed in our previous paper 
(Thonglim et al., 2020). In brief, there is convincing evidence 
based on microCT and/or optical technique observations in 
stems (Brodersen et al., 2013; Knipfer et al., 2015; Choat et al., 
2016; Skelton et al., 2017; Torres-Ruiz et al., 2017) and leaves 
(Brodribb et al., 2016; Skelton et al., 2017, 2018; Klepsch et al., 
2018; Lamarque et al., 2018) that embolism spread between 
adjacent vessels predominantly happens via porous pit mem-
branes located inside the bordered pits between adjacent ves-
sels. Although this explains why the thickness of intervessel pit 
membrane plays an important role in embolism propagation 
and, by extension, also whole-plant drought tolerance, the de-
tailed mechanisms behind this embolism spread remain poorly 
known due to the complex 3D structure/composition of pit 
membranes and the enigmatic behaviour of gas–liquid–solid–
surfactant interfaces at the nano-scale (Kaack et al., 2019, 2021; 
Yang et al., 2020; Zhang et al., 2020; Lens et al., 2022).

It has also been shown in previous studies that intervessel 
pit membrane thickness is strongly linked not only with P50, 
but also with other anatomical traits assumed to be involved 
in drought-induced embolism resistance, such as vessel wall 
thickness (Jansen et al., 2009; Li et al., 2016), and the amount 
of stem lignification or woodiness (Li et al., 2016; Dória et al., 
2018; Thonglim et al., 2020). How exactly lignification would 
impact embolism spread in stems is the subject of ongoing 
research. One hypothesis is that the amount of lignification 
in secondary cell walls may determine gas diffusion kinetics 
across xylem cell walls and, therefore, could reduce the speed 
of embolism propagation in species with increased levels of 
lignification or woodiness (Li et al., 2016; Dória et al., 2018; 
Pereira et al., 2018; Thonglim et al., 2020; Lens et al., 2022). 
This may imply that older stems from herbaceous species could 
lead to increased embolism resistance, resulting from a possible 
increase in stem lignification and/or the amount of wood. In 
our study, this may especially apply to the p35S:AHL15 over-
expression line, which has the ability to develop as much wood 
as the soc1ful double knockout genotype (Rahimi et al., 2022). 
However, this study shows that wood development is delayed 
in p35S:AHL15 (Supplementary Fig. S1E, G) compared with 
soc1ful in 80-day-old plants, despite the fact that SOC1, FUL, 
and AHL15 belong to the same wood pathway (Rahimi et al., 
2022). Older individuals of p35S:AHL15 will therefore de-
velop more wood and probably also thicker intervessel pit 
membranes in their inflorescence stems, most probably result-
ing in both higher embolism resistance and higher SSM, which 
synergistically may increase total plant tolerance of the overex-
pression line to the level of soc1ful.

In conclusion, there is a considerable difference in drought 
response among the six Arabidopsis genotypes studied. The 
genotypes soc1ful, Sha, and p35S:AHL15 synergistically in-
crease their drought tolerance by building lignified inflores-
cence stems with thick intervessel pit membranes, developing 
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the largest SSMs, keeping the water potential in their leaves 
pretty stable during periods of water shortage as a result of low 
stomatal conductance, maintaining relatively high chlorophyll 
content in rosette leaves, and by showing the lowest expres-
sion levels of drought-response genes compared with the con-
trol batch. In contrast, the most sensitive genotypes to drought 
(Cvi, Kel-4, and Col-0) are more susceptible to drought due 
to the opposite extreme of the same set of drought-respon-
sive traits. This shows that stem anatomical traits and hydraulic 
stem and leaf traits are intertwined to acquire a certain level of 
drought tolerance. To further disentangle gene regulatory net-
works underlying drought-responsive traits across organs and 
to find out how they are linked with each other and syner-
gistically strengthen the whole-plant drought response, future 
studies should combine a time series of gene expression data in 
roots, stems, and leaves during a drought experiment followed 
by rewatering. During such an experiment, a range of drought-
responsive (anatomical and physiological) traits in all organs 
should be investigated. Only with this integrative approach, will 
we be able to make considerable progress in securing our food 
production by developing breeding tools that can make crops 
more drought tolerant and propose solutions on how to protect 
our herbs and forests under the current global change scenario.
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