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Digital twins in the green life sciences
Willem Jan Knibbe , Lydia Afman, Sjoerd Boersma, Marc- 
Jeroen Bogaardt, Jochem Evers, Frits van Evert, Jene van der Heide, 
Idse Hoving, Simon van Mourik, Dick de Ridder and Allard de Wit

Wageningen University & Research, Wageningen, The Netherlands

ABSTRACT
Digital twins provide a new paradigm for the integrated use of sensor data, 
process-based and data-driven modelling, and user interaction, to explore the 
behaviour of individual objects and processes. Digital twins originate from an 
engineering context and were developed for machines and mainly physical and 
chemical processes. In this paper, we further develop an understanding of 
digital twins for the green life sciences, which also include biological and social 
processes. We report on three use cases, in precision farming, greenhouse 
control and personalized dietary advice, focusing on practical benefits and 
challenges of digital twins compared with other research methods. This 
research extends earlier more conceptual research on digital twins in this 
domain. We find benefits in increased accuracy and impact because of the real- 
time data connection of digital twins to their real-life counterparts. 
Specification, availability and accuracy of relevant data sources are still major 
challenges. Specifically, when using digital twins for personalized advice, 
further research is needed on nontechnical aspects so that users will comply 
with the advice from the digital twins. We have outlined four directions of 
future research and expect that further research will include data-driven mod-
elling to simulate the complex character of living objects and processes and at 
the same time develop approaches to limit the amount of required input data.
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1. Introduction

Digital twins are digital representations of systems or processes with three 
specific characteristics distinguishing them from other representations such 
as data sets or simulation models. First, they represent one specific instance 
of a system or process, which is duplicated by the twin. Second, this instance 
is regularly monitored, and the resulting data are used to update the twin so 
that instance and twin are kept synchronized. Third, a twin allows user 
interaction to investigate its hypothetical time evolution under different 
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scenarios. Digital twins employ in this manner advanced scientific knowledge 
for interactive and quantitative comparison of different scenarios for feed-
back, control or intervention. In particular, this can be done in real time, and 
for unique real-world instances. This dynamic and responsive character of 
digital twins distinguishes them from, e.g. digital shadows (Bergs et al., 2021; 
Kritzinger et al., 2018). Figure 1 illustrates this new paradigm.

This figure also shows several optional properties of a twin. For instance, 
advanced visualization is often used with digital twins, it is efficient and 
robust to build the twin as a modular system, it may provide information 
on multiple scales of the actual object or process, and it is interesting and 
challenging to consider the twin to interact with this object or process. 
However interesting, we do not consider such properties as essential to the 
definition of a digital twin.

Essentially, digital twins allow for simulation. Increasingly, data-driven 
methods are used for simulation as an alternative to models based on explicit 
process understanding (“process based”). Evolving through regression analy-
sis, advanced statistical methods and various types of machine-learning 
algorithms, an enormous body of research with application to widely varying 
domains clearly shows the additional benefits of data-driven methods (Raghu 

Figure 1. The digital twin is a representation of an actual object or process, monitored in 
real time, with the flow of information or data from the actual object or process to its 
twin. The twin itself represents a single instance of this object or process and can 
simulate its time evolution under normal or perturbed conditions. It offers facilities for 
basic user interaction and in this manner provides actionable knowledge, the added 
value of the twin. We consider these properties as essential to distinguish digital twins 
from other digital representations. The dotted arrow illustrates an optional feedback 
loop.
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& Schmidt, 2020). Often, such methods adopt a two-phase approach. The first 
phase employs large amounts of (historical) data to calibrate, or “train”, the 
algorithms. In the second (application) phase, these are applied to new data 
for answering relevant questions.

The simulation part of digital twins can be based on data-driven as well as 
process-based methods. In both cases, digital twins can take advantage of their 
real-time data connection, where real time refers to time scales relevant for the 
object or process under investigation. Real-time data help to verify the quality 
of the simulations, to – regularly and automatically – adjust and/or recalibrate 
the model, or (for process-based methods) support regular parameter tuning.

The characteristics of digital twins, combined with the possibility to include 
different kinds of simulation models, offer many opportunities to quantitatively 
investigate complex systems and processes. Digital twins were conceived for 
product lifecycle management (Grieves, 2016). In NASA Technology Roadmaps, 
their definition explicitly links them to physical systems (Rosen et al., 2015). 
They have also found extensive application in industry, such as in manufactur-
ing (Kritzinger et al., 2018). Generally, digital twins appear to be developed 
mostly in physical, well-controlled, technological domains.

Wageningen University & Research hosts research and education in 
a broad field that we will indicate here with the term “green life sciences”. 
This includes the living environment, with subjects such as the terrestrial 
environment, climate, human and social processes, the entire system of 
agriculture, food, nutrition, and health, as well as plant and animal sciences. 
Research focuses on systems and processes crucial for human society which 
require, due to their complexity, advanced analytical and data-driven solu-
tions for quantitative investigations (Athanasiadis et al., 2020).

Given their benefits in modelling physical/technical entities, we are inter-
ested in the benefits digital twins can provide in the area of complex living 
systems and processes. In this work, we investigate the potential of digital 
twins in the green life sciences. In particular, we wish to know if the digital 
twin characteristics, applicable to non-living systems, can as well be applied 
in our domain. In addition, we intend to establish if these digital twin 
characteristics provide benefits compared to other methods; for example, 
a better understanding and so a better ability for deciding on how to obtain 
desired outcomes for the systems and processes investigated.

Here, we specifically investigate the practical challenges and benefits of 
digital twins in the green life sciences over alternative approaches. We have 
chosen three use cases, namely, digital twins of farm operations, greenhouse 
operations and human digestion. In the following sections, we first provide 
a brief overview of the domain of green life sciences. Then, we discuss the use 
of digital twins in this domain. We continue with a description of our research 
questions for the three use cases, followed by the analysis and results 
pertaining to these questions and end with conclusions.
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2. Green life sciences

The mission of Wageningen University & Research (WUR) is “To explore the 
potential of nature to improve the quality of life”. Its three strategic domain 
areas are Society and well-being; Food, feed and biobased production; and 
Natural resources and living (“”Finding Answers Together Strategic Plan”  
2019–2022”, ”2019). These areas overlap in scientific content but have 
a distinct focus. WUR combines university research and education with pub-
lic- and private-funded research institutes in a single organization. Research 
covers a broad spectrum of subjects coherently focused on the complex 
living systems and processes of the human environment. The spectrum 
includes social sciences (e.g. economics, consumer behaviour, philosophy), 
exact sciences (e.g. physics and chemistry of food production, climatology, 
hydrology), biology (plant and animal sciences, human nutrition and health) 
and technology (bioprocess engineering, environmental technology, food 
safety). Fundamental and technology-oriented research at WUR is always 
aimed at applications in the three strategic domains. We refer to these as 
the “green life sciences”, distinct from the medically oriented “red life 
sciences” that tend to have a stronger focus on the internals of living beings.

3. Digital twins in the green life sciences

WUR embraces the opportunities and challenges of data science and artificial 
intelligence for its mission. As one of its initiatives, WUR has defined 
a strategic research programme “Digital Twins”. Earlier research has already 
explored the application of digital twins in the green life sciences. Their 
potential and challenges have been investigated in a.o. use cases in agricul-
ture (Pylianidis et al., 2021), (Verdouw & Kruize, 2017), in smart farming 
(Verdouw et al., 2021), a review in horticulture (Ariesen-Verschuur, Verdouw 
and Tekinerdogan, 2022), design patterns including case studies 
(Tekinerdogan & Verdouw, 2020) and an exploratory investigation of animal 
farming (Neethirajan & Kemp, 2021). Ethical aspects related to digital twins 
have also been researched (Korenhof et al., 2021; Van der Burg et al., 2021).

Application-oriented research underlines the potential of Digital Twins. For 
instance, (Alves et al., 2019) leverage wireless environmental sensing tech-
nology (air, soil), with facilities for data analysis and visualization, as a first step 
in realizing a digital twin for farm resource management. Further possibilities 
are investigated by (Elijah et al., 2021), such as the incorporation in farming in 
combination with robotics, crop growth models and food preservation tech-
nology. (Nasirahmadi & Hensel, 2022) describe the state of the art and give 
a framework for digital twins in agriculture, to support farmers. In a somewhat 
broader context, (Kamilaris et al., 2021) provide several examples, such as 
a system setup for a beekeeping digital twin in an urban environment, and 
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digital twin technology combined with digital elevation maps and augmen-
ted reality as preparatory information for hiking tourism.

The examples mentioned above mostly focus on perspectives, require-
ments and implications, or provide prototype applications. The seven digital 
twin maturity categories presented by Uhlenkamp et al. (2022; context, data, 
computing capabilities, model, integration, control, human-machine interac-
tion) are at most partially applicable, indicating that these examples are 
generally in early maturity stages. A different framework for distinguishing 
maturity levels (Metcalfe et al., 2022) paints the same picture. Note, however, 
that in (Uhlenkamp et al., 2022) less than 2% of reviewed applications (2 out 
of 131) is within agriculture, and less than 4% (5 out of 131) within logistics 
(which can be considered part of the food chain). The number of applications 
in the green life sciences appears small compared to other domains, which 
motivated us to research practical challenges and benefits.

In the WUR Digital Twin research programme, three flagship projects 
investigate practical challenges and benefits of digital twins of (1) the nitro-
gen cycle at a farm, (2) operations of a tomato greenhouse and (3) the post- 
meal human fat response in the blood circulation. These flagship projects are 
our use cases for investigating digital twins in the green life sciences.

Below, we first provide some background on one of our flagship projects, 
the nitrogen cycle at a farm, to illustrate how the digital twin concept fits in 
the continuous development of our research.

3.1. Digital twins as a next step in research

As an example, Tipstar is a dynamic model of the growth and development of 
potatoes developed at WUR (Jansen, 2008). Recommendations for irrigation 
and nitrogen fertilization based on real-time simulation run with Tipstar 
resulted in agronomic and economic performance at least as good as that 
obtained by successful farmers (Jansen et al., 2003). Application of Tipstar on 
commercial scale was, at the time, precluded by the cost and labour asso-
ciated with collecting the input data needed to run the model. The wide-
spread availability and affordable cost now of new sensors (e.g. satellites and 
drones) and new IT infrastructure (e.g. software for registration of farm 
management data, access to weather data) inspired the flagship project for 
a digital twin at the farm, which includes Tipstar as a simulation model 
implemented in the open-source real-time data service platform Farmmaps 
(https://farmmaps.eu).

The development of Tipstar is exemplary for those in the domains of the 
other flagship projects, on greenhouses and human food responses, which 
are discussed below. Other examples include decision-support in cotton 
(McKinion et al., 1989) and maize (Sela et al., 2018) farming.
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On grass-based dairy farms, proper prediction of biomass and its nutri-
tional value is considered essential for modern day grassland management. 
To provide for this, a web application for farmers use (GrassSignal) has been 
developed and is being tested in practice. The approach here is to combine 
model prediction of biomass with sensor data (Hoving et al., 2019). The use of 
a growth model is seen as the basis for predicting biomass and nutritional 
value. Biomass prediction is being adjusted with spectral measurements or 
grass height. Concerning spectral measurements vegetation index WDVI red 
was the best predictor of yield.

3.2. Benefits and challenges for digital twins

While technological developments now allow the development of digital twins, 
the question remains what exactly their advantages and disadvantages are 
compared to other representations widely used in our research domains: simula-
tion models, control systems and scientific advice. Simulation models formalize 
scientific knowledge for computational purposes. Decision support systems 
incorporate knowledge in decision rules to provide actionable knowledge sup-
porting human control of systems or processes, potentially reacting to changing 
conditions. Scientific advice details recommended actions for specific situations, 
often in oral or written communication. Compared to each of these representa-
tions, digital twins offer specific possibilities:

● Digital twins differ from simulation models in their real-time data con-
nection with a particular instance of a system or process. This can 
provide more accurate simulations than generic models of systems or 
processes lacking real-time data. It does, however, require a sufficiently 
accurate data connection with a particular instance, and a method to 
feed these data consistently as input information for the simulations.

● Digital twins differ from decision support systems in their ability to 
represent over time the system or process to be controlled. Including 
a digital twin in a control system makes it possible to investigate in more 
detail the options of human intervention to optimize system/process 
operation. It does, however, require more detailed and relevant informa-
tion on the particular controlled system or process, in real time.

● Digital twins differ from scientific advice as they can efficiently provide 
interactive advice, for different scenarios based on actual data and 
specific for an individual object or process. This advice can in principle 
be automated and easily accessed to provide actionable knowledge, for 
instance, through mobile equipment. Collecting user feedback can 
reduce the risks of incorrect advice by adapting to individual situations. 
This does require efficient and effective user interaction and compliance.
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In this paper, we investigate the benefits of digital twins compared to 
simulation models, as part of decision support systems, and as a tool for 
providing scientific advice. Evidently, digital twins may be used in many 
additional ways not considered here, for instance, for communication and 
training (interactively visualizing potential scenarios, “flight simulator”) or for 
product development (virtually testing various product or production alter-
natives, “digital laboratory”).

4. Research questions

In this section, we introduce the flagship projects and the related research 
questions.

The “Digital Future Farm” (DFF) project is based on an existing data platform 
and simulation environment for precision agriculture. We focused on the chal-
lenges of the real-time data connection to investigate the applicability of digital 
twins, and we analysed simulation results to study their benefits. An important 
measure of benefit is whether farmers can make better tactical and strategic 
decisions with output of the digital twin, compared to making decisions with 
output of non-digital twin simulation models. In this case, we investigated how 
the concept of a digital twin enables the next step in precision agriculture.

The “Virtual Tomato Crop” (VTC) project builds on existing work in climate 
control for greenhouses. This is an active area of research, with many chal-
lenges in combining data and model simulations to improve decision- 
making. We used this case to investigate benefits of including digital twins 
as part of automatic control systems. Specifically, we researched the chal-
lenges involved in integrating digital twins in more complex systems.

The “Me, My Diet and I” (MMD) project aims to increase the health benefits 
of dietary advice by adopting digital twins to personalize recommendations. 
We investigated whether algorithm-based dietary advice can support advice 
by health professionals. This research extends current knowledge on the 
influence of personal characteristics on human response to food intake, as 
well as on the receptiveness to dietary advice offered either directly by 
professionals or given by a digital twin as intermediary.

5. Analysis and results

We adopted different approaches for the different use cases researched in 
this paper. This section provides information on background, methods, and 
results for each.
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5.1. Case digital future farm

5.1.1. Background
Agriculture has potentially large negative impacts on the environment. 
Society places regulatory pressure on farmers to limit the use of input to 
reduce these impacts. To optimize the use of inputs and reduce losses, 
farmers need precise, real-time information about the status of crops, soils 
and livestock, as well as information about the likely outcome of manage-
ment decisions. The potential of dynamic crop growth models fed with 
real-time data to support farmers’ decisions has long been recognized. 
Several monitoring and/or decision support systems are available, of 
which FarmMaps and Beregeningssignaal (https://www.zlto.nl/beregen 
ingssignaal) are examples. However, decision support including real-time 
data connections based on dynamic models is currently not widely used.

5.1.2. Methods
We adopted a model-oriented approach for this case study. In particular, we 
focused on incorporating currently available simulation models in the digital 
twin by taking in real-time available sensor information and connecting to 
novel forms of visualization, as a basis for decision support. This case study 
focuses on our approach to data assimilation.

5.1.3. Challenges
We find four main reasons currently limiting the widespread adoption of 
decision support systems:

● A fragmented modelling landscape: different models need to be com-
bined to support complex decisions by farmers, e.g. to include the effects 
of crops, soils, and livestock. However, such different models are not 
usually readily interoperable. For instance, it requires major efforts to 
harmonize definitions and units before starting the integration.

● Calibration of models for specific commercial farms: advice is only useful 
if it is sufficiently specific to add to the expertise and insights of farmers. 
This requires accurate calibration of models, a major effort given the 
complexity and diversity of the processes involved.

● Models never capture all relevant processes: they are necessarily an 
abstraction and simplification from reality and their results need to be 
interpreted with care before they can be used as a solid basis for 
decision making. It requires in-depth investigations to determine the 
validity of model results as a basis for decision making.

● IT infrastructure: with the growth of technological possibilities, the 
complexity of design and development increases exponentially due to 
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the many available options for design principles, technical standards, 
and methods of implementation.

In the Digital Future Farm (DFF) project we develop a digital twin represent-
ing a particular arable or dairy farm, with a focus on the nitrogen cycle (Van 
Evert et al., 2021). This digital twin comprises the components necessary to 
simulate interventions and to generate actionable knowledge to (1) reduce 
nitrogen use of farms while maintaining or increasing crop yields and (2) 
minimize nitrogen losses on farm. The DFF includes various models currently 
in use at Wageningen University & Research for the different processes on 
a farm. In addition to process-based models, we develop data-driven meth-
ods for selected sub-systems (not further discussed here).

The data needed by the DFF digital twin are varied and many. For crop 
farming, soil models are needed that require information about the soil. For 
The Netherlands, this is available online from BOFEK (De Marke et al., 2021). In 
the US, this information can be obtained from SSURGO (https://websoilsurvey. 
nrcs.usda.gov); SoilGrids (https://soilgrids.org) aims to provide this information 
for the entire world. Both soil and crop models need information about daily 
weather, especially temperature, irradiation, precipitation, humidity and wind-
speed. This information can typically be obtained online and in real-time from 
local weather stations, national weather services, or global providers such as 
Weather Corp. Crop and soil models also need information about farmer 
management activities, such as tillage, planting, fertilizing and irrigation. This 
information is typical stored in a so-called Farm Management Information 
System (FMIS), of which many commercial versions are available. Farm opera-
tions are often entered manually into an FMIS and therefore it is a challenge to 
have timely access to accurate data. Further, FMIS from different vendors are 
often not interoperable. Standards such as Agro-XML (www.agroxml.de), EDI- 
Teelt++ (www.agroconnect.nl), and others are being developed but none of 
them seems already to have gained widespread attention. In The Netherlands, 
the FMIS of Dacom (https://www.dacom.nl/nl) is widely used and can be used 
in our DFF to provide input to crop and soil models.

Many sensors and sensing systems are available to make real-time obser-
vations on crops and soils (Van Evert, 2019) for updating the digital twin. 
Reflectance measurements are of prime importance for crops, as they provide 
information about aboveground biomass and nitrogen content in crops. 
Reflectance can be measured with sensors borne on satellites, UAVs or 
drones, or tractors. Moisture measurements are similarly important for soils, 
and in particular automated soil moisture sensors provide useful information. 
Accurately measured soil nitrogen content is equally important given our 
focus on the nitrogen cycle; thus, far this requires destructive analysis but 
automated detection via Vis-NIR spectroscopy is under active investigation 
(Gebbers, 2018).
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Exact determination of crop yields from yearly recurring crop harvesting 
can provide valuable information for recalibration of crop and soil models, 
and so provides opportunities for investigation potential sensing deviations. 
Especially interesting are yield maps, which provide yield as a function of the 
position in the field. Yield maps can be generated by combine-harvesters for 
crops such as wheat and maize. The quality of yield maps for potatoes 
depends on soil and harvesting conditions. In the future, we expect possibi-
lities for more accurate and extensive yield determination through analysis of 
visual information from cameras.

In dairy farming, grassland use or consumption is an important para-
meter in the nitrogen cycle. This is, however, particularly difficult to deter-
mine due to irregular animal behaviour and may require, e.g. Global 
Navigation Satelite System receivers on the animals. Reflectance measure-
ments may be an alternative, similarly to the use in crops such as wheat and 
potato. The sensitivity seems, however, to be somewhat less, perhaps 
because grass has a permanent stubble layer which influences the measure-
ment; another explanation may be that the low amount of above-ground 
biomass, due to frequent harvesting, tends to provide a signal which is 
a mix of the grass and the surface layer below. This reduces the sensitivity to 
grass characteristics. Like crop farming, dairy farming provides opportu-
nities for model recalibration, e.g. using cow sensors to predict fresh grass 
uptake (Schils et al., 2019) or measured quantities and quality of produced 
milk.

5.1.4. Nitrogen fertilization in potatoes
The baseline for nitrogen fertilization in potatoes in The Netherlands is to 
apply all nitrogen just before or just after planting. This frequently results in 
either an over-supply or an under-supply of N, because the actual demand is 
influenced by spatial variability in the field and by the growing conditions 
during the season. Wageningen UR has developed a recommendation system 
where two-thirds of the recommended amount of N is applied at planting; 
around July 1st the amount of N taken up by the crop is then measured via 
canopy reflectance and compared with the amount of N that would have 
been taken up by a crop growing without N limitation (determined with 
model simulations) and the difference is then applied as side dress N. This 
system maintains yield and results on average in a 15% reduction in N use 
(Kempenaar et al., 2017; Van Evert et al., 2012).

An important limitation is that it does not consider nitrate leaching, 
mineralization of organic matter, and other processes that influence the 
availability of N in the soil. For example, after several weeks without rain 
the system will recommend a high side dress N rate even though crop growth 
is limited by lack of water (and not by lack of nitrogen).
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This is where using a dynamic simulation model can be expected to lead to 
more accurate recommendations. For this purpose, we have made it possible 
to run Tipstar in real-time for potatoes in The Netherlands, with soil hydro-
logic data derived from the Dutch national soils database (Heinen et al., 2021), 
daily weather (and two-week forecast) from The Weather Company (https:// 
www.ibm.com/weather), and manual crop registration. This approach is 
implemented on the FarmMaps platform (Figures 2 and 3) and can be (but 
has not yet been) applied to other crop or dairy-related models (e.g. WOFOST, 
WatGro, Beregeningssignaal, Grassignaal) as well.

As part of our approach, an Ensemble Kalman Filter (EnKF) has been 
implemented in the DFF, based on earlier work (Evensen, 2003; De Wit 
et al., 2012; De Wit & van Diepen, 2007). The EnKF provides a solution for 
estimating the state of the system by combining sensor information and 
model predictions considering the uncertainty in both. The goal is to provide 
a consistent time evolution of the simulated system which is adjusted by 
observations when they come available. This approach including an EnKF is 
not restricted to Tipstar and can be used to assimilate real-time observations 
into any of the simulation models used in the DFF.

The use of Tipstar and EnKF is demonstrated in Figure 4. Data assimilation 
improved the tracking of aboveground growth (as indicated by Leaf Area 

Figure 2. Screenshots from https://farmmaps.eu showing a simulation and forecast with 
the Tipstar potato model for a field near Wageningen, The Netherlands, in 2021. 
Simulated fresh tuber yield. The crop was planted on 15 April 2021 and the forecast 
was made on 14 July. From planting to 14 July, observed weather was used for the 
simulation. For the two weeks following 14 July, forecast weather was used. From 
1 August, a stochastic simulation using 30 years of historic weather was performed, thus 
from 1 August the line becomes a plume.
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Index, or LAI) but had negligible effect on the tracking of tuber growth. 
Further work is needed to determine how effective data assimilation is here 
in practice. A possible improvement could come from adding tuber weight as 
a state variable in the analysis and let the EnKF adjust tuber weight as well. 
We encounter several further research questions related to the required 
sensor information. The choice of measurement quantities, frequencies, and 
accuracies needs to be further investigated. We also note that in these 
investigations different prediction horizons need to be considered. Effects 
on prediction of state variables a few weeks in the future (supporting tactical 
decisions) may well differ from effects on end-of-season predictions (support-
ing strategic decisions).

As an illustration of the fact that benefits of a real-time data connection are 
strongly dependent on the context, we note that, e.g. crop growth models have 
many parameters, some of which influence the model’s behaviour at any point 
in time, but there are also parameters that have an influence only during specific 
periods of the growing season. Figure 5 shows the effect of two parameters: one 
parameter determines LAI at emergence and therefore influences the simulation 
in the beginning of the growing season; another parameter determines the life 
span of individual leaves and therefore starts to influence the simulation only 
when the first (oldest) leaves reach their maximum age and start dying.

Figure 3. Same as Figure 2 but for simulated reduction of crop growth due to water- 
stress and N-stress. It shows that the crop is running out of N around the time of the 
forecast. At this point, the crop still looks healthy, and while the farmer cannot observe 
problems the model predicts these will occur soon.
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Figure 4. Simulation of potato growth with EnKF and Tipstar for Leaf Area Index (a) and 
for Tuber dry matter yield (b). The dashed red line shows the default simulation for this 
field. An ensemble of simulations (n = 50) is represented by grey-dotted lines; the 
ensemble median is shown with a solid black line. The filled square symbols show the 
LAI observations based on Sentinel-II imagery which were used to update the ensemble, 
and destructively measured tuber weights, for (a) and (b), respectively.
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5.1.5. Summary
The case of Tipstar on FarmMaps and the data assimilation examples demon-
strate the technological readiness of the digital twin approach for arable farm-
ing. The connection to real-time data has been demonstrated for a limited 
application, but for most arable farmers this remains a major obstacle. We take 
the approach of demonstrating the usefulness of the arable farming digital 

Figure 5. Variation in the EnKF simulation created with a parameter that influences LAI 
at emergence (a) and with a parameter that affects the lifespan of leaves (b).
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twin, in the expectation that this will provide a stimulus for growers and 
technology providers to solve the operational data connection challenges.

5.2. Case virtual tomato crop

5.2.1. Background
The VTC digital twin is based on a detailed simulation model of the dynamics of 
climate and individual tomato plants in a greenhouse. Tomato is not only 
a valuable export crop in the Netherlands but also widely studied as it repre-
sents many challenges also found in other greenhouse crops. The model 
simulates relevant crop processes (light capture, photosynthesis, assimilate 
allocation, growth of leaf area and stem extension, yield), greenhouse climate 
dynamics (temperature, humidity, CO2), climate control measures (opening of 
windows, heating, CO2 injection, lighting, and screening), and crop handling 
(harvesting, leaf pruning). The digital twin represents the individual tomato 
plants in the greenhouse. The model configuration (parameters settings) asso-
ciated with a specific cultivar and greenhouse configuration are tuned based 
on real-time sensor measurements taken from the real tomato crop.

Potential key advantages of using a digital twin follow from exploiting the 
detailed information available from real-time data streams. Merging actuator 
and sensor data with process-based greenhouse crop modelling enable high 
precision monitoring of system states by application of filtering algorithms 
(Hameed, 2010; Van Mourik et al., 2019), analogously to the approach fol-
lowed for the DFF. In this manner, model parameters can be calibrated to 
specific system properties for an individual greenhouse or crop cultivar 
(Speetjens et al., 2009), or even to individual plants. Then, with detailed 
monitoring, accurate prediction, and improved control performance, external 
factors such as yield rate and energy efficiency can be optimized.

5.2.2. Methods
In this case study, we adopted a systems-oriented approach, investigating the 
challenges resulting from including a digital twin into greenhouse control 
systems. We focused on required information and accuracy to outline the further 
development of a digital twin as part of different types of control systems.

5.2.3. Improving decision support with a digital twin
In academia and in the greenhouse support industry, there is great interest in 
model-based automated decision support, which can be provided in three 
types (Van Mourik et al., 2021): 1) monitoring the current state of crop and 
climate variables by updating model states and parameters with sensing 
information, 2) predictions about future development of crop and climate 
under various scenarios of crop handling and climate control, and 3) high- 
level control advice about optimal setpoints, such as for indoor temperature 
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and pruning rate, and additional settings or constraints, such as maximum 
indoor humidity or minimum leaf area. Type 3 is currently mainly provided by 
consultancy, but this can in principle be automated, and even developed into 
a fully automated controller. For predictions (type 2) but also for control 
advice (type 3), forecasts about crop development, weather, and market 
prices need to be combined for optimizing, e.g. yield rate, crop quality and 
rewards, and energy use. The role of decision support in greenhouse manage-
ment is visualized in Figure 6.

Decision support by monitoring (type 1) with a digital twin requires 
a method to correctly estimate the current state of the system from the 
sensor information. Decision support by prediction (type 2) with a digital 
twin additionally requires consistent state updating as input for model pre-
dictions. Decision support by control (type 3) further requires a control algo-
rithm to automatically compute optimal management of input and actions, 
to provide advice, or even fully automatic control. Figure 7 briefly illustrates 
the three different decision support types including the integration of 
a digital twin.

During implementation, we encountered several research questions, 
which we think are of immediate interest to academics and industry involved 
in developing intelligent sensing and actuation technology including digital 
twins.

Figure 6. The role of decision support in greenhouse operational management. Two 
control loops are shown: a low-level management loop (with a low-level controller) with 
input consisting of settings and setpoints provided by the grower, and a high-level loop, 
in which a grower determines those settings and setpoints based on sensor information, 
forecasts and automated decision support (observation, prediction or control advice). 
Source photo: https://european-seed.com.
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First, it needs to be determined exactly what system information needs to 
be monitored. Some system parameters cannot yet practically be measured 
in real-time (e.g. plant sugar levels) or require expensive sensing equipment. 
It is of interest to know what information needs to be monitored to improve 
the performance of decision support, and which information can be dis-
carded, before e.g. investing in sensing equipment.

Then, the influence on system performance needs to be determined of 
measurement and actuation errors, their propagation through the controlled 
system, their interaction, and their influence on the accuracy of state and 
parameter estimations, and model predictions. This not only relates to the 
desired accuracy of sensing equipment (as mentioned above) but also to the 
level of detail needed in model calculations.

The convergence of estimated parameter values to the true values, its 
dependence on sensor choice, and measurement accuracy needs to be 
determined. In other words, how can we evaluate the correctness of a state 
estimation and how efficient is such a procedure? Related but different is the 
question what the benefits are of precise actuation (e.g. designing a lighting 
and pruning control strategy per individual plant) compared to conventional 
control (each plant receives the same amount of artificial light, and all plants 
have the same leaf area which is kept constant over time).

Figure 7. Role of the digital twin in decision support. Monitoring: the current state is 
estimated with an observer algorithm that employs the digital twin, together with 
sensor measurements. Prediction: the digital twin predicts the evolution of the state 
over a given time horizon. Control: using the current state estimation, together with the 
predictions of the digital twin, a control algorithm calculates the future control signals 
that optimize the operational management loop.
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Continuing this line of thought, it needs to be clarified what the relation is 
between model spatial resolution, performance, and accuracy of predictions. 
In other words, how much would a high-resolution model such as a 3D crop 
model that predicts individual plant development (Vos et al., 2010), or 
a spatially distributed climate model (Reichrath & Davies, 2002; Saberian & 
Sajadiye, 2019), improve performance over a basic 1D model (such as 
a canopy crop model, or a spatially homogeneous climate model)?

Lastly, we note that it needs to be determined how the different types of 
high-level control (Figure 7) will perform. Although previous studies on model 
predictive control have indicated huge potential in performance increase 
(Henten, 1994; Kuijpers et al., 2021; Van Beveren et al., 2015; Van Ooteghem,  
2010), most studies are not comparative, and involve predictive controllers 
directly controlling the actuators. This does not reflect the control loop encoun-
tered in practice and carries the risk that mispredictions could easily result in 
violations of bounds and jeopardize crop quality (e.g. incorrect weather pre-
dictions leading to too high or low indoor temperature). Much is still unknown 
about the performance of model predictive control in practice and about the 
tradeoffs between different control strategies (optimal, robust or risk sensitive).

Such questions can be answered through extensive simulation studies on 
a system that includes a controller based on a digital twin, algorithms for 
estimating states and parameter values, and a control algorithm. The outcomes 
can subsequently be validated with an experimental setup in a real greenhouse.

5.2.4. Challenges in controlled systems design
Through hands-on simulations and literature study, we have explored the 
challenges of designing a digital twin-based control system, consisting of 
a high-resolution functional-structural plant (FSP) model (Vos et al., 2010) 
combined with a greenhouse climate model (Vanthoor et al., 2011), contem-
porary algorithms for monitoring (particle filter), parameter estimation and 
model predictive control for the high-level control loop (see, Figure 6). The 
following challenges were identified, per type of decision support:

Monitoring: whereas a detailed model has the potential for accurate pre-
dictions, too much complexity may present a bottleneck as parameters may 
become interdependent and/or very sensitive to noise, leading to highly 
uncertain predictions. A similar challenge exists for state estimation. The 
issue of determining optimal model complexity is known as the bias- 
variance tradeoff (Hastie et al., 2009).

Prediction: computational demand may pose a burden here. Uncertainty 
analysis related to the research question on error propagation will easily 
require thousands of runs to simulate nonlinear parameter uncertainty pro-
pagation through sampling (Van Mourik et al., 2014). Inference of parameters 
may require hundreds to thousands of model integrations per update. For 
research practice, dozens to hundreds of trial runs for method development 
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and debugging are required. Further, prior information about credible para-
meter ranges is indispensable. Otherwise, unrealistic values might be 
obtained that could jeopardize prediction reliability. Even after extensive 
literature search, or with tailored experiments, it is very likely that not all 
ranges can be determined.

Control: in the plant model, the number of states changes over time due to 
development of new stems, leaves and fruits (see, Figure 8). Conventional control 
algorithms are designed for systems with fixed numbers of states. Possible 
solution strategies exist, in the form of hybrid systems control, however issues 
about stability and optimization remain (Camacho et al., 2009). Another possible 
solution is a controller design based on a fixed number of summarized states, e.g. 
leaf area index and weight of organs and fruits (Vanthoor et al., 2011), which is 
made up of multiple other states. As an additional challenge, the solution space 
of the control problem grows exponentially with the number of states (Van 
Mourik et al., 2021). This makes conventional optimization such as dynamic 
programming infeasible for models with many states.

5.2.4.1. Recommendations for obtaining a digital twin with suitable 
model complexity. To find solutions for the challenges mentioned above, 
we recommend an emulation approach, with a controlled system containing 
a simplified model as a starting point, and only a low-level controller 
(Figure 6). The dynamics and performance of this basic system can be 
compared with that of a high-resolution system that serves as a proxy for 

Figure 8. Simulated tomato plant growth in a virtual greenhouse environment. 
Visualisation created by Katarina Streit.
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the real system. An iterative procedure, in which the outcomes of the simpli-
fied and high-resolution system are compared, can be used to determine 
which processes are essential and thus should be added to the simplified 
model to achieve the same system behaviour within an acceptable margin. 
After a model of suitable complexity has been selected or constructed, it 
should be assessed whether this model is suitable for monitoring, parameter 
estimation, and control design. Should the model then still be too complex, 
some techniques might offer a solution.

First, alternative AI optimization methods, such as reinforcement learning 
(Hemming et al., 2019; Zhang et al., 2021) to solve an MPC control problem 
within reasonable time. And second, model approximation techniques to 
reduce model complexity while preserving the essential behaviour. 
Examples are (piecewise) linearization, timescale decomposition (Van 
Straten et al., 2010), transfer function approximation (Van Mourik, 2008), 
regularization methods (Hastie et al., 2009), and likelihood approximation 
(Van Mourik et al., 2014).

5.2.5. Summary
Digital twins provide a promising extension to decision support for opera-
tional management of greenhouses, by combining high-resolution models 
with real-time data streams and algorithms for estimation and control. We 
argue that a high-resolution control system in silico offers the opportunity to 
provide answers to fundamental research questions that are of immediate 
interest to the greenhouse industry. However, the complexity of a high- 
resolution model introduces several serious challenges, that prohibit straight-
forward application of estimation and control algorithms required for auto-
mated decision support. To balance model complexity with respect to 
feasibility and resolution, we recommend to further explore emulation, AI- 
based optimization, and model approximation.

5.3. Case Me, My diet and I

5.3.1. Background
The world-wide increase in development of chronic diseases and the 
parallel rise in healthcare cost urgently calls for development of persona-
lized smart healthcare tools to improve personal health and to reduce the 
pressure on the healthcare system. Many cases of chronic disease, such as 
type 2 Diabetes Mellitus and cardiovascular disease, are related to life-
style. An effective way to prevent and improve these diseases is via 
dietary interventions. Dietary interventions and responses, however, are 
not equally effective for everyone (Berry et al., 2020; De Caterina et al.,  
2020; O’Connor et al., 2014). Although nutritionists have long been aware 
that what works for one person may not work for another, nutritional 
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advice is still given at a population-level via general nutritional guidelines 
reliant on the group mean (one-size-fits-all). To improve the effectiveness 
of dietary intervention there is an urgent need for more tailored precision- 
based personalized dietary advice. However, knowledge as well as tech-
nology on tailored precision-based dietary interventions is lacking.

Recent studies using continuous glucose monitoring have demonstrated 
significant individual differences in short-term post-meal responses. This pro-
vides a better understanding of individual differences in long-term dietary 
intervention responses. High variability and sometimes even opposite glucose 
(sugar) responses between subjects to the same foods were found (Zeevi et al.,  
2015). In that study, based on continuous glucose monitoring of 800 persons, 
an algorithm for predicting the personal post-meal glucose response to foods 
was developed, based on individual characteristics including the microbiome.

Post-meal lipid responses play a similarly important role in the devel-
opment of metabolic diseases as post-meal glucose responses. A high 
postprandial lipid response is associated with an increased risk for devel-
opment of cardiovascular diseases. From several studies performed so far, 
we know that people respond with a different blood triglyceride (fat) 
response to the same meal. The PREDICT study (Mazidi et al., 2021) has 
shown variations in postprandial glucose and triglyceride responses in 
1000 subjects, including (real) twins, and revealed main factors associated 
with the variation in these responses. Effects of food intake have exten-
sively been investigated (Bonham et al., 2019; Lee et al., 2020).

The flagship project “Me, My Diet and I” develops a digital twin for 
personalized dietary advice. This advice aims to reduce long-term perso-
nal post-meal triglyceride and glucose responses in a healthy overweight 
middle-age population. In particular, the aim is to reduce the amplitudes 
of the fluctuations to remain within healthy bounds, by enabling users to 
adapt their pattern, composition, and quantities of food intake for this 
purpose. For such a twin to be effective, the digital twin should be able to 
a) predict the personal postprandial triglyceride response and b) predict 
the best diet to reduce this triglyceride response on the long run. Both 
predictions will preferably be based on easily measured personal charac-
teristics such as BMI, age, fat distribution, cardiometabolic blood markers, 
physical activity, and dietary intake.

5.3.2. Methods
In this case study, we adopted a development approach, addressing the 
various components required to provide personalized dietary advice. We 
included first results of a compliance study given the particular challenges 
related to personal health information.
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5.3.3. Development approach
This digital twin is a representation of an individual with relevant personal 
traits to predict the postprandial triglyceride response, and to provide perso-
nalized dietary advice to reduce this postprandial response in the long run. 
Compliance to the advice is essential for the effectiveness of the twin, and this 
has shown to be dependent on personal characteristics (Dijksterhuis et al.,  
2021). We include therefore personal information such as behaviour, prefer-
ences, and values in the twin to be able to adapt the advice to individual 
preferences. The effectiveness of personalized advice requires sufficient infor-
mation. It has been shown (Celis-Morales et al., 2015) that using a limited set 
of genotypes and blood biomarkers does not result in more compliance to 
dietary advice. We expect benefits from our approach based on a digital twin 
because of the integration of all relevant data into a digital twin, so that 
effective personalized advice can be given.

The simulation capabilities of the twin will be used to predict the effect of 
changes in diet on the long run. This can only be done with existing or new 
data of long-term dietary intervention studies that include triglyceride and 
glucose responses upon a postprandial test before and after the intervention. 
In principle, this can be accomplished with computational modelling, based 
on existing knowledge on triglyceride and glucose uptake and clearance. 
Examples of this are computational models such as physiology-based math-
ematical models (PBMMs) that capture mathematical representations of key 
metabolic processes (Erdős et al., 2021). Additionally, data driven approaches 
can be used: several methods (e.g. random forest or gradient boosting) could 
be used to build prediction models based on available input data. Predictions 
from the mechanistic model could be used as part of input to an incremental 
learning algorithm that adapts the output to the specific person. The com-
plexity of the learning algorithm will be limited by the amount of data 
gathered for that person. We envision a phased development to investigate 
a combination of both approaches.

The building of a rudimentary version of the twin is the first phase in our 
approach. Once this twin is in place, it can be applied, validated, and con-
sequentially optimized, which constitutes the second phase in our approach. 
For this phase, regular real-time data collection is crucial and although 
continuous triglyceride monitoring sensors are not yet available, other mea-
sures such as continuous glucose monitoring, physical activity and regular 
dietary intake using a dietary tracking app will be part of the twin. To monitor 
long-term effectiveness of the personalized dietary advice on postprandial 
triglycerides responses finger prick and measurements of triglycerides in dry 
blood spots may be used. We envision self-learning methods with this 
information to optimize the personalized dietary advice. The actionable 
knowledge of our twin is the personalized dietary advice based on phenotype 
of a person, which cannot be obtained without the twin.
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The advantage of a digital twin instead is that the advice is generated and 
given in an automatic way without interference of a health professional such 
as a dietician. This eliminates barriers people may experience before contact-
ing health professionals. This does not imply that it cannot be used by health 
professionals; it gives healthcare providers a unique look into their clients’ 
personal metabolic situation which helps to further personalize their therapy. 
This also illustrates the need for and importance of knowledge input and 
expertise of experts such as dieticians and behaviour and communication 
professionals in the digital twin to prevent undesired, not compliable, and 
unhealthy personalized dietary advice.

5.3.4. Compliance survey
It is of fundamental importance for our approach that users accept and adopt 
personalized advice. To identify users’ views on benefits and risks of following 
advice from a digital twin, we performed small-scale explorative interviews. 
Here, we share the preliminary qualitative results of this brief study for 
illustrative purposes and to indicate directions for further research. This will 
be necessary to establish more quantitative results and so further guide the 
development of the digital twin.

The interviews indicated that physical and mental barriers may play an 
important role in a user’s decision on following the advice. Some people 
experience measuring and collecting personal biological data as a physical 
burden (e.g. wearing a continuous glucose metre). In addition, there is fear of 
finding unintentional health outcomes due to the required measurements 
(medical by-catches). For some people, the decision to follow this advice 
depends on the type of organization managing the advice: a private (com-
mercially motivated) or public (societally motivated) actor.

In general, we found that people stress the need to have control on 
stakeholders – GP, dietician, health insurer, scientific researcher, employer, 
supermarket, etc. – that may have access to the personal information used for 
the advice. We found a dividing line for access of the information between on 
the one hand healthcare professionals (dieticians, doctors) and scientists 
(publicly funded researchers), and on the other hand private parties such as 
employers, insurers, supermarkets, food manufacturers, where the first group 
is more easily granted access than the second. In our interpretation, the first 
group apparently more easily inspires trust than the second group. Legal 
requirements and limitations, such as formulated in the EU’s General Data 
Protection Regulation (GDPR), already provide guarantees that prevent mis-
use of personal information. Our findings at least support the public need for 
such guarantees in developing personalized dietary advice. At the same time, 
such regulations pose strict requirements on the development of such advice.

Furthermore, we found that most respondents insist that this advice 
should not be obligatory by the government or any (insurance) company. 
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A strong advice from a GP would on the other hand positively influence 
several respondents to follow the advice. Finally, and rather evidently, we 
found that the provided personalized dietary advice must be correct, reliable, 
and effective to be followed over longer periods of time.

5.3.5. Summary
We have described the rationale behind personalized dietary advice and the 
advantages expected from adopting digital twins for composing such advice. 
We have outlined several steps to realize this type of digital twin. Based on 
a small explorative study, we have indicated several nontechnical aspects that 
require attention for a successful launch of personal dietary advice based on 
digital twins. Our research continues to further develop this promising concept.

6. Conclusion

We investigated the potential benefits and challenges of digital twins for 
quantitative research on complex living systems in the green life sciences. 
Specifically, we compared the use of digital twins as alternative representations 
to simulation models, automatic control systems and forms of scientific advice:

The Digital Future Farm use case illustrates the potential for improved 
accuracy in predicting yield and growth of potatoes compared to traditional 
individual simulation models. The choice of inputs, acquisition frequencies 
and measurement accuracies as well as additional data sources influence this 
improvement in accuracy and requires further research. Filtering algorithms 
to obtain consistent temporal input given the occurrence of measurement 
inaccuracies are essential. The technological readiness for this use case is 
demonstrated by connecting to real-time hydrological, meteorological, and 
crop information data sources. It is precisely this connection to real-time data 
of digital twins that improves the utility of actionable knowledge over simu-
lation models.

The Virtual Tomato Crop use case shows how digital twins can extend the 
capabilities of decision support for operational greenhouse management by 
considering individual plant characteristics and behaviour to provide detailed 
actionable knowledge. Integrating digital twins in greenhouse control pro-
vides additional benefits by providing more extensive information on tem-
poral behaviour of greenhouse crops. We distinguish three types of decision 
support, with different requirements: state estimation for monitoring control, 
state updating for predictive control, and automatic calculation of control 
scenarios for decision support. Remaining research questions are how to 
determine and select data sources for information on plants and greenhouse 
climate, and what level of detail should be chosen for simulations and user 
interaction. We propose an emulation approach with a simplified model in to 
answer these questions.
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Finally, the use case Me, My Diet and I illustrate how digital twins can 
increase the impact of professional advice, specifically personalized advice to 
keep postprandial lipid responses within healthy bounds. The use of digital 
twins only improves impact if the advice is sufficiently reliable and accurate 
for individuals, which requires extensive personal information. Obtaining this 
is challenging, for technical reasons as well as legal and social limitations. 
Compliance to the advice is an equally important factor determining impact. 
With an exploratory survey we identify, factors for compliance relevant for 
further research, such as personal convictions of users, stakeholders having 
access to personal information, and context of the advice.

The combined and summarized findings of the three case studies are 
shown in Table 1. Further research topics broadly fall into four directions, 
three of which are indicated in the Table

The first considers availability, accuracy, and frequency of sensor data on 
the input side of digital twins. This was most challenging for the Digital Future 
Farm, due to its particular approach (providing real-time sensor data to 
simulation models), but is similarly applicable to other cases. This direction 
of research is of fundamental importance for the development of digital 
twins, as the quality of their produced actionable knowledge is directly 
dependendt on fulfilling input requirements.

The second considers (temporary or permanent) emulations for the simu-
lation part of digital twins. Given the integration of the digital twin in control 
systems, this was met most strongly in the case of the Virtual Tomato Crop, 
but is also relevant in other cases. This direction of research provides inter-
esting opportunities for combining data-driven methods with process-based 
modelling in the search of computational efficiency, which may be required 
to obtain digital twins responses within practical time frames.

The third considers the reception of and compliance with the advice as 
provided by digital twins. Evidently, this followed from the investigations in 

Table 1. Summarized findings of the three case studies.
Case Main benefits Practical challenges Further research

Digital Future Farm Improved prediction 
accuracy by in real- 
time observed state 
updates

Real-time data 
connection, 
assimilation of 
observed and 
simulated data

Measurement 
quantities, 
frequencies, and 
accuracies, 
prediction horizons

Virtual Tomato Crop More detailed 
actionable 
knowledge from 
more complete 
observational data

Input data selection, 
assimilation of 
observed data with 
control state 
information

Iterative emulation 
approach with 
additional AI-based 
optimizations

Me, My Diet & I Increased impact of 
dietary advice for 
improved individual 
health

Availability of real-time 
personal data on 
health and behaviour

Receptiveness and 
compliance to 
personalized advice
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case of Me, My Diet, but applies to other cases as well. Although each particular 
digital twin may require a specific approach for investigating reception and 
compliance, ultimately, its societal benefit will largely depend on it. Therefore, 
we see this as equally fundamental as the other two directions of future research.

It has recently been noted in an engineering context that an overabundance 
of data may well lead to efficiency bottlenecks (Savage, 2022). The author 
further remarks that data do not come for free, implying that even if there are 
no limits of principle to increase the number of sensors providing more 
detailed information to digital twins, there are practical limits to this number, 
such as budget limitations. In the green life sciences, we also recognize the 
fundamental importance of accuracy and availability of data for digital twins 
but expect a lack of data rather than overabundance. For instance, manual 
registrations (of operations on farms and greenhouses) and privacy considera-
tions (for personal medical details) may even require alternative approaches to 
compensate for non-available information. This can also be seen reflected in 
Table 1, where availability of data is a recurring practical challenge. At the same 
time, due to the complex behaviour of living objects and processes, we expect 
that data requirements in this domain will exceed those in engineering 
domains, for example, as discussed for the use case Me, My Diet and I which 
requires extensive data driven modelling to obtain sufficiently accurate simula-
tions. We consider finding solutions for the relative scarcity of data in the green 
life sciences as the fourth direction of future research.

Given the main benefits, practical challenges, and further research listed in 
Table 1, it seems too early to draw conclusions regarding the societal rele-
vance of digital twins. We expect digital twins to become an increasingly 
pervasive tool in the green life sciences. In each of the cases, we investigated, 
a fully operational digital twin will have consequences – on farming, green-
house management, and the provision of dietary advice. It is important to 
have an agenda for responsible research and innovation regarding these 
consequences (Van der Burg et al., 2021).

In conclusion, we find promising benefits of digital twins in the domain of 
green life sciences. We illustrate this in three use cases, but obviously many 
similar use cases can be developed, in animal, environmental, food, plant, and 
social sciences. We expect that further research will include data driven 
modelling to simulate the complex character of living objects and processes 
and to develop approaches to limit the amount of required input data.
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