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Methods for accurately estimating within-field yield are essential to improve site-specific crop management and
resource use efficiencies, which would be a major step toward sustainable intensification of agricultural systems.
We set out to assess the accuracy of within-field soybean yields predicted by two data assimilation methods and
to assess these methods’ assimilation efficiency (AE). Yields were estimated by assimilating remotely sensed leaf
area index (LAI) data from Sentinel-2 into a soybean crop growth model on a pixel basis. The LAI data was
integrated into the model by Ensemble Kalman Filtering (EnKF) or by recalibrating with the Subplex algorithm
(recalibration-based). An open-loop setting which only integrates information on the soil layers was used as a
baseline scenario for quantifying the AE. We assessed both data assimilation techniques on eight fields (3067
pixels) in the Corn Belt region (Nebraska, Kansas and Kentucky) in the United States. The data set encompassed
substantial variation in crop growth conditions: three growing seasons (2018, 2019 and 2020), rainfed and
irrigated fields, and early and late planting dates. Ground truth yield acquired from combine monitors was used
to validate the yield estimations. Agreement between predicted and observed yield at pixel level was two times
higher for both data assimilation methods compared to the open-loop. The root mean square error (RMSE) was
476 kg.ha’1 (RRMSE of 10 %) in the recalibration-based method and 573 kg.ha’1 (RRMSE of 12 %) in the EnKF-
based method. For both data assimilation methods, assimilating the LAI improved predictions for 68 % of the
pixels. For a further 12 % of pixels, there was no accuracy improvement. For the remaining 20 %, AE was positive
for one of the two assimilation methods. The high proportion of pixels with positive AE indicates the potential for
overcoming the limitations in applying crop models at high spatial resolution by integrating a crop growth in-
dicator. Assimilating an in-season indicator of crop growth (LAI) into a soybean model made it possible to adjust
the simulation pathway, thereby greatly improving the accuracy of the yield estimations at the pixel level. This
study elucidates the practical applications of data assimilation strategies for fine-scale within-field crop yield
mapping.

1. Introduction

Spatially explicit crop yield data provides valuable information for
decision-makers in various sectors, such as farmers, processors, crop
insurance companies, and food trading agencies (Deines et al., 2021).
Crop yield data is essential for site-specific crop management to improve
resource use efficiencies toward sustainable intensification of agricul-
tural systems (Ittersum et al., 2013; Lobell, 2013; Maestrini and Basso,

2018). Yield information is publicly available for various administrative
levels, such as provinces, states, and countries, but yield information at
the individual field level is rarely available to researchers (Sykuta,
2016). Aggregated yield information is too coarse to reveal the
within-field yield heterogeneity that needs to be known for site-specific
management (Lobell, 2013). Although it used to be difficult and costly to
collect high-resolution yield data, yield monitoring technology has
made it feasible to measure fine-scale yield variability. However,
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because of concerns about privacy, yield maps are rarely publicly
available for research (Deines et al., 2021; Sykuta, 2016). Moreover,
sophisticated yield monitoring technology is not yet universally used,
and farmers typically invest little effort in collecting high quality yield
data. For these reasons, developing robust methods for within-field yield
estimation for large-scale applications remains a challenging task for
agricultural research.

Crop models are valuable because they describe the interaction be-
tween crop traits, management, growth, and environmental factors.
They have the potential to improve crop management because they can
take account of the effect of management decisions taken weeks or
months earlier. Moreover, models estimate important crop variables
(vield, total biomass, canopy N content, etc.) that are otherwise difficult
to assess, and they can evaluate the impact of agro-management de-
cisions and weather conditions on these variables. However, using crop
models at high spatial resolution to estimate within-field yield vari-
ability remains challenging (Deines et al., 2021; Hunt et al., 2019; Kayad
et al.,, 2019; Novelli and Vuolo, 2019) because of the lack of
high-resolution input data (i.e., soil parameters) required to run a crop
model (Kasampalis et al., 2018) and models’ limited ability to simulate
the impact of yield-reducing factors (weeds, pests, disease, etc.) that are
often present in farmers’ fields. Biophysical crop variables derived from
remote sensing provide spatial information on crop growth conditions
which could overcome this challenge (Dorigo et al., 2007). In recent
decades, a growing number of studies have investigated whether and
how the incorporation of remotely sensed data into crop models can
provide spatially explicit yield estimates (De Wit et al., 2012; Huang
etal., 2019; Ines et al., 2013; Jin et al., 2018; Kang and Ozdog;m, 2019).

Leaf area index (LAI) is commonly used to link remote sensing and
crop models as it has a clear connection with the crop model processes
and directly affects simulated crop growth. Two types of approach have
been used to link remote sensing observations with crop models: vari-
ational and sequential. Variational methods attempt to fit model simu-
lations to the observations by optimizing uncertain model parameters or
initial condition. Sequential methods directly modify the state variables
of the model based on the uncertainties relating to weighting the
observed values and to the model simulations. The assumption under-
lying this method is that updating the model with observations at a
certain moment in time will nudge the model toward the correct simu-
lation pathway, and consequently will result in better simulations.

The increasing accessibility of high-resolution remote sensing prod-
ucts has enabled observations of biophysical variables to be integrated
into crop models to produce fine-scale yield maps (Gaso et al., 2019,
2021). However, due to the lack of spatially explicit ground truth data,
model estimation of within-field yield variability has often been vali-
dated by aggregating fine-grained estimations to the field level for which
yield data was available (Kang and Ozd()gzln, 2019; Sibley et al., 2014;
Silvestro et al., 2017). When high-resolution yield maps are aggregated
to field level, the yield estimates are usually more accurate than the pixel
level assessments, as local errors partly cancel out (Deines et al., 2021;
Peng et al., 2021). Therefore, reliable evaluation of the ability of data
assimilation techniques to improve model estimation of within-field
yield heterogeneity requires fine-scale (pixel-based) assessments.

Another shortcoming in addition to the lack of reliable validation of
simulated within-field yield variability is that only a few crops have
been tested. Wheat and corn have mostly been used in studies for within-
field yield estimation (Huang et al., 2019); limited work has been done
for soybean. A recent study successfully applied the integration of LAI
derived from Sentinel-2 into a soybean model for predicting within-field
yield through a variational method (Gaso et al., 2021). That study
highlighted that uncertainty in LAI simulations caused by the assimilate
partitioning logic in the model adversely affected the accuracy of yield
estimations. It was concluded that a sequential method that directly
updates LAI from the remote sensing-based estimates could adjust LAI
more efficiently and offer an alternative to reduce LAI uncertainty, in
order to be able to more accurately predict within-field soybean yield.
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The study described here had two main objectives. The first was to
assess the accuracy of predicting within-field soybean yield variability
for several fields of soybean in the Corn Belt of the central US and to do
so using Ensemble Kalman Filtering (EnKF) and a recalibration tech-
nique through the Subplex algorithm to assimilate remote sensing-based
LAI into the soybean growth model as presented in Gaso et al. (2021).
The second objective was to quantify the assimilation efficiency (AE) by
comparing the accuracy of both data assimilation methods against the
open-loop set-up. By so doing, we would provide insight into the effi-
ciency and reduction of errors that can result from assimilating
Sentinel-2 derived LAI observations into a soybean crop growth model.
We also wanted to assess the efficiency of using either a sequential or
variational approach.

2. Materials and methods
2.1. Study sites and yield information

This study involved eight soybean fields (total area 276 ha, 3067
pixels) located in the Corn Belt region (Nebraska, Kansas and Kentucky)
in the United States. Field size ranged between 16 ha and 85 ha. Six
fields were rainfed, the other two were irrigated (Table 1). All fields
were planted with genetically modified soybean varieties which had
crop cycle lengths ranging from maturity group (MG) III to IV. Fields
were managed according to optimal agronomic practices for the region,
to minimize the influence of biotic stresses (weeds, insects, and diseases)
and nutrient availability. The planting dates were within the optimal
window for the region and ranged from the end of April to the beginning
of June. In all fields, rows were 0.7 m apart.

Yield data was collected using a yield monitoring system mounted on
harvesting machines. The harvesting machines used varied, so a
correction was applied by removing outliers on the basis of their fre-
quency and on the basis of the minimum and maximum biological yield
limits (Sun et al., 2013). We calculated yield from the grain flow,
harvester width, and the distance and time between consecutive
geo-referenced points. We then averaged the geo-referenced points
within each 30 x 30 m pixel. The number of geo-referenced points
within each pixel ranged from 45 to 92, depending on the type of
combine harvester.

2.2. Crop growth model

We used the soybean crop growth model presented in Gaso et al.
(2021) as the starting point. This model applies the water use efficiency
concept driven by crop transpiration and uses elements from existing

Table 1
Location of the study fields and soybean management.
Field  Geographic Size Growing  Planting  Maturity  Irrigation
coordinates of
field center
(ha) season date Group (mm)

1 41.029° N, 85 2020 Apr 20 3.5 210
97.292° W

2 41.013° N, 19 2020 Apr 20 3.5 210
97.278° W

3 40.119° N, 21 2020 May 11 3 0
95.542° W

4 39.975° N, 33 2020 Apr 23 3 0
95.525° W

5 40.982° N, 42 2020 May 6 3 0
96.438° W

6 40.012° N, 22 2019 Apr 25 4 0
95.478° W

7 37.434° N, 38 2018 Jun 9 4.5 0
87.428° W

8 37.443° N, 16 2018 May 26 4.5 0
87.438° W
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models to describe the growth and development of soybean. The model
has been found to perform well when describing soybean growth and
yield under water-limiting conditions (Gaso et al., 2021). It requires
specification of a limited number of parameters, which makes it
attractive for data assimilation in large-area applications where infor-
mation on crop management and genotype parametrization is insuffi-
ciently detailed.

We modified several important functions of the model, using the
available information on soybean in the study area. Using information
on soybean root growth velocity in the study area (Ordonez et al., 2018),
we modified the equation that described root growth to better represent
soybean root exploration under the environmental conditions of the
Corn Belt. To assess total root growth, we applied equal weights to
in-row and central-row root elongation as obtained from the Ordonez
et al. (2018) equations. The root growth was set to cease at 828 °C days
for the in-row position and slightly later for the central-row position
(909 °C d), based on the information provided by Ordonez et al. (2018).

Soybean was planted in rows 0.7 m apart, which produces a so-called
“clumped canopy” early in the season. This clumped canopy has a large
impact on both light interception and transpiration. Canopy light
interception in the original model is simulated by the standard Beer’s
law equation, which produces overestimations in the heterogeneous
canopy. We therefore decided to introduce a clumping factor to deal
with this heterogeneous canopy early in the season. This factor plays a
role when LAI is below four by reducing the light interception. For
further details on the implementation of those modifications and on the
parameter values used for the study region, see (https://github.com/dga
so/Soybean_CornBelt).

2.3. Spatial input data

Daily weather data required by the model was retrieved from two
sources: Daily Surface Weather Data (DAYMET) on a 1 km grid for North
America (Thornton et al., 2020) and NASA Prediction of Worldwide
Energy Resources (NASA-POWER). DAYMET provides gridded estimates
of daily weather with higher resolution (1 km grid) than NASA-POWER
(grid of 0.5° x 0.5° latitude and longitude). We downloaded weather
data for the central point of each field. The minimum and maximum
temperatures, vapor pressure, global solar radiation, and precipitation
were acquired from DAYMET, the windspeed was obtained from
NASA-POWER. In the case of irrigated fields, the amount of water
applied at each irrigation event was added to the precipitation variable.

Soil hydraulic properties were derived from the 30-meter probabi-
listic soil series map of the contiguous United States (Chaney et al.,
2016), hereafter referred to as POLARIS. POLARIS is an innovative
database that provides fine-scale soil information; the data is freely
available to be downloaded in tiles of 1° x 1° latitude and longitude. For
each field, we downloaded the median values of sand, clay, and organic
matter for each soil layer. The information on these layers was then used
to compute field capacity and wilting point following the pedotransfer
functions presented by Saxton and Rawls (2006). Since hydraulic
properties were considered homogeneous throughout the soil profile, to
obtain a unique wilting point and field capacity for the entire soil profile
we computed an average weighted with the layer thickness.

2.4. Remote sensing data

All cloudless images from the two Sentinel-2 satellites (2A and 2B)
Level 2A were used to compute the red edge chlorophyll index (Cl;eq
edge)- The Clred edge Was chosen because it is advantageous for LAI esti-
mation as it does not saturate at high-density canopies (Gitelson et al.,
2003). Using the publicly available Google Earth Engine (GEE) data
archive, we retrieved Clreq edge for the entire growing season of soybean
in the Corn Belt (end of April to the beginning of October). Level 2 A
information was not available for fields 7 and 8 (growing season 2018),
so images were downloaded with the Sentinelsat API and the
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atmospheric corrections were carried out with the sen2cor tool. The
Clred edge Was computed for the time series of Sentinel-2 images using
NIR band (Band7 in Sentinel-2, centered at 782 nm) and red edge band
(Bands5 in Sentinel-2, centered at 704 nm)(Eq. 1). These spectral bands
of Sentinel-2 are equivalent to the spectral ranges used in the study of
Nguy-Robertson et al. (2012) (red edge: 703.8-713 nm and NIR:
771.3-786.3 nm).

Clred edge = (Band7 in Sentinel-2 / Band5 in Sentinel-2) —1 (@D)]

The number of cloudless images varies, depending on the field, as
can be seen in Fig. 1. The Clieq edge calculation and the downloading for
the region of interest were done with the geemap package within the
Python environment. The Clred eqge Was resampled to the spatial reso-
lution of the digital soil map from POLARIS (30 m). Using the GDAL-
Warp function from the GDAL library we resampled with the average
method. The satellite-based estimates of LAI were derived from the Cl;eq
edge through a unified algorithm for soybean and maize (Nguy-Robertson
et al.,, 2012). The algorithm used was developed on a system under
maize—soybean rotation in Nebraska. Fig. 1 provides an overview of the
number of Sentinel-2 images available throughout the soybean growing
season. Green and red represent the average LAI for the pixels; the 10%
highest and lowest yield whiskers indicate the range of LAI variability
within these zones. The results reveal that in most fields, the lower yield
zones have a lower average LAIL. However, in many fields the difference
is very small and the whiskers often overlap. Higher standard deviations
in the lowest yielding zones indicate that in these pixels the crop growth
was more heterogeneous. More importantly, the differences in the
maximum LAI for each field indicate that the environmental conditions
for crop growth varied greatly between fields.

2.5. Data assimilation methods

The two assimilation techniques we assessed in this study were a
sequential method and a variational method. Both have been amply used
to integrate an observed quantity of a state variable into a crop model
(Jin et al., 2018). We compared the assimilation techniques against a
baseline scenario, defined as the open-loop set-up. For the variational
method, we used a recalibration procedure that calibrates uncertain
model parameters by means of the Subplex algorithm (Rowan, 1990).
We hereafter refer to this method as recalibration-based. In the case of
the sequential method, we implemented the EnKF, which is widely used
(Evensen, 1992) to sequentially update state variables of a system when
a new observation becomes available. We hereafter refer to this method
as EnKF-based. Both methods were implemented within the Python Crop
Simulation Environment (PCSE); the biophysical variable assimilated in
the crop growth model was LAI.

The EnKF estimates the state of a system as the weighted average of
the simulated state and the observed state, using weights derived from
the uncertainties in the model and observations and expressing them
through the Kalman gain. Uncertainties in the LAI observations were
modeled in accordance with the error of the algorithm employed to
predict LAL This algorithm estimates the green LAI as a function of Cl;eq
edge With a root mean square error (RMSE) of 0.54 mz.mz, where
maximum green LAI values are around 5.5 m2.m? (Nguy-Robertson
et al., 2012). Since the error in LAI estimates obtained from Clyeq edge
increases with LAIL, we decided to define the uncertainty in the obser-
vations as a proportion of the predicted LAI. We assumed the errors in
LAI predictions to be non-systematic, and so the RMSE reported by
Nguy-Robertson et al. (2012) was converted into a 10 % relative stan-
dard deviation. The leaf biomass state variable was also updated by the
same proportion as the change in LAI, as both state variables are directly
connected in the crop growth model through the specific leaf area (SLA).
We decided to include the variables seed biomass and stem biomass,
which are associated with LAI in the state vector. This meant that the
total aboveground production would then be updated as the sum of
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Fig. 1. Leaf area index (LAI) trajectory of the lowest and highest yielding zones of the fields as presented in Table 1: green dots indicate the 10% of pixels with the
highest observed yield; red dots indicate the 10% pixels with the lowest observed yield. The number of available LAI values depends on availability of Sentinel-2
images. Error bars show the standard deviation of the LAI for each category of observed yield.

changes in leaf, stem, and seed biomass.

Our decisions on which parameters represent the uncertain part of
the system were based on a sensitivity analysis performed with a
variance-based method which assesses the response of the model output
to the variations in the parameters. We used LAI as the target variable to
assess model responses. The total variance in LAI was decomposed into
fractions that can be attributed to a set of selected parameters. Four
parameters were defined as the most uncertain part of the model
(Table 2). These four parameters were modeled by Gaussian random
variables with a mean equal to the default value and a standard devia-
tion that is unraveled based on plausible values for each parameter.
Table 2 specifies the mean and standard deviation for each uncertain
parameter of the model. The parameter distribution, defined by the
mean and standard deviation, is then used to draw a random value.
Samples of uncertain observed LAI were also drawn from a Gaussian
distribution centered on the LAI predicted from Clyeq edge With a 10 %
standard deviation. A schematic overview of the methodology can be
found in Curnel et al. (2011).

The number of ensemble members of the EnKF was set to 100, which
has been reported as a good compromise between the minimization of
the random component of the EnKF and the computational cost of the
algorithm (Burgers et al., 1998). Since each pixel was considered as an
independent observation, parallel processing is an obvious means to
reduce the computational time. For this purpose, we used the multi-
processing package in Python.

The second data assimilation scheme was a recalibration method.

Table 2

Selected uncertain model parameters and their mean and standard deviation
values chosen as inputs for the EnKF, and the lower and upper bounds set for
recalibration.

D Description Unit Upper Lower Mean SD
bound bound

LAlinit Initial leaf area m? 0.34 0.1 0.22 0.04
index m?

WUE Water use mbar 0.03 0.05 0.04 0.003
efficiency

FNTR Nitrogen % 50 25 33 5.5
translocated

RDMAX  Maximum root m 1.5 0.9 1.2 0.1
depth

This method performs the analysis through the minimization of a cost
function, which implies that uncertain model parameters must be
recalibrated. For the recalibration, we used the Subplex procedure
equivalent to the framework described in Gaso et al. (2021) through the
NLOpt library. Our cost function concerned the RMSE of LAI For further
details of the recalibration with the Subplex algorithm, see Steven
(2020). The uncertain model parameters chosen for recalibration are
listed in Table 2. The implementation of the Subplex algorithm in NLOpt
explicitly supports bound constraints. We used plausible values for the
upper and lower bounds of the parameter chosen for recalibration. See
Table 2. As the same set of uncertain parameters is considered in both
data assimilation methods, the methods can be compared on the same
basis. The open-loop runs used the mean value of each uncertain
parameter (Table 2), which corresponds to the default value.

2.6. Assimilation efficiency assessment

We first evaluated the accuracy of the yield estimates from the two
assimilation methods and compared this to an open-loop approach by
standard error metrics, including the mean error (ME), RMSE, and
relative RMSE (RRMSE). We then assessed the added value of both
assimilation techniques by means of the assimilation efficiency index
(AE, Curnel et al. (2011). The AE was computed from the relative ab-
solute error values estimated for the situation with (RAEp,s, Eq. 2) and
without assimilation (RAEgr, Eq. 3), as is formulated in Eq. 4. The
relative absolute error (RAE) with assimilation uses simulations from
EnKF-based or recalibration-based assimilation techniques (Eq. 2),
while RAE without assimilation uses simulations from the open-loop
situation (Eq. 3). The AE and RAE were computed for each pair of
observed and simulated yield values, as is indicated with subscript j in
Egs. 2, 3, and 4.

Yonsiir— Yoac:
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where RAEp,(j) and RAEp.(j) represent the relative absolute error with
and without assimilation, respectively, for the interaction (pixel) j.
Yobs(j) is the observed yield, Yo.(j) is estimated yield with open-loop
settings in the pixel j, Ypa(j) is estimated yield with data assimilation
(EnKF-based or recalibration-based) in the pixel j, and AE(j) is assimi-
lation efficiency index in the pixel j. For the EnKF-based method, the
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estimated yield is the mean of the ensemble yields.

For each of the study fields, we then computed the mean AE by using
the Winsorized mean (Dixon and Yuen, 1974) of the total AE of the field.
The Winsorized mean limits the effect of outliers, as it is the arithmetic
mean after replacing the smallest and largest values. This method was
chosen to avoid spurious outliers in the estimation of AE which could
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lead to unrealistic estimation of the mean AE values. The Winsorized
mean was calculated with the Winsorize function from the Scipy library.
The limits were set to the 0.1 and 0.9 quantiles.

3. Results

3.1. Evaluation of the yield estimates with the EnKF-based and
recalibration-based techniques

Our dataset of ground yield observations comprised a diversity of
environments as a result of combinations of weather, soil, crop, and
management. The open-loop simulations (scenario without assimila-
tion) captured the yield potential of the environment and ranged from
~4000 kg.ha™! to ~ 6000 kg.ha™? (Fig. 2). The effect of a late planting
date on the crop yield is apparent from the lower yields for fields 7 and 8
as predicted by the soybean model (Fig. 2). Model overestimations with
the open-loop simulations were consistent: the ME ranged from 513 to
1240 kg.ha™! in seven of the eight fields. The exception was field 5,
where ME was — 326 kg.ha™L.

Fig. 2 shows a persistent disagreement between observed yields and
those obtained by the open-loop simulations that only take account of
the soil data. The spatial yield variability was insufficiently represented
by the open-loop simulations, as the within-field variability in the soil
hydrological parameter values derived from POLARIS (see Figs. S1 to
S8) do not match the spatial variability in crop yields. Across all fields
except field 5, the open-loop runs presented a narrow range of vari-
ability, inconsistent with the within-field observed yields (Figs. 2 and 3).
The overall ME, RMSE, and RRMSE of the simulated yields in the open-
loop simulations were 704 kg.ha’l, 901 kg.ha’l, and 19 %,
respectively.

a) EnKF-based
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The EnKF-based and recalibration-based LAI data assimilations were
able to reduce the RRMSE of predicted yields at pixel level for most
fields, with one exception: the EnKF-based predictions in field 7 (Fig. 2).
Across all datasets, the overall ME, RMSE, and RRMSE of the simulated
yield in the EnKF-based assimilation method were — 213 kg.ha™,
573 kg.ha !, and 12 %, respectively. The recalibration-based assimila-
tion method performed slightly better, with overall ME = —63 kg.ha™!,
RMSE = 476 kg.ha™!, and RRMSE =10 %. The data assimilation
methods performed less accurately in fields 6, 7, and 8, where due to the
lack of cloud-free images less information was available for assessing the
dynamics of crop senescence (fields 6, 7, and 8 in Fig. 1).

Fig. 3 shows the simulated yield maps for field 1 (one of the irrigated
fields). The potential yield obtained using the open-loop method was
substantially higher than the observed yield. The simulated yield maps
generated by both assimilation methods (Fig. 3a and b) partly repro-
duced the yield variation within the central pivot irrigated field, as can
be seen by comparing the patterns of dark blue (low yields) and yellow
(high yields) pixels in maps a and b with the observed yields in map d.
The assimilation of LAI amplified the yield variation within the pivot.

3.2. Assimilation efficiency assessment

The AE index is an estimate of the average amount by which errors in
estimated yield have been reduced. A positive AE indicates that the
assimilation method enables improvement in yield estimates, while a
negative value means that the errors in the estimated yield are higher
than the situation without assimilation (open-loop simulations). In all
but two cases, the mean AE value was positive across the study fields.
The exceptions were for the EnKF-based method in fields 5 and 7
(Fig. 4b). In field 5, open-loop simulations mostly overlap with the

b) Recalibration-based
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simulations from LAI assimilation, which lead to extreme values for AE.
It should be noted from the AE formulation that when RAEp, and RAEqy,
are low (as in field 5), AE index becomes extremely low or high, and
consequently, the standard deviation is higher than in other fields
(Fig. 4a and b). For 67 % of the pixels in field 7, the RAEg;, (denominator
in Eq. 4) is lower than RAEp, in the EnKF-based assimilation, resulting
in an extremely low average AE value for this field: — 393 %.

Assimilating LAI data resulted in an appreciable improvement in the
accuracy of yield estimations: in six of the eight fields, the average AE
exceeded 20 % (Fig. 4a and b). Overall, 68 % of the points (2071 pixels)
had positive AE value in both data assimilation methods (Fig. 4c), while
only 12 % of the points (362 pixels) had negative AE in both data
assimilation methods. In the remaining 20% of the points, AE was only
positive in one of the assimilation methods: see Fig. 4c.

4. Discussion

Using the recalibration-based and EnKF-based methods to assimilate
LAI into a soybean growth model we were able to estimate within-field
spatial variability in soybean yield with an average error of — 63 kg.
ha=! (SD 547 kg.ha’l) for the recalibration-based method and
— 213 kg.ha™! (SD 532 kg.ha™!) for the EnKF-based method. The results
demonstrate that for all eight fields in our study, the LAI assimilation
was able to reduce bias in the estimated yield compared to the open-loop
scenario. Moreover, assimilating the LAI also improved the estimation of
within-field variability of crop yield for both methods, the AE was
positive in 68 % of the pixels but was negative in only 12 % of pixels. No
improvement was apparent in field 5: here, the open-loop simulations
are in the same range as the EnKF-based and recalibration-based simu-
lations. A plausible explanation is that in this field, the water stress (crop
transpiration - potential transpiration) during the reproductive stage
was substantially greater than in the other fields (see Figs. S9 to 516),
which may have contributed to the limited success of LAI assimilation in
nudging the model toward a more accurate simulation pathway. In the
other seven fields, the success of the assimilation methods suggests that
the impact of reducing and limiting factors not included in the simula-
tion model could be mitigated by LAI assimilation. Both data assimila-
tion techniques were able to improve the accuracy of yield estimates, but
the recalibration-based strategy slightly outperformed the EnKF-based
one, as the overall RRMSE was 10 % for the recalibration, 12 % for
the EnKF, and 19 % for the open loop.

The improvements in yield estimation obtained highlight the ability
of the LAI assimilation to overcome the lack of spatial variation in soil
properties and to capture the impact of yield-reducing factors not
included in the model. This is supported by the observations that the
impact of the LAI assimilation decreased when the model deviated from
the LAI trajectory because there were insufficient images for the
senescence period (Fig. 1). For instance, the differences in the senes-
cence rate of field 1 between zones in which yields varied (Fig. 1)
accounted for the spatial yield variation in both data assimilation

methods, which was in accordance with the observed yield variability
(Fig. 2a). The lack of LAI observations during the senescence phase in
fields 6, 7, and 8 (Fig. 1) was associated with lower accuracy in both data
assimilation methods (Fig. 2f, g, and h). In the latter cases, the EnKF-
based strategy was unable to directly adjust the model state during
the senescence phase because there were too few observations, while the
recalibration strategy could not accurately estimate the nitrogen trans-
location rate (FNTR, Table 2).

These results agree with the findings from Silvestro et al. (2021),
who demonstrated that the EnKF-based method was suitable for
assimilating LAI into the SAFYswb model as it performed well when
adjusting maize yield for field conditions. The results from Dhakar et al.
(2022) and Kang and Ozdogan (2019) also indicate that assimilation of
satellite-derived LAI estimates can be used to resolve yield variability
within and between fields. However, these two studies also indicate that
for the EnKF to perform well, it is crucial to have a carefully calibrated
model. In particular, a bias in phenology simulations leading to a
“phenological shift” (Curnel et al., 2011) will adversely affect the per-
formance of the EnKF. A similar concern applies to our study, as the
yield formation by our model is simulated through partitioning func-
tions that are highly dependent on a correct simulation of crop
phenology (Gaso et al., 2021).

In this study, we demonstrated that the EnKF-based and
recalibration-based strategies have similar performance in reducing the
error of the simulated yield compared to the open-loop simulation.
However, there are important differences between the two strategies.
The EnKF directly adjusts the model state variables in order to improve
the simulated yield. Although this strategy is effective and computa-
tionally efficient, it provides little insight into the drivers behind the
within-field variability. The recalibration strategy has the advantage
that it provides maps of adjusted parameter values which have a bio-
physical interpretation. For example, the LAlinit parameter (Table 2)
can be interpreted as a low planting density that impacts the yield of
soybean growing under low-yield conditions (Carciochi et al., 2019).
Similarly, variations in water use efficiency (WUE, Table 2) and the
percentage of translocatable nitrogen (FNTR, Table 2) point at de-
ficiencies in crop growth that could probably be tackled by adjusting
crop management.

An advantage of the EnKF over the current recalibration strategy is
that the EnKF lends itself better to real-time inferences of crop status and
yield estimation (Huang et al., 2019). Our recalibration strategy instead
requires a full crop cycle to estimate the model parameters, so the
strategy is only useful for retrospective analysis. However, given that the
recalibration strategy has some advantages over the EnKF, we argue that
extending the objective function with prior information on parameters
would make the recalibration strategy more suitable for real-time in-
ferences too. It essentially becomes a 2DVAR algorithm, like the one
used by Zhuo et al. (2022) to assimilate LAI for within-season estimation
of winter wheat yields.

Spatially explicit crop yield data is also an essential requirement for
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quantifying the within-field yield gap and targeting crop management
actions to reduce that gap. Our results demonstrate that the assimilation
of LAI estimates from Sentinel-2 observations can be used to estimate a
spatially explicit yield gap, and that therefore this strategy has potential
to assist in improving soybean crop management. The feasibility of this
approach still needs to be tested over more years and regions, and the
results need to be discussed with farmers to assess if they recognize the
spatial variability in parameters and whether it can be related to man-
agement actions.

One of the parameters in the model defines the percentage of
translocated nitrogen that is clearly related to soybean nitrogen content,
which in turn is related to soybean protein content (Cafaro La Menza
et al,, 2017; Ciampitti and Salvagiotti, 2018). It still needs to be
demonstrated that such parameter maps can predict the spatial vari-
ability in soybean protein content. However, if the feasibility is
demonstrated, a potential application is to use the parameter maps to
plan differential harvesting of soybean (Kravchenko and Bullock, 2002).
The study by Ciampitti et al. (2021) showed that high-yielding envi-
ronments rely more on soil N supply, and that in this situation
within-field variability in protein content is more likely. Similarly, the
meta-analysis by Assefa et al. (2019) found high variability in the pro-
tein content of soybean, which is an important issue for growers and
industry. Thus, differential harvesting from the areas in the fields where
soybeans have higher protein or oil concentrations would be beneficial
for producers and buyers as it would allow produce to be graded more
easily (William et al., 2020).

Another potential application is to use the parameter maps to esti-
mate the spatial variability in the amount of N extracted from the sys-
tem. Soybean contributes nearly to 25 % of the total fixed N in
agricultural systems (Herridge et al., 2008) where, on average, biolog-
ical N fixation represents 50-60 % of the crop N demands and the
partial N balance (fixed N in aboveground biomass — N seeds) is negative
in 80% of the cases (Ciampitti and Salvagiotti, 2018). Such partial N
balance plays a major role in the sustainability of the agricultural sys-
tems. Estimates of the partial N balance could assist the development of
variable rate fertilizer strategies that replenish nutrients in the agricul-
tural systems instead of fertilizing each individual crop.

A prerequisite for successfully applying data assimilation is a model
that is well calibrated, particularly for the phenological development of
soybean. The phenology model used for this study (Setiyono et al., 2007)
is a generic model based on the MG classification of the soybean variety.
Although MG ratings of soybean varieties are not always well stan-
dardized, such models have demonstrated enough predictive ability to
simulate phenology stages, as their accuracy was equivalent to the
simulations based upon genotype-specific parameters (Salmeron and
Purcell, 2016). Another study (Archontoulis et al., 2014) also showed
the feasibility of obtaining accurate estimations of flowering and
maturity stage by using generic parameters that depend on MG. Thus,
phenological models that account for temperature and photoperiod in-
teractions throughout the crop cycle and that rely on the MG classifi-
cation and avoid dependency on genotype-specific parameters can
predict soybean stages sufficiently accurately. Moreover, they are
necessary to broaden the applicability of the crop simulation models.

In addition to a calibrated model, satellite observations are required
to capture the within-field spatial variability of soybean LAI For this
study the Sentinel-2 observations were resampled from 20 to 30 m to
match the POLARIS digital soil map. However, Skakun et al. (2021)
caution that a moderate spatial resolution (20-30 m) does not fully
capture the within-field yield variability. They concluded that moving
the spatial resolution from 3 to 30 m results in an important reduction of
yield variance. Similarly, Yang (2020) concluded that a 30 m spatial
resolution can be used for variable rate application task maps, but that
5 m resolution imagery would be more appropriate for variable rate
application in precision agriculture. Testing the technology developed
with this study at such resolutions will make it even more useful for
site-specific crop management. However, running a coupled crop
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model-data assimilation framework at such high spatial resolution is
computationally daunting and will probably require techniques from
software engineering and machine learning for deriving efficient meta
models.

5. Conclusions

We have demonstrated that the assimilation of LAI derived from
satellite observations into a soybean growth model led to improvements
in the accuracy of yield estimations at pixel level. The recalibration-
based approach slightly outperformed the EnKF-based one (RRMSE
10% vs 12 %). Compared to the baseline scenario (open-loop settings),
both data assimilation methods reduced the RMSE of yield estimates by
an average of 42 %. Our study has demonstrated the impact of assimi-
lating LAI to compensate for the lack of spatially explicit input data and
for growth-reducing factors not being accounted for by the model.
Moreover, the quantitative assessment of the efficiency of assimilating
LAl revealed an appreciable improvement in accuracy, which highlights
the relevance of integrating a proxy for crop growth to adjust model
simulations toward a correct pathway. Therefore, these results provide
important insights to assist practical applications of the data assimila-
tion methods for obtaining high-resolution within-field yield maps for
soybean.

CRediT authorship contribution statement

Deborah V Gaso: Conceptualization, Formal analysis, Writing — re-
view & editing. Allard de Wit: Conceptualization, Writing — review &
editing. Sytze de Bruin: Conceptualization, review & editing. Laila A.
Puntel: Conceptualization, Writing - review & editing. Andres G.
Berger: Review & editing Lammert Kooistra: Conceptualization, re-
view & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
The data that has been used is confidential.
Acknowledgments

This research was funded by the Instituto Nacional de Investigacion
Agropecuaria de Uruguay (INIA) and a Ph.D. fellowship provided by
Agencia Nacional de Investigacion e Innovacion (ANII, scholarship code:
POS_EXT 2017_1_147121). We would like to thank Laura J. Thompson
and Joe Luck from the Department of Agronomy and Horticulture of the
University of Nebraska-Lincoln for sharing the field data and providing
support on the analysis. Joy Burrough language edited a near-final draft
of the paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.eja.2022.126718.

References

Archontoulis, S.V., Miguez, F.E., Moore, K.J., 2014. A methodology and an optimization
tool to calibrate phenology of short-day species included in the APSIM PLANT
model: application to soybean. Environ. Model. Softw. 62, 465-477. https://doi.org/
10.1016/j.envsoft.2014.04.009.

Assefa, Y., Purcell, L.C., Salmeron, M., Naeve, S., Casteel, S.N., Kovacs, P.,
Archontoulis, S., Licht, M., Below, F., Kandel, H., Lindsey, L.E., Gaska, J., Conley, S.,


https://doi.org/10.1016/j.eja.2022.126718
https://doi.org/10.1016/j.envsoft.2014.04.009
https://doi.org/10.1016/j.envsoft.2014.04.009

D.V. Gaso et al.

Shapiro, C., Orlowski, J.M., Golden, B.R., Kaur, G., Singh, M., Thelen, K.,
Laurenz, R., Davidson, D., Ciampitti, I.A., 2019. Assessing variation in us soybean
seed composition (protein and oil). Front. Plant Sci. 10 https://doi.org/10.3389/
fpls.2019.00298.

Burgers, G., Van Leeuwen, P.J., Evensen, G., 1998. Analysis scheme in the ensemble
Kalman filter. Mon. Weather Rev. 126, 1719-1724. https://doi.org/10.1175/1520-
0493(1998)126<1719:ASITEK>2.0.CO;2.

Cafaro La Menza, N., Monzon, J.P., Specht, J.E., Grassini, P., 2017. Is soybean yield
limited by nitrogen supply? Field Crop. Res. 213, 204-212. https://doi.org/
10.1016/j.fcr.2017.08.009.

Carciochi, W.D., Schwalbert, R., Andrade, F.H., Corassa, G.M., Carter, P., Gaspar, A.P.,
Schmidt, J., Ciampitti, I.A., 2019. Soybean seed yield response to plant density by
yield environment in north america. Agron. J. 111, 1923-1932. https://doi.org/
10.2134/agronj2018.10.0635.

Chaney, N.W., Wood, E.F., McBratney, A.B., Hempel, J.W., Nauman, T.W., Brungard, C.
W., Odgers, N.P., 2016. POLARIS: a 30-meter probabilistic soil series map of the
contiguous United States. Geoderma 274, 54-67. https://doi.org/10.1016/j.
geoderma.2016.03.025.

Ciampitti, I.A., Salvagiotti, F., 2018. New insights into soybean biological nitrogen
fixation. Agron. J. 110, 1185-1196. https://doi.org/10.2134/agronj2017.06.0348.

Ciampitti, I.A., de Borja Reis, A.F., Cérdova, S.C., Castellano, M.J., Archontoulis, S.V.,
Correndo, A.A., Antunes De Almeida, L.F., Moro Rosso, L.H., 2021. Revisiting
biological nitrogen fixation dynamics in soybeans. Front. Plant Sci. 12, 1-11.
https://doi.org/10.3389/1pls.2021.727021.

Curnel, Y., de Wit, A.J.W., Duveiller, G., Defourny, P., 2011. Potential performances of
remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.
Agric. For. Meteorol. 151, 1843-1855. https://doi.org/10.1016/j.
agrformet.2011.08.002.

De Wit, A., Duveiller, G., Defourny, P., 2012. Estimating regional winter wheat yield
with WOFOST through the assimilation of green area index retrieved from MODIS
observations. Agric. For. Meteorol. 164, 39-52. https://doi.org/10.1016/j.
agrformet.2012.04.011.

Deines, J.M., Patel, R., Liang, S.Z., Dado, W., Lobell, D.B., 2021. A million kernels of
truth: insights into scalable satellite maize yield mapping and yield gap analysis from
an extensive ground dataset in the US corn belt. Remote Sens. Environ. 253, 112174
https://doi.org/10.1016/j.rse.2020.112174.

Dhakar, R., Sehgal, V.K., Chakraborty, D., Sahoo, R.N., Mukherjee, J., Ines, A.V.M.,
Kumar, S.N., Shirsath, P.B., Roy, S.B., 2022. Field scale spatial wheat yield
forecasting system under limited field data availability by integrating crop
simulation model with weather forecast and satellite remote sensing. Agric. Syst.
195, 103299 https://doi.org/10.1016/j.agsy.2021.103299.

Dixon, W.J., Yuen, K.K., 1974. Trimming and winsorization: a review. Stat. Hefte 15,
157-170. https://doi.org/10.1007/BF02922904.

Dorigo, W.A., Zurita-milla, R., Wit, A.J.W. De, Brazile, J., 2007. A review on reflective
remote sensing and data assimilation techniques for enhanced agroecosystem
modeling 9, 165-193. https://doi.org/10.1016/j.jag.2006.05.003.

Evensen, G., 1992. Using the extended Kalman filter with a multilayer quasi-geostrophic
ocean model. J. Geophys. Res. 97 https://doi.org/10.1029/92jc01972.

Gaso, D., Berger, A., Ciganda, V., 2019. Predicting wheat grain yield and spatial
variability at field scale using a simple regression or a crop model in conjunction
with Landsat images. Comput. Electron. Agric. 159, 75-83. https://doi.org/
10.1016/j.compag.2019.02.026.

Gaso, D.V., de Wit, A., Berger, A.G., Kooistra, L., 2021. Predicting within-field soybean
yield variability by coupling Sentinel-2 leaf area index with a crop growth model.
Agric. For. Meteorol. 308-309, 108553 https://doi.org/10.1016/j.
agrformet.2021.108553.

Gitelson, A.A., Vina, A., Arkebauer, T.J., Rundquist, D.C., Keydan, G., Leavitt, B., 2003.
Remote estimation of leaf area index and green leaf biomass in maize canopies.
Geophys. Res. Lett. 30, 4-7. https://doi.org/10.1029/2002g1016450.

Herridge, D.F., Peoples, M.B., Boddey, R.M., 2008. Global inputs of biological nitrogen
fixation in agricultural systems. Plant Soil 311, 1-18. https://doi.org/10.1007/
s11104-008-9668-3.

Huang, J., Gémez-Dans, J.L., Huang, H., Ma, H., Wu, Q., Lewis, P.E., Liang, S., Chen, Z.,
Xue, J.H., Wu, Y., Zhao, F., Wang, J., Xie, X., 2019. Assimilation of remote sensing
into crop growth models: current status and perspectives. Agric. For. Meteorol.
276-277, 107609 https://doi.org/10.1016/j.agrformet.2019.06.008.

Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S., 2019. High
resolution wheat yield mapping using sentinel-2. Remote Sens. Environ. 233,
111410 https://doi.org/10.1016/j.rse.2019.111410.

Ines, A.V.M., Das, N.N., Hansen, J.W., Njoku, E.G., 2013. Assimilation of remotely sensed
soil moisture and vegetation with a crop simulation model for maize yield
prediction. Remote Sens. Environ. 138, 149-164. https://doi.org/10.1016/j.
rse.2013.07.018.

Ittersum, M.K.Van, Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013.
Field crops research yield gap analysis with local to global relevance — a review.
Field Crop. Res 143, 4-17. https://doi.org/10.1016/].fcr.2012.09.009.

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., Wang, J., 2018. A review of data
assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141-152. https://
doi.org/10.1016/j.eja.2017.11.002.

Kang, Y., Ozdogan, M., 2019. Field-level crop yield mapping with Landsat using a
hierarchical data assimilation approach. Remote Sens. Environ. 228, 144-163.
https://doi.org/10.1016/j.rse.2019.04.005.

European Journal of Agronomy 143 (2023) 126718

Kasampalis, D.A., Alexandridis, T.K., Deva, C., Challinor, A., Moshou, D., Zalidis, G.,
2018. Contribution of remote sensing on crop models: a review. J. Imaging 4.
https://doi.org/10.3390/jimaging4040052.

Kayad, A., Sozzi, M., Gatto, S., Marinello, F., Pirotti, F., 2019. Monitoring within-field
variability of corn yield using sentinel-2 and machine learning techniques. Remote
Sens. 11 https://doi.org/10.3390/rs11232873.

Kravchenko, A.N., Bullock, D.G., 2002. Spatial variability of soybean quality data as a
function of field topography: I. Spatial data analysis. Crop Sci. 42, 804-815. https://
doi.org/10.2135/cropsci2002.8040.

Lobell, D.B., 2013. The use of satellite data for crop yield gap analysis. Field Crop. Res.
143, 56-64. https://doi.org/10.1016/j.fcr.2012.08.008.

Maestrini, B., Basso, B., 2018. Drivers of within-field spatial and temporal variability of
crop yield across the US Midwest. Sci. Rep. 8, 1-9. https://doi.org/10.1038/541598-
018-32779-3.

Nguy-Robertson, A., Gitelson, A., Peng, Y., Vina, A., Arkebauer, T., Rundquist, D., 2012.
Green leaf area index estimation in maize and soybean: combining vegetation
indices to achieve maximal sensitivity. Agron. J. 104, 1336-1347. https://doi.org/
10.2134/agronj2012.0065.

Novelli, F., Vuolo, F., 2019. Assimilation of sentinel-2 leaf area index data into a
physically-based crop growth model for yield estimation. Agronomy 9. https://doi.
org/10.3390/agronomy9050255.

Ordénez, R.A., Castellano, M.J., Hatfield, J.L., Helmers, M.J., Licht, M.A., Liebman, M.,
Dietzel, R., Martinez-Feria, R., Igbal, J., Puntel, L.A., Cérdova, S.C., Togliatti, K.,
Wright, E.E., Archontoulis, S.V., 2018. Maize and soybean root front velocity and
maximum depth in Iowa, USA. Field Crop. Res. 215, 122-131. https://doi.org/
10.1016/j.fcr.2017.09.003.

Peng, X., Han, W., Ao, J., Wang, Y., 2021. Assimilation of lai derived from UAV
multispectral data into the safy model to estimate maize yield. Remote Sens. 13,
1-17. https://doi.org/10.3390/rs13061094.

Rowan, T.H., 1990. Functional stability analysis of numerical algorithms. The University
of Texas at Austin. Thesis Diss. 218.

Salmerén, M., Purcell, L.C., 2016. Simplifying the prediction of phenology with the
DSSAT-CROPGRO-soybean model based on relative maturity group and
determinacy. Agric. Syst. 148, 178-187. https://doi.org/10.1016/j.
agsy.2016.07.016.

Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and
organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 70, 1569-1578. https://
doi.org/10.2136/ss5aj2005.0117.

Setiyono, T.D., Bastidas, A.M., Weiss, A., Cassman, K.G., Specht, J.E., Dobermann, A.,
2007. Understanding and modeling the effect of temperature and daylength on
soybean phenology under high-yield co. Field Crop. Res. 100, 257-271. https://doi.
org/10.1016/j.fcr.2006.07.011.

Sibley, A.M., Grassini, P., Thomas, N.E., Cassman, K.G., Lobell, D.B., 2014. Testing
remote sensing approaches for assessing yield variability among maize fields. Agron.
J. 106, 24-32. https://doi.org/10.2134/agronj2013.0314.

Silvestro, P.C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., Huang, W., Casa, R.,
2017. Estimating wheat yield in China at the field and district scale from the
assimilation of satellite data into the Aquacrop and simple algorithm for yield
(SAFY) models. Remote Sens. 9, 1-24. https://doi.org/10.3390/rs9050509.

Silvestro, P.C., Casa, R., Hanus, J., Koetz, B., Rascher, U., Schuettemeyer, D.,
Siegmann, B., Skokovic, D., Sobrino, J., Tudoroiu, M., 2021. Synergistic use of
multispectral data and crop growth modelling for spatial and temporal
evapotranspiration estimations. Remote Sens. 13, 1-25. https://doi.org/10.3390/
rs13112138.

Skakun, S., Kalecinski, N.I., Brown, M.G.L., Johnson, D.M., Vermote, E.F., Roger, J.C.,
Franch, B., 2021. Assessing within-field corn and soybean yield variability from
worldview-3, planet, sentinel-2, and landsat 8 satellite imagery. Remote Sens. 13,
1-18. https://doi.org/10.3390/rs13050872.

Steven, G.J., 2020. The NLopt nonlinear-optimization package, (http://github.
com/stevengj/nlopt).

Sun, W., Whelan, B., McBratney, A.B., Minasny, B., 2013. An integrated framework for
software to provide yield data cleaning and estimation of an opportunity index for
site-specific crop management. Precis. Agric. 14, 376-391. https://doi.org/10.1007/
511119-012-9300-7.

Sykuta, M.E., 2016. Big data in agriculture: property rights, privacy and competition in
Ag data services. Int. Food Agribus. Manag. Rev. 19, 57-74. https://doi.org/
10.22004/ag.econ.240696.

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S., Wilson, B.E., 2020.
Daymet: Daily surface weather data on a 1-km grid for North America. Version 4.
ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/doi.org/10.3334/
ORNLDAAC/1840.

William, W., Dahl, B., Hertsgaard, D., 2020. Soybean quality differentials, blending,
testing and spatial arbitrage. J. Commod. Mark. 18, 100095 https://doi.org/
10.1016/j.jcomm.2019.100095.

Yang, C., 2020. Remote sensing and precision agriculture technologies for crop disease
detection and management with a practical application example. Engineering 6,
528-532. https://doi.org/10.1016/j.eng.2019.10.015.

Zhuo, W., Fang, S., Gao, X., Wang, L., Wu, D., Fu, S., Wu, Q., Huang, J., 2022. Crop yield
prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: a case
study for winter wheat in Hebei, China during 2009-2013. Int. J. Appl. Earth Obs.
Geoinf. 106, 102668 https://doi.org/10.1016/].jag.2021.102668.


https://doi.org/10.3389/fpls.2019.00298
https://doi.org/10.3389/fpls.2019.00298
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
https://doi.org/10.1016/j.fcr.2017.08.009
https://doi.org/10.1016/j.fcr.2017.08.009
https://doi.org/10.2134/agronj2018.10.0635
https://doi.org/10.2134/agronj2018.10.0635
https://doi.org/10.1016/j.geoderma.2016.03.025
https://doi.org/10.1016/j.geoderma.2016.03.025
https://doi.org/10.2134/agronj2017.06.0348
https://doi.org/10.3389/fpls.2021.727021
https://doi.org/10.1016/j.agrformet.2011.08.002
https://doi.org/10.1016/j.agrformet.2011.08.002
https://doi.org/10.1016/j.agrformet.2012.04.011
https://doi.org/10.1016/j.agrformet.2012.04.011
https://doi.org/10.1016/j.rse.2020.112174
https://doi.org/10.1016/j.agsy.2021.103299
https://doi.org/10.1007/BF02922904
https://doi.org/10.1029/92jc01972
https://doi.org/10.1016/j.compag.2019.02.026
https://doi.org/10.1016/j.compag.2019.02.026
https://doi.org/10.1016/j.agrformet.2021.108553
https://doi.org/10.1016/j.agrformet.2021.108553
https://doi.org/10.1029/2002gl016450
https://doi.org/10.1007/s11104-008-9668-3
https://doi.org/10.1007/s11104-008-9668-3
https://doi.org/10.1016/j.agrformet.2019.06.008
https://doi.org/10.1016/j.rse.2019.111410
https://doi.org/10.1016/j.rse.2013.07.018
https://doi.org/10.1016/j.rse.2013.07.018
https://doi.org/10.1016/j.fcr.2012.09.009
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.rse.2019.04.005
https://doi.org/10.3390/jimaging4040052
https://doi.org/10.3390/rs11232873
https://doi.org/10.2135/cropsci2002.8040
https://doi.org/10.2135/cropsci2002.8040
https://doi.org/10.1016/j.fcr.2012.08.008
https://doi.org/10.1038/s41598-018-32779-3
https://doi.org/10.1038/s41598-018-32779-3
https://doi.org/10.2134/agronj2012.0065
https://doi.org/10.2134/agronj2012.0065
https://doi.org/10.3390/agronomy9050255
https://doi.org/10.3390/agronomy9050255
https://doi.org/10.1016/j.fcr.2017.09.003
https://doi.org/10.1016/j.fcr.2017.09.003
https://doi.org/10.3390/rs13061094
https://doi.org/10.1016/j.agsy.2016.07.016
https://doi.org/10.1016/j.agsy.2016.07.016
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.2136/sssaj2005.0117
https://doi.org/10.1016/j.fcr.2006.07.011
https://doi.org/10.1016/j.fcr.2006.07.011
https://doi.org/10.2134/agronj2013.0314
https://doi.org/10.3390/rs9050509
https://doi.org/10.3390/rs13112138
https://doi.org/10.3390/rs13112138
https://doi.org/10.3390/rs13050872
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.1007/s11119-012-9300-7
https://doi.org/10.1007/s11119-012-9300-7
https://doi.org/10.22004/ag.econ.240696
https://doi.org/10.22004/ag.econ.240696
https://doi.org/10.1016/j.jcomm.2019.100095
https://doi.org/10.1016/j.jcomm.2019.100095
https://doi.org/10.1016/j.eng.2019.10.015
https://doi.org/10.1016/j.jag.2021.102668

	Efficiency of assimilating leaf area index into a soybean model to assess within-field yield variability
	1 Introduction
	2 Materials and methods
	2.1 Study sites and yield information
	2.2 Crop growth model
	2.3 Spatial input data
	2.4 Remote sensing data
	2.5 Data assimilation methods
	2.6 Assimilation efficiency assessment

	3 Results
	3.1 Evaluation of the yield estimates with the EnKF-based and recalibration-based techniques
	3.2 Assimilation efficiency assessment

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supporting information
	References


