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Abstract 

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling 
experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not 
yet been investigated. These management interventions are some of the main levers for adapting cropping systems to 
climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of chang-
ing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New 
Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density 
and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing condi-
tions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season 
fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not 
capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better 
account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and 
tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.

Keywords:   Multi-model ensemble, sowing date, sowing density, tillering, tiller mortality, wheat, yield potential.

Introduction

Wheat is the most traded crop commodity at the global 
scale and provides more than 20% of calories and protein 
in human diets (Shiferaw et al., 2013; Curtis and Halford, 
2014). For decades, the demand for cereals has been increas-
ing, driven by world population growth and dietary change 
(Alexandratos and Bruinsma, 2012; van Dijk et al., 2021). To 
meet the demand, cropping systems have to increase pro-
duction while facing several challenges: risks associated with 
climate change, limits to cropland expansion, and increasing 
freshwater scarcity (Eitelberg et al., 2015; FAO, 2017; Gerten 

et al., 2020). Global climate change already impacts crop 
growth and production through increased temperatures, 
changing precipitation patterns, higher extent and severity 
of droughts, and greater frequency of extreme events, among 
others (Mbow et al., 2019). Genetic improvement and ag-
ronomic management adaptation, such as optimization of 
sowing dates and sowing rates, are promising solutions to 
increase the productivity of cropping systems under global 
climate change (Spiertz, 2012; Bai and Tao, 2017; Parent  
et al., 2018).
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Adapting sowing conditions to climate change requires an 
understanding of how crop growth and yield development 
are affected by sowing date and density. Increased temperature 
shortens the growing season of wheat and shifts optimal sow-
ing dates (Tao et al, 2014). Shifting sowing dates and changing 
sowing rates affect tiller development and tiller competition 
(Spink et al., 2000). Tillering plays an important role in crop 
growth and yield formation. On the one hand tillers con-
tribute to light interception and photosynthesis, on the other 
hand they are reservoirs of nutrients and carbohydrates, which 
can be remobilized to the main stem under nutrient stress  
(Anderson and Garlinge, 2000). The ability to remobilize 
nutrients is critical during stem elongation, when the crop is 
growing rapidly and nutrient demand is high (Anderson and 
Garlinge, 2000). Therefore, tillers contribute significantly to 
the maintenance of ear growth and grain yield.

Process-based crop growth models were developed to study 
the multiple interacting factors affecting crop growth, devel-
opment, and yield formation under field conditions (Chenu  
et al., 2017). By representing the interactions between geno-
type, environment, and management, crop models are useful 
tools to identify options to improve resource use efficiency in 
cropping systems and narrow yield gaps (Xin and Tao, 2019; 
Padovan et al., 2020). Crop models are also used to evaluate 
the impact of climate change on wheat production (Ye et al., 
2020) and test genetic and management adaptation pathways 
to maintain or increase productivity (Challinor et al., 2007, 
2014; Gouache et al., 2012; Ruiz-Ramos et al. 2018). Several 
modelling studies have pointed out that adaptation of crop 
management by optimizing sowing date and density is impor-
tant for maintaining high grain yields (Tao et al., 2016; Parent 
et al., 2018; Xin and Tao, 2019; Yao et al., 2021).

Crop models are simplified representations of plant growth 
and each model is developed, tested and used under a cer-
tain range of conditions. As one moves away from the usual 
conditions, other mechanisms may come into play that the 
model does not represent. Simulating wheat growth in a high-
yielding environment is already a challenge for crop models 
and tests their ability to achieve yields above the usual range. 
Changing sowing dates and densities under these conditions 
is an even greater challenge, and shows whether the models 
include the necessary mechanisms to represent these atypical 
environments and conditions.

Multi-model ensembles (MME) are used to simulate the 
effect of climate variability and change on cropping systems 
(Palosuo et al., 2011; Asseng et al., 2013; Bassu et al., 2014; 
Webber et al., 2018; Rodríguez et al., 2019) and have been 
shown to be effective in increasing the accuracy of predic-
tion (Martre et al., 2015). Theoretical and empirical results 
have shown that in a wide variety of cases the ensemble mean 
or median is a better predictor of yield, biomass, protein, 
and maximum leaf area index (LAI) than individual models  
(Wallach et al., 2018). However, the ability of MMEs to 

simulate the effect of changing sowing dates and sowing rates 
on yield and yield components has not yet been assessed. The 
objective of this study is to evaluate the accuracy of a MME of 
29 process-based wheat crop models to simulate the effect of 
variable sowing dates and densities on wheat growth and yield 
in a high-yielding environment.

Materials and methods

Experimental dataset
The field trials were carried out by the New Zealand Institute for Plant 
and Food Research and the Foundation for Arable Research at two farms 
located at Leeston (43° 45ʹ S, 172° 15ʹ E) and Wakanui (43° 58ʹ S, 171° 
48ʹ E) in the Canterbury Region of the South Island of New Zealand  
(Craigie et al., 2015). The farm located at Wakanui has achieved the Guin-
ness World Record for the highest wheat yield twice, in 2017 and in 2020. 
The local winter wheat cultivar ‘Wakanui’ was grown under non-stress 
conditions for six consecutive years, first at Leeston (from 2012–2013 to 
2014–2015) and then at Wakanui (from 2015–2016 to 2017–2018) (see 
Table 1). ‘Wakanui’ is a soft wheat with very high yield potential associ-
ated with a long grain-filling period.

In the Canterbury region of New Zealand, winter wheat is usually 
sown between early April and mid-May, with some farmers sowing in 
late March in recent years (Craigie et al., 2015). The objective of the trials 
was to test if sowing earlier (February or early March), and therefore 
increasing the canopy duration and the radiation interception, would in-
crease grain yield. Four sowing dates were tested: February, early March, 
late March, and April (Table 1). At Leeston, the effect of sowing dates was 
studied in combination with four sowing densities: 50, 100, 150, and 200 
seeds m−2, while at Wakanui, only the locally recommended sowing den-
sity was used (150 seeds m−2).

The objective of the Leeston trials was to increase wheat production 
in a high yielding environment without water and nitrogen stress. The 
trials investigated the complex interaction between tiller development, 
ear population, and grain yield, with the goal of finding the optimal 
sowing density for an early sowing date. The experiments consisted of a 
split-plot design with sowing dates as the main plots and sowing rates as 
the subplots, with four replicates. The Wakanui trials used a single sow-
ing density and investigated different cultivars, sowing dates, and the use 
of plant growth regulators (2015–2016) or defoliation (2016–2017 and 
2017–2018), at different sowing dates. The experiments were designed 
as randomized blocks with sowing dates as the main plots and cultivar 
by plant growth regulation or defoliation as the subplots, replicated four 
times. In our study, we considered only the data of the ‘Wakanui’ cultivar 
grown under standard growth regulation and without defoliation.

The field management was adapted each year to obtain ideal growth 
conditions: crops received a yearly N fertilization of between 122 and 
284 kg N ha−1 and irrigation up to 210 mm of water.

Individual plots (12 m×1.65 m) were drilled into a top worked seed 
bed. At both sites, the soil type was Temuka clay loam (Fluventic Endo-
aquents in the USDA classification), a deep, low permeability soil with 
high plant available water capacity (Kear et al., 1967; Craigie et al., 2015). 
The Leeston site was characterized by a shallow water table at about 1 m 
below the soil surface.

Weather data were collected at a weather station located within 2 km 
from the experimental field and provided daily minimum and maximum 
temperature, rainfall, solar radiation, and wind speed and relative hu-
midity at 2 m.

During all experiments the grain, stem, chaff, and leaf dry weight 
at maturity, ear number and grain number, grain unit dry weight, and 
harvest index were determined. The total above ground dry biomass, 
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leaf number per stem and LAI were measured at Zadoks growth stage 
(Zadoks et al., 1974) 32 (stem elongation) and 65 (anthesis), except for 
the first two growing seasons of the trial. For all but the first growing 
season, several in-season measurements of the normalized difference 
vegetation index (NDVI; from Trimble Greenseeker (Trimble Agricul-
ture Division, CO, USA) measurements) and the fraction of intercepted 
photosynthetically active radiation (FIPAR; from Sunscan (Delta-T 
devices, Cambridge, UK) measurements), as well as the date of the 32, 
65, and 90 Zadoks stages were available. FIPAR measurements were 
particularly useful for tracking in-season changes in canopy light inter-
ception and for supplementing information on biomass and LAI that 
were measured only at stem elongation and anthesis. The fertile stem 
biomass was obtained by dividing the final total above ground biomass 
by the ear number, as a measure of the above ground crop biomass per 
ear.

Crop growth models
Twenty-nine currently used process-based wheat crop models of 
the Agricultural Model Intercomparison and Improvement Project 
(AgMIP) Wheat group (https://agmip.org/wheat/) participated in this 
study and contributed to the MME output (Supplementary Table S1). 
Modelling groups were provided with daily weather data (minimum 
and maximum temperature, rainfall, solar radiation, wind speed at 2 
m, relative air humidity at 2 m and average vapour pressure) and soil 
physico-chemical characteristics (soil water lower limit, drained upper 
limit, saturation, apparent bulk density, organic C and organic N con-
centration, and soil pH). Initial soil inorganic N amount was estimated 
for the upper 150 cm for each growing season, based on mineral ni-
trogen values measured in 2013 and 2014 in the upper 60  cm and 
75 cm of soil, respectively. The soil was represented by three layers of 
equal thickness (50 cm) and the distribution of the total initial amount 
of inorganic N in each layer was estimated at 55%, 30%, and 15%, from 
the top layer to the bottom layer. Initial soil water content was esti-
mated at field capacity. The same initial values of soil inorganic nitrogen 
and soil water content were used to initialize the simulations, regardless 
of sowing dates.

The models were calibrated with data measured during the 2014–2015 
growing season, including a combination of four sowing dates and four 
sowing densities, for a total 16 different treatments. Supplied data were 
the mean of the four replicates. For each experiment, modellers were pro-
vided with phenological records: the date of beginning of stem extension 
(Zadoks 31) anthesis (Zadoks 65) and physiological maturity (Zadoks 
87). In addition, the grain, stem, chaff, and leaf dry weight at maturity, 
ear number and grain number, grain unit dry weight, and harvest index 
were provided. Also, time series of measurements of total above ground 
dry biomass, leaf number per stem, and LAI were provided, as well as 
NDVI and FIPAR.

After calibration, simulations were conducted by each model for all 
combinations of sowing date, sowing density, and growing season (Table 1),  
for a total of 50 simulations. All 29 models reported above ground bio-
mass at anthesis and maturity, grain yield, and harvest index, while LAI 
was reported by 28 models, grain dry weight and grain number by 15 
models, and FIPAR by 13 models. The results are plotted as median and 
25% and 75% quantiles of the measured and simulated variables. These 
values were estimated using bootstrap re-sampling.

Crop growth model performance evaluation metrics
The interannual variability of grain yield (GY), was quantified with the 
coefficient of variation (CV), which is the ratio of the standard deviation 
(σGY) to the mean (GY), as a percentage. The standard deviation is given 
by the square root of the sum of the squared difference between the grain 
yield and its mean, divided by the number of grain yield values n.Ta
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CVGY =
σGY

GY
× 100

�  
(1)

σGY =

 ∑n
i=1

(
GY− GY

)2
n�  

(2)

The higher the coefficient of variation, the greater the level of dispersion 
around the mean.

The root mean square error (RMSE) is the standard deviation of the 
residuals and is calculated as the squared root of the mean squared differ-
ence between the observed (O) and the simulated (S) values and is given as:

RMSE =

 ∑n
i=1 (Si −Oi)

2

n�  
(3)

The model accuracy was quantified using the relative RMSE (RRMSE), 
expressed as a percentage, which is useful to compare outputs with dif-
ferent units. RRMSE is obtained by dividing RMSE by the mean of the 
observations (O ):

RRMSE =
RMSE

O
× 100

�  
(4)

We consider that model accuracy is excellent if RRMSE<10%, good 
if 10%<RRMSE<20%, fair if 20%≤RRMSE<30%, and poor if 
RRMSE≥30% (Jamieson et al., 1991).

Statistical analyses
An analysis of variance (ANOVA) was performed to test if year, sow-
ing date, and sowing rate had significant main or interaction effects on 
grain yield. We considered only the Leeston trials, where both sowing 
date and rate were tested (Table 1). The analysis was conducted for both 
simulations and measurements. The ANOVA of measured grain yield was 
performed using data from all four replicates as independent observations 
(32 measurements×4 replicates=128 independent observations). The 
ANOVA of the simulations was conducted considering that the grain 
yield output of each model can be considered as an independent variable 
(32 simulations×29 models=928 independent observations).

Results

Evaluation of models and MME performance

The interactions between year, sowing date, or sowing den-
sity for grain yield were not statistically significant, either for 

measured or for simulated values (all P>0.05) but the ANOVA 
showed a significant variation of measured grain yield with 
year (P<0.001) and sowing date (P<0.01). The sowing den-
sity had no significant effect on measured grain yield (P=0.79; 
Table 2). The ANOVA of simulated grain yield showed that 
three main factors had a significant effect: year, sowing date, 
and sowing density. For both measured and simulated values 
year had the largest effect on grain yield, followed by sowing 
date, while sowing density had the lowest effect.

Under locally recommended sowing conditions (sowing 
date between late March and April and sowing density of 150 
seeds m−2), the MME performance was good for simulating 
the in-season development of the total above ground biomass, 
LAI and FIPAR, as well as the final grain yield measured in the 
field (Fig. 1). However, for winter wheat sown at late March 
2016, the MME underestimated the anthesis biomass, LAI, and 
FIPAR at the beginning of stem elongation (Zadoks 32; Fig. 
1C, F, I).

Under locally recommended sowing conditions, the MME 
simulated the yearly averaged values of grain yield, final above 
ground biomass, and harvest index with accuracy ranging from 
good (RRMSE of 10.33 and 10.09 for grain yield and final 
biomass, respectively) to excellent (RRMSE of 5.75 for har-
vest index) (Supplementary Table S2; Supplementary Protocol 
S1; Fig. 2). Interestingly, the MME underestimated the grain 
yield in the calibration year (2015) while yield in early sowings 
was overestimated. Large discrepancies between MME simula-
tions and measurements were found for total above ground bi-
omass at anthesis, especially for the 2015–2016 and 2016–2017 
growing seasons (Fig. 2A). These years were characterized by 
an underestimation of the anthesis biomass by the MME. The 
interannual variability of average grain dry weight was also 
poorly simulated by the MME (Fig. 2F).

The simulated interannual variability of grain yield 
increased with increasing RRMSE (Fig. 3A), meaning that 
the models with highest RRMSE also overestimated interan-
nual variability of yields. Interestingly one of the models with 
the highest RRMSE (AE) was one of the best performing 
models on the Taylor diagram (Fig. 3B), which does not 
measure bias, since the RMSE is centred by subtracting the 
respective means. These results show that the models match 

Table 2.  Results from the analysis of variance for measured and simulated grain yield

Factor Measured grain yield Simulated grain yield

Degree of freedom F  P Degree of freedom F  P 

Year 2 15.31 <0.001 5 28.92 <0.001
Sowing date 3 5.72 <0.01 3 10.80 <0.001
Sowing density 3 0.35 3 8.68 <0.001
Year: sowing date 2 2.03 8 0.87
Year: sowing density 6 0.16 6 0.36
Sowing date: sowing density 9 1.90 9 0.36
Year: sowing date: sowing density 6 0.34 6 0.04
Residuals 96 892
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well the pattern of measured grain yields although they show 
a systematic shift (bias). Modelling efficiency (EF) decreased 
with increasing RRMSE and most models had a negative EF 
(Supplementary Table S2). Two models had lower mean error 
for grain yield than the MME (Supplementary Table S3; Fig. 
3). The model with the lowest RRMSE for grain yield (NC) 
simulated well the interannual variability of crop growth and 
grain yield, while the MME underestimated it. The perfor-
mance based on RRMSE and represented by the models’ 
rank, changed significantly when we consider only simula-
tions of low sowing density, early sowing date or locally rec-
ommended sowing date trials (Supplementary Tables S3, S4). 
This highlighted that model performance varied with sowing 
conditions. MME simulations showed the best performance 
(lowest value of RRMSE) under low sowing density condi-
tions.

Effect of sowing density

The MME simulations represented well the response to sow-
ing density when the crop was sown at the locally recom-
mended sowing date (Fig. 4). At very low sowing densities, 
total above ground biomass at anthesis and maturity (Supple-
mentary Fig. S1), grain number, and grain yield all increased 
with increasing sowing density in both measurements and 
MME simulations. The increase reached a plateau at 100 or 
150 seeds m−2 in the simulations, while in the measurements 
we observed a slight decrease between 150 and 200 seeds m−2. 
Conversely, average grain dry mass and harvest index showed 
little change with sowing density (Fig. 4E, F). The response of 
measured total biomass and grain yield to sowing density was 
similar to the response of ear number, while the number of 
grains per ear and the fertile stem biomass showed a decreasing 

Fig. 1.  Measurements (symbols) and multi-model ensemble simulations (lines) of total above ground biomass (red circles and solid lines) and grain yield 
(blue triangles and dashed lines; A–C), leaf area index (D–F), and fraction of intercepted photosynthetically active radiation (G–I) versus days after sowing 
for the winter wheat cultivar ‘Wakanui’ sown during the locally recommended sowing window (16 April 2013 (A, D, G), 23 April 2014 (B, E, H), and 29 
March 2016 (C, F, I)) and at the recommended plant density (150 plants m−2) in Leeston (2014 and 2015) or Wakanui (2016), New Zealand. Measured 
data are medians for n=4 independent replicates and simulated data are medians for the multi-model ensemble. Errors bars (measurements) and colour 
bandings (simulations) show 25%–75% quantiles.
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response to sowing density followed by a stabilization around 
150 seeds m−2.

Early sowing changed the response of measured above 
ground biomass and grain yield to sowing density, and both 
decreased when sowing density increased from 50 to 150 
seeds m−2. The measured fertile stem biomass and the grain 
number per ear showed a similar response. Conversely, the 
response of simulated total above ground biomass at anthesis 
and maturity, grain number, and grain yield did not change 
(Fig. 5). Measured grain number and ear number did not 
show a clear pattern. Interestingly, the response of the meas-
ured total above ground biomass at anthesis to sowing den-
sity was different from the one measured at maturity (Fig. 
5A, B).

Effect of sowing date

For low sowing density (50 seeds m−2), under earlier sowing the 
final total above ground biomass and grain yield increased for 
both measurements and MME simulations (Fig. 6). February 
sowing had a negative effect on total above ground biomass at 
anthesis, and this was not captured by the MME. Grain number 
and average grain dry mass were poorly simulated by the MME.

Although the MME simulations gave a correct representa-
tion of the response of final total above ground biomass and 
grain yield to changes in sowing date, the underlying mech-
anism seemed to be wrong. While in measurements, the de-
crease in grain yield for later sowing was linked to the decrease 
in average grain dry mass, in the MME the decrease in yield 
was driven by a decrease in grain number, which was not pre-
sent in the measurements.

For locally recommended sowing density (150 seeds m−2), the 
effect of sowing date on final above ground biomass and grain yield 
initially showed a decrease between February and early March 
sowing and then an increase (Fig. 7). In this case, delaying sowing 
did not lead to a decrease in final total above ground biomass and 
grain yield, as shown by the MME simulation and observed at 
low sowing density (Fig. 6). The measurements showed that early 
sowing decreases ear number. The decrease of biomass and yield 
between February and early March sowing was related to the de-
crease of the fertile stem biomass and the grain number per ear.

Effect of sowing date on in-season dynamics of crop 
growth

For February, early March, and late March sowing, measured 
NDVI increased sharply after sowing, while April sowing 
resulted in a delayed increase (Fig. 8; Supplementary Fig. S2). 
In 2015 and for locally recommended sowing density, February 
sowing showed a clear decrease after the sharp increase, while 
for later sowings NDVI values remained high. In wheat sown 
in February, the decrease of NDVI continued up to the end 
of winter and then started increasing again. Compared with 
NDVI, measured values of FIPAR showed a smoother winter 

decrease. Nevertheless, February sown wheat showed a reduc-
tion of light interception. In 2014 and at low sowing den-
sity (50 seeds m−2) the decrease of NDVI and FIPAR during 
winter was also observed for March sowings, highlighting that 
the decrease could be observed in later sowings (Supplemen-
tary Fig. S2).

Comparing the MME simulations with measured values of 
FIPAR we identified two phases where the MME did not ac-
curately represent the response of light interception. For Feb-
ruary and March sowing, during early crop development, the 
MME underestimated the steep increase of FIPAR and total 
above ground biomass due to early vegetative growth. The 
MME simulations missed the decrease of light interception 
during late winter and overestimated FIPAR during this phase. 
This was partly compensated by the overestimation of FIPAR 
between stem elongation and anthesis, especially for crops 
sown in February. This compensation had a positive effect on 
the accuracy of the prediction of total above ground biomass 
and grain yield, which were close to the measured values for 

Fig. 2.  Measured (blue triangles) and simulated (orange circles) total 
above ground biomass at anthesis (A) and maturity (B), grain yield (C), 
harvest index (D), grain number (E), and grain dry mass (F) for the winter 
wheat cultivar ‘Wakanui’ sown in the locally recommended sowing 
window (late March to early April) and plant density (150 plants m−2) for six 
consecutive years in Leeston (2012–2013 to 2014–2015) then Wakanui 
(2015–2016 to 2017–2018), New Zealand. Measured data are medians for 
n=4 independent replicates and simulated data are medians for the multi-
model ensemble, respectively. Error bars show 25%–75% quantiles.
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Fig. 3.  Evaluation of the performance of 29 wheat crop growth models and their ensemble for simulating grain yield. (A) Simulated grain yield interannual 
variability versus relative root mean square error (RRMSE) for grain yield for 29 wheat crop growth models. The horizontal dashed line indicates the 
measured grain yield interannual variability. (B) Taylor diagram providing the standard deviation (concentric blue lines around (0,0)), correlation (angular 
coordinates) and centred root mean squared error (concentric green lines) of measured grain yield (green filled square) and the 29 wheat crop growth 
models. In (A, B) data are for the winter wheat cultivar ‘Wakanui’ sown at the locally recommended sowing date and plant density for six consecutive 
years in Leeston then Wakanui, New-Zealand. Models are identified with two-letter codes (see Supplementary Table S1).
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February sowing, while March and April sowing overestimated 
the final above ground biomass.

Discussion

The MME simulations estimated the yield response to sow-
ing rate well for the locally recommended sowing date, but 
the simulations were less accurate for earlier sowing dates (Fig. 
1). In general, increasing sowing rate increases the number of 
plants per unit area, but at high densities competition for re-
sources (light, nutrients, and water) can limit leaf and tiller pro-
duction. Several studies have documented yield increases and 
saturation of yield response with increased sowing rate (Spink 
et al., 2000; Postma et al., 2020) and have described limited bi-
omass growth and increased tiller mortality due to excess com-
petition. Competition for light is the primary limiting factor, as 
it becomes important even when nutrients and water are not 
limiting (Postma et al., 2020). Indeed, increasing sowing density 

expands shading for part of the foliage of neighbouring plants, 
reducing plant photosynthesis (Postma et al., 2020). Thus, 
increasing sowing rate should increase final above ground bi-
omass and grain yield up to an optimum threshold (Fig. 4), 
but early sowing, by promoting early vegetative growth and 
competition among tillers, shifts this threshold to lower sow-
ing rates (Fig. 5). This offsets the expected positive effect of 
increased sowing rate on yield for early sowing dates.

Early sowing increases the risk of diseases and pests, but sow-
ing date also has an important effect on tillering and tiller mor-
tality. Early tillers have several growth advantages, including 
higher leaf area, greater number of grains, higher grain weight, 
and an enhanced resistance to stresses (Tilley et al., 2019). Sev-
eral studies have shown earlier sowing dates can increase grain 
yield (Green and Ivins, 1985; Sun et al., 2013; Gandjaeva, 2019; 
Tahir et al., 2019). However, sowing wheat too early can also 
cause excessive tillering, increase tiller mortality, and result in 
lower grain yield (Thiry et al., 2002). In our experiments, for 
low sowing density (50 seeds m−2), final total above ground 

Fig. 4.  Measured (blue triangles) and simulated (orange circles) responses of total above ground biomass and yield components to sowing density for 
the winter wheat cultivar ‘Wakanui’ sown within the locally recommended sowing window (late March and April) for three consecutive years in Leeston 
(2012–2013 to 2014–2015), New Zealand. (A) Total above ground biomass at anthesis, (B) total above ground biomass at maturity, (C) grain yield, (D) 
grain number, (E) average grain dry weight, (F) harvest index, (G) ear number per m2, (H) fertile stem biomass, and (I) grain number per ear. Ear number, 
fertile stem biomass and grain number per ear are not simulated by the wheat crop growth models. Values were normalized using the mean of the 
measurements and simulations at 150 plants m−2 across years. Data are medians and error bars are 25%–75% quantiles for n=4 independent replicates 
(measurements) or the multi-model ensemble (simulations).
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biomass and grain yield increased with earlier sowing (Fig. 6). 
The response was related to an increased number of spikes 
with earlier sowing, a corresponding increase in grain weight, 
while the number of grains per ear decreased. The MME simu-
lations represented the response on yield well, although they 
missed the underlying mechanism since the increase in sim-
ulated yield was driven by an increase in grain number with 
earlier sowing, and not by an increase of ear number and grain 
dry mass as in measurements. For the currently used sowing 
rate (150 seeds m−2), early sowing increased tillering, and thus 
increased competition and tiller mortality (Garcia del Moral 
and Garcia del Moral, 1995; Spink et al., 2000). As a result, and 
contrary to what was observed at low sowing rates, the meas-
ured ear number decreased with earlier sowing (Fig. 7).

The NDVI and FIPAR measurements clearly showed the 
effect of senescence after an initial rapid vegetative growth. 
Overall, in early sown crops FIPAR showed a smaller winter 
decline than NDVI. FIPAR represents the canopy area in-
volved in photosynthesis, while NDVI combines canopy area 

and greenness, and thus represents canopy health and pho-
tosynthetic potential of the canopy. For the February 2015 
and February and March 2014 sowings, we observed a de-
crease in measured NDVI and FIPAR after a rapid increase. 
The decrease is observed with the February sowing in 2015 
for a sowing rate of 150 seeds m−2 and with February sowing 
and March sowing in 2014 for a sowing rate of 50 seeds m−2. 
Since senescence occurs when there is high competition for 
resources between tillers (Hecht et al, 2019), we expected to 
observe lower levels of senescence at lower sowing rates. How-
ever, the data showed a stronger decrease of NDVI and FIPAR 
for later sowing dates for the treatments with lower sowing 
rates. To explain this, we need to consider the interannual var-
iability of temperature, which also affects tiller production and 
leaf growth. A higher temperature means that leaf initiation 
occurs earlier and leaf development is faster. Indeed, 2014 was 
characterized by a higher average temperature from April to 
September. This may have favoured tiller and leaf production 
and increased tiller competition.

Fig. 5.  Measured (blue triangles) and simulated (orange circles) responses of total above ground biomass and yield components to sowing density for 
early sown (late February to early march) winter wheat crops in Leeston (2012–2013 to 2014–2015), New Zealand. (A) Total above ground biomass at 
anthesis, (B) total above ground biomass at maturity, (C) grain yield, (D) grain number, (E) average grain dry weight, (F) harvest index, (G) ear number per 
m2, (H) fertile stem biomass, and (I) grain number per ear. Ear number, fertile stem biomass, and grain number per ear are not simulated by the wheat 
crop growth models. Values were normalized using the mean of the measurements and simulations at 150 plants m−2 across years. Data are medians 
and error bars are 25%–75% quantiles for n=4 independent replicates (measurements) or the multi-model ensemble (simulations).
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Underestimation of initial vegetative growth for February 
and March sowing dates (Fig. 8; Supplementary Fig. S2) 
explains why in some years the MME did not reach the meas-
ured biomass at anthesis (Fig. 2). Problems in representing in-
itial vegetative growth and senescence for early sowing dates 
may also have affected model calibration. The MME was not 
able to represent the decrease in FIPAR after the initial rapid 
growth that was measured at early sowing dates in the cali-
bration year (2014–2015, Supplementary Fig. S2). Therefore, 
the MME tended to overestimate yield for early sowing dates. 
Since the model calibration was performed using all 2014–
2015 sowing conditions, this may have led to a parameteriza-
tion that compensated for the overestimation of early sowing, 
resulting in an underestimation of grain yield for the recom-
mended sowing dates.

Only 13 of the 29 models reported the FIPAR, and of these, 
only three (AE, HE, and SQ) simulated a decrease in FIPAR 
after the rapid increase with the February sowing in 2015 and 
only two (HE, SQ) with the February sowing in 2014, while 

none of the models simulated the decrease measured with the 
March sowing in 2014. Interestingly, the models that were 
more successful in simulating the FIPAR response represent 
different modelling approaches, SQ being a very sophisticated 
model that represents tillering, grain number, and size explic-
itly, while HE is based on a one-leaf and one-grain approach. 
Furthermore, the models that captured the decrease in FIPAR 
did not show better performance in simulating yield (Sup-
plementary Tables S2, S3, S4). This showed that the ability to 
simulate the physiological response did not guarantee a better 
ability to simulate the target variable (grain yield). While some 
models may include some of the processes responsible for the 
observed responses, none of them has been able to represent 
the full complexity of the processes involved. We suggest that 
improving the representation of tillering and tiller competition 
in crop growth models may increase model accuracy when 
simulating high-tillage varieties.

The comparison of the MME and experimental data high-
lighted that the MME was not able to correctly represent the 

Fig. 6.  Measured (blue triangles) and simulated (orange circles) responses of total above ground biomass and yield components to sowing date for 
winter wheat crops sown at low density (50 plants m−2) in Leeston (2012–2013 to 2014–2015), New Zealand. (A) Total above ground biomass at 
anthesis, (B) total above ground biomass at maturity, (C) grain yield, (D) grain number, (E) average grain dry weight, (F) harvest index, (G) ear number per 
m2, (H) fertile stem biomass, and (I) grain number per ear. Ear number, fertile stem biomass, and grain number per ear are not simulated by the wheat 
crop growth models. Values were normalized using the mean of the measurements and simulations for the late March sowings. Data are medians and 
error bars are 25%–75% quantiles for n=4 independent replicates (measurements) or the multi-model ensemble (simulations).
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response of yield to increasing sowing rate at early sowing dates 
and the response to sowing date at the currently recommended 
sowing rate. Some of the models showed better performance 
than the MME in predicting grain yield at an early sowing 
date, but none was more accurate than the MME at a low sow-
ing rate (Supplementary Tables S3, S4).

Conclusion

Although previous studies have shown that MMEs were ef-
fective in reducing uncertainty in predicting yield (Rötter et 
al., 2011; Asseng et al., 2013; Bassu et al., 2014; Li et al., 2015; 
Fleisher et al., 2017), soil water, biomass (Rötter et al., 2012), 
and other crop growth variables (Martre et al., 2015), our results 
indicate that this might not apply to all growing conditions, 
such as early sowing and low sowing rates. Some underlying 
mechanisms, such as tillering, may not be well represented in 
the MME and therefore in most crop models. This is impor-

tant to consider when using a MME approach or single crop 
models to evaluate the impact of a specific management adap-
tation (such as sowing date and sowing density) in wheat crop-
ping systems to climate change projections. As the adaptation 
of sowing date is considered one of the most important meas-
ures for climate change adaptation, it is important to be aware 
of the possible limitations of model accuracy.

In this study, models were used to simulate crop growth 
in a high-yielding environment where sowing conditions 
were modified to achieve even higher yields. Representing 
physiological responses under these extreme conditions is 
a huge challenge for wheat crop models. In addition, some 
responses may have been affected by pest and diseases, which 
are not represented by the models, making modelling even 
more challenging. Although the models have encountered 
difficulties in representing extreme conditions, these results 
are useful in guiding the development of new wheat geno-
types. The response of a wheat idiotype with a very erect 

Fig. 7.  Measured (blue triangles) and simulated (orange circles) responses of total above ground biomass and yield components to sowing date for 
winter wheat crops sown at the locally recommended density (150 plants m−2) in Leeston (2012–2013 to 2014–2015) or Wakanui (2015–2016 and 2017–
2018), New Zealand. (A) Total above ground biomass at anthesis, (B) total above ground biomass at maturity, (C) grain yield, (D) grain number, (E) average 
grain dry weight, (F) harvest index, (G) ear number per m2, (H) fertile stem biomass, and (I) grain number per ear. Ear number, fertile stem biomass and 
grain number per ear are not simulated by the wheat crop growth models. Values were normalized using the mean of the measurements and simulations 
for the late March sowings. Data are medians and error bars are 25%–75% quantiles for n=4 independent replicates (measurements) or the multi-model 
ensemble (simulations).
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canopy, higher potential spike population, high lodging and 
disease resistance, later anthesis, and a longer grain filling pe-
riod would likely be in agreement with the yield increase 
predicted by current models for early sowing. Therefore, un-
derstanding why models fail to accurately predict a measured 
response may point to avenues for genotype improvement 
and guide breeding efforts.

Supplementary data

The following supplementary data are available at JXB online.
Fig. S1. Measured and simulated fraction of intercepted 

PAR, and total above ground biomass and grain yield versus 
days after sowing for wheat crops sown 16 April 2013 at the 
low and at the locally recommended density.

Fig. 8.  Measured normalized difference vegetation index (A, D, G, J), and measured and simulated fraction of intercepted PAR (B, E, H, K), and total 
above ground biomass (red) and grain yield (blue) (C, F, I, L) versus days after sowing for wheat crops sown on 20 February (A, B, C), 10 March (D, E, F), 
20 March (G, H, I), and 9 April (J, K, L) 2015 at the locally recommended density (150 seeds m−2). Vertical yellow lines indicate the observed beginning of 
stem elongation (solid lines) and anthesis (dashed lines). Measured data (symbols) are medians for n=4 independent replicates and simulated data (lines) 
are medians for the multi-model ensemble. Error bars (measurements) and colour bandings (simulations) show 25%–75% quantiles.
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Fig. S2. Measured normalized difference vegetation index, 
measured and simulated fraction of intercepted PAR, and total 
above ground biomass and grain yield versus days after sowing 
for wheat crops sown on 20 February, 10 March, 26 March, 
and 23 April 2014 at the locally recommended density (150 
seeds m−2).

Table S1. List of the 29 wheat crop models used in the 
AgMIP Wheat Phase 4 study

Table S2. Statistical evaluation of model error and interan-
nual variability of measured and simulated grain yield, consid-
ering wheat sown at the locally recommended sowing date and 
plant density.

Table S3. Statistical evaluation of model error in grain yield, 
considering wheat sown at the locally recommended plant 
density vs low sowing density.

Table S4. Statistical evaluation of model error in grain yield, 
considering wheat sown at the locally recommended date 
versus early sowing.

Protocol S1. Crop model performance and evaluation 
metrics.
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