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Abstract

Insect eggs are exposed to a plethora of abiotic and biotic threats. Their
survival depends on both an innate developmental program and genetically
determined protective traits provided by the parents. In addition, there is
increasing evidence that (a) parents adjust the egg phenotype to the ac-
tual needs, (b) eggs themselves respond to environmental challenges, and
(c) egg-associated microbes actively shape the egg phenotype. This review
focuses on the phenotypic plasticity of insect eggs and their capability to
adjust themselves to their environment. We outline the ways in which the
interaction between egg and environment is two-way, with the environment
shaping the egg phenotype but also with insect eggs affecting their environ-
ment. Specifically, insect eggs affect plant defenses, host biology (in the case
of parasitoid eggs), and insect oviposition behavior. We aim to emphasize
that the insect egg, although it is a sessile life stage, actively responds to and
interacts with its environment.
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1. INTRODUCTION

Most insect species are oviparous and expose their eggs to many environmental threats (142). De-
spite numerous abiotic and biotic environmental factors that endanger eggs, oviparity is obviously
a successful strategy. This success is due to numerous egg-protective measures provided by the
insect parents. While parental investment in insect egg protection is well known, little attention
has been paid to the protective activities of the developing zygote itself.

In this article, we provide an overview of parental and zygotic measures that protect eggs
from extreme abiotic conditions, predation, and parasitization. Furthermore, we highlight studies
showing that oviposition-associated symbiotic microorganisms not only serve later developmental
stages but also contribute to egg protection. In addition to egg-protective traits, which are fixed
in a developmental program, we also consider trait changes in response to current challenges.
Insect eggs not only respond to their environment, but also influence it. Oviposition by herbiv-
orous insects on plants induces changes in the plant transcriptome and metabolome, which in
turn modulate herbivory. Egg laying by parasitoids in herbivorous larvae alters host behavior and
physiology and may even affect hyperparasitoids. In this article, we draw attention to a tiny insect
developmental stage that both responds to its environment and exerts significant effects of its own
on different trophic levels.

2. INSECT EGGS AND THEIR ADAPTIVE PLASTICITY IN RESPONSE
TO ABIOTIC CONDITIONS

2.1. Thermal Plasticity

Insects have evolved a wide range of molecular and physiological traits to survive extreme
temperatures and to adjust themselves to changing thermal conditions (15, 79). In addition,
mobile insect stages can escape from detrimental temperatures through behavioral adaptations,
e.g., hiding from sunlight, searching for diapause sites with suitable temperatures, or warming up
by exercising their flight muscles (28, 83). In contrast, eggs as immobile stages cannot leave sites
with unfavorable temperatures. However, they are well protected from extreme temperatures by
their parents and by their own thermoprotective activity (Figure 1a).

Insect mothers contribute to thermoprotection of their eggs by several means. The maternal
timing of egg deposition and the choice of oviposition sites significantly contribute to egg
survival (e.g., 105). Furthermore, covering eggs with plant tissue, feces, or maternal secretions
can protect overwintering offspring from detrimental temperatures (e.g., 49, 53). In addition to
such protective measures, insect mothers endow the inside of their eggs with maternal messenger
RNA, proteins, lipids, and carbohydrates, which provide the initial developmental basis for
the embryo (38, 126, 150). In the very early embryonic stage, this maternal provisioning of
the eggs contributes to thermoprotection via compounds such as heat shock proteins (75) or
cryoprotective lipids (e.g., 150).

The temperatures experienced by the parents may significantly affect the egg phenotype and
its survival. Phenotypic plasticity of egg size in response to temperature has long been known
(e.g., 37). However, few studies have tested the adaptive significance of egg phenotypes, which
are determined by temperatures experienced by the parents shortly before oviposition. Eggs have
been found to survive best at the temperature experienced by their mother during the oviposition
period (33). Additionally, the father’s thermal experience also may influence which temperatures
are optimal for the eggs’ survival (138).Themechanisms of such intergenerational thermopriming
are not yet fully understood, but epigenetic transcriptional regulation of thermosensitive genes has
been predicted. Indeed,heat stress–induced epigenetic changes,which depend on the transcription
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Maternal-to-zygotic
transition: the time
during which a zygote
metabolizes maternally
provided resources
(e.g., mRNA, proteins)
and the zygotic
genome takes over the
developmental control

a   Protection of eggs from abiotic stress

b   Protection of eggs from biotic stress

Protective mechanisms of eggs
• Expression of thermoregulatory genes 
• Role of thermosensitive TRPA1 in eggs?
• Formation of serosal cuticle for thermo- and
  drought protection
• Formation of melanin for UV light
  protection (parentally primed)

Protective mechanisms of parents
• Search for protected oviposition sites
• Constitutive parental supply of 
  thermo- and drought-protective
  compounds to eggs
• Expression of thermo-responsive
  genes in eggs primed by parental
  experience
• Effects of parental microbiome on
  transcriptional response of eggs
  to temperature  

Protective mechanisms of parents
• Search for protected oviposition sites
• Constitutive supply of anti-predatory/
  parasitic/microbial compounds to eggs
     - parental de novo synthesis of
        these compounds
     - parental sequestration of these
        compounds from food
     - endosymbiotic supply of these
        compounds to parents
• Egg immune responses primed by
  parental immune challenge

Protective mechanisms of eggs
• Constitutive formation of immune-protective serosa
• Biotic stress-induced cellular and humoral immune responses
• Expression of immune-relevant genes 

Figure 1

Insect eggs and how they cope with stress. (a) Constitutive and induced responses of eggs to abiotic stress
and the effects of parental inputs. (b) Constitutive and induced responses of eggs to biotic stress and the
effects of parental inputs. For references, see Sections 2 and 3.

factor ATF-2, have been shown to be transmittable from one Drosophila melanogaster generation
to the next (119).

After oviposition, eggs initially make use of their energy-rich maternal provisions while they
undergo the maternal-to-zygotic transition (137), optimizing their survival chances. An effective
innate developmental program contributes to buffering thermal variation, as has been shown
for Drosophila embryonic development (85). Insect eggs show higher survival rates at extreme
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Serosa: envelops the
egg yolk and lines the
inside of the egg shell

Transient receptor
potential (TRP)
channels:
thermosensitive ion
channels that can
process thermal
information via the
nervous systems of
insect larvae and adults

cold (frost) if they themselves (not their parents) had previously been exposed to sublethal cold
temperatures (e.g., 89, 96). To achieve such primed frost tolerance, the developing zygote needs
to adjust its internal compounds or its egg shell to the anticipated imminent temperatures. In-
deed, insect eggs express genes involved in the biosynthesis of cryoprotectants such as glycerol
and sorbitol (e.g., 96). Furthermore, they can respond to cold by increasing the thickness of
the middle serosa cuticle, which has been suggested to protect against inoculating ice forma-
tion (70). The serosa and its cuticle are formed by developing zygotes of almost all winged
insect species; the exception is a single dipteran taxon, the Schizophora (57, 95). The developing
embryo inside the egg is surrounded by yolk, which is enclosed by the membranous serosa. To
the outside, the serosa is covered by the maternally provided vitelline membrane and the chorion,
which forms the outermost layer of the egg.

In addition to the parental and zygotic molecular and physiological activities, there is another
player involved in thermotolerance of insect eggs: the parental microbiome. The composition of
the microbiome deposited by Drosophila flies at oviposition sites depends on temperature. Inter-
estingly, the transcriptional response of the offspring to temperature is dependent not only on the
temperatures experienced by the parents, but also on the temperature-dependent parental micro-
biome composition (66). Thus, the parental microbiome affects the transcriptional response of
the offspring to temperature.

To date, studies on the ability of insect eggs to adjust their phenotype to ambient temperatures
have not really examined the associated question of how insect eggs sense temperature. While
an increase in temperature of 10°C usually enhances the reaction speed of enzymes by a factor
of two to three, thermosensitive proteins such as transient receptor potential (TRP) channels are
expected to show an increase in activity by more than a factor of three when exposed to 10°C-
higher temperatures (41, 82, 146). The parents can sense temperature via these proteins and use
the information for intergenerational thermopriming of eggs. Several studies also have shown that
thermosensitive TRPA1 is expressed in eggs of moths (117), beetles (60), and flies (to a very small
extent) (125). Induction of TRPA1 in eggs may even be important for diapause induction in eggs
of the next generation. Specifically, when Bombyx mori eggs are exposed to warmer temperatures,
this exposure induces the release of diapause hormone (DH) later during the pupal stage, and the
resulting females thus lay eggs that diapause (117). Regulation of egg diapause by maternal factors
is well known to prepare the progeny for anticipated environmental conditions (e.g., 21). The
peculiarity of the regulation of egg diapause in B. mori is that induction of TRPA1 already occurs
in the eggs, which then develop into females that lay diapausing eggs. To date, it is not known
which signaling pathway is involved in this intergenerational regulation of egg diapause (117).

2.2. Egg Responses to Drought and UV Radiation

As with thermal protection of eggs, protection from desiccation may be significantly affected by
the mother’s oviposition behavior, both in the choice of oviposition sites and in egg clustering
(e.g., 44). In addition, the mother may protect her eggs from desiccation by providing them with
sufficient internal water, with high amounts of hydrocarbons in the egg shell (135), or by coating
the eggs with materials such as hydrogels (e.g., 11, 32) (Figure 1a).

While genotypic local adaptation to drought risks is known for mosquito populations, which
coat their eggs with high amounts of hydrocarbons in dry regions (135), no such local adaptation to
dry conditions was found inManduca sexta. Instead, this moth oviposits on the lower side of leaves,
where leaf transpiration may have a cooling effect and compensate for low air humidity (106).

To the best of our knowledge, evidence for phenotypic priming of eggs for improved drought
resistance by maternal experience of low humidity is only available in arachnids, i.e., mites (72).
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Nevertheless, we also expect priming of eggs by maternal drought experience to exist in insects
because there is ample evidence that insect mothers can adjust the phenotype of their eggs to
various environmental factors (e.g., 86) (Figure 1).

The deposited egg also can protect itself from desiccation (Figure 1a); the serosa and its cu-
ticle contribute significantly to egg drought resistance (e.g., 56, 136). The serosal contribution to
drought resistancemay even be enhanced by formation of dark eumelanin in the endochorion (29).
Natural eumelanin is a very robust biopolymer, which is insoluble in water and even in organic
solvents; its biosynthesis starts with the hydroxylation of the aromatic amino acid tyrosine, thereby
forming dopa.Oxidative polymerization of dihydroxyindoles, which are derived from dopa and its
derivatives, leads to eumelanin (140). The formation of serosal layers is part of the developmental
program in many insect species, and eggs exposed to low humidity might benefit from accelerat-
ing this developmental process. However, whether the developmental kinetics are adjusted to the
needs of the egg remains unknown. Furthermore, the question arises of whether insect eggs can
adjust their physiological activity to their need for water, apart from developmentally programmed
traits. Future studies need to unravel how an egg’s internal water state is regulated. Active regula-
tion may be achieved by, e.g., adjustment of egg shell conductance (145) or active uptake of water
vapor (147). Passive regulation may be provided by an effective developmental program, by water
provisioning by the mother, or by passive take-up of water via osmotic forces (47).

Exposure to UV light results in generation of reactive oxygen species (ROS), which have the
potential to cause cellular damage (20). Pigmentation bymelanin can protect the egg from damage
by UV light.Melanin is highly efficient in adsorbing especially the short wavelengths of solar light
via its numerous cyclic structures with conjugated electron pairs (29). While melanization of the
egg shell is part of the innate developmental program in some insects, females of the stink bug
Podisus maculiventris can adjust coloration of their eggs by melanin to the expected exposure to UV
light (2). Even in the absence of melanin, the egg shell can provide protection from damage by UV
light, as has been found forM. sexta eggs (107), which are colored greenish by yellow carotenoids
and a blue biliprotein, insecticyanin (65). Carotenoids are very common egg pigments, and they
also are expected to contribute to protection of eggs from UV radiation damage due to their ROS
scavenging properties (120). A recent review by Guerra-Grenier (45) addresses further ecological
functions of egg coloration in addition to protection from UV radiation, among them especially
camouflage, mimicry, and various warning functions.

3. INSECT EGG DEFENSES AGAINST BIOTIC THREATS

3.1. Constitutive Defenses Provided by the Developing Egg or Its Parents

As sessile life stages, insect eggs are exposed to a high risk of parasitization and predation.They are
a protein-rich food source not only for parasitoids and many predatory insects, but also for other
arthropods like spiders and even for birds (81, 91, 98). Infection of eggs by pathogenic bacteria is
uncommon but may occur, for example, via maternal transfer of bacteria to the oocyte or via attack
by parasitoids. Infection of eggs by fungi, which can penetrate the egg shell with their hyphae, is
more widespread than bacterial disease of eggs (42). Insect eggs are defended against these biotic
risks by constitutive mechanisms, as well as by attack-induced defensive responses (Figure 1b). In
this section, we first address the constitutively available defenses.

Constitutive egg defenses are provided by parents in numerous ways. A recent review (30) de-
scribes the different mechanisms used by insect parents to protect their eggs from attack by egg
parasitoids. Females of many insect species incorporate defensive compounds into their oocytes
or into secretions deposited with the eggs (for an overview of low-molecular-weight organic com-
pounds, see 13; for proteinaceous compounds, see, e.g., 23).These compounds are either produced
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de novo or sequestered from food. In addition, symbiotic microbes harbored by the mother are
known to produce defensive compounds contributing to egg protection (see Section 3.2). Insect
fathers can contribute to protection of eggs from biotic threats by transferring defensive chem-
icals to females during mating. The females incorporate these compounds into the eggs or into
secretions coating the eggs (26). Alternatively, some insects protect their eggs with sticky fecal
covers or hairy tufts that impair access to the eggs or provide parental brood care by guarding,
carrying, or grooming eggs (53).

To date, there is no clear evidence that insect parents adjust the provisioning of their eggs with
defensive compounds to the actual risk of predation (99, 100). However, they may adjust their
oviposition behavior to ambient egg predation risks and reduce egg predation by selection of
oviposition sites with low predator abundance (109). The lack of evidence of phenotypic plasticity
in parentally provided physical and chemical egg defenses against predators is contrasted by studies
showing that immune-challenged insect parents can prime egg immune responses to pathogens
and parasitoids (see Section 3.4).

Constitutive egg defenses against microbial infection are also produced by the eggs themselves
even in the absence of biotic attack. These defenses include immune-relevant proteins and an-
timicrobial peptides. For example, freshly laid, nonattacked eggs ofM. sexta constitutively express
immune-related genes encoding a prophenoloxidase activating protease (PAP I), prophenoloxidase
(ProPO), and several antimicrobial peptides (1, 42). Constitutive expression of immune-related
genes encoding receptor proteins recognizing microbial attack, proteins of the Toll and IMD
signaling pathways, and class B scavenger receptors in the serosa was demonstrated in eggs of Tri-
bolium confusum beetles (57). These findings corroborate the idea that the serosa functions as an
immune-competent barrier protecting the developing embryo (42, 57).

Constitutive production of defensive compounds of lowmolecular weight by the eggs is almost
unknown. A notable exception is the release of nitric oxide radicals from eggs of the European
beewolf Philanthus triangulum (124). Eggs of this species are laid into subterranean brood cells
where the threat of microbial infection is high. Nitric oxide radicals emitted from beewolf eggs
react with oxygen to form nitrogen dioxide radicals, which have antifungal activity when released
in high amounts. The beewolf eggs are thought to be able to release relatively large amounts of
nitric oxide radicals because of a specific modification of their nitric oxide synthase, an otherwise
common enzyme regulating biochemical processes in almost all organisms. Thus, a modification
of this enzyme might have led to this key evolutionary innovation in the European beewolf.

3.2. Constitutive Chemical Egg Defenses Provided by Microbial Symbionts

Symbiont-mediated protection is increasingly being recognized as a common source of constitu-
tive egg defenses, especially among insect taxa that oviposit in environments where the eggs have
a high risk of being exposed to pathogenic threats. Fungal and bacterial microbes extracellularly
transmitted to the oviposition site or directly onto the eggs have been shown to protect eggs from
infection by pathogens or predation (34, 103, 141). Symbiont-bearing secretions deposited on the
eggs are especially known to provide subsequent developmental stages with a range of services
(115). Beyond ensuring the faithful transmission of obligate symbionts (54, 68, 114), these secre-
tions may nourish early instar larvae and nymphs after hatching (64). In this section, we focus on
the egg-protective function of microbes released during oviposition.

Many ant, termite, and beetle species transport fungal spores to their oviposition sites. This
transport serves to grow fungal gardens, which provide a nutritional resource for progeny (87).
The fungal mycelia in termite nests can produce a variety of secondary compounds, including
those exhibiting antimicrobial activities (e.g., 118). Provisioning and protection of offspring by
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fungiculture is particularly well known for social insects such as termites but has also been found
in some nonsocial insect clades. For example, the weevil Eups chinensis creates plant cradles for its
offspring by leaf rolling. The cradles are inoculated with spores of Penicillium herquei.The female
weevils release these spores from theirmycangia,which are special structures adapted for transport
of symbiotic fungi (74, 113, 141). The fungal mycelium encases the eggs within a few days, and
hatching larvae feed on both the leaf roll and the fungal mycelium. In addition to the protective
function of the cradle, P. herquei suppresses the growth of plant-associated bacteria and fungi,
as well as pathogenic microbes (141). Biochemical elucidation of the fungus’s inhibitory effects
revealed that P. herquei produces (+)-scleroderolide, a broad-spectrum antimicrobial agent, which
underpins the defensive role of the fungus (141).

Transmission of egg-protective bacterial symbionts directly onto the eggs is most common in
species that oviposit in sites with high microbial abundance. For example, females of the house fly,
Musca domestica, typically oviposit in animal manure, exposing their eggs to a rich nutritional re-
source but one that is also prone to microbial overgrowth (71, 151). Flies overcome this challenge
by coating their eggs with a conserved bacterial consortium that suppresses growth of pathogenic
fungi (71). The inhibitory effects of the members of this consortium are synergistic, conferring
egg protection collectively, likely through a combination of competitive exclusion and chemical
defense (71).

Oviposition in soil also exposes insect eggs to a high risk of microbial infection. Tenebrionid
species of the taxon Lagriinae, which typically oviposit in soil, rely on Burkholderia symbionts to
suppress egg infection by entomopathogenic fungi (35). Lagria villosa has been shown to harbor
multiple strains of Burkholderia and transmit them through egg smearing (34). Several bioac-
tive secondary metabolites have been identified from different symbiotic Burkholderia strains that
could contribute to antimicrobial defense (24, 36, 90). These include the antifungal polyketide
lagriamide, which is structurally similar to defensive polyketides characterized in marine tunicates
(36).

Horizontal gene transfer is increasingly being recognized as a common mechanism by which
microbes acquire and integrate genes coding for secondary metabolites and toxins, as demon-
strated in microbial symbionts of aphids (92), psyllids (88), beetles (103), and sponges (143).
Horizontal gene transfer to symbiotic Pseudomonas bacteria harbored by rove beetles (Staphylin-
idae) likely enables this symbiont to produce a toxic polyketide, pederin. This compound has
only been detected in rove beetles of the genus Paederus and in marine sponges. Eggs and larvae
are chemically defended by this Pseudomonas-supplemented toxin against predation (67, 103, 104).
Both immature stages exhibit higher concentrations of pederin (67) than do other life stages, likely
reflecting their vulnerability to predation.The biosynthetic gene cluster underlying toxin produc-
tion in Pseudomonas appears to have been acquired following horizontal gene transfer (104). This
finding is consistent with the sequence-based homology shared between pederin and diaphorin
(88, 103), a toxin produced by distantly related symbionts in psyllids.

3.3. Induced Defensive Responses of Eggs to Pathogens and Parasitoids

During infections by pathogens and attack by parasitoids, eggs do not remain passive but express
immune responses (42, 93), which are similar to those in larvae, pupae, and adults (e.g., 73). Infec-
tion of eggs by pathogens elicits immune responses in the extraembryonic tissue—especially the
serosa—as well as in the embryo. Eggs respond to invading bodies such as pathogens with cellular
responses resulting in phagocytosis and/or encapsulation of the intruder, as well as with humoral
responses that fend off the invaders with antimicrobial peptides and/or by encasing them in a layer
of melanin. Cellular immune responses are provided by embryonic hemocytes (139, 144).
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Teratocytes: cells
originating from the
parasitoid egg serosa;
they disperse inside a
host when the
parasitoid larva
hatches from the
parasitoid egg

The serosa plays a significant role in egg immune responses to pathogens in some species
but not in all. The serosal membrane of Tribolium castaneum responds to immune challenges by
expressing numerous immune-related genes (57, 58); however, the presence of a serosal membrane
is no guarantee of infection-inducible production of antimicrobial agents by eggs. Eggs of the
carrion beetle Nicrophorus vespilloides, which—like Tribolium—develop a serosa, do not produce
antimicrobial peptides in response to bacterial infection (59). Freshly laid eggs ofDrosophila,which
do not form an extraembryonic serosal layer, respond only very moderately to bacterial infections
(58, 129). However, at later stages, embryonic hemocytes in the Drosophila eggs were shown to
successfully phagocytose Escherichia coli, whereas they were inactivated by a toxin released by the
entomopathogenic bacterium Photorhabdus (139).

The battle between a host embryo and egg parasitoids is also mediated by toxins released by the
parasitoid. The venom released by egg parasitoids such as Trichogramma spp. consists of proteases
and phosphatases, which enhance the degradation of the host embryo and the digestion of the yolk
(101).Egg-larval parasitoids,which complete their development in the host larva,must ensure that
the host embryo remains alive. Thus, when they inject their egg into the host egg, parasitoids of
this type release viruses in addition to venom. These viruses manipulate the host larval develop-
ment (61). Several reviews have comprehensively addressed how parasitoids of insect eggs and
other developmental stages affect the immune system, development, and even behavior of their
hosts. To successfully attack a host and suppress its immune system, parasitoids use a sophisticated
and varied arsenal of weapons, consisting of venom, viruses, virus-like particles, and compounds
on their egg surface, as well as substances produced by teratocytes (e.g., 9, 22, 101, 130).

To counteract the weapons used by egg parasitoids, host eggs can strike back via immune re-
sponses. For example, eggs of the cerambycid beetle Phoracantha recurva respond to attack by
the encyrtid wasp Avetianella longoi by cellular encapsulation and melanization of the parasitoid
egg and larva (108), thereby significantly increasing their survival rates (77). In contrast,M. sexta
eggs do not survive egg parasitism, although they show increased expression of several immune-
relevant genes in response to parasitism. However, these responses result in significant reduction
of parasitoid survival (1).

A lack of immune responses does not mean that the eggs have no chance to survive. Insects
may compensate for the lack of efficient egg immune responses to parasitoids and pathogens with
a short developmental time (59), oviposition at protected sites, constitutively expressed chemical
defenses, microbial symbionts provided by the parents, or parental care (see Sections 3.1 and 3.2).

3.4. Priming Egg Defenses Against Pathogens and Parasitoids
by a Parental Legacy

Adult insects that have experienced an immune challenge can prime the immune state of their
offspring. Both females and males are known to contribute to such intergenerational immune
priming. The primed offspring shows more efficient immune responses (25, 69, 111, 112, 132,
148), which are already detectable in the egg stage. The eggs laid by immune-challenged females
show higher antimicrobial activity than do eggs from naive females. Such intergenerational im-
mune priming of the egg stage against entomopathogens is known for several insect taxa, including
social Hymenoptera (112), Coleoptera (69, 148), and Lepidoptera (132). Furthermore, when eggs
resulting from mating between immune-challenged females and males are attacked by egg para-
sitoids, they respond by boosting transcription of several immune-relevant genes to amuch greater
extent than do eggs from unchallenged parents (133).

Several mechanisms are involved in generating a primed egg immune state. There is evidence
that increased antimicrobial activity of primed eggs is due to transfer of high concentrations of
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antimicrobial peptides from the immune-challenged mother into the eggs (e.g., 131). The find-
ing that eggs resulting from mating between immune-challenged males and females show higher
transcript levels of immune-related genes than do eggs resulting from unchallenged parents (e.g.,
133) raises the question of how this effect is mediated. Given that fluorescence-labeled bacte-
rial material orally taken up by the females in the larval stage was found in the ovaries and eggs,
one possible explanation of this effect is that bacterial components induce enhanced expression
of genes encoding antimicrobial peptides in the eggs (39, 69). Microbe-associated molecular pat-
terns (MAMPs) on the surface of bacteria and even surface patterns of viruses have been found to
bind in the hemolymph to vitellogenin, the precursor of egg yolk protein (134). Thus, vitellogenin
can transfer MAMPs present in infected parents into the eggs (116). Genes encoding vitellogenin
and thus providing yolk protein have formerly been thought to be predominantly expressed in fe-
males (17), but increasing evidence suggests that yolk proteins are also expressed in reproductive
tissues of male insects and coat sperm (7, 80). However, it is not yet known whether yolk pro-
teins detected in males contribute to the known paternally mediated intergenerational immune
priming of the offspring (25, 111). Expression of immune-relevant genes in eggs resulting from
immune-challenged females and/or males might also be determined by epigenetic marks set by
the challenge. Indeed, Gegner et al. (40) found differential expression of genes involved in DNA
methylation and histone (de)acetylation when comparing (a) microbially primed and nonprimed
males and females, as well as (b) unchallenged offspring of primed and nonprimed parents.While
maternal microRNAs are known to be transferred into insect eggs,where they take over regulatory
functions (48, 121), their role in priming egg immunity has not yet been studied.

4. INSECT EGGS IN DYNAMIC INTERACTION
WITH THEIR ENVIRONMENT

Above, we focus on how insect eggs adjust themselves to their environment.We present multiple
types of evidence that eggs are capable of responding to abiotic and biotic threats (see Sections 1–
3), but in turn, the eggs themselves also affect different trophic levels, as we discuss in this section
(Figure 2).

4.1. Oviposition by Herbivores Affects the Plant

Eggs laid by herbivorous insects can elicit defensive plant responses directed against the eggs, such
as elicitation of hypersensitive response (HR)-like leaf necrosis or neoplasm formation,whichmay
cause egg desiccation or egg detachment from leaves. Furthermore, plants may respond to insect
eggs by producing ovicidal compounds or by emitting plant volatiles that recruit egg parasitoids
to find and kill the eggs (for reviews, see 10, 50, 51).

Recent studies on interactions between plants and insect eggs have focused on molecular and
physiological mechanisms (e.g., 76, 122). Direct plant responses induced by eggs show conserved,
common patterns in the different plant species tested and striking similarities to plant responses
to phytopathogens. These responses include formation of HR-like traits; accumulation of ROS;
increase in salicylic acid (SA) concentrations; enhanced transcription of SA-responsive genes,
including pathogenesis-related (PR) defense genes; and accumulation of phenylpropanoid deriva-
tives. Thus, egg-laden plants may defend themselves not only against the initial step of insect
infestation, the egg deposition itself, but also against phytopathogens (e.g., 4), which might be
transmitted during oviposition.

HR-like leaf traits induced by eggs of pierid butterflies laid onto brassicaceous plant species
have been intensively studied (e.g., 43, 44, 50). If pierid egg depositions elicit a strong HR-like
leaf necrosis in these plants, then this egg-induced response causes desiccation or detachment
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Figure 2

Interactions of insect eggs with their environment. Egg deposition by herbivorous insects affects the first trophic level by inducing
plant defenses targeting the eggs (1). These egg-induced defenses can be primed by prior exposure of the plant to insect sex
pheromones (2). Eggs on a plant can also prime defenses against hatching larvae and/or phytopathogens (3). Egg-induced plant cues
may affect the resistance of neighboring plants against phytopathogens via belowground signaling (4). Furthermore,
oviposition-induced plant volatiles (OIPVs) may elicit responses in neighboring plants and affect the neighboring plant’s defenses
against larval herbivory and susceptibility to oviposition by herbivores (5). OIPVs emitted from an egg-laden plant may deter further
oviposition by herbivores (6), but they can also attract egg parasitoids and predators to attack the eggs (indirect plant defense) (7). Eggs
already laid on a plant may be marked by chemicals deterring further oviposition by conspecific (8) and heterospecific (9) herbivores.
Parasitoids also may mark their oviposition sites with pheromones, which deter further attack by conspecific parasitoids on the same
host individual (10). Polydnaviruses, which are injected into host larvae during parasitoid oviposition (11), can change the composition
of the oral secretions of the host larvae, and this in turn affects plant defense responses (12). For references, see Section 4.

of pierid butterfly eggs from leaves (43). In Brassica nigra, eggs of different Pieridae showed high
species specificity in their induction of necrosis.Only Pieridae specialized on Brassicaceae induced
an HR-like leaf necrosis, which was linked with enhanced PR1 expression and ROS accumulation.
In contrast, pierid species adapted to other plant families induced neither HR-like necrosis nor
mild chlorosis (43). To better understand the responses of different plant species to egg deposition
by different insect species, further identification of egg-associated elicitors of plant responses is
needed (110).

Most of the known egg-associated elicitors of plant defenses are low-molecular-weight organic
compounds (62). The first proteinaceous plant defense elicitor associated with insect eggs is an
annexin-like protein that has recently been identified in secretion attached to the eggs of pine
sawflies. It induces the production of a pine volatile compound [(E)-β-farnesene, a sesquiterpene]
that attracts egg parasitoids (55). The effects of egg-associated elicitors on plant defense can be
highly context and species specific if the triggered defense response involves the attraction of
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Pipecolic acid:
accumulates in plants
after bacterial
infection; treatment
with pipecolic acid
increases plant
resistance to
phytopathogens by
inducing defense gene
expression

egg parasitoids. The effects of an elicitor associated with Pieris brassicae eggs are specific to the
plant species and even to the strain of the responding parasitoids (e.g., 3). We need to gather
further data not only on the context dependency and species specificity of egg-associated plant
defense elicitors, but also on the plant receptors involved in egg detection. Moreover, we need
more detailed knowledge as to how a plant processes the information that insect eggs are being
deposited on leaves (110).

Plant defensive responses to insect eggs can even be improved by prior exposure of a plant
to insect sex pheromones. A recent study showed that defenses of Pinus sylvestris against eggs
of the herbivorous sawfly Diprion pini can be primed by prior exposure of pine to the sawfly sex
pheromones. Survival of eggs on pheromone-exposed pine was significantly reduced.This priming
effect was linked with enhanced hydrogen peroxide accumulation and differential gene expression
in pheromone-exposed, egg-laden pine (12). The species specificity of this priming effect remains
to be studied.

Besides inducing plant defenses targeting the eggs, insect eggs may indirectly warn a plant of
impending biotic threats. Egg-induced plant signals involving the pipecolic acid pathway were
shown to be transmitted belowground via the roots to neighboring plants, thus improving the
neighbors’ resistance to phytopathogens (94). Furthermore, eggs may be taken by a plant as warn-
ing of impending larval herbivory, allowing the plant to upregulate its defenses against hatching
larvae.This priming of defenses against larvae by insect eggs seems to be widespread across plants,
with several recent studies providing new insights into the molecular and transcriptional fine-
tuning of plant defenses against larvae by prior egg deposition or egg-induced plant volatiles (e.g.,
14, 76, 97).

4.2. Oviposition Affects Further Oviposition by Second and Third
Trophic Level Members

Female herbivores and parasitoids searching for a suitable oviposition site can be either deterred
by or attracted to the presence of con- or heterospecifics’ eggs (e.g., 10, 18). Their choice of an
oviposition site may be manipulated by egg-induced plant cues or cues emanating from previously
laid eggs.

The induction of plant volatiles by insect egg deposition has been addressed in several reviews
(e.g., 10, 16). Oviposition by herbivorous insects onto leaves induces plant volatiles [oviposition-
induced plant volatiles (OIPVs)], which affect the behavior of adult female herbivores and their
choices for further oviposition (50). OIPVs might signal impending competition among the
hatching herbivorous larvae and thus repel further oviposition (31). In contrast, host-searching
egg parasitoids are known to be attracted to OIPVs or to intensify their search in response to
egg-induced changes of the leaf surface chemistry (6, 30, 50, 102). The effect of OIPVs on the
oviposition behavior of herbivores is not limited to the egg-laden plant itself. Eggs of the moth
Micromelalopha sieversi laid on poplar leaves stimulated the emission of specific monoterpenes (3-
carene and β-pinene) not only from the egg-laden focal plants, but also from egg-free neighboring
plants (46). The apparent plant–plant interaction via leaf volatiles resulted in significantly fewer
eggs on the neighboring plants when these were also offered to the moths for oviposition.

In addition to OIPVs, insect oviposition-deterring pheromones (ODPs) may significantly
affect the choice of an oviposition site. ODPs, which are deposited by the egg-laying female
either directly onto the eggs or adjacent to them at the oviposition site, can warn of impending
larval competition at a site with limited resources for the offspring. Despite our understanding
of the ecological effects of ODPs, only a few egg- or oviposition-associated ODPs of herbivores
have been identified (5). Similarly, our knowledge of the chemistry of marking pheromones
used by egg-laying parasitoids is very limited (18). Detection of host-marking pheromones
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Polydnaviruses
(PDVs): viruses that
replicate in the ovaries
of certain parasitoids
without harming the
parasitoids and
suppress the immunity
of the parasitoid’s host

allows a parasitoid female to avoid hosts in which her offspring would be subject to intraspecific
competition with the offspring of the conspecific marking female (e.g., 102). Since a marked host
is unlikely to receive further oviposition, the host-marking parasitoid itself benefits as well from
host marking if host resources are limited. Conversely, laying more parasitoid eggs into one host
individual may also help to overwhelm the host’s immune responses and encapsulation (78).

In contrast to ODPs, aggregation pheromones are well known to stimulate oviposition (63, 84).
Recent studies have addressed the effects of chemicals released by females of Drosophila suzukii,
which oviposit into ripening fruits andmark the site with an anal fluid.This marking fluid contains
several compounds, which have been identified in the aggregation pheromone of D. melanogaster
and also elicited clear electroantennographic responses in D. suzukii (127). However, the function
of the D. suzukii marking fluid in determining the oviposition choices of this species seems to be
highly context dependent (27, 127).

4.3. Oviposition by Parasitoids Affects Second and First Trophic Level Members

Oviposition into hosts is associated with an intriguing type of mutualism between the parasitoid
host egg and certain types of viruses, so-called polydnaviruses (PDVs) (8, 123). The PDVs injected
into host larvae by an egg-laying parasitoid not only inhibit encapsulation of parasitoid eggs and/or
parasitoid larvae by the host’s immune system, but also lead to physiological changes in herbiv-
orous host larvae. The viral infection reaches the salivary glands of the herbivorous host larvae,
where viral-encoded proteins secreted with the host saliva into feeding sites may either directly
change the host plant’s phenotype or manipulate the biosynthesis of plant defense elicitors in the
host’s saliva (128, 149). As a consequence, the plant’s defense against host larvae is attenuated,
which may benefit the development of the parasitoid inside the host. However, hyperparasitoids
are attracted by the odor of plants that are infested by parasitized, PDV-infected host larvae.Thus,
parasitoid egg deposition associated with PDVs affects not only the second and first trophic levels,
but also the fourth level (19, 22).

5. CONCLUSIONS

While insect eggs have been intensively studied with respect to their innate developmental pro-
gram (95, 126, 134, 137), much less attention has been paid to their adaptive plasticity in response
to environmental conditions. In addition to a plethora of parentally provided egg-protective mea-
sures, the adaptive abilities of the insect eggs themselves must certainly have contributed to the
evolutionary success of egg laying as a reproductive strategy in insects. However, we still do not
really know how insect eggs sense their environment and how they sense temperature, relative hu-
midity, and other crucial environmental information. Furthermore, future studies need to address
how events experienced in the egg stage affect later developmental stages. To date, egg-associated
microbes have been shown to contribute to protection of eggs from biotic threats, but it remains
to be explored whether egg-associated symbionts also contribute to protection from unfavorable
abiotic conditions such as cold or drought. Moreover, it is now abundantly clear that insect eggs
exert significant effects on various trophic levels, and these effects may cascade up and down in
food webs. There is still a tremendous amount to be learned about the dynamic multipartite sys-
tems composed of host plants; parental insects and their eggs; and the plethora of parasitoids,
predators, and pathogens that attack eggs.
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