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ABSTRACT
More than half a decade after the launch of the Sentinel-1A C-band 
SAR satellite, several near real-time forest disturbances detection 
systems based on backscattering time series analysis have been 
developed and made operational. Every system has its own parti-
cular approach to change detection. Here, we have compared the 
performance of the main SAR-based near real-time operational 
forest disturbance detection systems produced by research agen-
cies (INPE, in Brazil, CESBIO, in France, JAXA, in Japan, and 
Wageningen University, in the Netherlands), and compared them 
to the state-of-the-art optical algorithm, University of Maryland’s 
GLAD-S2. We implemented an innovative validation protocol, spe-
cially conceived to encompass all the analysed systems, which 
measured every system’s accuracy and detection speed in four 
different areas of the Amazon basin. The results indicated that, 
when parametrized equally, all the Sentinel-1 SAR methods out-
performed the reference optical method in terms of sample-count 
F1-Score, having comparable results among them. The GLAD-S2 
optical method showed superior results in terms of user’s accuracy 
(UA), issuing no false detections, but had a lower producer accuracy 
(PA, 84.88%) when compared to the Sentinel-1 SAR-based systems 
(PA,90%). Wageningen University’s system, RADD, proved to be 
relatively faster, especially in heavily clouded regions, where RADD 
warnings were issued 41 days before optical ones, and the one that 
better performs on small disturbed patches (< 0.25 ha) with a UA of 
70.11%. Of all the high-resolution SAR methods, CESBIO’s had the 
best results regarding UA (99.0%). Finally, we tested the potential of 
three hypothetical combined optical-SAR systems. The results show 
that these combined systems would have excellent detection cap-
abilities, exceeding largely the producer’s accuracy of all the tested 
methods at the cost of a slightly diminished user’s accuracy, and 
constitute a promising and feasible approach for the forthcoming 
forest monitoring systems.
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POLICY HIGHLIGHTS
● Recently developed automated SAR-based tropical forest distur-

bance detection systems showed excellent detection accuracies, 
even in small, difficult-to-spot deforested patches.

● SAR detections can be as precise and as fast as optical ones, 
being more precise and faster in very cloudy areas or in areas 
subjected to illegal mining.

● The combination of recently developed SAR and optical warn-
ings systems can yield optimized results, in terms of overall 
accuracy and producer's accuracy.

1. Introduction

Tropical forests constitute the biggest sink of global greenhouse gases (GHG), accounting 
for an annual removal of approximately 7.0 Gt CO2e yr� 1 (Harris et al. 2021). This leading 
role in GHG capture is threatened by deforestation, which is estimated to emit approxi-
mately 5.4 Gt CO2e yr� 1. This figure represents double of the annual emissions associated 
with the removal of the remainder of the global forest formations (Harris et al. 2021). 
Although many initiatives have been implemented to reduce forest destruction in the 
tropics, the annual tree cover loss has steadily risen since the year 2000, reaching 
12 million hectares in 2020 (WRI 2021). In the midst of the global climate crisis, tropical 
deforestation deterrence has integrated the agenda of countries and international agen-
cies as a cheap and straightforward mean to reduce emissions.

In this context, remote sensing techniques, associated with adequate environmental 
policies, have been used to successfully reduce deforestation in several tropical countries. 
One of the best-known examples is the DETER system (Diniz et al. 2015), which helped to 
substantially reduce the deforestation rates in the Brazilian Amazonian biome (Assunção, 
Gandour, and Rocha 2019). From 2004 to 2012, deforestation figures decreased from 
27,772 to 4,571 km2, thanks, in part, to an effective land protection policy and a fine-tuned 
command-and-control strategy. Other initiatives have been successfully implemented in 
Peru (Weisse et al. 2019) and Indonesia (WRI 2021).

Until a few years ago, remote sensing-based systems aiming for near real-time (NRT) 
detection of forest disturbances were almost exclusively built using optical imagery as 
their main input data. However, persistent cloud cover can severely hamper optical 
observations (Hansen et al. 2016). Conversely, Synthetic Aperture Radar (SAR) data suffer 
from almost no deterioration in cloudy environments (except in the case of convective 
clouds, as pointed by Danklmayer et al. 2009). This constitutes a significant advantage in 
tropical regions which are cloudy year round (Ballère et al. 2021).

After the development of the pioneer JJ-FAST operational deforestation detection 
system, based on ALOS/PALSAR L-band sensor (Watanabe et al. 2018, 2021), several 
C-Band SAR-based operational or semi-operational systems have been recently imple-
mented, using Sentinel-1A/B C-band sensors (Doblas et al. 2020; Mermoz et al. 2021; 
Reiche et al. 2021). In Brazil, the National Institute for Space Research (INPE) has imple-
mented its own SAR-based detection system, DETER-R (Juan et al. 2022).

This work intends to study the performance of the four SAR-based forest disturbance 
systems operational over the tropics (CESBIO, INPE, JJ-FAST, RADD). We have established
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and applied a benchmark framework, which enabled an objective comparison of the 
different methods, and to find the potential synergies among them.

2. Materials and methods

In this section, we will describe the different systems that were analysed and the bench-
mark framework built for their inter-comparison.

2.1. Forest disturbance data

During our study, we adapted, collected, combined, and compared the results of four 
different forest disturbance NRT detection systems, all of them based on the analysis of 
SAR time series, and of one forest disturbance detection system based on optical images, 
GLAD-S2. The detection procedure of the considered methods can be broken up into four 
main steps: 1) pre-processing of the input images, 2) pixel-wise analysis of the images, 3) 
flagging off the pixels that fall into the forest disturbance criteria, and 4) output of the 
analysis results, as raster or vector data.

All the analysed systems use a similar definition of forest disturbance, even if the used 
term sometimes changed to ‘forest loss’ or ‘deforestation’. Our working definition of forest 
disturbance here is the partial or complete removal of forest cover on a area equivalent to 
the pixel size adopted by the system.

CESBIO/TropiSCO (Mermoz et al. 2021) computes the RCR (Radar Change Ratio) between 
the historic backscattering pre-processed SAR time series on a given pixel and the mean 
values of the last three acquisitions. The detection algorithm first flags the highest RCR 
values, which usually correspond to the radar shadow areas left after deforestation (Bouvet 
et al. 2018). After that, a lower threshold is used to extend the flagged area to the adjacent 
pixels that suffered alteration. This system is the only of the three tested high-resolution 
methods that does not use the Google Earth Engine (GEE, Gorelick et al. 2017) platform 
cloud-computing resources. Instead of that, the algorithm uses the computing power of the 
CNES-HPC (Centre National d’Études Spatiales High-Performance Computing) infrastructure 
to pre-process and analyse S1 time series. The maps based on the CESBIO’s system are 
produced in the frame of the TropiSCO project (https://www.spaceclimateobservatory.org/ 
tropisco-amazonia) and published on its own website (https://tropisco.org).

The RADD alerts (Reiche et al. 2021) are the result of long-term research of the Laboratory 
of Geoinformation Science and Remote Sensing of Wageningen University and Research 
(WUR) (Reiche et al. 2015, 2017, 2018; Vollrath, Mullissa, and Reiche 2020). Since 2021, RADD 
alerts are provided for most of the world’s humid tropical forests. RADD alerts are publicly 
disseminated by the Global Forest Watch platform, which gathers users from different 
domains (local communities, academic departments, and global supply chains amongst 
others). The detection algorithm takes advantage of a sophisticated pre-processing chain 
(Mullissa et al. 2021), coupled with an anomaly-detection method based on Bayesian update 
theory. The warnings used in this study were produced by version 1.0 of the algorithm.

The INPE system (Juan et al. 2022) was developed as an operational outcome of the 
research described in Doblas et al. (2020). It uses the so-called Adaptative Linear Threshold 
(ALT) algorithm, which flags pixels where the SAR backscattering is lower than a certain value. 
This thresholding value is computed as a function of 1) the backscattering values of the
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previous images, on the same location, and 2) the proximity of the analysed pixel with 
previously deforested areas. Unlike the other systems, INPE’s was developed to supply field 
teams with fast and reliable forest loss information. Thus, INPE’s operational products are 
originally tailored to minimize commission errors and to deliver lightweight vector data to the 
final users, instead of large-size raster outputs. For this study, we tested the INPE algorithm 
using two different parametrizations: the original, highly conservative parametrization, and 
a second one, which mimics the parameters of the RADD and CESBIO systems. This last 
version of the INPE system is hereby called INPE-HR.

JJ-FAST is developed by the Japanese Space Agency (JAXA). It is based on the analysis 
and thresholding of the L-Band ALOS/PALSAR-2 SAR satellite time series. Unlike the other 
analysed systems, JJ-FAST exploits the characteristics of both co-polarized and cross- 
polarized channels and their ratio (HH, HV, and HH/HV, respectively). Most of the warnings 
used in this study were computed using the 3.0 version of the detection algorithm, which 
is described in Watanabe et al. (2021).

The GLAD-S2 system was included here as a benchmark, as it uses optical images to 
detect forest disturbance. GLAD-S2 has been recently developed by the University of 
Maryland, as an upgrade of the long-time-running GLAD system, which made use of 
Landsat images. GLAD-S2 analyzes Sentinel-2 (S2) 10-m optical images to deliver alerts at 
higher spatial and temporal resolutions. Until the date of writing, no account of the system’s 
accuracy has been published, whether by the authors or by independent researchers.

Table 1 summarizes the main characteristics of the analysed systems.

2.2. Combined systems

Additionally to the systems described above, we created three additional warning data-
sets, by merging the detection results of the three high-resolution SAR systems (CESBIO, 
INPE-HR and RADD) with the GLAD-S2 alerts. These new datasets are intended to simulate 
the results of three hypothetical combined optical-SAR warning systems, and will be 
called ‘GLAD+CESBIO’, ‘GLAD+INPE-HR’ and ‘GLAD+RADD’, respectively. The simulated 
results of every hypothetical system were obtained by performing a simple addition of the 
detections of the original methods.

2.3. Study sites and time frame

During this work, we analysed the forest disturbance data produced by the six systems we 
evaluated during the entire 2020 year.

Table 1. Main characteristics of the analysed systems. SP: Spatio-temporal; MMU: minimum mapping 
unit; desc: descending orbits asc: ascending orbits.

Input Temporal MMU Processing Geographical
System images Resolution (ha) Environment Coverage

CESBIO S1 Asc/Desc 6–12 0.1 Orfeo Toolbox Guianas, Southeast Asia
INPE S1 Desc 12 1 GEE Brazilian Amazon
INPE-HR S1 Desc 12 0.1 GEE Brazilian Amazon
JJ-FAST ALOS-PALSAR2 42 2.0 SigmaSAR 77 tropical countries
RADD S1 Asc/Desc 6–12 0.1 GEE 44 Tropical countries
GLAD-S2 S2 5 0.1 GEE Amazon basin
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The study was carried out in four areas in the Amazon basin, being three areas in Brazil 
and one area in the French Guiana-Suriname border region (Figure 1).

The Brazilian areas of interest (AOI) were named Acre, Munduruku and Calha Norte. The 
study area of Acre is located in the eastern Brazilian Amazon, with centre coordinates 8.179° 
S; 71.048° W. It has a total surface area of 56,892 km2. In this study area, a typical fishbone 
deforestation pattern predominates, following the BR-364 major highway, which crosses 
the entire study area and gathers important population centres along it. This area has the 
highest percentage of deforestation among the studied areas (0.36% deforested in 2020). 
The Munduruku AOI is located in the central Brazilian Amazon at 7.281° S; 57.862° W and has 
a surface area of 44,033 km2. In this region, the main driver of deforestation is illegal mining, 
which expands within protected areas, mainly the Munduruku indigenous territory, along 
the tributaries of the Tapajós River. The Calha Norte AOI is located at 0.948° S; 54261° W and 
has a total surface area of 43,942 km2. Unevenly distributed fish-bone deforestation pat-
terns predominate in this region. While the north of the AOI is well preserved, the south 
concentrates practically all the deforestation that takes place along the sides of the roads 
that connect the population centres to the left bank of the Amazon river.

In these three areas, the climate and rainfall are similar, with the rains concentrated in 
the months from November to March and the dry season from April to October. It is 
important to note that the deforestation that takes place along the roads, such as the fish- 
bone pattern, occurs mainly in the driest months, from May to September, when the 
opening of side roads in the forest is easier. Deforestation associated with illegal mining 
happens in the rainy season, as the dynamics of gold extraction that takes place along the 
streams need abundant water resources to happen.

Figure 1. Location of the areas of interest and validation points.
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The French Guiana and Suriname AOI is the most preserved among the four studied 
areas, with only 0.04% of total deforestation in 2020, relative to the forest baseline map. It 
is located at 4.021° N; 53.805° W and has a surface area of 12,027 km2. The main driver of 
deforestation is the extraction of gold that takes place along the tributaries of the Lawa 
River that separates the two countries. The climate in this region presents a small 
difference in relation to the other three, as the rainy season takes place from December 
to July, with a small dry season in March. The main dry season runs from August to 
November.

Table 2 summarizes the main characteristics of the analysed areas.

2.4. Forest/non-forest maps

An unbiased inter-comparison exercise of classification algorithms should ideally use the 
same forest/non-forest (F/NF) maps to determine the areas subject to detection. RADD 
and GLAD-S2 share the same F/NF maps that are readily available as GEE assets. They are 
composed of the improved forest baseline mask based on the primary humid tropical 
forest mask computed by Turubanova et al. (2018), minus the 2001–2019 forest loss areas, 
as computed by the University of Maryland’s Global Land Analysis and Discovery team 
(https://glad.umd.edu/). Details on the GLAD forest loss methodology can be found in 
Hansen et al. (2013). CESBIO, INPE, and INPE-HR systems were customized to use the same 
input forest mask as GLAD-S2 and RADD, and ran over the same study areas.

2.5. Spatial accuracy assesment

Forest disturbance detection in tropical areas can be treated as a heavily unbalanced 
binary classification problem. In our case, the total amount of unchanged (i.e. intact forest) 
area during the studied period (2020) equals 96% of the total forest area, which confirms 
the unbalanced character of our problem. In such a case, a classic two-strata pixel-count 
validation methodology will fail to correctly evaluate detection accuracy. Even if we adopt 
an area-weighted strategy (Olofsson et al. 2013), the size differences between the intact 
and deforested sampling areas will distort the results. As pointed out by Olofsson et al. 
(2020), in these cases the omission errors tend to be heavily underestimated, as the 
chances to sample a missed disturbed patch are very low in the immensity of the intact 
forest stratum. The proposed solution relies on the creation of a third stratum, built as 
a buffer around the disturbed areas, which usually concentrates on omission errors. 
Accuracy metrics, in this case, will be computed following the inclusion probability 
concept proposed in Stehman (2014), adapted to our particular, multi-system case.

Table 2. Main characteristics of the areas of interest (AOIs).
Area name Code Size (km2) Cloud cover Main deforestation driver

Acre AC 56,892 Moderate Cattle Ranching, Soy
Munduruku MDK 44,033 Moderate Illegal mining
Calha norte CN 43,942 High Cattle ranching, selective logging
Guianas GUI 12,027 Very High Illegal mining
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2.5.1. Reference sample design
We built a three-strata sampling space for each one of the high-resolution SAR systems 
used (CESBIO, INPE-HR and RADD), based on the forest disturbance map issued by every 
system. The strata were defined as follows:

● Deforested: Defined by the regions that suffered from forest disturbance during 
2020, according to the corresponding NRT system.

● Intact buffer: This region is defined by a 200-m buffer around the Deforested 
sampling space, excluding the non-forested areas as defined by the initial F/NF map.

● Intact outside buffer: Defined as the remainder of the intact forest area, after 
subtraction of the disturbed and Intact buffer regions.

Once the sampling spaces were defined for every system, we randomly drew 498 points in 
each one of the sampling spaces. This sums up to 1494 samples that were distributed 
evenly among the three strata.

2.5.2. Reference labelling
The reference labelling tasks were accomplished using visual interpretation of 
Planetscope and Sentinel-2 monthly mosaics, made available within the Collect Earth 
platform (Saah et al. 2019). This platform allows for a streamlined interpretation and 
verification of the land cover changes using optical imagery. Additionally to the verifica-
tion of forest disturbance on the given sample, monthly mosaics were used to date the 
land cover change, if any. The labelling was performed by one of the authors, who was not 
directly involved on the development of any of the analysed systems and assessed by the 
rest of the authors.

2.5.3. Agreement and confusion matrix definitions
During the agreement phase, the results of the reference visual labelling are compared to 
the disturbance maps issued by the analysed systems. During this phase, we noticed some 
minor but frequent misalignment between the different datasets and the validation 
Planet monthly basemaps made available by the Collect Earth platform. Most of the 
time, the misalignment was no bigger than the pixel size. To avoid unrealistic error 
estimations, especially over the buffered strata, we considered a 15-m tolerance during 
the agreement computation. This means that a sample labelled as ‘deforested’ will be 
correctly detected if the disturbance map issued by a given system has an active pixel on 
a 15-m buffer around the sample. Conversely, an intact sample will be assumed to be 
correctly detected by a given system if the corresponding disturbance map has an 
inactive pixel in a 15-m buffer around it.

In order to optimize the validation efforts, the points generated by random sampling of 
one system’s strata were used to validate the other systems. This cross-validation meth-
odology tends to reinforce and enrich the overall accuracy analysis results.

2.5.4. Spatial accuracy metrics
For every analysed system, we computed the F1-Score (F1), User’s Accuracy (UA), and 
Producer’s Accuracy (PA) taking the deforested class as the positive detection case. The 
F1-Score metric was adopted instead of the most common Overall Accuracy metric due to
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the highly unbalanced character of the considered classes. The corresponding expres-
sions were: 

UA ¼ pdd=ðpdd þ pdf Þ (1) 

PA ¼ pdd=ðpdd þ pfdÞ (2) 

F1 ¼ 2 � ðUA � PAÞ=ðUAþ PAÞ (3) 

where pdd is the proportion of deforested area that was correctly mapped as deforested, 
pff the proportion of area that was correctly mapped as forest, pdf the proportion of intact 
area incorrectly mapped as deforested and pfd the proportion of deforested area incor-
rectly mapped as forest.

Following the adopted protocol, we estimated pij as being: 

p̂ij ¼ Wi
nij

ni
(4) 

where ni is equal to the total samples belonging to the i strata, and nij the number of 
samples on this strata that belong to the j class (in our case, deforested or non-deforested) 
, and Wi is the proportion of area mapped as class i. In our case, where we used an 
additional buffered intact stratum to better quantify omissions, we will consider a third 
class b in 4 and then assimilate its results to the f class to compute the accuracy metrics 
F1, UA, and PA, following Stehman (2014).

2.6. Measuring performance on small patches

The adopted reference point sampling protocol considered the disturbed areas as 
a unique sampling space. While this protocol ensures statistical robustness, it may fail 
to measure the performance of the mapping algorithms in detecting forest changes on 
small patches, as they will be underrepresented in the corresponding sample subset. As 
the detection of this particular kind of disturbance can be of major importance in certain 
contexts, we decided to acquire an additional set of 150 points drawn from under 0.25 ha 
disturbed patches, as mapped by the three analysed systems whose minimum mapping 
unit is under 0.25 ha (CESBIO, RADD, INPE-HR). These points were used to perform 
accuracy computations, along with the points drawn from the non-altered strata.

2.7. Temporal benchmark

Timely forest disturbance alerts are a key aspect of deforestation-deterring initiatives, 
allowing enforcement agencies and local groups to counteract early degradation focuses. 
One of the main advantages of the SAR-based methodologies is considered to be its 
speed in frequently cloud-covered areas if compared to optical systems. In order to verify 
this point, we compared the detection date of the SAR-based systems with the GLAD-S2 
system, which uses 5-day Sentinel-2 images.

It is worth pointing out that, for this particular comparison exercise to be fair, we need 
to define the detection delay as the time interval needed for a confirmed warning to be 
issued after the deforestation takes place, following every system premises. This issuing

66 J. D. PRIETO ET AL.



can take several days, as the revisit frequency and the confirmation procedure vary from 
system to system.

● CESBIO: The RCR algorithm uses three S1 images (whether ascending or descending) 
to confirm a forest disturbance. We computed the delay time by multiplying by the 
S1 mean frequency map

● INPE: The system needs two preliminary warnings to confirm deforestation. As 
a mean, this usually takes 3.0 images to happen. As the system only uses S1 
descending orbits, the delay can be bigger than CESBIO’s.

● JJ-FAST: As noted in Watanabe et al. (2021), the system will issue the warnings 3–4  
days after the 42-days observation period is finished.

● RADD: Based on Reiche et al. (2021), we deduced that the Bayesian update algorithm 
needs approximately 3.1 images to confirm an alert.

● GLAD-S2: Computing detecting delay for an optical alert system can be tricky, as it 
has a strong relationship with the cloud cover. Being so, we computed a warning 
delay map, based on the cloud cover over every GLAD-S2 warning issued on 2020 
over our interest areas, to establish the detection delay as the delay between the first 
anomaly detection and the fourth cloud-free S2 observation of the pixel (GLAD-S2 
assumes a warning as confirmed after the fourth observation of an anomaly).

Once established the detection delays for every warning map of every system, we use 
simple map algebra to compute the issuing time and the time differences among the 
systems. After that we computed the difference statistics for every map and every AOI, 
taking GLAD-S2 as a reference.

3. Results

3.1. Forest disturbance maps

As expected, the forest disturbance maps produced by the high-resolution SAR-based 
systems were quite similar, with the main differences being located on the edges of the 
deforested regions. The INPE and JJ-FAST systems, as per their design specifications, 
missed most of the smaller deforested patches, while the RADD system seemed to be 
more precise in these cases. Figure 2 presents some of the results on deforestation 
detection over the four analysed areas.

It is worth noting that two of the systems (CESBIO and INPE) were modified to run 
under the same premises (i.e. Forest/Non-Forest mask) as the global systems (GLAD-S2 
and RADD). Table 3 summarizes the total deforested area found by the analysed systems 
over the four AOIs. In all the considered regions, the area mapped as deforested is several 
orders of magnitude smaller than the intact forested area. This kind of class unbalance 
results are expected and frequent in deforestation studies on tropical regions. In this 
study, we adopted specific evaluation techniques suited to this kind of situation, such as 
buffered sampling spaces and F1-Score metrics.

After the classification maps were computed, the reference points were drawn over 
them. A small fraction of the reference points were discarded by the interpreter due to
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System AC MDK CN GUI

S2-
Before

S2-After

GLAD-
S2

CESBIO

INPE

INPE-
HR

JJ-FAST

RADD
17

Figure 2. 2-km wide thumbnails of the detection results, captured on example locations on each of 
the tested areas. S2-Before: 2019 dry season Sentinel true-color image mosaic. S2-After: 1st quarter 
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their ambiguous nature (it was not clear whether they were deforested or not). The final 
distribution of the reference points is summarized in Table 4.

3.2. Spatial accuracy

Once the reference points were labelled, we computed the corresponding accuracy 
metrics following the equations presented above. Figures 3 and 4 summarize the results 
of the validation procedure, in terms of spatial accuracy metrics. All the figures and tables 
below include the evaluation of the performance of the hybrid systems, which were 
obtained by the combination of radar and optical systems.

Tables 5 and 6 reflect the results of the validation procedure, in term of pixel-count and 
in terms of area-weighted probabilities (Olofsson et al. 2013).

The obtained accuracy metrics point to the homogeneous performance of the three 
high-resolution Sentinel-1-based systems (CESBIO, RADD and INPE-HR). Sentinel-2-based 
GLAD-S2 systems have similar performance. If measured using sample-count metrics, SAR 
systems show better performance. Area-based metrics show comparable results across all 
four systems. The performance of the hybrid systems (which combine the alerts of optical 
and SAR-based systems) was always superior to the performance of the original systems.

Tables 7 and 8 summarize the results of the validation procedure, using only defor-
estation samples coming from very small (smaller than 0.25 ha) patches.

Table 3. Areas of the disturbed (D) and intact forest (F) maps produced by every system, as a function 
of the study area. Area units are km2. AC: Acre; CN: Calha Norte; GUI: French Guiana; MDK: Munduruku.

System AC MDK CN GUI Total

D F D F D F D F D F

CESBIO 176.7 51960 34.5 40311 34.0 32737 4.2 11738 249.4 136745
INPE 76.9 52059 18.1 40327 22.2 32749 0.9 11741 118.1 136877
INPE-HR 206.1 51930 47.6 40298 54.7 32716 5.1 11737 313.6 136681
JJ-FAST 229.2 51907 81.0 40264 30.6 32740 0.8 11742 341.7 136653
RADD 209.5 51927 55.0 40290 47.7 32723 7.6 11735 319.8 136675
GLAD-S2 166.5 51970 39.0 40306 54.3 32717 2.0 11740 261.8 136733

Table 4. Final number of samples used in the validation phase, enumerated as a function of the 
sampling stratum and the map used on the sample space design.

Sampling space CESBIO INPE-HR RADD Total

Deforestation 163 165 166 494
Deforestation on small ( � 0.25 ha) patches 50 50 50 150
Intact forest within deforestation buffer 168 166 165 499
Intact forest outside deforestation buffer 167 167 167 501
Total 548 548 548 1644

2021 true color mosaic. In the detection thumbnails, the detected deforestation areas are represented 
in red. The non-forest areas are masked in grey. S2 images were masked using the S2/CLOUDLESS 
cloud probability data. The AC (Acre) example shows a classic pasture-related deforestation pattern. 
MDK (Munduruku) shows a large ‘garimpo’ (illegal mining) pit growing inside an indigenous land. The 
CN (Calha Norte) example is a slash-but-not-burned deforested area. Finally, the GUI (Guiane) example 
shows a tiny, difficult-to-spot network of illegal mining pits.
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3.3. Temporal accuracy

As explained above, after computing the delay associated with the detections of every system 
on a pixel-wise basis, we applied a map algebra procedure to compute the relative detection 
delays of the analysed systems, taking the GLAD-S2 system as a reference. The comparison

Figure 3. Graphical depiction of the accuracy comparison results. Results using the original sample set.

Figure 4. Graphical depiction of the accuracy comparison results. Results using only deforestation 
samples coming from small (< 0.25 ha) deforested patches.
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only takes place on the areas where both compared deforestation maps are superimposed. 
Table 9 summarizes the outcomes of the relative warning delay computation.

Detection delay results show how cloudier areas, such as Guyana (GUY), have faster 
detections coming from SAR systems. In areas with less cloud cover, such as the Calha Norte 
(CN) area, optical detections were faster. The three high-resolution Sentinel-1 based system 
have similar performances, RADD being marginally faster in most of the analysed regions 
(Figure 5).

Table 5. Pixel-count accuracy results, general survey. TP: True positives; FP: False positives; FN: False 
negatives; TN: True negatives; OA: Overall accuracy; UA: User’s accuracy; PA: Producer’s accuracy. The 
results do not include the additional small deforestation samples. *: Hypothetical system.

System NTP NFP NFN NTN F1 UA PA

CESBIO 396 4 47 1047 93.95 99.00 89.39
GLAD-S2 376 0 67 1051 91.82 100.00 84.88
INPE 220 0 223 1051 66.37 100.00 49.66
INPE-HR 400 7 43 1044 94.12 98.28 90.29
JJ-FAST 102 6 341 1045 37.02 94.44 23.02
RADD 408 7 35 1044 95.10 98.31 92.10
*GLAD+CESBIO 423 4 20 1047 97.24 99.06 95.49
*GLAD+INPE-HR 426 7 17 1044 97.26 98.38 96.16
*GLAD+RADD 428 7 15 1044 97.49 98.39 96.61

Table 6. Area-weighted results, general survey. TP: True positives; FP: False positives; FN: False 
negatives; TN: True negatives; OA: Overall accuracy; UA: User’s accuracy; PA: Producer’s accuracy. 
The results do not include the additional small deforestation samples. *: Hypothetical system.

System pTP pFP pFN pTN F1 UA PA

CESBIO 0.33 0.01 0.10 99.56 86.49 97.57 77.67
GLAD-S2 0.34 0.00 0.09 99.57 88.11 100.00 78.74
INPE 0.18 0.00 0.25 99.57 59.37 100.00 42.22
INPE-HR 0.34 0.01 0.09 99.56 87.13 98.37 78.19
JJ-FAST 0.09 0.21 0.34 99.36 25.28 30.54 21.57
RADD 0.36 0.01 0.06 99.56 91.21 98.54 84.90
*GLAD+CESBIO 0.39 0.01 0.04 99.56 94.65 97.93 91.58
*GLAD+INPE-HR 0.39 0.01 0.04 99.56 95.06 98.61 91.75
*GLAD+RADD 0.40 0.01 0.02 99.56 96.50 98.68 94.40

Table 7. Pixel-count accuracy results, using only deforestation samples belonging to small (smaller 
than 0.25 ha) patches. TP: True positives; FP: False positives; FN: False negatives; TN: True negatives; 
OA: Overall accuracy; UA: User’s accuracy; PA: Producer’s accuracy. *: Hypothetical system.

System NTP NFP NFN NTN F1 UA PA

CESBIO 51 2 36 1095 72.86 96.23 58.62
GLAD-S2 50 0 37 1097 72.99 100.00 57.47
INPE 3 0 84 1097 6.67 100.00 3.45
INPE-HR 52 5 35 1092 72.22 91.23 59.77
JJ-FAST 4 4 83 1093 8.42 50.00 4.60
RADD 61 3 26 1094 80.79 95.31 70.11
*GLAD+CESBIO 68 2 19 1095 86.62 97.14 78.16
*GLAD+INPE-HR 71 5 16 1092 87.12 93.42 81.61
*GLAD+RADD 75 3 12 1094 90.91 96.15 86.21
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4. Discussion

Forest disturbance results of the tested algorithms affirm that all the SAR-based high- 
resolution systems (CESBIO, INPE-HR and RADD) yield similar results, with sample-count- 
based F1 scores higher than 94%. This affirms the robustness of C-band time series as 
a forest disturbance indicator, regardless of the methodological approach to the time 
series analysis.

Table 8. Area-weighted results, using only deforestation samples belonging to small (smaller than 
0.25 ha) patches. TP: True positives; FP: False positives; FN: False negatives; TN: True negatives; OA: 
Overall accuracy; UA: User’s accuracy; PA: Producer’s accuracy. *: Hypothetical system.

System pTP pFP pFN pTN F1 UA PA

CESBIO 0.13 0.01 0.12 99.74 65.63 93.91 50.44
GLAD-S2 0.14 0.00 0.11 99.75 72.26 100.00 56.57
INPE 0.02 0.00 0.23 99.75 12.47 100.00 6.65
INPE-HR 0.13 0.01 0.12 99.74 66.64 92.75 52.00
JJ-FAST 0.02 0.21 0.23 99.54 8.70 9.06 8.36
RADD 0.17 0.01 0.08 99.74 79.18 96.44 67.15
*GLAD+CESBIO 0.19 0.01 0.06 99.74 85.53 95.93 77.17
*GLAD+INPE-HR 0.20 0.01 0.05 99.74 86.65 95.14 79.56
*GLAD+RADD 0.21 0.01 0.03 99.74 91.43 97.21 86.31

Table 9. Relative deforestation detection times for the analysed systems, expressed as days after 
(positive) or before (negative). Values expressed as mean � standard error. AC: Acre; CN: Calha 
Norte; GUI: French Guiana; MDK: Munduruku.

System CN AC MDK GUI

CESBIO 32.2 � 0.11 −11.4 � 0.04 8.8 � 0.92 −41.4 � 0.52
INPE-HR 33.1 � 0.1 0.5 � 0.44 7.4 � 0.09 −4.4 � 0.64
INPE 62.9 � 0.13 24.4 � 0.05 52.2 � 1.56 32.9 � 1.23
JJ-FAST 80.95 � 0.25 41.74 � 0.09 31.11 � 0.31 −9.14 � 2.03
RADD 32.4 � 0.1 −12.9 � 0.03 −2.3 � 0.93 −41 � 0.53

Figure 5. Detection delays, as compared with the reference optical state-of-the-art forest disturbance 
detection system (GLAD-S2), over the four studied regions. AC: Acre; CN: Calha Norte; GUI: French 
Guiana; MDK: Munduruku. Negative values implies that the corresponding system detected distur-
bance before the optical one.
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The systematic and rigorously applied validation protocol confirms the visual impres-
sion, as the three high-resolution systems reached high accuracy levels, which are 
comparable to the reference, state-of-the-art optical system (GLAD-S2). User accuracies 
of both GLAD-S2 and INPE methods are remarkable: no false positives were found. This 
was expected for the INPE system, as it was specifically designed for, but it was surprising 
for the more general-purpose GLAD-S2 system.

The results show how coarse-resolution methods (INPE and JJ-FAST) have their per-
formance severely degraded on small-deforestation scenarios, while other systems using 
smaller scales are able to maintain high accuracy levels. The RADD system excels in this 
kind of situation, having a F1-Score well above the other tested systems. Hybrid systems 
also have better performances than the original systems.

All C-band backscattering-based SAR systems show a known flaw in areas that did not 
undergo complete vegetation removal during the deforestation process. The non- 
photosynthetic remnants of vegetation produced by an initial deforestation process will 
have a characteristic spectral signature, whilst their backscattering properties for short- 
wavelength SAR will not change significantly. SAR detection will occur after the burning, 
or mechanical clearing, of the slashed vegetation. CESBIO’s methodology, which uses the 
SAR shadowing effects to locate deforested areas and then applies a lower threshold to 
flag the remainder of the disturbed area, has been shown to overcome this problem in 
many areas (Bouvet et al. 2018), but it can still produce some omissions common to other 
SAR systems, such as a the one illustrated in the images of Figure 2, column ‘CN’.

JJ-FAST presents interesting results, being a pioneering method that uses a coarser 
resolution sensor. However, both user’s and producer’s accuracies are much smaller than 
the ones produced by Sentinel-1-based methods. Image resolution (50 vs. 10 m) and 
bigger minimum mapping unit (2 ha vs. 0.1 ha) explain the differences in the producer’s 
accuracy, as many smaller disturbed patches were not detected. The low values of user’s 
accuracy can be associated with two main reasons: 1) the ‘pixelation’ effect, due to the 50- 
m resolution of the method, that can extend warning polygons beyond the real disturbed 
area and 2) the shifting of the threshold values on certain areas, as introduced on the third 
version of the algorithm, seems to introduce a great quantity of new, false positive-prone 
warnings (see Figure 6)

The three tested hypothetical systems, which were conceived as an exercise to inves-
tigate the potential performance of a combined optical-radar warning system, excelled in 
the producer’s accuracy, as shown in Figure 3, at the cost of a slight decrease on the user’s 
accuracy, if compared with GLAD-S2. This means that a combined system will be able to 
detect more deforested areas, especially on tiny patches, but will still produce false 
warnings, at similar levels as the studied SAR systems.

Although GLAD-S2 shows excellent accuracy results, some issues should be raised, 
mostly related to cloud cover. S2 cloud masking is an ongoing research subject, and 
several cloud masking systems have been developed to deal with this non-trivial problem 
(Skakun et al. 2022). Some of these systems imply high-cost computations, others can be 
applied in real time. GLAD-S2 cloud masking is based on the cloud probability data 
computed during the image processing and is able to deliver results on a near real-time 
framework. Although generally this algorithm shows good results, it fails to distinguish 
clouds from very bright, non-cloudy pixels, such as those related to open-pit mining. This 
issue boosts GLAD-S2 omissions in illegal mining areas, such as the one illustrated in
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Figure 2, columns ‘MDK’ and ‘GUI’, and can explain the Producer’s accuracy results, with 
omissions that range between 15 and 20%.

The study of the delay of warning issuing highlights the importance of SAR systems in 
areas with a persistent cloud cover. In the Guianas AOI, all the high-resolution SAR 
systems were faster than the reference optical system. CESBIO and RADD took advantage 
of the frequent coverage of this area by the Sentinel-1 constellation, issuing alerts 41 days 
before their optical counterpart. INPE-HR system temporal advantage was lower (4 days), 
due to the fact that this system does not ingest the S1 ascending orbit data available in 
the Guianas. The results of the remainder of the AOI showed that the SAR temporal 
advantage reduces in areas with lower cloud coverage, but still prevails for the RADD 
system in two out of three areas.

5. Conclusions

Our work intended to compare the SAR-based forest disturbance NRT detection systems 
operational nowadays against a state-of-the-art optical system, by applying a robust 
testing protocol. We sampled and examined a total of 1644 locations in 4 different 
areas in Brazil and the Guianas to validate every system’s performance. We also computed 
the detection timing, in order to determine the delay of response to disturbance.

The adopted validation protocol, which included many samples near the border of the 
detected deforested areas and in small deforested patches, was conceived as a kind of 
‘stress test’ that should reveal the performance of every system in the most error-prone 
areas.

The results show an excellent performance of the SAR systems based on Sentinel-1 
sensor data, which outperformed the reference optical system on total accuracy and

Figure 6. JJ-FAST system detection warnings on the Acre area (in white), represented here as red 
points centered on every warning polygon. Notice the densification of alerts derived from the use of 
different detection parameters the SE regions of the interest area.
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producer’s accuracy. The reference optical system showed better performance on the 
user’s accuracy, showing no false positives on the general testing scenario.

The results affirm that an integrated approach to forest disturbance detection, merging 
the products delivered by optical and SAR-based systems can overcome the results of the 
individual systems, with a slight increase in commission errors. This approach, which has 
been recommended by several authors (see for example Reiche et al. 2016), can establish 
a new state-of-the-art on tropical forest near real-time deforestation detection.

Although meaningful, these results should be taken with precaution if applied outside 
the Amazonian basin. In this case, a new comparison exercise will be advisable.

Acknowledgments

PlanetScope data used on validation was provided through Norway’s International Climate and 
Forests Initiative (NICFI). Contains modified Copernicus Sentinel data (2021).

Disclosure statement

J.D.,S.M.,A.B.,J.R. and M.W. participate or have participated on the development of the analysed 
systems and hereby declare that they have not, in any way, influenced the validation process, which 
has been performed by L.L.

Funding

The first author was funded by the National Council for Scientific and Technological Development, 
project “Monitoring Brazilian Biomes by Satellite – Building new capacities”/process 444418/2018-0, 
grant #350303/2021-5, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - 
Brasil (CAPES) - Finance Code 001, as part of the Internationalization program PrInt-INPE. RADD 
project received funding through Norway’s Climate and Forest Initiative (NICFI), the US 
Government’s SilvaCarbon program.

ORCID

Juan Doblas Prieto http://orcid.org/0000-0002-2573-3783
Alexandre Bouvet http://orcid.org/0000-0002-7428-4339

Data availability statement

The data that support the findings of this study are available from the corresponding author, J.D., 
upon reasonable request.

References

Assunção, J., C. Gandour, and R. Rocha. 2019. “Deterring Deforestation in the Amazon: 
Environmental Monitoring and Law Enforcement.” Climate Policy Initiative Report.

Ballère, M., A. Bouvet, S. Mermoz, T. Le Toan, T. Koleck, C. Bedeau, M. André, E. Forestier, P. L. Frison, 
and C. Lardeux. 2021. “SAR Data for Tropical Forest Disturbance Alerts in French Guiana: Benefit 
Over Optical Imagery.” Remote Sensing of Environment 252: 112159. doi:10.1016/j.rse.2020. 
112159.

INTERNATIONAL JOURNAL OF REMOTE SENSING 75

https://doi.org/10.1016/j.rse.2020.112159
https://doi.org/10.1016/j.rse.2020.112159


Bouvet, A., S. Mermoz, M. Ballère, T. Koleck, and T. Le Toan. 2018. “Use of the SAR Shadowing Effect 
for Deforestation Detection with Sentinel-1 Time Series.” Remote Sensing 10 (8): 1250. doi:10. 
3390/rs10081250.

Danklmayer, A., B. R. J. Doring, M. Schwerdt, and M. Chandra. 2009. “Assessment of Atmospheric 
Propagation Effects in SAR Images.” IEEE Transactions on Geoscience and Remote Sensing : 
A Publication of the IEEE Geoscience and Remote Sensing Society 47 (10): 3507–3518. doi:10. 
1109/TGRS.2009.2022271.

Diniz, C. G., A. Antonio De Almeida Souza, D. Correa Santos, M. Correa Dias, N. Cavalcante Da Luz, 
D. Rafael Vidal De Moraes, J. Sant Ana Maia, et al. 2015. ”DETER-B: The New Amazon Near 
Real-Time Deforestation Detection System.” IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 8 (7): 3619–3628. doi:10.1109/JSTARS.2015.2437075.

Doblas, J., Y. Shimabukuro, S. Sant’Anna, A. Carneiro, L. Aragão, and C. Almeida. 2020. “Optimizing 
Near Real-Time Detection of Deforestation on Tropical Rainforests Using Sentinel-1 Data.” Remote 
Sensing 12 (23): 1–31. doi:10.3390/rs12233922.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. ”Google Earth Engine: 
Planetary-Scale Geospatial Analysis for Everyone.” Remote Sensing of Environment 202: 18–27. Big 
Remotely Sensed Data: tools, applications and experiences. doi:10.1016/j.rse.2017.06.031.

Hansen, M. C., A. Krylov, A. Tyukavina, P. V. Potapov, S. Turubanova, B. Zutta, S. Ifo, B. Margono, 
F. Stolle, and R. Moore. 2016. “Humid Tropical Forest Disturbance Alerts Using Landsat Data.” 
Environmental Research Letters 11 (3): 34008. doi:10.1088/1748-9326/11/3/034008.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, et al. 
2013. ”High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 80 (342): 
850–853. doi:10.1126/science.1244693.

Harris, N. L., D. A. Gibbs, A. Baccini, R. A. Birdsey, S. de Bruin, M. Farina, L. Fatoyinbo, et al. 2021. 
”Global Maps of Twenty-First Century Forest Carbon Fluxes.” Nature Climate Change 11 (3): 
234–240. doi:10.1038/s41558-020-00976-6.

Juan, D., M. S. Reis, A. P. Belluzzo, C. B. Quadros, R. V. M. Douglas, C. A. Almeida, E. P. M. Luis, 
A. F. A. Carvalho, J. S. S. Sidnei, and Y. E. Shimabukuro. 2022. “DETER-R: An Operational Near-Real 
Time Tropical Forest Disturbance Warning System Based on Sentinel-1 Time Series Analysis.” 
Remote Sensing 14: 15. doi:10.3390/rs14153658.

Mermoz, S., A. Bouvet, T. Koleck, M. Ballère, and T. Le Toan. 2021. “Continuous Detection of Forest 
Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data.” Remote Sensing 13: 23. doi:10.3390/ 
rs13234877.

Mullissa, A., A. Vollrath, C. Odongo-Braun, B. Slagter, J. Balling, Y. Gou, N. Gorelick, and J. Reiche. 
2021. “Sentinel-1 Sar Backscatter Analysis Ready Data Preparation in Google Earth Engine.” 
Remote Sensing 13 (10): 5–11. doi:10.3390/rs13101954.

Olofsson, P., P. Arévalo, A. B. Espejo, C. Green, E. Lindquist, R. E. McRoberts, and M. J. Sanz. 2020. 
“Mitigating the Effects of Omission Errors on Area and Area Change Estimates.” Remote Sensing of 
Environment 236 (October 2019): 111492. doi:10.1016/j.rse.2019.111492.

Olofsson, P., G. M. Foody, S. V. Stehman, and C. E. Woodcock. 2013. “Making Better Use of Accuracy 
Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using 
Stratified Estimation.” Remote Sensing of Environment 129: 122–131. doi:10.1016/j.rse.2012.10.031.

Reiche, J., S. de Bruin, D. Hoekman, J. Verbesselt, and M. Herold. 2015. “A Bayesian Approach to 
Combine Landsat and ALOS PALSAR Time Series for Near Real-Time Deforestation Detection.” 
Remote Sensing 7 (5): 4973–4996. doi:10.3390/rs70504973.

Reiche, J., E. Hamunyela, J. Verbesselt, D. Hoekman, and M. Herold. 2017. “Improving Near-Real Time 
Deforestation Monitoring in Tropical Dry Forests by Combining Dense Sentinel-1 Time Series with 
Landsat and ALOS-2 PALSAR-2.” Remote Sensing of Environment 204 (April): 147–161. doi:10.1016/ 
j.rse.2017.10.034.

Reiche, J., R. Lucas, A. L. Mitchell, J. Verbesselt, D. H. Hoekman, J. Haarpaintner, J. M. Kellndorfer, et al. 
2016. ”Combining Satellite Data for Better Tropical Forest Monitoring.” Nature Climate Change 
6 (2): 120–122. doi:10.1038/nclimate2919.

76 J. D. PRIETO ET AL.

https://doi.org/10.3390/rs10081250
https://doi.org/10.3390/rs10081250
https://doi.org/10.1109/TGRS.2009.2022271
https://doi.org/10.1109/TGRS.2009.2022271
https://doi.org/10.1109/JSTARS.2015.2437075
https://doi.org/10.3390/rs12233922
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1088/1748-9326/11/3/034008
https://doi.org/10.1126/science.1244693
https://doi.org/10.1038/s41558-020-00976-6
https://doi.org/10.3390/rs14153658
https://doi.org/10.3390/rs13234877
https://doi.org/10.3390/rs13234877
https://doi.org/10.3390/rs13101954
https://doi.org/10.1016/j.rse.2019.111492
https://doi.org/10.1016/j.rse.2012.10.031
https://doi.org/10.3390/rs70504973
https://doi.org/10.1016/j.rse.2017.10.034
https://doi.org/10.1016/j.rse.2017.10.034
https://doi.org/10.1038/nclimate2919


Reiche, J., A. Mullissa, B. Slagter, Y. Gou, N. Erdene Tsendbazar, C. Odongo-Braun, A. Vollrath, et al. 
2021. ”Forest Disturbance Alerts for the Congo Basin Using Sentinel-1.” Environmental Research 
Letters 16 (2): 24005. doi:10.1088/1748-9326/abd0a8.

Reiche, J., R. Verhoeven, J. Verbesselt, E. Hamunyela, N. Wielaard, and M. Herold. 2018. 
“Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts.” 
Remote Sensing 10 (5): 1–18. doi:10.3390/rs10050777.

Saah, D., G. Johnson, B. Ashmall, G. Tondapu, K. Tenneson, M. Patterson, A. Poortinga, et al. 2019. 
”Collect Earth: An Online Tool for Systematic Reference Data Collection in Land Cover and Use 
Applications.” Environmental Modelling & Software 118: 166–171. doi:10.1016/j.envsoft.2019.05.004.

Skakun, S., J. Wevers, C. Brockmann, G. Doxani, M. Aleksandrov, M. Batič, D. Frantz, et al. 2022. ”Cloud 
Mask Intercomparison eXercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 
and Sentinel-2.” Remote Sensing of Environment 274: 112990. doi:10.1016/j.rse.2022.112990.

Stehman, S. V. 2014. “Estimating Area and Map Accuracy for Stratified Random Sampling When the 
Strata are Different from the Map Classes.” International Journal of Remote Sensing 35 (13): 
4923–4939. doi:10.1080/01431161.2014.930207.

Turubanova, S., P. V. Potapov, A. Tyukavina, and M. C. Hansen. 2018. “Ongoing Primary Forest Loss in 
Brazil, Democratic Republic of the Congo, and Indonesia.” Environmental Research Letters 13 (7): 
2000–2010. doi:10.1088/1748-9326/aacd1c.

Vollrath, A., A. Mullissa, and J. Reiche. 2020. “Angular-Based Radiometric Slope Correction for 
Sentinel-1 on Google Earth Engine.” Remote Sensing 12 (11): 1–14. doi:10.3390/rs12111867.

Watanabe, M., C. N. Koyama, M. Hayashi, I. Nagatani, and M. Shimada. 2018. “Early-Stage Deforestation 
Detection in the Tropics with L-Band SAR.” IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing 11 (6): 2127–2133. doi:10.1109/JSTARS.2018.2810857.

Watanabe, M., C. N. Koyama, M. Hayashi, I. Nagatani, T. Tadono, and M. Shimada. 2021. “Refined Algorithm 
for Forest Early Warning System with ALOS-2/PALSAR-2 ScanSar Data in Tropical Forest Regions.” 
Remote Sensing of Environment 265 (November 2020): 112643. doi:10.1016/j.rse.2021.112643.

Weisse, M. J., R. Noguerón, R. Eduardo, V. Vicencio, and D. Arturo Castillo Soto. 2019. “Use of 
Near-Real-Time Deforestation Alerts: A Case Study from Peru.” Technical Report. Washington, 
DC: WRI.ORG. https://www.wri.org/publication/use-near-real-time-deforestation-alerts 

WRI. 2021. “Global Forest Review.” Washington, DC. Accessed 2022 February 21. https://research.wri. 
org/gfr/forest-pulse

INTERNATIONAL JOURNAL OF REMOTE SENSING 77

https://doi.org/10.1088/1748-9326/abd0a8
https://doi.org/10.3390/rs10050777
https://doi.org/10.1016/j.envsoft.2019.05.004
https://doi.org/10.1016/j.rse.2022.112990
https://doi.org/10.1080/01431161.2014.930207
https://doi.org/10.1088/1748-9326/aacd1c
https://doi.org/10.3390/rs12111867
https://doi.org/10.1109/JSTARS.2018.2810857
https://doi.org/10.1016/j.rse.2021.112643
https://www.wri.org/publication/use-near-real-time-deforestation-alerts
https://research.wri.org/gfr/forest-pulse
https://research.wri.org/gfr/forest-pulse

	Abstract
	Abstract
	1. Introduction
	2. Materials and methods
	2.1. Forest disturbance data
	2.2. Combined systems
	2.3. Study sites and time frame
	2.4. Forest/non-forest maps
	2.5. Spatial accuracy assesment
	2.5.1. Reference sample design
	2.5.2. Reference labelling
	2.5.3. Agreement and confusion matrix definitions
	2.5.4. Spatial accuracy metrics

	2.6. Measuring performance on small patches
	2.7. Temporal benchmark

	3. Results
	3.1. Forest disturbance maps
	3.2. Spatial accuracy
	3.3. Temporal accuracy

	4. Discussion
	5. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

