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Abstract
Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the
expected grain demand by mid-century, wheat breeding strategies must continue to improve upon
yield-advancing physiological traits, regardless of climate change impacts. Here, the best
performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat
field experiments in the literature were extrapolated to the global scale with a multi-model
ensemble of process-based wheat crop models to estimate global wheat production. The DH field
experiments were also used to determine a quantitative relationship between wheat production
and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a
global annual wheat production of 1050± 145 Mt due to the improved canopy photosynthesis, a
37% increase, without expanding cropping area. Achieving this genetic yield potential would meet
the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.

1. Introduction

The global demand for food is continuously increas-
ing and agricultural productionmust follow to ensure
future global food security [1–5]. Wheat (Triticum
aestivum L.) is one of the most important crops con-
tributing to global food security, providing approx-
imately 20% of calories and protein in the human
diet [6]. Although global wheat production has con-
tinued to increase over recent decades [7], the rate
of yield improvement has stagnated or declined in
certain regional wheat-producing areas (e.g. Eastern
Europe, Central India, andWestern Australia) [8] and
projected yield gains fall below the predicted future
grain demand [3, 9, 10]. Grain production increases
between 35%–56% (30%–62% when accounting for
climate change) are needed to meet the projec-
ted global food demand by 2050 (relative to 2010
food demand) [11], while endeavoring to improve
environmental sustainability and land preservation
[2, 12]. Breeding new cultivars to further increase
yield potential in high-yielding environments [13] is
one approach to address the food security challenge
[14], with the advantage that yields in poorer grow-
ing conditions could still increase [6, 15]. Investment
in yield improvements and intensification can also
mitigate greenhouse gas emissions [16]. Improving

physiological traits that have a profound influence
on the growth and yield of wheat, such as radi-
ation use efficiency (RUE, biomass accumulation per
unit of radiation intercepted by crop canopies), is of
paramount importance to meeting the future grain
demand [17, 18]. Estimates from the literature show
that the RUE of current wheat could be increased by
up to 50% under favorable crop-growing conditions
[6, 19]. Doubled haploid (DH) crosses with modified
traits such as RUE, light extinction coefficient, fruit-
ing efficiency, grain filling duration, and grain size
can increase yield potential compared to conventional
wheat cultivars [15, 20, 21].

Global wheat yield gap analyses examine the dif-
ference between the potential yield (yield of well-
adapted wheat cultivars grown with sufficient water
and nutrients and without abiotic and biotic stress)
and the average actual yield reported by farmers
under conventional management practices [22].
Quantifying the yield potential provides a bench-
mark for future crop production and a guide for
the sustainable intensification of agriculture. How-
ever, global yield potential analyses have not yet
considered the improved genetic yield potential
from advancements in physiological traits which
would quantify the extent of potential genetic
improvements. Expanding strategic genetic crosses

2

mailto:j.guarin@columbia.edu
http://doi.org/10.1088/1748-9326/aca77c


Environ. Res. Lett. 17 (2022) 124045 J R Guarin et al

across different target environments can result in sig-
nificant yield gains [23], but crop management must
be adjusted accordingly so that other resources do
not become limiting, e.g. N fertilization [24].

Our aim was to explore the upper limits of cur-
rent wheat genetic yield potential based on field
measurements of selectively bred high-yielding wheat
cultivars including the highest wheat yield repor-
ted in the literature, 16.6 t ha−1 dry weight for a
high-yielding DH line [15, 20]. From these data, we
first evaluated if a multi-model ensemble of state-
of-the-art wheat crop models, which has consist-
ently shown higher accuracy than any individual crop
model [25–27], could reproduce the observed growth
from improved physiological traits, and then we sim-
ulated the potential yield of improved wheat under
prevailing temperatures at 34 global locations. We
also determined a simple quantitative relationship
between wheat production and cumulative incom-
ing solar radiation implicitly involving both radiation
interception and RUE to estimate the current max-
imum potential wheat yield based on incoming solar
radiation (see section 4). This relationship is hence-
forth referred to as the efficiency of incoming radi-
ation capture and use (ERCU). Both the multi-model
ensemble simulations with improved traits and the
upper limit of the ERCU relationship were extrapol-
ated to the global scale based on current wheat grow-
ing areas to estimate global potential wheat produc-
tion and yield according to local radiation levels.

2. Results and discussion

2.1. Cropmodel ensemble evaluation
Crop simulation models are robust computational
tools that can simulate wheat growth, including
potential yields of an area, by representing physiolo-
gical traits mathematically within the models. Crop
models incorporate the complexity of crop–soil–
atmosphere interactions, the dynamics of phenology
and growth (through accumulated thermal time), the
dynamics of light interception, and the interactions of
photosynthesis and carbohydrate distribution within
a plant, at daily intervals while accounting for the
spatial and temporal variability of different growth
environments [28]. Models can therefore be adapted
to simulate the growth and production of new wheat
cultivars by altering the components to represent the
improved physiological traits. Since existing wheat
crop models have never before incorporated the trait
advancements reported from the DH wheat field
experiments (table 1), model testing was necessary
to evaluate whether a wheat crop model ensemble
could reproduce the production of the high-yielding
traits of the DH line. Because cropmodel simulations
contain implicit uncertainties from model input,
structure, and parameters [29], the state-of-the-art
approach in crop model applications is through
multi-model ensembles which have been consistently

shown in recent years to have a significant improved
accuracy in projection compared to any single model
applications [27]. Twenty-nine models using mod-
ified cultivar traits were calibrated and independ-
ently validated using data from field experiments
under non-stress conditions (i.e. irrigated and fer-
tilized plots without biotic stress) at Buenos Aires
(Argentina), Ciudad Obregon (Mexico), and Valdivia
(Chile) observed by Bustos et al [15] and Garcia et al
[20]. The calibratedmulti-model ensemblemedian of
wheat crop models efficiently reproduced the highest
observed yield and biomass ever reported (r2 = 0.91
and 0.66; RMSE= 177 gm−2 and 499 gm−2, respect-
ively) from the measured yield-enhancing physiolo-
gical traits, particularly increased RUE, in the three
different environments (figures 1 and S1–S3). The
observed yield response of the best-yielding DH lines
at the sites in Argentina and Chile increased by 38%
and 32%, respectively, compared to the check cultivar
Bacanora, due to the enhanced traits, with the highest
yields being recorded at the Chile site. Indeed, the
models were able to reproduce most of the observed
maximum yields at the Chile site (figure 1(f)), but
were less accurate in simulating some of the max-
imum total biomass observations (figure 1(e)). The
observed yield increases at the Argentina and Chile
sites were higher than those at the warmerMexico site
(21%). The multi-model ensemble simulations over-
estimated biomass for one year atMexico (figure 1(e),
treatment CO2009), whichmay have been influenced
by assessing biomass from observed yield compon-
ents and/or by discrepancies related to the edge effects
from gap areas (spacing) within the raised-bed fields
at that site [30, 31], unlike the more common homo-
genous fields simulated in the models.

2.2. Efficiency of incoming radiation capture and
use (ERCU)
To determine the ERCU, we considered how much
wheat dry mass accumulates in relation to the entire
resource of incident light during the growing sea-
son, i.e. cumulative incoming solar radiation from
sowing to physiological maturity (figure 2), which is
reminiscent of the widely used wheat yield to water
use relationship described by French and Schultz
[32]. Based on the observed biomass, we determ-
ined that the upper limit of potential above-ground
biomass is 1.57 g m−2 of additional dry matter for
each additional MJ m−2 of incoming solar radiation
(figure 2). When combined with the 0.45 harvest
index of the highest yielding DH line, 0.71 g m−2

grain yield per MJ m−2 of incoming solar radiation is
conceivable (figure 3). Wheat production below the
ERCU potential threshold is limited by unimproved
physiological traits such as RUE and canopy archi-
tecture (affecting the light extinction coefficient), the
proportion of diffuse radiation, biomass allocation,
and/or stress factors such as nutrient deficiencies,
weeds, pests, and diseases. For example, improved
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Figure 1. Crop model performance and evaluation of wheat production from high-yielding traits. Box plots of simulated (a), (d)
duration from sowing to maturity, (b), (e) final above-ground biomass, and (c), (f) yield of 29 wheat crop models for (a), (b), (c)
ten treatments used for model calibration with cv. Bacanora, and for (d), (e), (f) five treatments used for model calibration with
cv. Bacanora (white boxes) and five treatments used for model evaluation using the best-yielding DH line (gray boxes) at Valdivia,
Chile (VA), Buenos Aires, Argentina (BA), and Ciudad Obregon, Mexico (CO). Field experiment data for the cv. Bacanora at
Valdivia, Chile in 2010 (VA 2010) was not available, and therefore excluded from the model calibration which may explain the
underestimation of the DH line biomass in 2010 (e). Box plots show the 90th percentile, 75th percentile, median, 25th percentile,
and 10th percentile (horizontal lines from top to bottom) and outliers (open circles) of simulations based on the multi-model
ensemble. RMSE (units same as y-axis) and r2 (coefficient of determination) are shown for the multi-model ensemble median.
For the evaluation (d), (e), (f), the five calibrated treatments with cv. Bacanora are shown for comparison only and were not used
in the statistical analysis. Biomass and yield values shown are with 0% moisture content.

light interception by the DH line later in the season
in 2010 at Valdivia has a strong positive effect on the
observed above-ground biomass compared to Bacan-
ora in 2012 (figure 2). Potential above-ground bio-
mass production during early crop development can
only be suggested (dashed line in figure 2) because of
limited early season biomass data and the difficulty
in estimating early leaf expansion and light intercep-
tion. We estimate that 516 MJ m−2 of cumulative
incoming solar radiation is wasted when crop dry
matter fails to accumulate because there is insufficient
leaf area to maximize the interception of incident
radiation. Therefore, a fast and early establishment
of the crop, where ‘early vigor’ traits combine with
favorable growing conditions, is important for a high
ERCU. As a rule of thumb, the potential yield based
on the ERCU with improved physiological traits can
be derived as 0.7 g perMJ of incoming solar radiation
after subtracting 365 MJ m−2 from the cumulative
incoming solar radiation of a cropping season for any
location across the globe (figure 3).

Location and time of sowing have a strong
influence on crop growth and the ERCU because
the potential to intercept light depends on plant

architecture, which changes with the developmental
stage (driven by thermal time), temperature, water
availability, soil constraints, and other factors. To
examine and account for these interactions, we used
a multi-model ensemble median with and without
the modified traits (table 1) to simulate the poten-
tial yields at 34 high-rainfall or irrigated locations
around the globe from 1980 to 2010 (figure S4). Aver-
age yield increased by 37± 20% across all 34 locations
from the baseline simulated yield of check cultivars
to the simulated yield with modified traits (figure 3,
compare solid to open diamonds). When comparing
the ERCU potential yield encompassing the modified
traits and a 0.45 harvest index to the multi-model
ensemble baseline simulated yield, a 106± 43% aver-
age yield increase across all locations was observed
(figure 3, compare black potential line with open dia-
monds). The ERCU relationship provides a quick and
simple potential genetic yield estimation, similar to
the application of the French and Schultz [32] wheat
yield to water use relationship, but is only applicable
for growth under non-stress conditions.

The high ERCU, biomass, and yields observed
at the Chile site were driven by a combination of
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Figure 2. Relationship between wheat biomass potential and cumulative incoming solar radiation. Observed cumulative total
above-ground biomass was plotted against observed cumulative incoming solar radiation of cv. Bacanora (open symbols) and the
DH line (solid symbols) from sowing to maturity for different growing seasons (corresponding years are the same color) at
Valdivia, Chile (VA, circles), Buenos Aires, Argentina (BA, squares), and Ciudad Obregon, Mexico (CO, triangles). Solid colored
lines indicate cumulative growth. Solid black line indicates the upper threshold of the production potential of cumulative
incoming solar radiation calculated using the best pre- and post-anthesis crop response, i.e. average of the Valdivia 2012 cv.
Bacanora first two measurements and average of the high-yielding Valdivia 2010 DH line final two measurements, respectively.
The slope of the line indicates the Efficiency of incoming Radiation Capture and Use (ERCU, g MJ−1). Dashed black line
indicates the suggested production potential for early crop development. Biomass of three older wheat cultivars from Yunusa et al
[58] are included to show how the ERCU has been improved in newer wheat cultivars. Error bars indicate the standard deviation
of replications for available measured data. All biomass values are with 0% moisture content.

the improved RUE of the DH line (table 1) and the
highest incoming solar radiation per day through-
out the growing season of the locations studied under
yield potential conditions (figure S5). Notably, the
highest DH yield resulted from a below-average har-
vest index of 0.45 (for treatment VA 2010) while the
observed average harvest index was 0.49 across the
Argentina, Chile, and Mexico sites. The yield gap
between the ERCU potential yield and the simulated
yields increases at locations with higher cumulative
incoming solar radiation due to longer growing sea-
sons, slower accumulation of thermal time, and less
incoming solar radiation per day (figure S5).

2.3. Potential global wheat production
To determine the upper limit of global wheat pro-
duction, themulti-model ensemble simulations at the
34 high-rainfall or irrigated locations were extrapol-
ated to the global scale using the yield gap between
the baseline simulations without modified traits and
the simulations with modified traits (figure 3). This
upscaling resulted in a potential global wheat pro-
duction and yield gain of 280 ± 145 Mt yr−1 and
1.3 ± 0.7 t ha−1 yr−1, respectively. This is a 37%
increase from the 2020 global wheat production
and yield [7] without expanding the current wheat

cropping area, assuming high-rainfall or irrigated
field conditions (figure 4). This simulated yield
increase agrees well with the observed yield response
from the modified DH traits at the Argentina and
Chile sites as expected. When extrapolating the yield
gap between the multi-model ensemble baseline sim-
ulations and the ERCU upper limit to the global
scale, the increase from the 2020 global wheat produc-
tion and yield is 108%. The simulated multi-model
ensemble potential yield increase is lower than the
ERCUpotential yield increase because themodel sim-
ulations account for the changes in the light intercep-
tion from the crop developmental stage, water avail-
ability, temperature, soil constraints, and other limit-
ing factors. Breeding wheat cultivars with improved
physiological traits such as RUE is a costly, time-
consuming, and arduous process [6], but these global
production estimates show that current wheat pro-
duction has the potential to meet the necessary yield
gains for future grain demand [11] through improved
breeding strategies and without the need for addi-
tional cropping area.

It is important to note that the potential pro-
ductivity thresholds assume that optimization of each
trait is possible and that there are no trade-offs,
but this may not be applicable everywhere [33, 34].
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Figure 3. Relationship between wheat yield potential and cumulative incoming solar radiation. Observed yield was plotted against
observed cumulative incoming solar radiation for cv. Bacanora (open symbols) and the DH line (solid symbols) in different
growing seasons (corresponding years are the same color) at Valdivia, Chile (VA, circles), Buenos Aires, Argentina (BA, squares),
and Ciudad Obregon, Mexico (CO, triangles). Solid black line indicates the upper threshold of yield potential of cumulative
incoming solar radiation calculated using the biomass potential limit (see figure 2 and section 4) with the harvest index of the
highest yielding DH line, 0.45. Dashed black line indicates suggested yield potential during early crop development. Simulated
yields are of multi-model ensemble median of 26 wheat crop models with (solid diamonds) and without (open diamonds)
modified cultivar traits (table 1) from 1980–2010 for 34 high-rainfall or irrigated AgMIP locations chosen from around the globe.
Detailed incoming solar radiation at each location is shown in figure S5. Error bars indicate the 75th and 25th percentiles of the
cumulative incoming solar radiation and yields simulated by the multi-model ensemble. All yields shown are with 0% moisture
content.

There was no correlation (r2 = 0.02) between the
observed RUE and harvest index of the DH lines,
which suggests that it may be possible to improve
both RUE (source) and harvest index (sink) sim-
ultaneously (figure S6). Multi-location breeding tri-
als have shown that strategic source-sink crosses can
result in significant yield gains across different tar-
get environments [23]. Temperature is a key factor
affecting the ERCU because the relationship of tem-
perature with solar radiation is a linear determin-
ant of yield potential [35]. We consider the current
temperature conditions in each region when apply-
ing the ERCU, but this could be further impacted
by climate change in the future [36–38]. Climate
change may increase genotype-environment interac-
tions which could create challenges in realizing the
same level of genetic gains from adapted cultivars
in new environments [39]. Additionally, wheat pro-
ductivity could be affected by fluctuations in incom-
ing solar radiation between sun and shade [40]
or source-sink imbalances [41], and there are still
risks of suboptimal yields due to year-to-year vari-
ability resulting from extreme climate events and
pests and disease [42]. Here, we do not address the
economic constraints [43] of the material inputs

(irrigation, fertilizer, biocides) required to maintain
and protect higher production levels. For example,
the higher-yielding cropsmay not require more water
as was found with the energy balance calculation for
maize yields [44], but additional research is needed
to determine if this is also applicable to C3 crops. The
higher-yielding cropsmay requiremore fertilizer [45]
or more efficient fertilizer use, which would likely
increase N2O emissions unless further advancements
in syntheticNproduction are established, or advance-
ments in crop N utilization efficiency are achieved as
observed in Australia [46]. However, yield potential
and N response have been shown to be independent
of one another [47, 48], so higher yields with lower N
fertilizer rates may be achievable [49, 50]. The nutri-
tional content from large yields should be examined
as grain quality may decrease with high yields and
under climate change [37].

The simulated potential global production
increase of 37% is a feasible scenario, as similar pro-
duction increases have already been achieved in Chile
and Argentina, although high-yielding crops may
require higher inputs to support them [36, 45]. To
prevent overestimation of the global potential yield
in water-limiting areas, we assumed that the current
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Figure 4. Potential global yield and production under different high-yielding scenarios. Bar plots show global wheat
(a) average yield and (b) production based on the latest reported statistics for 2020 [7] and the results of simulations aggregated
from a multi-model ensemble median of 26 wheat crop models for 34 high-rainfall or irrigated AgMIP locations around the globe
using modified cultivar traits (table 1), and the potential based on yield gaps determined from the efficiency of incoming
radiation capture and use (ERCU) relationship (see figure 3). Total global production is the sum of global low-rainfall production
and global high-rainfall or irrigated production. Global yields were calculated by dividing the total global production (including
the unimproved yields in all low-rainfall regions, approximately 30% of the global wheat area [26, 51]) by the total global wheat
area harvested [7]. Error bars for the simulated production with modified traits scenario indicate standard deviation from annual
and model variation. Error bars for ERCU potential production with modified traits scenario indicate standard deviation from
yield gaps between the ERCU upper limit and baseline simulated scenario. All production and yields shown are with a
commercial moisture content of 13% [7].

production from low-rainfall areas (30% of the total
2020 global production [37, 51]) for all scenarios
will not change because low-rainfall production is
unlikely to benefit from the improved trait scenarios
[41]. However, this is a risk-averse assumption, and
it may be possible that low-rainfall areas could par-
tially benefit from the modified trait scenarios which
would further increase the potential production. It
is also possible that breeding advancements increase
the average wheat harvest index of 0.45 in the future
[52, 53]. A harvest index of 0.61 has already been

observed in modern elite winter wheat varieties [52],
and the DH lines used in this study had an aver-
age harvest index of 0.49 across the three locations.
While these genetic yield gains are promising, the
global implementation of genetically improved cul-
tivars is a laborious process. Providing a new com-
mercially available wheat cultivar takes approxim-
ately 8–12 years [54], but an improved exchange of
big data between breeding programs can accelerate
the production of DH lines [55]. The combination
of these modified traits and potential increases in
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harvest index are possible (figure S6), but this would
still require multiple breeding cycles before cultivar
release.

In regard to the simplified ERCU relationship,
there is some uncertainty remaining in relating wheat
productivity to incoming solar radiation because
only a portion of the incident radiation is intercep-
ted for photosynthesis depending on the crop can-
opy structure and irradiance received by leaves [56].
However, intercepted radiation can be approximated
from incoming solar radiation because about 50%
of incoming solar radiation is photosynthetic active
radiation (PAR), and roughly 85%–90% of PAR is
intercepted in the period when most biomass accu-
mulation occurs, i.e. when leaf area index is above
three for wheat, depending on canopy structure and
angle of leaves [17, 57]. Studies using the high-
yielding DH line in Argentina, Chile, and Mexico
estimated the RUE for total above-ground biomass
as ∼2.1 g MJ−1 intercepted solar radiation [15, 20],
which is well above the average of 1.4 g MJ−1 inter-
cepted solar radiation observed elsewhere for wheat
[17, 58, 59]. The simulated cumulative intercepted
solar radiation of the multi-model ensemble median
(calculated by doubling the simulated cumulative
intercepted PAR) suggests 66% and 71%of the cumu-
lative incoming solar radiation was intercepted across
the 34 locations in the simulations without and with
modified traits, respectively. Assuming 71% of the
incoming solar radiation was intercepted, the RUE
becomes 2.2 g MJ−1 intercepted solar radiation, sim-
ilar to the previous RUE using the high-yielding
DH line [15]. Caution is advised when approxim-
ating intercepted solar radiation from the ERCU
relationship because of seasonal variation in incom-
ing solar radiation and the uncertainty in estimat-
ing light interception by leaves [56]. It is recom-
mended only when the radiation interception rate
is known. Intercepted solar radiation or intercep-
ted PAR provides an accurate representation of crop
dry matter accumulation [17, 60], but the availabil-
ity of such data is often limited to local in situ meas-
urements. The novel ERCU relationship is based on
observed data and reveals the current upper limit
of potential wheat yield gaps at the global scale for
the development and improvement of global wheat
adaptation strategies.

3. Conclusion

For the first time, a multi-model ensemble of exist-
ing wheat cropmodels has been shown to incorporate
and reproduce the physiological trait advancements
reported from recent high-yielding DH field experi-
ments in different environments through modifica-
tion of parameters within the models. Additionally,
existing relationships between incoming solar radi-
ation and wheat production have never before incor-
porated the trait advancements recently reported

from DH wheat field experiments or used a solar
radiation-wheat production relationship to estim-
ate the upper limit of global genetic yield potential.
These findings suggest that if wheat with improved
physiological traits is grown across all high-rainfall
and irrigated wheat-producing regions in the world,
a potential increase of 37% of global wheat produc-
tion and yield is feasible, as already achieved at sites
in Argentina and Chile. There is also basis for doub-
ling global wheat production and yield when only
limited by solar radiation, although this is an elusive
and immense challenge at the global scale. The 37%
increase of global wheat production would meet the
lower estimate of the projected future grain demand
in 2050, without expanding the current agricultural
cropping area. To achieve this, breeding strategies
would need to optimize physiological traits withmin-
imal trade-offs, while additional crop management
inputs may be required to maintain such high yields.

The newly developed ERCU relationship can be
applied as a simplistic upper benchmark, rather like
the yield-water use function is routinely used in low-
yielding rainfed agriculture [32], but with readily
accessible, near real-time global incoming solar radi-
ation data anywhere in the world (https://power.larc.
nasa.gov). Farmers, scientists, and policymakers can
use the ERCU relationship to benchmark local and
regional yield improvements against observed high
yields, provide a yardstick for sustainable intensific-
ation and potential yield gap analysis, and develop
breeding adaptation strategies.

4. Materials andmethods

4.1. Cropmodel ensemble evaluation
To determine if crop simulation models could repro-
duce the observed yield gains from measured high-
yielding traits, we first evaluated the performance of
29 process-based wheat crop models (table S1) in
simulating the observed yield potential of two spring
wheat cultivars for multiple growing seasons at three
different high-yielding locationswith negligible water
or nitrogen stress and full control of weeds, pests,
and diseases.Weused themaximumavailable agricul-
tural model intercomparison and improvement pro-
ject (AgMIP) wheat crop models in this ensemble
since multi-model ensemble accuracy improves with
the inclusion of each additional model [25, 61–63].
The check cultivar Bacanora was compared to a DH
line resulting from a cross between cv. Bacanora and
cv. Weebil with improved RUE, light extinction coef-
ficient, grain filling rate, and potential grain size
and slightly decreased fruiting efficiency and grain
filling duration (table 1). These physiological traits
were calculated fromprevious field experimental data
observed at Buenos Aires (Argentina), Ciudad Obre-
gon (Mexico), and Valdivia (Chile) by Bustos et al
[15] and Garcia et al [20]. These locations had fertile
soils and used best management practices to prevent
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Table 1. Description and calculated percent change between the best-yielding DH line and the check cultivar (cv. Bacanora) of the traits
provided to the crop modeling groups. Values are calculated from the observed field experiment data [15, 20, 21]. DM, dry matter; GS,
growth stage; PAR, photosynthetically active radiation. The cultivar parameters used by each model are provided in table S2.

Type Trait Units Calculation
DH line(% change
vs. cv. Bacanora)

Source Radiation use
efficiency (RUE)

g MJ−1 Slope of above-ground
biomass DM (GS10 to GS89)
vs. cumulative intercepted PAR

34

Light extinction
coefficient at GS31 (K)

m2 (at ground) m−2

(of leaf)
Exponential coefficient of
cumulative PAR (pre-anthesis)
vs. leaf area index (LAI)

10

Sink Fruiting efficiency
(FEspike)

grain g−1 DM Grain number divided by DM
of anthesis spike

−5

Potential grain filling
duration (GFD)

◦Cd Thermal time (base
temperature 0 ◦C) between
anthesis and physiological
maturity

−4

Potential grain filling
rate (GFR)

mg DM◦Cd−1 Grain DM divided by thermal
time (base temperature 0 ◦C)
between anthesis and
physiological maturity under
potential growth conditions

21

Potential grain size
(GWpot)

mg DM grain−1 Average single grain DM under
potential growth conditions

16

yield limitation, e.g. N was applied ad libitum. The
modified traits were selected specifically to increase
photosynthesis and yield potential under non-stress
conditions. The effects on grain quality or disease
resistance were not examined. The RUE and light
extinction coefficient were calculated using the mean
percent change between Bacanora and the two best-
yielding DH lines from Chile only because of limited
measurements at Argentina and Mexico. The fruiting
efficiency, grain filling duration, grain filling rate, and
potential grain size were calculated using the mean
percent change between the best-yielding DH line
and Bacanora from each of the three locations.

The crop modeling experiment was conducted
in two steps, model calibration followed by a ‘blind’
evaluation. In step 1, detailed crop growth data
[15, 20] were provided to the modeling groups for
five seasons at Valdivia, Chile (2008–2009, 2009–
2010, 2012–2013, 2013–2014, and 2014–2015), one
season at Buenos Aires, Argentina (2009–2010), and
four seasons at CiudadObregon,Mexico (2009–2010,
1990–1991, 2015–2016 and 2016–2017) to give a
total of ten site-year-treatment combinations with
which to calibrate the models for the check cultivar
Bacanora. The data at Ciudad Obregon, Mexico in
1990–1991 were obtained from a previous AgMIP
study [26, 64]. Values for each season consisted of
the mean of three replicated plots where the wheat
crops were grown with ample N supply, full irriga-
tion, and agronomic practices to reach potential yield
for the local soil and weather conditions. All other
crop protection factors including weed, disease and
pest control, and potassium, phosphate, and sulphur
fertilizers, were applied at levels to prevent limitations
on yield. Total initial soil mineral N (NO3 and NH4)

content was assumed to be equal to 140 kg N ha−1 to
ensure negligible N stress. The temperature and solar
radiation data were provided from a weather station
located <2 km from the experimental field and the
rainfall, wind speed, and relative humidity data were
obtained using the NASA POWER database (https://
power.larc.nasa.gov) [65, 66]. In step 2, a ‘blind’ sim-
ulation was conducted for the best-yielding DH line
at each location using the same initial growing con-
ditions from the calibration, without providing the
modelers with observed data. Only the calculated trait
percent changes (table 1) and instructions describ-
ing how to modify the calibrated cv. Bacanora traits
for the high-yielding DH line were provided to simu-
late growth for three seasons at Valdivia, Chile (2008–
2009, 2009–2010, and 2010–2011), one season at
BuenosAires, Argentina (2009–2010), and one season
at Ciudad Obregon, Mexico (2009–2010). The model
cultivar parameters that correspond to the physiolo-
gical traits for each of the 29 models are provided in
table S2. Not all models were able to modify all cul-
tivar parameters (table S2).

4.2. Determination of ERCU
The ERCU relationship was developed by follow-
ing the definition of yield potential from Reynolds
et al [6]:

Yield potential= Light interception ∗RUE
∗Harvest index (1)

and the approaches of French and Schultz [32] in
deriving the relationship between wheat produc-
tion and water use, and of Bugbee and Salisbury
[67] in calculating the potentially achievable yield
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from the photosynthetic photon flux in a controlled
environment. The ERCU encompasses both RUE and
radiation interception and is defined as:

ERCU= Light interception ∗RUE (2)

calculated from the observed above-ground biomass
per unit of incoming solar radiation (figure 2). The
ERCU is similar to net primary production (NPP), a
common metric in terrestrial ecosystem and forestry
modeling calculated as photosynthetic CO2 fixation
without autotrophic respiration [68], but NPP is
the amount of carbon per unit of surface area per
unit of time (gC m−2 d−1) while the ERCU is the
rate of above-ground dry matter per unit of incom-
ing solar radiation (g MJ−1). The ERCU uses total
incoming solar radiation and RUE which are both
standard inputs in most crop models. Total incom-
ing solar radiation for each location and growing sea-
son was obtained from local weather stations and/or
the NASA POWER database (https://power.larc.nasa.
gov) [65]. The production potential threshold was
determined from the linear fit between the best
pre- and post-anthesis crop response from the high-
yielding dataset. This was calculated using the average
of the first two measurements of cv. Bacanora in Val-
divia 2012 and the average of the final two measure-
ments of the high-yielding DH line in Valdivia 2010
(figure 2). The biomass potential threshold was then
multiplied by the harvest index of the highest yielding
DH line, 0.45, to obtain the yield potential threshold
(figure 3):

Yield potential= ERCU ∗Harvest index (3)

4.3. Cropmodel ensemble global simulations and
extrapolation
After confirming that the 29-model ensemblemedian
accurately reproduced the observed effects of the
high-yielding traits (figure 1), 26 models of the
ensemble (table S1) participated in simulating poten-
tial wheat production with and without the modi-
fied traits (table 1) from 1980 to 2010 at 34 high-
rainfall or irrigated global locations including Buenos
Aires, Ciudad Obregon, and Valdivia. As a check,
steps 1 and 2 were reanalyzed with the 26-model
ensemble to confirm that the ensemble median was
still able to reproduce the observed high yield and
biomass from the yield-enhancing traits (r2 = 0.92
and 0.64, respectively) (figure S7). 30 of the 34 high-
rainfall or irrigated locations were from previous
AgMIP studies [26, 37] with the addition of Buenos
Aires (Argentina), Valdivia (Chile), Rots (France),
and Leeston (New Zealand) (all locations shown in
figures S4 and S5). As in the previous AgMIP stud-
ies, treatments were simulated with ample N supply,
irrigation (if applicable), and with proper agronomic

practices (e.g. typical sowing dates) for the local soil
andweather conditions of each location. This ensured
that the crop growth interactions with temperature,
water, and soil dynamics corresponded to each loca-
tion. All other crop management operations includ-
ing weed, disease and pest control, and fertilizers,
were applied at levels to prevent limitations on yield.
Atmospheric CO2 concentration of 360 ppm was
assumed for all years, so impacts from climate change
or elevated atmospheric CO2 concentrations were
not taken into account. For each location, region-
specific check cultivars and cultivar parameters from
a previous AgMIP study [26] were simulated with
and without the modified traits (table 1) to emulate
the crop response under the different global envir-
onmental and seasonal conditions such as temperat-
ure, rainfall, and solar radiation. Cultivar parameters
for the individual crop models are shown in Asseng
et al [26], and the various temperature functions
in wheat crop models are presented in Wang et al
[69]. Winter or spring wheat cultivars were chosen
based on the available field experiment data and the
dominant type of that region. Winter wheat cultivars
have a higher yield potential than spring wheat cul-
tivars because of the longer growing season caused
by vernalization [70], so the benefits to spring wheat
yield potential, especially through a driving trait such
as RUE, would also likely benefit winter wheat yield
potential [6, 19]. Additionally, similar to the high
genetic yield gains in spring wheat observed at Chile
by Bustos et al [15], a recent study also conducted
at Chile observed high genetic yield gains in winter
wheat grain yield, reaching up to 20.5 t ha−1 [71].
For each crop model, the cumulative seasonal incom-
ing solar radiation for each location was calculated
based on the simulated growing season. The multi-
model ensemble median was then used to calculate
the percent change between the simulated baseline
yield without modified traits and the potential yield
with modified traits at the 34 global high-yielding
environments (figure 3, i.e. percent change between
solid and open diamonds). We focus on the multi-
model ensemble median because it has been shown
to provide the best estimates when considering all
variables [27].

To extrapolate the results to the global level,
we upscaled both the crop model simulations from
the 34 high-yielding locations and the ERCU upper
limit to the global level using the same ‘bottom-
up’ approach as in previous AgMIP studies [26, 37].
This approach used stratified sampling [72], a guided
sampling method with several points per wheat
mega-region [73]. The simulated results of each loc-
ation were weighted by the FAO production that
each location represented [26] (see supplement-
ary methods). This ‘bottom-up’ stratified sampling
approach has shown similar impact results as in
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the ‘top-down’ aggregation of simulated grid cells
[74, 75] and reduced uncertainty when estimating
yield potential and yield gaps compared to ‘top-down’
gridded frameworks [76]. The percent change of
production was calculated between the simulated
baseline scenario without modified traits and the
simulated scenario with modified traits (figure 4).
The percent change of production for the ERCU
upper limit was calculated between the simulated
baseline scenario without modified traits and the
ERCU upper yield potential with modified traits.
The weighted FAO production was multiplied by the
percent change of production to obtain the addi-
tional production at each of the 34 locations for
both scenarios. This additional production at each
location was summed to calculate the total addi-
tional global production for both scenarios. The total
production of the 34 high-rainfall or irrigated loca-
tions represented approximately 70% of global wheat
production [37, 51], so 30% of the 2020 global
average production was added to account for low-
rainfall production (figure 4(b)), assumed to be con-
stant for all scenarios because low-rainfall produc-
tion is unlikely to benefit from the improved trait
scenarios [41]. Global yields (figure 4(a)) were cal-
culated by dividing the total global production scen-
arios in figure 4(b) by the total global wheat area
harvested [7].

Data availability statement

The global agricultural data that support the find-
ings of this study are publicly available at the Food
and Agriculture Organization (FAO) FAOSTAT data-
base (www.fao.org/faostat/) and the global incom-
ing solar radiation data are publicly available at
the National Aeronautics and Space Administration
(NASA) Langley Research Center (LaRC) Prediction
of Worldwide Energy Resource (POWER) database
(https://power.larc.nasa.gov). Individual cropmodels
and their documentation are listed in table S1.

The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.7910/DVN/VKWKUP. Data will be avail-
able from 01 November 2022.
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