Automated estimation of pose features in broilers using computer vision

István Fodor¹, Jan Erik Doornweerd¹, Britt de Klerk² and Aniek Bouwman¹

¹Wageningen University & Research, Wageningen, the Netherlands ²Cobb Europe, Boxmeer, the Netherlands

Relevance

Health & welfare

Affects 14-30% of broilers¹

Economics

Losses, e.g. culling, mortality, carcass condemnation^{2,3}

UNIVERSITY & RESEARCH

Images: <u>https://www.thepoultrysite.com/articles/leg-health-in-large-broilers</u>, Kapakin et al. (2019)

¹ Kittelsen et al. (2017), ² Mendes et al. (2016), ³ Sanotra et al. (2001)

Precision phenotyping

Gait scoring

- Subjective
- Labour-intensive
- Low throughput

- Objective
- Less labour-intensive
- Potentially high throughput

Sensor-based

Aim

- Analyse pose features of individual broilers across ages using video in a pilot study
 - ightarrow How the setup works
 - \rightarrow Utility of features
 - \rightarrow Age differences
 - \rightarrow (Relationship with gait)

Materials and methods Setup

Intel[®] RealSense[™] Depth Camera D415 (2D RGB)

- Individually tagged ♂, same cross
- D14 (n=109), D21 (n=108), D33 (n=87)
- Body weight

Materials and methods *Keypoints*

Pre-trained model

DeepLabCut: a software package for animal pose estimation

Doornweerd et al. (2021)

New environment

- Illumination
- Drinkers
- Other chickens

Novel video analysis

Spline filter

Dynamic cropping (D14)

Re-training 181 frames 100k iterations, 4.0 px test error

Materials and methods Automated pose extraction

- 2 poses of interest:
 - Double support
 - $\circ~$ Max. leg lift at step (L & R)
- Pose extraction:
 - Keypoint (x, y) coordinates by frame

Materials and methods Pose features

11 features (legs only, L & R separate features)

Double support phase

L & R step at max. leg lift

Pose feature comparisons:

- Age groups
- Gait (normal vs. impaired)

Controlled for BW differences

Results

Limited extra training \rightarrow adapted to new environment

Pre-trained model in new environment

After limited extra training

Results

Automated pose extraction is feasible

D14

D33

Results

Few differences by age

Preliminary results

Association with gait scores

- Gait scoring on D33: scale 0-2¹
- Score 0: normal (46.4%)
- Score 1 & 2: impaired (53.6%)
- E.g. leg lift $\approx 10\%$ lower

¹ Webster et al. (2008)

Conclusions

• Adapt pre-trained model to new environment

← Limited No. of frames

- Most informative in this setup:
 - o Angles
 - Hock-knee distance ratio
 - o Step height
 - \rightarrow Add to candidate features of leg health
- Follow-up studies & upscaling needed

WAGENINGEN

