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Simple Summary: Dairy farmers would benefit from a decision support tool that predicts each
cow’s probability of survival to future lactations. Based on this output, they might optimize herd
breeding decisions by selecting the cows that better cope with the existing housing and management
conditions of their own farm. This work explored the accuracy of a novel statistical technique to
obtain predictions of cows’ probabilities of survival to the second and third lactations, starting from
sensor data of daily milk yield, body weight, and rumination time automatically recorded during
different stages of the cows’ first lactation. Data from six different dairy farms were individually
analyzed; in almost all the scenarios, the error associated with the obtained survival predictions was
low. The explored decision model applied to the dairy cattle sector revealed good potentialities.

Abstract: Early predictions of cows’ probability of survival to different lactations would help farmers
in making successful management and breeding decisions. For this purpose, this research explored
the adoption of joint models for longitudinal and survival data in the dairy field. An algorithm jointly
modelled daily first-lactation sensor data (milk yield, body weight, rumination time) and survival
data (i.e., time to culling) from 6 Holstein dairy farms. The algorithm was set to predict survival to the
beginning of the second and third lactations (i.e., second and third calving) from sensor observations
of the first 60, 150, and 240 days in milk of cows’ first lactation. Using 3-time-repeated 3-fold cross-
validation, the performance was evaluated in terms of Area Under the Curve and expected error of
prediction. Across the different scenarios and farms, the former varied between 45% and 76%, while
the latter was between 3.5% and 26%. Significant results were obtained in terms of expected error of
prediction, meaning that the method provided survival probabilities in line with the observed events
in the datasets (i.e., culling). Furthermore, the performances were stable among farms. These features
may justify further research on the use of joint models to predict the survival of dairy cattle.

Keywords: dairy cow; sensor data; survival; joint model; decision support tool

1. Introduction

Cow survival is a complex trait that depends on multiple factors, such as milk produc-
tion, fertility, health, and farm management conditions [1]. If survival is computed from the
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day of the first calving, it coincides with the productive life of the animal, which represents
a very important trait in the dairy practice [2]. Typically, cows with longer productive
lives are more resilient, exhibiting good productive and reproductive performances and
having few health problems that they overcome rapidly [3]. Nowadays, the average cow
productive life ranges from 2.5 to 3.5 lactations [4,5], while a dairy cow is biologically
capable of a life span up to 20 years [6]. Additionally, the research by Bach [7] reported
a decline in survival rates of first-parity cows. When dairy cows do not manage to survive
beyond the first lactation, the rearing costs are not paid back; cows start making profit
for the farmer only during the second lactation, reaching the full production potential
during the third lactation [8]. Moreover, Grandl et al. [9] showed that cows that do not
complete the first lactation perform particularly unfavorably with regard to their green-
house gas emissions per unit of produced milk. Moreover, from an ethical perspective,
short longevity is typically an indicator of poor animal welfare, being a sign of impaired
biological functions and health conditions [10].

Dairy farmers would benefit from a tool able to provide information about the future
prospect of the first-parity cows in their herds. Based on survival predictions at farm level,
they could select the ones that better cope with the existing housing and management
conditions, optimizing culling decisions and breeding schemes. To date, no decision
support tools have been implemented to help farmers in selecting the cows that are more
likely to thrive in their own farm environment. Nowadays, some possibilities can arise
from the great amount of information provided by the increasing number of sensor systems
operating on many dairy farms [11,12]. These new technologies provide a constant flow
of high-frequency repeated measures of parameters, such as milk yield and quality (e.g.,
somatic cell count) or a cow’s activity (e.g., locomotion and rumination), which can reflect
changes in the physiological and health status of the animal [13,14]. These measurements
can be used to predict cow survivability using new statistical methods. These methods
are based on the joint modelling of longitudinal and time-to-event data [15]. Joint models
are used in the field of biomedicine to predict patients’ survival probabilities based on
temporal trajectories of disease-specific biomarkers and to discriminate between patients
with a low or high risk of mortality. These models are versatile, being easily adapted to
different recording periods of longitudinal data, time points of survival prediction, and
variables to be used in the models. Furthermore, joint models avoid deriving biologically
meaningful proxies from time-series data, since they directly estimate the information
provided by the raw (nearly unprocessed) longitudinal data.

The aim of the present study was to explore the adoption of a joint model that used
first-lactation longitudinal sensor data of milk yield (MY), body weight (BW), and rumina-
tion time (RUM) to predict cows’ survival to subsequent lactations.

2. Materials and Methods
2.1. Data

Data were retrieved from 6 Holstein dairy farms (3 British, 2 Belgian, and 1 Italian)
equipped with automatic milking systems (AMS) of Lely Industries (Lely Industries N.V.,
Maasluis, The Netherlands). Farms were selected based on data availability and on farmers’
willingness to participate in the study. Daily records of individual cow MY, BW, and RUM
were collected from the AMS database, to be used as potential indicators of lactating cows’
health status [16,17] and, therefore, as information possibly related to their survival. Dates
of cows’ birth, calving, and culling were also retrieved from the farm databases. The time
period covered by all the datasets varied between 2013 and 2020. Descriptive information
for each farm is reported in Table 1.

2.2. Data Processing

Data processing and analysis were performed with RStudio software (R version 4.1.2;
RStudio PBC, Boston (MA), USA) and equally conducted for each dataset (i.e., farm).
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Table 1. Overview of the available datasets.

Farm Time Period Cows (n) t1
1 Culled before t1 t2

2 Culled before t2

Italian 2014–2020 98 414 12% 828 41%
Belgian 1 2014–2020 169 422 18% 843 34%
Belgian 2 2013–2019 182 397 9% 793 21%
British 1 2013–2019 266 384 9% 768 24%
British 2 2013–2019 101 402 11% 805 26%
British 3 2013–2019 226 400 6% 799 17%

1 Average number of days between the first and second calving; 2 average number of days between the first and
third calving.

The survival time (T) of each cow was computed as the number of days between the
first calving and the culling, coinciding with the productive life of the animal. Culling dates
were derived from the last date on which milk production was registered. If no culling
date was available, the cow was considered still alive at the final date of the dataset (i.e.,
censored), and the survival time was computed as the difference in days between the final
date and the date of the first calving; the cow was removed if she had not yet completed
the first lactation at the end date of the dataset. The age at first calving (AFC) of each
cow was expressed as a 3-category variable: ‘low’ if it was below the first quartile of herd
AFC, ‘medium’ if it was within the interquartile range, and ‘high’ if it was above the third
quartile. The season of the data recording period (SEAS) was transformed into a binary
variable: ‘warm’ if between April and October, ‘cold’ if otherwise.

Individual cow raw sensor data of MY, BW, and RUM recorded during first lactations
were used in the study. Farm databases provided daily MY and BW in kilograms, while
RUM data consisted of 2-hourly measures that were summed into single daily records
expressed in minutes. According to Adriaens et al. [3], values of each sensor variable that
fell outside of 3 standard deviations (SD) from the respective herd means were treated as
outliers and removed from the dataset, except when they were present more than 30 times
for the same cow. The rationale was to clean the dataset of errors in the data recording
while keeping the information related to possible real disturbances (such as diseases). This
was assuming a cow had an actual ‘abnormal behavior’ when outliers characterized a total
of at least 30 days of the whole lactation time. Table 2 reports means and SDs of daily MY,
BW, and RUM for every farm.

Table 2. Means and standard deviations (SDs) of the recorded sensor data.

Farm
MY 1 BW 2 RUM 3

Mean SD Mean SD Mean SD

Italian 32.8 6.60 595 62.1 458 94.2
Belgian 1 27.5 6.33 530 65.9 470 98.0
Belgian 2 32.4 6.57 548 109 487 126
British 1 31.9 8.01 634 65.1 491 102
British 2 24.2 6.11 567 60.0 500 120
British 3 33.9 6.84 578 59.0 484 125

1 Milk yield (kg/d); 2 body weight (kg/d); 3 rumination time (min/d).

All the cows culled before 50 days in milk (DIM) of the first lactation (i.e., T < 50)
were deleted from the dataset to examine only animals with a reasonable amount of sensor
observations. Moreover, we considered first-lactation sensor measurements in the interval
5–305 DIM; the starting point was set at 5 DIM to avoid missing data associated with
the very first days after calving, while the maximum observed time was set at 305 DIM,
as it is the standard lactation length used for genetic evaluations in cattle [18]. After the
data-filtering and cleaning procedures, a cow was removed from the dataset if she remained
with less than 90% daily observations with respect to the first-lactation length (maximum
305 DIM).
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2.3. Algorithm Development

An algorithm based on multivariate joint modelling of longitudinal and time-to-event
data was built to predict cow survival from raw daily data of MY, BW, and RUM recorded
during the first lactation; ‘multivariate’ refers to the presence of 3 longitudinal variables to
be modelled simultaneously.

The joint modelling technique has been recently studied by Rizopoulos [15]. It consists
of two steps: (i) description of the evolution of the longitudinal variable over time using
a (generalized) linear mixed model [19] and (ii) estimation of the survival probabilities
using the estimated evolution within a survival Cox model [20]. Assuming i = 1, . . . , n
is the statistical unit (e.g., patient) and k = 1, . . . , K identifies the different longitudinal
outcomes, the evolution over time t of each outcome yik can be described by the following
linear mixed model: {

yik(t) = xT
i (t)βk + zT

i (t)bik + εik(t)

bik ∼ N (0, Dk), εik(t) ∼ N
(
0, σ2

k
) , (1)

where xi are the predictors associated with the fixed effects βk, zi are the predictors as-
sociated with the random effects bik, and εik is the error term. Both the vector of the
random effects and the vector of the errors have a normal distribution. The correlation
between the different longitudinal variables yik is then captured by setting a multivariate
normal distribution for the random effects bi = (bi1, . . . , biK)

T ∼ N (0, D). Assuming
mik(t) = xT

i (t)βk + zT
i (t)bik is the ‘true’ value of each outcome at time t, we can define

the following multivariate joint model (i.e., Cox hazard model containing the evolution
processes of the longitudinal outcomes):

hi(t|Mi1(t), . . . ,MiK(t)) = h0(t) exp

(
γTωi +

K

∑
k=1

αkmik(t)

)
. (2)

The equationMik(t) = {mik(s), 0 ≤ s ≤ t} represents the longitudinal history of mik
until t, where h0(t) is the baseline hazard function at time t, αk measures the association
between mik and the risk of an event, and ωi are baseline variables. The joint estimation
process is carried out with a Markov Chain Monte Carlo algorithm [21].

According to this theoretical approach, in the present study, the K longitudinal vari-
ables were represented by first-lactation daily sensor data: (MYi(t), BWi(t), RUMi(t)) =
(yi1(t), yi2(t), yi3(t)). The evolution of each yik, k = 1, 2, 3 over t was described by the
following linear mixed model:

yik(t) = β0k + β1kns(t) + β2k AFCi + β3kSEASi(t) + bi0k + bi1kns(t) + εik,

i = 1, . . . , n,
(3)

where n was the number of cows in the dataset. The fixed effects βk = (β0k, β1k, β2k, β3k)
T

were respectively associated with the intercept of the model, the time t expressed as
DIM (5 ≤ DIM ≤ 305), the cow’s AFC, and SEAS at t. More specifically, the time was
modelled with a natural cubic spline (ns). The spline was set to have one knot at the
median DIM of the dataset (resulting in 2 different cubic sub-polynomials) when RUM
was the longitudinal outcome. For MY and BW, the splines were set to have 3 knots
at the 3 quartiles of DIM of the dataset (resulting in 4 different cubic sub-polynomials)
to capture the well-defined shapes of the trend of these two traits over an entire lacta-
tion [22]. The random effects bik = (bi0k, bi1k)

T were respectively associated with the
cow-specific intercept and the cow-specific time slope. The random intercept was neces-
sary to capture the variation of the parameters of the ith animal from those in the dataset,
while the random slope allowed the evolution in time described by ns(t) to be different
from one cow to another. The correlation between yi1, yi2, and yi3 was captured using
bi = (bi01, bi11, bi02, bi12, bi03, bi13)

T ∼ N (0, D) with unstructured covariance matrix D. As-
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suming mik(t) = β0k + β1kns(t) + β2k AFCi + β3kSEASi(t) + bi0k + bi1kns(t) (i.e., the sensor
value without error), we defined the following multivariate joint model:

hi(t|Mi1(t),Mi2(t),Mi3(t))

= h0(t) exp(γ1 AFCi + α1mi1(t) + α2mi2(t) + α3mi3(t)),
(4)

where the event was represented by ‘the cow was culled by the last date of the dataset’.
The risk of being culled at t could then be associated with the first-lactation levels of MY,
BW, and RUM at t, adjusted by the animal’s AFC (baseline variable).

We supposed it was more likely that the risk of being culled at t could be associated
with the slopes of the trajectories of the sensor variables at t, and not with their current
values as in the previous model specification (4). In this way, the joint estimation process
could identify fluctuations in the sensor measurements resulting from possible disturbances
(such as diseases) and examine their relationship with the cow at risk of being culled.
An illustrative example is reported in Figure 1 for the MY variable related to one cow; the
lactation curve deviates from the typical lactation curve of dairy cattle, and this deviation
is captured by the slope. The final model used in the study was then expressed by the
following equation:

hi(t|Mi1(t),Mi2(t),Mi3(t))

= h0(t) exp
(
γ1 AFCi + α1m′i1(t) + α2m′i2(t) + α3m′i3(t)

)
,

(5)

where m′ik(t) = d
dt{β0k + β1kns(t) + β2k AFCi + β3kSEASi(t) + bi0k + bi1kns(t)} was the

time-dependent slope of the sensor variable k, k = 1, 2, 3, for cow i (i.e., the first derivative
of mik(t)).
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Figure 1. Tangent (blue) lines to the estimated milk yield trajectory (red curve) at time points
t = 110 DIM and t = 180 DIM for one cow (5 ≤ DIM ≤ 290) of one farm randomly chosen. The joint
model examines the association between the slope of the tangent line at t and the risk of being culled
at t.

The modelling was carried out with R package ‘JMbayes2’ (version 0.2-0, published
10 February 2022; [23]).
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2.4. Algorithm Evaluation

To evaluate the performance of the algorithm, avoiding data underfitting or overfitting,
repeated 3-fold cross-validation (CV) was used in every farm dataset. All the cows of the
dataset were randomly partitioned into 3 groups of similar sizes; then 2 of these groups
were used to train the model, and the third group was used to test it. This operation was
repeated 3 times, rotating the groups [24]. The same procedure was again repeated 3 times
in total, and the mean performance across all folds from all runs was reported (i.e., mean of
9 single results per farm).

During the training, 67% of the animals in the dataset were used to fit the joint model.
The model was trained on sensor data recorded during 5–305 DIM of the first lactation and
on the cows’ observed survival times, and the effect of the trajectory of each sensor variable
on the risk of being culled was estimated. The testing used 33% of the cows to evaluate
the prediction performance. The model accuracy in predicting cow survival was tested
under 6 different scenarios: 2 different time points of prediction (i.e., second and third
calving) from sensor data recorded during 3 different observation periods of the cow’s
first lactation (i.e., 60, 150, and 240 DIM). Survival was therefore predicted at t1 = ‘second
calving’ and t2 = ‘third calving’, respectively, and estimated as once and twice the average
calving interval (in days) after the date of the first calving for all the cows of the farm.
A summary of the values of t1 and t2, along with the number of cows that were culled
before them, is reported for each dataset in Table 1.

Given that Yi(v) = {yik(s), 5 ≤ s ≤ v, v = 60, 150, 240, k = 1, 2, 3} represented the
available first-lactation sensor measurements for a ‘new’ cow i of the testing set that had
provided MY, BW, and RUM values up to v, individualized predictions of the survival
probabilities up to tj, j = 1, 2, for cow i was obtained by estimating

πi(u|v) = Pr{Ti ≥ u|Ti > v, Yi(v), R} (6)

where v < u ≤ tj, and R denoted the sample on which the model was fitted (i.e., the
training set). Providing measurements up to time v implied that the cow was still alive
at v (i.e., Ti > v); in every testing set, only the animals that had survived at least up to
240 DIM (i.e., the maximum period of days considered) were then examined. Assuming
a specific threshold value c ∈ (0, 1) (here c = 0.5), cow i was finally predicted ‘culled
at tj’, j = 1, 2, if πi

(
tj
∣∣v) ≤ c. Two measures of prediction accuracy were accordingly

computed based on the value of πi
(
tj
∣∣v): the Area Under the Curve (AUC) [25] and the

expected error of prediction (PE, Prediction Error) [26]. The AUC measured the ability of the
model to distinguish between the classes ‘culled at tj’ and ‘still on farm at tj’, representing
a measure of its discrimination capability (0 ≤ AUC ≤ 1). The PE measured the accuracy
of the obtained survival predictions by computing the average squared distance between
the survival status (i.e., culled or alive) and the predicted survival probability, making it
a measure of the calibration capability of the model (0 ≤ PE ≤ 1). The higher the AUC, the
better the model performed at predicting the cows that were culled within tj as actually
‘culled at tj’ and the cows that were still on the farm at tj as ‘still on farm at tj’; the lower the
PE, the more the survival predictions were aligned with the observed events (i.e., culling)
within tj.

3. Results

To clearly illustrate the algorithm training phase, Table 3 shows the output of the
fitting obtained in one training set (148 cows; 40,995 observations) of the repeated CV
procedure for one of the available farms. In this case, the longitudinal modelling process
highlighted the presence of between-cow variability, expressed by the estimated SD of
the random effects for the three sensor outcomes (MY, BW, and RUM). Focusing on the
survival process, the slope of RUM (α3) was negatively associated with the risk of being
culled, keeping all other variables constant. This implied that a lower value of the slope
was associated with poorer survival probability.
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Table 3. Output from the fitted multivariate joint model in one dataset.

Survival Outcome

Parameters Coeff. 1 p 2

γ1,1 (AFC 3 medium) 0.997 *
γ1,2 (AFC high) 1.35 *
α1 (slope MY 4) 0.005 n.s.
α2 (slope BW 5) 0.178 n.s.

α3 (slope RUM 6) −0.633 **

Longitudinal Outcomes

Parameters MY (k = 1) BW (k = 2) RUM (k = 3)

Fixed coeff. p coeff. p coeff. p

β0k (intercept) 28.0 *** 469 *** 472 ***
β1,1k (ns(DIM) 1) 7 6.42 *** 95.2 *** −18.6 **
β1,2k (ns(DIM) 2) 4.34 *** 68.9 *** 34.6 ***
β1,3k (ns(DIM) 3) 13.8 *** 86.3 *** - -
β1,4k (ns(DIM) 4) −13.5 *** 99.7 *** - -

β2,1k (AFC medium) −0.268 n.s. −3.64 n.s. −21.3 ***
β2,2k (AFC high) 1.24 * 50.9 *** −24.8 ***

β3k (SEAS 8 warm) −0.021 n.s. 0.918 n.s. −9.03 *

Random SD 9 SD SD

bi0k (intercept) 4.61 48.3 129
bi1,1k (ns(DIM) 1) 7.56 43.3 191
bi1,2k (ns(DIM) 2) 6.64 44.8 106
bi1,3k (ns(DIM) 3) 11.4 74.5 -
bi1,4k (ns(DIM) 4) 10.1 45.4 -

*** p < 0.001, ** p < 0.01, * p < 0.05, n.s. p ≥ 0.05. 1 Mean estimate of the effect; 2 observed level of significance;
3 age at first calving; 4 milk yield (kg/d); 5 body weight (kg/d); 6 rumination time (min/d); 7 natural spline of
days in milk (1, 2, 3, 4: sub-polynomials); 8 season of the recording period; 9 standard deviation.

The mean AUC and mean PE over the 9 CV runs (3 × 3 folds) are reported in Table 4.
For some farms (‘Belgian 2’ and ‘British 2’), there were no culling events registered within
t1 (i.e., second calving) in any testing set of the CV procedure; therefore, the performance
metrics at t1 could not be estimated. To determine the significance of the performance
metrics over 0.50 for AUC and below 0.25 for PE (i.e., algorithm performing random
guessing between ‘culled’ and ‘alive’ [27]), we constructed a 95% confidence interval using
the mean and the standard deviation obtained from the 9 CV repetitions for each farm in
each scenario. The PE values were always significantly lower than 0.25 at t1 (i.e., second
calving) and, in most cases, at t2 (i.e., third calving) (Table 4); PE was generally low at t1,
suggesting that the model accurately predicted the events within the second calving. The
AUC was significantly higher than 0.50 only in a few cases, both for the predictions at t1
and at t2, remaining generally close to 0.50 (Table 4). Only one farm reported an average
AUC of 0.76 at t1, with 240 DIM of first lactation sensor observations to obtain predictions.
It is worth noting that this was the dataset that, across training sets, had the highest number
of significant associations between the sensor variables and survival, meaning that the
sensor information was, in this case, particularly useful for predicting the animals’ survival.
These results revealed that the algorithm had a good calibration capability (PE), but the
same did not apply for its discrimination capability (AUC). However, the average model
performance metrics tended to improve with more days of longitudinal information (i.e.,
240 vs. 150 vs. 60 DIM) and when predicting survival at closer endpoints (i.e., t1 vs. t2).
Furthermore, the results from Levene’s tests [28] conducted in each scenario to verify the
homogeneity of variances of the AUC and PE among farms revealed that the performance
metrics of the algorithm were stable. Only AUC values estimated at the third calving with
60 or 150 DIM information had different variances among farms (respectively, p = 0.01 and
p = 0.02).



Animals 2022, 12, 3494 8 of 11

Table 4. Predictive accuracy measures of the algorithm.

DIM 1 Farm
AUC 2 PE 3

t1
4 t2

5 t1 t2

60

Italian 0.558 0.505 0.098 † 0.263
Belgian 1 0.580 * 0.497 0.091 † 0.228 †

Belgian 2 - 0.451 - 0.146 †

British 1 0.526 0.519 0.061 † 0.202 †

British 2 - 0.498 - 0.196 †

British 3 0.476 0.508 0.037 † 0.164 †

150

Italian 0.605 0.556 0.096 † 0.256
Belgian 1 0.578 0.513 0.085 † 0.225 †

Belgian 2 - 0.475 - 0.143 †

British 1 0.562 0.526 * 0.060 † 0.202 †

British 2 - 0.520 - 0.194 †

British 3 0.535 0.514 0.036 † 0.164 †

240

Italian 0.616 0.566 * 0.096 † 0.259
Belgian 1 0.597 * 0.533 0.083 † 0.229
Belgian 2 - 0.507 - 0.143 †

British 1 0.577 0.539 0.060 † 0.200 †

British 2 - 0.593 * - 0.189 †

British 3 0.763 * 0.559 * 0.035 † 0.158 †

* Significantly higher than 0.5; † significantly lower than 0.25. 1 Days in milk of recorded sensor data to ob-
tain predictions; 2 mean Area Under the Curve over 9 cross-validation runs; 3 mean error of prediction over
9 cross-validation runs; 4 average second calving time; 5 average third calving time.

Figure 2 represents a possible output of the algorithm, obtained by a farmer for a ‘new’
cow of his/her herd. The farmer may decide to keep this cow for breeding purposes, given
that at 150 DIM of the first lactation, she has a predicted probability of surviving to the
second calving equal to 90%.
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Figure 2. Predicted survival function from 150 DIM of the first lactation (dotted line) to the second
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model estimates the evolutions of the sensor data (MY = Milk yield (kg), BW = Body weight (kg),
RUM = Rumination time (min)) until 150 DIM of the first lactation (red curves) and, based on those,
predicts the survival function until the second calving (black curve).
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4. Discussion

This study explored the possibility of using joint models to predict dairy cow survival
at different lactations, starting from raw daily sensor data recorded on-farm during different
(early) stages of the first lactation. The algorithm implemented in this work could represent
the basis for a prognostic model-based tool able to inform farmers of the future prospect of
each first-parity cow in their herds. This may be very useful in the early adjustment of herd
breeding and management decisions, improving farm efficiency and sustainability; farmers
could, for instance, optimize the use of dairy sexed and beef semen or decide whether to
give another chance to those cows that are not pregnant after two or three inseminations.

The performances of the algorithm were compared with the results of the few simi-
lar studies dealing with dairy cow survival predictions and/or longitudinal sensor data
extracted from AMS. Van der Heide [29] predicted survival to the second lactation using
breeding and phenotypic variables from different moments in the heifer’s life. The authors
compared three different machine-learning methods for many performance metrics, includ-
ing AUC. Average AUC was 0.67 when using the information available at 6 weeks post-first
calving (i.e., 40–50 DIM) and 0.68 when using the information at 200 DIM. The performance
of these models was then higher compared to our average results (AUC = 0.54 ± 0.05 at sec-
ond calving using 60 DIM, and AUC = 0.64 ± 0.09 at second calving using 240 DIM; mean
± SD), but their ability to correctly identify non-surviving animals was very low (average
positive predictive value of 0.17). The same authors tried to improve these performances by
using ensemble-learning approaches [1], which were expected to have better performances
and more robustness, but the results remained quite poor (average positive predictive
value of 0.20). Adriaens et al. [3] studied the possibility of predicting lifetime resilience and
the productive life of dairy cows starting from sensor-derived proxies of first-parity daily
sensor data, obtaining a mean classification performance (‘low’ vs. ‘medium’ vs. ‘high’
lifetime resilience rank) of 47 ± 8% (± SD), when using milk yield features alone, and of
56 ± 12% when using lactation and activity features together. Ouweltjes et al. [17] assessed
the performance of different models that included milk yield, body weight, rumination,
and activity sensor data of cows in first lactation to predict lifetime resilience. Model
performances, expressed in the percentage of correctly classified cows (‘low’ vs. ‘medium’
vs. ‘high’ lifetime resilience rank), ranged between 45 ± 8% (mean ± SD) and 51 ± 6%.

The results of this research, in line with the results of the other works, confirm that
cow survival is a complex trait, difficult to accurately predict [1]. It indeed combines
several different factors, such as fertility, health, milk production, farm management, and
environmental conditions [30]. With the only information at our disposal (i.e., AFC, SEAS,
MY, BW, RUM), we could capture a small portion of these aspects; for instance, having
information on disease occurrence would have likely improved the predictive performance
of the algorithm. Furthermore, to build an algorithm applicable to all the farms with MY,
BW, and RUM data from AMS, we had to ignore all the local and evidence-based farm
management rules, which are particularly relevant when developing decision support tools
for dairy farms [3].

We identified two main strengths of the methodology presented in this study. First,
in contrast to other works with similar research goals [3,31], the present joint modelling
approach has the practical advantage of not requiring the translation of sensor time-series
data into biologically meaningful sensor features. Using raw sensor data to obtain longevity
predictions avoids proper feature definition and a lot of pre-processing (thus reducing the
chance of errors) and provides at least the same performance as models with pre-processed
data, as demonstrated by Ouweltjes et al. [17]. Second, joint models have the advantage of
being very flexible; they allow for the dynamic update of predicted survival probabilities
as additional longitudinal data are recorded, as well as for the easy change of the final time
point of prediction based on the target the user wants to test. These features may justify
future research to improve the current performance within a farm. The model, for instance,
could be tested by including additional variables from automated technologies (e.g., cow
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activity, somatic cell count) or cows’ additional information from other sources (e.g., test
days, health records).

5. Conclusions

This study explored the potential of using joint models for longitudinal and time-
to-event data to predict dairy cow survival at different lactations from raw sensor data
recorded during different stages of the cow’s first lactation. The algorithm tested in this
study had a modest performance in terms of discrimination accuracy (Area Under the
Curve) but good results in terms of calibration accuracy (expected error of prediction), as
well as good repeatability across different farms. The interesting opportunities that joint
models offer in applicability and flexibility should justify further research in the attempt to
improve the overall predictive accuracy in the dairy field.
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