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ABSTRACT
The relation among the various causal factors of obesity is not well understood, and there remains a lack of viable data to advance integrated,
systems models of its etiology. The collection of big data has begun to allow the exploration of causal associations between behavior, built
environment, and obesity-relevant health outcomes. Here, the traditional epidemiologic and emerging big data approaches used in obesity
research are compared, describing the research questions, needs, and outcomes of 3 broad research domains: eating behavior, social food
environments, and the built environment. Taking tangible steps at the intersection of these domains, the recent European Union project “BigO: Big
data against childhood obesity” used a mobile health tool to link objective measurements of health, physical activity, and the built environment.
BigO provided learning on the limitations of big data, such as privacy concerns, study sampling, and the balancing of epidemiologic domain
expertise with the required technical expertise. Adopting big data approaches will facilitate the exploitation of data concerning obesity-relevant
behaviors of a greater variety, which are also processed at speed, facilitated by mobile-based data collection and monitoring systems, citizen
science, and artificial intelligence. These approaches will allow the field to expand from causal inference to more complex, systems-level predictive
models, stimulating ambitious and effective policy interventions. Curr Dev Nutr 2022;6:nzac123.
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Introduction

Obesity is one of the most important global health issues, owing to its as-
sociation with significant morbidity and mortality, as well as increased
public health costs. Overweight and obesity—as defined by abnormal
or excessive fat accumulation that may impair health—has risen dra-
matically in prevalence during the last 4 decades in every global re-
gion (1–3). As of 2016, 13% of all adults had obesity and 39% had
overweight; whereas, 28% of children had overweight or obesity as of
2017 (4). Overweight and obesity are risk factors for a broad set of non-
communicable diseases. Individuals with obesity were also recently es-
timated to be 1.5 times more likely to die of COVID-19 (5), because

the associated immune system compromise, itself influenced by as-
sociated comorbidities, complicates treatment, recovery, and vaccina-
tion efficacy (6). Consequently, excess weight contributes to a substan-
tial loss in disease-free years and avoidable deaths (3), which makes
the identification of the major causes and drivers of obesity a primary
concern. Although the “obesogenic environment” is a key predictor,
specific causal factors related to the built and social environments re-
main underexplored. The global and uniform rise in obesity preva-
lence points to complex, multifactorial, and systemic causal factors (e.g.,
income, education, food quality), in contrast to the assumption that
obesity is an individual’s responsibility stemming from poor lifestyle
choices (7, 8).
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Although current approaches to explain obesity development con-
sider many etiologic factors—from genetic to molecular to environmen-
tal levels—there is still an urgent need for tools and methods able to
capture the complexity of the factors and systems contributing to obe-
sity. Nearly 20 y ago, the Ecological Systems Theory was applied to obe-
sity, leading to the ecological model of obesity, wherein an individual’s
weight status is heavily influenced by their social, economic, cultural,
and environmental context (9). This model was further elaborated by
the Foresight project, which identified 108 key variables relevant to en-
ergy balance, grouped into 7 themes: food production, food consump-
tion, social psychology, individual psychology, physiology, individual
physical activity, and the physical activity environment (10). These sys-
tems models, as well as others in obesity and nutrition (11–15), have of-
fered tangible public health intervention points around which to shape
policies and model scenarios aimed at obesity prevention and manage-
ment, as well as a framework for modeling the concentric spheres of
agents (e.g., individual, family, community, government, industry) that
influence body weight gain (9, 16, 17). In addition, the Lancet Commis-
sion on Obesity has made critical leaps in systems thinking with land-
mark articles such as “The Global Syndemic” (11), delivering a transdis-
ciplinary framework for addressing the interconnections between obe-
sity, undernutrition, and climate change. Despite this, a holistic, data-
driven understanding of how the complex milieu of the built and di-
etary environments and socioeconomic position (income, education,
and health inequalities) affects individual behavior (nutrition and phys-
ical activity level) is still lacking. Although recent studies have made
advances in capturing a wider range of systemic factors using mixed-
methods approaches (18), static or traditional survey-based approaches
fail to appropriately capture the complexity of factors and dynamic in-
teractions between the individual and their environment (19, 20).

The adoption of big data creates the potential to generate syner-
gies between biological and ecological approaches toward a better un-
derstanding of the etiology of obesity (21). Big data have the poten-
tial to identify intervention points for obesity prevention or manage-
ment in vivo, across different environmental settings, as well as create
data-driven causal maps of obesity determinants. A recent Delphi study
sought to define big data in the context of obesity research, concluding
that big data:

…is always digital, has a large sample size, and a large volume or
variety or velocity of variables that require additional computing
power. It can include quantitative, qualitative, observational, or
interventional data from a wide range of sources (e.g., govern-
ment, commercial, cohorts) that have been collected for research
or other purposes, and may include one or several datasets. (22)

In this framework, volume concerns sample size, number of vari-
ables, or measurement occasions; variety concerns the types of data and
numbers of variables; and velocity means that data are generated and
processed in real-time or at speed—translating them into interfaces to
make them readily usable (22). Moreover, the study noted that the vari-
ety component of big data in obesity research is more nuanced than its
traditional definition within the big data domain, involving quantitative,
qualitative, and observational data from a broad range of sources, e.g.,
clinical cohorts, census data, Geographic Information Systems (GIS)
data, social media, advertising, and commercial sales data. To date, big
data are under-utilized and under-exploited in obesity research. There

are few widely available data sets concerning obesity that conform to
the foregoing definition; few studies have used a wide variety of rel-
evant variables, permitting multivariate investigations, and seemingly
none have used velocity (22–24). Furthermore, it is not yet clear how
obesity research can ethically use big data methods, although ethical
frameworks are emerging from the literature (25, 26).

In this report, we investigate the potential for big data to support and
expand current methodologies aimed toward systems approaches in the
domain of obesity etiology. The complementarity and novel additions of
big data to current obesity research approaches are discussed, as well as
important risks and considerations when collecting such data, and the
roles for domain and technological expertise.

Traditional Compared with Emergent Approaches to Study
Causal Relations in the Etiology of Obesity

The Ecological Systems Theory of obesity proposed 20 y ago added
structure and form to our understanding of obesity as a chronic dis-
ease arising from biological, social, and environmental interactions
(9). Combined with the arrival of the genomic and information ages,
complex health (and biological) approaches to obesity etiology have
emerged, including the Foresight model. In what follows, we discuss the
contributions and pitfalls of current epidemiologic approaches to obe-
sity research and highlight the ways in which big data may contribute.

Epidemiologic: diet, socioeconomic, and food-environment
drivers of obesity
Epidemiologic research in obesity has led to critical insights into
obesity’s noncommunicable disease sequelae and its disproportionate
prevalence in socioeconomically disadvantaged groups in high-income
countries. This line of research has also motivated hypothesis-driven
research on the links between obesity and living environments; partic-
ularly as it relates to the drivers of food consumption, physical activity,
and social psychology (27). Epidemiologic surveillance over time has
also revealed the changing relation between these aforementioned fac-
tors and weight status over time; such as the associations between weight
status and urban compared with rural living environments, or history of
breastfeeding (28, 29). These insights have informed important public
health interventions aimed at lowering inequalities in obesity, for ex-
ample, programs targeting breastfeeding rates, school nutrition, or the
reduction of sedentary behavior (30).

The large-scale WHO European Childhood Obesity Surveillance
Initiative (COSI) has collected data from >300,000 children in Europe,
leading to the development of a standardized monitoring system, and a
variety of insights on, e.g., diet and physical activity patterns by coun-
try (31). The Healthy Behavior in School-Aged Children study, exam-
ining data from >130,000 adolescents from 29 European countries,
was able to show that individual differences in physical activity could
largely be explained by between-country differences in environmental
variables, such as temperature, safety, household income, and public
health policy (32). In the United States, the National Collaborative on
Childhood Obesity Research has delivered critical research frameworks
for childhood obesity, such as compendiums of physical activity codes
relevant to youth, and measurement and surveillance needs for child-
hood obesity prevention from a variety of entry points (i.e., nutrition,
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physical activity, and food environments) (33–35). Despite these ad-
vances, these traditional data assessment methods lack the variety and
granularity of data needed to explore a wider array of determinants—
both group and individual—relevant to obesity. Classical epidemiologic
approaches, such as dietary and exposure assessments followed by link-
age to BMI, are strongly focused on the outcome of body size, rather
than on complex associations between exposures, environments, and
risk of obesity-related health complications.

In addition, BMI is often used as a metric for weight status; however,
this is a proxy measure of adiposity and therefore an incomplete assess-
ment of individual health status. Some individuals within the normal-
weight range may display all characteristics of obesity, and those outside
the normal range, not (36, 37). Importantly, the use of BMI and BMI
cutoffs as a measure for weight status is problematic when comparing
people with a different racial background, because body posture and
build differ widely between these groups (36, 37). Moreover, these ap-
proaches also tend to orient (methodologically) from a biomedical lens.
This means genes, nutrients, and foods, rather than social and environ-
mental determinants (e.g., socioeconomic factors and the built environ-
ment), have taken the center stage (38, 39). Epidemiology also tends to
side on inference of (health) outcomes based on behaviors and expo-
sure, rather than data-driven prediction models of outcomes under dif-
fering or altered circumstances (40).

The more complex associations between exposures, environments,
and outcomes are difficult to capture using traditional “offline” methods
(food-frequency surveys, dietary intake recall) (41, 42). A systematic
review of cohort studies that included both individual and ecological
data purporting to examine the influence of food environment on obe-
sity concluded that all available studies (n = 71) were of low quality and
error-prone; and associations were predominantly null, failing to deliver
meaningful conclusions or evidence (43). An additional scoping review
on advanced methods linking dietary behaviors and the food environ-
ment uncovered only 5 studies with >100 participants that incorporated
both Global Positioning System (GPS) and food intake data (44). None
were transnational, and the period of data collection was a maximum of
7 d. The authors concluded that this paucity of data hinders the devel-
opment of advanced modeling of food behaviors, such as agent-based
modeling or complex-adaptive systems modeling. Incorporating envi-
ronmental attributes in a manner that still enables the identification of
causal relations, with attention to data veracity and reproducibility of
variables, is a critical challenge for 21st-century epidemiologists. This is
particularly the case for factors relevant to the social determinants of
health as pertaining to obesity—for example, quality and accessibility
of healthy foods or availability of athletics and recreation facilities.

Big data: toward a more complex systems etiology of
obesity
Big data are new and underexploited in obesity research. The most rel-
evant contributions so far are from “found/real-world data” scraped for
other purposes, such as social media, retail, and environmental sensing,
rather than generated for specific obesity-related objectives or hypothe-
ses (22). An agreed-upon scope and definition of big data for obesity re-
search is both nuanced and still emerging (22). Moreover, an overview
of case studies purposing to use big data in obesity research did not
identify any studies using advanced sensors/apps for use by individuals
or participants (45). The studies relied on post hoc analysis of 1-time

administered surveys or electronic health records, in combination with
data from external sources—e.g., land-value and census records (24).
On the other hand, very recent advances have been made in using ac-
celerometers to measure physical activity and its link to overweight
and obesity risk, such as the International Children’s Accelerometry
Database Collaboration study (46). Gathering big data on obesity via
mobile surveillance/monitoring has the promise to link relevant vari-
ables at the level of individuals and populations—allowing synergy be-
tween the biomedical and epidemiologic approaches. The emergence of
new assessment methods means that individual or group-level data of
large populations can be collected in real-time, allowing researchers to
move away from average or self-reported values of food intake, mood,
physical activity, or geolocation. This brings enormous potential to ex-
amine dietary behaviors more accurately over time and across contexts,
which can lead to advanced predictive and causal models for planned
interventions. The aforementioned Delphi study highlighted the need
for the adoption of more advanced statistical, machine learning, artifi-
cial intelligence, and database methods to address complex hypotheses
(22). These research avenues could include the influence of social me-
dia on food intake, or the prediction of weight status based on distinct
environmental features—associations that are challenging to determine
using traditional methods. Next, we outline 3 emerging areas where big
data can be used in the obesity research context.

Mobile sensing.
Mobile sensing and mobile health (mHealth) tools have the potential to
continuously harvest behavioral and environmental data in real-time.
This field is rapidly expanding (47), but remains underused in research
contexts owing to the reliance on mainly commercially developed tools,
and the lack of approved devices and systems for broad use in clinical
trials. These approaches have the potential, although still challenging
in a research context, to measure both physical activity and food in-
take (both self-reported and sensor-based), as well as collect data re-
lated to the built and food environments. These tools avoid the draw-
backs of certain self-reported measures, and may also feed-forward ei-
ther specific interventions or behavioral suggestions to the user, i.e.,
the use of “nudging” approaches to increase physical activity behavior
(48). These strategies could be adopted not only using mobile phone–
based sensors and apps but also via alternative means of data collection
such as smartwatches, food-intake sensors, and other wearables (45, 49,
50). To date, a few pilot mHealth tools have been made available to
gather information on food environments in a participatory way (51,
52). The European study DEDIPAC (DEterminants of DIet and Phys-
ical ACtivity) made steps toward capacity building for big data in the
field, making progress, for example, in the adoption of physical activ-
ity sensor–derived data (53, 54). Measurement of physical activity over
time among diverse groups is therefore feasible; however, broader efforts
to incorporate these measures in real-time, in combination with so-
cial/environmental determinants of physical activity, have not yet been
achieved.

Citizen science.
The approach of citizen science uses large and engaged populations as
data providers, involving the participant in the whole scientific process.
This approach not only facilitates “feeding-forward” of health informa-
tion to participants, but also exploits and/or enhances their knowledge
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base of science and health (55). Citizen science tools for health monitor-
ing in the public domain are generally developed in controlled popula-
tions, followed by dissemination to the public; or involve crowd-sourced
data contributions or scraping of existing databases. In the health care
domain, projects include SCAMPI (the Smart City Active Mobile Phone
Intervention), a mobile intervention tool to promote physical activity
among sedentary adults (56), and Big data against childhood Obesity
(BigO), discussed in detail in what follows. The Our Voice project, a
mobile community engagement tool, was deployed in 5 countries and
collects photos and voice memos from individuals on the theme of phys-
ical activity and food access (57). A major drawback to a citizen science
approach from a research perspective, particularly as linked to health-
related behaviors, is that it is accompanied by an uncontrolled sample
population. Therefore, uncontrolled data collection protocols and re-
liance on self-reported measures of health make it challenging to derive
valid associations (58). The use of traditional statistical approaches on
this type of data can be erroneous. New statistical approaches need to
be developed and used that consider selectivity biases, the sparseness of
data, and noise. These aforementioned issues have been recognized by
Eurostat and all European Union national statistical authorities, but can
take inspiration from success in other domains, for example in environ-
mental monitoring of biodiversity (59, 60).

Moreover, the use of citizen science tools may be biased to urban, rel-
atively wealthy, highly educated individuals, although this bias is also a
known pitfall in food intake and nutrition survey responses. The steady
increase in smartphone use in all global regions, particularly among
younger users, could overcome this with appropriate dissemination ef-
forts (61).

Artificial intelligence.
The rapid evolution in the technological development of artificial intel-
ligence, including machine and deep learning, is moving research be-
yond data collection and toward knowledge extraction and prediction.
Artificial intelligence promises to mine purchase, Internet, and social
media data in an aggregated manner, allowing analysis, visualization,
and prediction from individual and group-level big data. In the con-
text of obesity, this technique has the promising potential outcome of
deep learning–derived prediction of population behavior and weight
status, based on environments or proposed interventions. Artificial in-
telligence has the potential to overcome some of the aforementioned
sampling biases in citizen science–based approaches, eventually lead-
ing to the automatic fitting of prediction models and the identifica-
tion of modifiers and confounders—allowing the prediction of the out-
comes of health interventions (62, 63). So far, this type of prediction
has been largely the domain of tech giants such as Facebook, IBM Wat-
son, Google, and Amazon. For example, the power of Google’s data ac-
cess and intelligent computing capacity is being combined in “Google
Health,” which aims at predicting and treating a variety of health is-
sues. Critics are concerned about this form of industry research, in-
cluding a lack of standards for ethical accountability and informed con-
sent (63). In the public domain, the predominant use of artificial intel-
ligence as it pertains to diet and eating behavior has been in compu-
tational neuroscience, with emergent applications aimed at automating
eating behavior analyses (64–67). The development of complex adap-
tive systems and agent-based models of complex drivers and determi-
nants of eating behavior within varied food environments have the po-

tential to generate rich and accurate predictions of behavior (68–70).
However, the volume and variety of data required to build reliable and
accurate models so far remain largely unavailable in publicly available
data sets owing to data-sharing challenges (44). The next step for com-
putational researchers concerned with dietary behavior will be to apply
artificial intelligence techniques to big (rich) data comprising food ac-
cessibility, preference and choice (i.e., dietary patterns), eating behavior
(i.e., eating rate, satiety, satisfaction and fulfillment, setting), health pro-
file, psychology, socioeconomic status, and various aspects of the built
environment—leading to insights into obesity etiology and guiding tar-
geted prevention measures. As until very recently these techniques and
data have largely remained the property of industry, there must be in-
creased attention paid to responsible knowledge transfer, in part via
public–private partnerships, and the required ethical frameworks (71).

How Can Big Data Complement Traditional Research
Approaches?

The advanced means of data acquisition described already are only be-
ginning to be used in research and public health contexts. Although
most researchers are no doubt aware of their promise, epidemiologists
concerned with obesity and public health are at risk of lagging behind
big tech or profit-driven data acquisition pursuits. The European Centre
for Disease Prevention and Control has promoted a policy on the use of
big data in epidemiology (72, 73). This approach will not only allow the
pursuit of cross-cutting hypotheses but improve data quality and make
resource-intensive surveillance efforts more efficient (74). Here, we dis-
cuss 3 thematic areas where the big data tools already described can
complement traditional approaches in obesity research: 1) food intake
and eating behavior, 2) social food environments, and 3) the built envi-
ronment and physical activity. All 3 themes have the potential to utilize
mobile sensing, citizen science, and artificial intelligence approaches de-
scribed in the previous section, complementing and aiding traditional
methods. Representative examples of specific research questions and a
subset of data needs per theme are proposed in Table 1. The wide variety
of big data types are not captured here exhaustively; this is intended to
illustrate potential research avenues and stimulate already-existing dis-
ciplinary framing to adopt aspects of big data. Many variables sit across
themes and their exploration will only serve to further benefit systems
thinking on obesity.

1. Food intake and eating behavior—the nutritional theme
Implementing effective nutrition interventions for obesity prevention
requires a more complete understanding of individual (biological) and
food (nutritional, chemical, and physical) factors that influence eating
behavior and appetite (75–77). These factors include both food char-
acteristics (taste, texture, food matrix, energy density, food form, sati-
ation and satiety, satisfaction, and fulfillment) and individual physiol-
ogy (metabolic and endocrine responses, body composition, and level
of physical activity). Big data have the potential to complement single-
study-derived insights into food intake, eating rate, and their link to sati-
ety. These can be linked to relevant bio-social individual characteristics
such as history of breastfeeding, health comorbidities, and subjectively
reported satiety and motivations for food choice. For example, mobile-
supported objective measurement of eating rate was recently found to be
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associated with higher BMI among adolescents (66, 67, 78). Libraries of
food characteristics can be linked to genomics and metabolomics data
sets, and/or advanced food-intake sensors, as well as data relevant to
satiety. The timing of food consumption and the time occupied with
food ingestion could also be linked to the level of intake and physical
activity. Such integrated big data approaches would greatly enhance our
understanding of how food intake is influenced or can be modified and
can also help to overcome some of the issues inherent in relying on the
metric of BMI as a measure of weight status, moving toward a more
holistic assessment of health risk on both an individual and a popula-
tion level.

2. Social food environments—the psychological theme
Branches of nutrition science and consumer behavior are typically con-
cerned with the social determinants of food intake and eating behavior,
including the social environment (e.g., eating alone compared with eat-
ing in a group) (79), in addition to availability, accessibility, affordabil-
ity, and exposure to food advertising (80). Big data allow investigation
and modeling of both the real-world and the social-media/digital food
environments as determinants of food intake, taking into account cul-
tural, racial, and socioeconomic background and the surrounding food
environment, building on food intake data described in theme 1. Re-
search must address the social drivers and motives that influence indi-
viduals in the mixed “real” and digital food environment, and how these
drivers influence food preference, intake, satiety, and dietary profiles.
Monitoring social dietary behaviors via methods more advanced than
traditional surveys or observational studies will become possible, such
as observational purchase data from supermarkets and restaurants or
surveillance of food- and diet-related individual interactions with so-
cial media. This dimension also concerns the influence of national or
regional agricultural policy and subsidies on food availability and af-
fordability and the generation of data infrastructures able to categorize
and compare these factors in relation to epidemiologic outcomes. The
INFORMAS healthy food environment policy index is a critical step to-
ward a framework within which big data on food environments can be
monitored (81).

3. Built environment—the environmental theme
The design and implementation of effective public health policy ad-
dressing obesity require an understanding of what features, or combi-
nations of features, in the built environment influence food availability
and obesogenic behaviors—both food intake, as outlined in the first 2
themes, as well as physical activity. Studies of these associations typi-
cally use limited cohorts or data of insufficient granularity and variety
(e.g., census data), although recent studies have made progress in link-
ing neighborhood composition to body composition and movement be-
haviors (82). Big data will allow for data-driven testing of the ecologi-
cal model of obesity, linking objective aspects of behavior (step and ac-
celerometry data, GPS coordinates of locations visited) to weight status,
demographic data, and detailed characteristics of the built environment
such as densities of food-related points of interest and rich data on their
offerings and affordability (via geo-sensing and digital mapping).

Summary
Table 1 outlines potential research questions in each of these dimen-
sions, the required data, the big data and traditional complementary

methods needed, and potential outcomes in the realm of innovation or
public health policy. These questions may serve as a conceptual start-
ing point for epidemiologists, health professionals, and social scientists
seeking to use big data in obesity research.

How Can Big Data Contribute to Evidence-Informed Policy
Making? Case Study of the BigO Project

Given that many forms of data known to be highly relevant to obesity
are currently out of reach of traditional epidemiologic research (e.g.,
mobile/GPS data; social media and digital advertisement data concern-
ing the social food environment; rich mapping of food environments),
immediate steps must involve improved interdisciplinary collaboration
of computer and data scientists and engineers, led by nutrition and med-
ical domain-experts. Big data in obesity have the potential to examine
intervention outcomes or observational studies and expand causal in-
ference of ecological associations to more complex, systems-level multi-
variate models, disentangling individual-level and environmental deter-
minants in specific groups and contexts. Big data collection tools have
the potential to test associations using an unbiased representation of
multiple variables of interest, such as aspects of the built environment
and physical activity. More excitingly, the use of big data also expands
the possibility for much-needed predictive models, predicting, for ex-
ample, how changes to the built environment could change physical ac-
tivity and diet-related behaviors, or how changes in behavioral risk fac-
tors for obesity affect prevalence.

Responding to a lack of effective data-driven policies for the pre-
vention of childhood obesity, BigO: Big data against childhood obesity,
a Horizon2020 project, was launched in 2016. The project took action
to address the lack of behavioral data processed in real-time (velocity),
as well as the need for comprehensive tools for stakeholders seeking to
design and implement policies. Using an mHealth and citizen science
approach, BigO built a technology platform to capture environmental
features and link them to individual behavior and weight status of chil-
dren. The project is intended as a starting point for assessing the link
between weight status and the built environment using data gathered
from the platform, as well as a blueprint for future projects aiming to
gather multivariate big data on diverse behaviors related to individual
and environmental characteristics. To our knowledge, BigO is the only
program to have collected data on physical activity and the built envi-
ronment as related to weight status (BMI z score) within the same in-
dividual, as well as subjective/qualitative measures of health and well-
being, in multiple countries and socioeconomic groups and across all
BMI strata (83, 84). Figure 1 shows the scope of the data collected about
individual factors, behaviors, and environmental characteristics.

The project involved >5500 children who acted as “citizen scien-
tists,” submitting data via a smartwatch or smartphone application.
The children were spread across 4 European countries, recruited via
schools and obesity clinics, with weight status being both self-reported
and clinic/school-measured reports. The BigO program developed a
user-friendly mHealth app (MyBigO), because it was intended for use
by children from 9 y of age onwards. To achieve this, a rigorous test-
ing procedure was adopted consisting of 6 levels: code quality test-
ing, unit testing, black box testing, integration testing, load testing,
and beta testing (assimilation of both system and acceptance testing).
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FIGURE 1 Variables in a mobile citizen-science approach for obesity. An example data map, modeled after the BigO system, of the types
of variables pertinent to obesity able to be collected via mobile health approaches. These variables pertain to individual characteristics
(demographic, anthropometric), individual behavior (physical activity, food consumption, mood), and the built environment (points of
interest visited, food advertisement exposure).

This testing procedure proved effective because the app was widely ac-
cepted by both children and obesity clinicians, and successful at col-
lecting the intended breadth and volume of data (85–87). The col-
lected data are big in variety: GPS data, accelerometry, mood question-
naires, meal photos, and food advertisements encountered in their of-
fline environment are recorded alongside anthropometry. They amount
to big volume: the >5500 children submitted >100,000 meal photos
to the platform between 2018 and 2020, >31,000 mood questionnaire
responses, and >130,000 d of GPS and accelerometry recordings. The
data were also processed at velocity: data were processed near real-time
into dashboards to monitor, for example, the average activity counts per
neighborhood of different municipalities, in relation to features of the
built environment such as food outlets and physical activity locations.
Publicly available e-dashboards were constructed, which can be found
at http://bigo.med.auth.gr:3838/. Password-protected dashboards were
available for clinic and school use, and are intended as health moni-
toring tools for the medical staff within schools and clinics. The public
health dashboard is publicly available and is intended for eventual pub-
lic health use as a policy planning tool. This technical platform fills a
major gap in data-driven policy planning for obesity prevention.

Rather than starting from biological causal hypotheses of physi-
cal activity and weight status, data in BigO were gathered among a
large and diverse population, which will be followed by hypothesis-
generating models linking environmental characteristics, physical ac-
tivity, and weight status. Making objective measurements of physical
activity, linked to aspects of the built environment and weight status,
all within the same individual, and taking into account the granular
temporality of food intake and physical activity, promises to reveal dy-
namic behavior of individuals and populations in real-time (83, 88, 89).
The system also has the potential to function as an intervention tool,
feeding-forward rewards to incentivize the use of the app, which may
have the added effect of incentivizing healthier behaviors. In this line,
BigO was also conceived and implemented for use in obesity clinics to

track, manage, and eventually explain varying dimensions of weight loss
on an individual level (85). Further exploitation of these data in the
clinical context will provide insights into individual factors relevant to
weight loss rate, maintenance, and recidivism in response to specific in-
terventions.

Research projects and initiatives such as BigO build on the interplay
between individual, social, and environmental determinants of behavior
to help guide the development, monitoring, and evaluation of preven-
tative strategies. To make such initiatives maximally relevant to public
health policy, there is a need to exploit the data generated to feed ad-
vanced predictive models of individual and population determinants of
BMI and eating patterns. The end goal for these types of initiatives is
the development of contextually effective, ambitious data-driven poli-
cies targeting a large segment of the obesity map: individual food intake
and physical activity, the school environment, and the built environ-
ment.

Limitations and Considerations

Despite its promises, several important caveats and limitations sur-
round the use of big data, particularly when tracking multiple individual
characteristics or behaviors across time and space. These limitations are
discussed and supplemented with experience from the BigO project and
presented further in Table 2.

Privacy concerns are significant when using mobile tools,
especially among children
Although the General Data Protection Regulation, which has brought
about a guarantee of location privacy, provides procedures for obtaining
informed consent for the use of GPS in the age of smartphones, this is an
emerging area still subject to varying degrees of stringency depending
on country and institution (90). The potential involvement of young,
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TABLE 2 Overcoming challenges to the use of big data in obesity research1

Challenge Potential solutions

Privacy � Automatic local/offline prechecks built into apps for identity-violating content
� Process location locally to geohashes or other aggregated values
� Assign tiered data access to investigators
� Involve domain experts/researchers, educational and citizens’ groups (end

users) in privacy co-design

User bias � Align with city-lab and health equity and health promotion initiatives
� Specific targeting of communities of lower socioeconomic position via

schools, clinics, and community organizations
� Control for access to health care

Veracity � Domain-specific standards for specific types of noisy, error-prone data and
volume reduction

� Open-access, user-friendly tools to facilitate implementation of data standards

Legacy and FAIR data � Integrate big data in nutrition and public health with emerging research
infrastructures

� Align emerging data and projects to the European Open Science Cloud and
surveillance efforts [e.g., INFORMAS (81, 103)]

Industry vs. research
interest

� Ethical forums, conferences, and guidelines for big data industry–academic
partnerships

� Research training in big data techniques and communication with technical
experts

1FAIR, findable, accessible, interoperable, reusable.

vulnerable data contributors (i.e., children and adolescents), as well as
centralized, cross-border data collection schemes, further complicates
matters. A powerful and innovative approach was developed within
BigO to support privacy based on spatial aggregation of behavioral data,
described in Diou et al. (83). Issues related to the location were resolved
by processing location data locally in each mobile device before send-
ing them to the central server and grouping them into larger geographic
zones, or “geohashes.” However, all data collected by children, such as
pictures related to their food intake, were at risk of violating individual
privacy. For instance, some children sent photos of themselves to the
server. These data were preprocessed manually, and all images deemed
irrelevant or identity-revealing were deleted from the system. However,
this procedure was time-consuming, and it is not a scalable solution; fu-
ture efforts to incorporate automatic image recognition should help to
overcome this challenge.

Big data warehouse architecture should implement
privacy-aware protocols for monitoring and storing
personal data related to the behaviors of a potentially
vulnerable population
Individual health status and behavioral data sets must be protected and
kept private. On the other hand, these data must remain analyzable and
ideally reusable to extract useful knowledge that advances research and
practices. The aim is to create an environment where private and sensi-
tive data can be analyzed without revealing the identity of individuals. In
BigO, an n-tier architecture to deal with the data analysis was proposed,
with various defined investigator roles, where each role had a very lim-
ited view of the data, together with anonymity procedures. There also
exists the challenge of acting on anonymized data collected from vul-

nerable populations, where, e.g., child protection or welfare is a con-
cern. The development of data analysis pipelines for either encrypted
or anonymized data remains a complex task.

In terms of sampling, without attention to recruitment and
dissemination, citizen science tools risk including only the
already healthy and wealthy, groups which are the least
affected by overweight and obesity
Managing bias in sample populations in big data approaches which in-
corporate large populations is not something that has yet been systemat-
ically addressed in the big data approaches toward obesity to date. This
issue exacerbates the already present challenge of determining causality
from uncontrolled data collection. Sampling bias was a particular con-
cern for data gathered in the BigO project, where many of the participat-
ing schools were fee-paying and richly resourced, whereas the clinical
population represented children from a much wider range of socioeco-
nomic backgrounds, with varying access to health care depending on
the country.

Concerning the scope of data extracted, it is not always
the case that more volume means more quality
Filtering out the appropriate level of data from big data collection meth-
ods (e.g., physical activity data sampled by the second or minute) is
critical to reaching reliable conclusions. Approachable or standardized
methods for both data reduction and managing data veracity are needed
(e.g., low GPS accuracy, missing data from an individual not carrying
their device, or errors in translation from signal to behavior). When
considering large populations, engaging individuals over long periods
of time to contribute data poses many logistical and tactical challenges,
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as does coping with the ensuing mismatched or missing data. In the
BigO project, domain expertise, gathered via a Delphi study, was essen-
tial to prioritize the most relevant variables to childhood obesity, and
considerable effort was made to maximize user engagement (91). De-
spite the high volume of data that can be captured, many critical factors
relevant to obesity remain unexplored. This is evidenced by the many
remaining unmapped systems-level domains and nodes (as mapped by
the Foresight report) (92) relevant to obesity, and they are not yet in-
corporated into big data frameworks. For example, physiologic factors
(satiety, extent of digestion and metabolism, predisposition to reduced
physical activity level), societal influence (peer pressure, parental con-
trol), and individual physical activity (degree of physical activity educa-
tion, parental modeling of activity, physical barriers to movement) (92).

Ensuring a legacy for big data collected in public-funded
research projects is also an emerging concern
Considerable amounts of quantitative, qualitative, and observational or
intervention data already exist, collected for research or other purposes.
Ensuring that these data are findable, accessible, interoperable, reusable
(FAIR) and using them to feed existing models should therefore be a pri-
ority. Of particular concern is ensuring the interoperability and reuse
(FAIR-ification) of data while maintaining individual privacy rights.
The legacy of data, particularly when gathered in time-limited research
projects, can also be threatened. Alignment with existing and emerging
health and digital science research infrastructures, as well as conform-
ing to the European Open Science Cloud is a first step to overcoming
some of these legacy concerns. Alignment and FAIR-ification can also
ensure the reuse of big data collected in the framework of health and
obesity research for other domains to which it is of tremendous value,
e.g., urban design, consumer behavior, and educational sciences. En-
suring the interoperability of big data in obesity is of particular interest
given the emerging linkages between obesity and COVID-19. Big data
mobile surveillance tools could pivot to assess the impact of lockdowns
on diet, physical activity, and well-being, or ongoing efforts linking the
built environment and obesity can be aligned to infection mapping (93).

Balancing obesity domain expertise with the required
technical and computational expertise—academic or
not—remains a key challenge in academic and policy
pursuits using big data
The data analytics industry holds a monopoly on tool development,
which risks overtaking nutrition and obesity research. If academic nu-
trition and epidemiology experts do not undertake action to shape
big data use in obesity research through the lens of their domain ex-
pertise, critical health policy insights may risk being biased by profit-
driven motives (25, 26). Moreover, domain experts in nutrition and
epidemiology require training in the incorporation of big data, and
hypothesis-generating rather than hypothesis-testing approaches. The
development of agri-food policy over the past half-century has been
fostered by economically driven industry motives and has (unintention-
ally) contributed to the overweight and obesity epidemic and its associ-
ated health costs (94–96). Now there is, therefore, a critical opportunity
to change course to ensure the health of present and future generations,
leveraging scientific and policy interest in the value of public goods to
increase public health, well-being, and equity.

Conclusion

The collection of big and rich data on diet-related behaviors and phys-
ical activity, concerning the built environment, is critical and timely to
arrive at a more advanced and integrated understanding of the inher-
ently complex etiology of obesity. Adoption of big data approaches has
not been rapid in the field of obesity, as there remains ambiguity re-
garding its integration into traditional approaches. The Foresight model
has provided a critical first framework to conceptualize and organize
the multitude of factors determining energy balance; the data-driven
collection and exploration of these have the potential to lead to new
hypotheses for traditional biomedical approaches (e.g., more advanced
understanding of food properties’ effects on metabolism) or epidemi-
ologic approaches (e.g., multivariate, longitudinal models of environ-
mental determinants of physical activity levels and food intake). The
multicausal nature of the obesity epidemic makes it challenging to dis-
entangle and quantify the influence of biology, behavior, and built en-
vironment, calling for an approach wider in scope than traditional epi-
demiologic methods alone. This can lead to advanced predictive models
of the effects of public health interventions, and the ability to prioritize
the most effective interventions for a given context. Critical attention
and consideration must be paid to data privacy, management, reusabil-
ity of data, and balancing industry with research interests to facilitate
the use of big data as a public research resource. Investing in and adopt-
ing tools to allow the mapping of behavior about the social and built
environment will provide a much-needed evidence base for the design
and implementation of effective and contextually tailored public health
policies and strategies aimed at the prevention of overweight and obe-
sity.
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