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1.1 Background

A greenhouse is a permanent glass or plastic covered building for the production
of fruits, vegetables, flowers, or ornamentals that has means for controlling the
crop environment (Stanghellini et al., 2019). Cultivation in greenhouses is found
in many places all over the world. Protected horticulture around the world has
grown to an estimated area of 500 000 ha of commercial vegetable production in
greenhouses of which 40 000 ha is glass-covered (Stanghellini et al., 2019). The
technology level of protected cultivation differs hugely world-wide.

The total area of glasshouses in The Netherlands increased from approximately
3300 ha in 1950 to 9600 ha in 1990 (Bakker et al., 1995). In the years 2000 to 2005,
the area was relatively stable around 10 500 ha. From 2005, the Dutch glasshouse
area decreased to just over 9000 ha in 2017 (LEI Wageningen UR, 2015). The
number of companies started decreasing earlier, resulting in a trend of less and
bigger companies. The average company size was 1 ha in 2000 and 2.6 ha in
2017 (LEI Wageningen UR, 2015). Nevertheless, the production per square meter
greenhouse area increased by about 40% between 1990 and 2013 due to, among
other reasons, better light use efficiency and increased use of artificial lighting (Van
der Velden and Smit, 2014). New cultivars and improved cultivation strategies
also enhanced production (Hemming et al., 2017).

Although the average energy consumption per square meter reduced from 45
m3 gas equivalents in 1990 to 27.5m3 gas equivalents in 2013 (Van der Velden
and Smit, 2014), greenhouse horticulture in the Netherlands remains a major
energy consumer. The horticultural sector accounted for about 10 percent of the
total Dutch natural gas consumption and about 5% of the total Dutch electricity
consumption in 2011 (Van der Velden and Smit, 2013). Because of the increasing
area of artificially lighted greenhouses and increasing lighting levels, the proportion
of electricity in the total energy consumption of greenhouses increased from 10%
in 2010 till 26% in 2017 (Van der Velden and Smit, 2018).

Besides the costs of gas and electricity, growers have different motivations to
reduce the energy consumption of their greenhouse. Reasons are, among others,
social acceptance of greenhouse crop production and agreements of the horticul-
tural sector with the government. Goals were formulated in the ’Action plan for
climate-neutral greenhouse horticulture’ (Van der Valk and Van der Poll, 2007).
The main goal of this plan to reduce CO2 emissions by 45% in 2020 (compared to
1990) by decreasing energy demand and increasing the amount of energy from sus-
tainable sources. Furthermore, the Dutch horticultural sector agreed to increase
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energy-efficiency by 2% per year till 2020 (Van der Velden and Smit, 2014). Later
on, the sector agreed in the ’Multi-year agreements on Energy’ (’Meerjarenaf-
spraak Energie’) to produce without CO2 emissions in 2050 (Van der Velden and
Smit, 2019).

High-tech greenhouses in temperate climates, like the Netherlands and Belgium
(Van Den Bulck et al., 2013), need heating in order to maintain optimal growing
conditions. Ventilation is needed in warmer periods to lower greenhouse tem-
perature and to prevent too high humidity levels. High humidity levels could
increase the risk of fungi and diseases e.g. Botrytis cinerea, that decreases yield
and post-harvest quality (Körner and Holst, 2005; Cámara-Zapata et al., 2019).
The disadvantage of cooling by natural ventilation is that at the same time CO2

is removed from the greenhouse air, while CO2 is needed for photosynthesis and
thus production.

In some greenhouses, active cooling can be applied next to natural ventilation.
Those greenhouses are often referred to as semi-closed greenhouses (De Zwart,
2008; Campen and Kempkes, 2011; Gieling et al., 2011; Qian et al., 2012). The
ventilation windows are opened when the cooling system has insufficient capacity
(Qian et al., 2011). When active cooling is applied, higher CO2 concentrations
can be achieved in the greenhouse, and consequently, a higher potential plant
production at lower CO2 injection rates (Dieleman and Hemming, 2011; Gieling
et al., 2011; Teitel et al., 2012). The semi-closed greenhouse can save a lot of
energy by minimizing the ventilation and storing the surplus heat. In this way,
natural gas consumption for heating is reduced. Additional benefits of semi-closed
greenhouses are better control of the greenhouse climate, reduced water vapour
loss through ventilation, and reduced use of pesticides because of the reduced
entry of insects and fungal spores into the greenhouse (Sapounas et al., 2020).

Besides the concept of the semi-closed greenhouse, an increasing number of
greenhouses are equipped with a complex technical infrastructure to modify the
indoor environment. A broad range of options are available; air conditioning units
for heating and cooling, pipe rail heating systems, a CO2 supply system, insulat-
ing (energy) screens, shadow screens, ventilation windows, and supplementary
lighting (Vanthoor et al., 2011). CO2 and electricity are commonly generated by
a combined heat and power installation (CHP). Sometimes CO2 is obtained from
external sources. Equipment for production, storage, and conversion of thermal
energy include (a combination of) CHP’s, boilers, heat pumps, short-term buffers,
aquifer heat storage, cooling towers, and geothermal sources.
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The climate in high-tech greenhouses is usually controlled via a process control
computer. First, the climate recipe in terms of the desired temperature, humidity
level, CO2 level, and lighting throughout the day is defined. Second, this climate
recipe is translated by the grower into settings and operating strategies for running
the climate conditioning equipment as well as the equipment for generation and
storage of energy. Operating these systems relies on long-term experience of the
grower and heuristic rules (Berenguel et al., 2003; Van Straten, 1999). Greenhouse
process control computers have many settings and configuration options available
(Kamp and Timmerman, 1996). For complex configurations of energy equipment,
a separate management system is installed next to the process control computer.
This additional system operates often based on a set of pre-defined rules. This
set of rules is tailor-made. The grower supervises the operation and can overrule
the controller manually when necessary. Due to the inherent complexity of the
systems and lack of insight in all operations and associated costs at the same
time, the operation is usually not optimal with respect to energy consumption,
production, and costs.

1.2 Problem description

The quest for energy saving in modern greenhouse horticulture has led to in-
vestments in a wide variety of (energy) equipment. In the daily operation of
the greenhouse, growers have to decide about the desired growing conditions in
the greenhouse and the deployment of the available equipment. Environmental
variables that have to be controlled in order to control the greenhouse climate
(and thus crop production) include light, temperature, humidity, and CO2 con-
centration. An overview of different approaches to control the greenhouse envi-
ronmental variables is provided by Rodríguez et al. (2015b). Bakker et al. (1995),
Von Zabeltitz (2010), and ASHRAE (2011) provide an overview of the available
technologies for controlling the indoor climate and design considerations when
constructing a greenhouse. Actuators to control the greenhouse climate include
heating systems, ventilation windows, screens, and artificial lighting. Given the
broad range of available climate conditioning equipment and energy sources, their
optimal deployment in view of energy conservation has become a complex matter.
The operation of the equipment is complex due to, among other reasons, varying
heat and cooling demands of the greenhouse, varying prices of gas and electricity,
varying prices of the salable crop produce, uncertainty in outdoor weather con-
ditions. Because of these reasons, the need for energy and cost-effective control
schemes to support the grower in this process increases.
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The infrastructure for energy equipment is not only complex at the level of a
single greenhouse, there could also be a complex relationship between the green-
house system and its environment. A growing number of greenhouses also share
heat. CO2 can be obtained from the boiler, the CHP, or other industrial resources.
Electricity from the CHP is used for lighting and is sold to the grid. Furthermore,
the prices of natural gas and electricity show strong fluctuations. Operating this
complex technical infrastructure is a challenging task for growers. Therefore, more
and more growers request support from research institutes, advisers, and suppliers
of greenhouse equipment for (technical) support in solving the energy scheduling
problem.

The motivation for this project was the practical question from growers and
suppliers about how the management of increasingly complex systems in green-
houses could be improved in terms of minimal energy use, minimal energy costs,
and easiness of use. The work in this thesis is the core of the STW project ’Opti-
mal management of energy resources in greenhouse production systems’ (OMER,
SWT project number 11846).

1.3 Objective

Energy consumption is an important theme in (Dutch) greenhouse horticulture.
The main objective of this thesis is to develop and demonstrate an optimization
framework for minimizing the total energy consumption and energy costs of mod-
ern high-tech greenhouses while maintaining crop production. To stay close to
current greenhouse practice, the optimization problem is split into two stages.
The first stage focusses on the greenhouse climate and minimizes the total energy
demand of the greenhouse while maintaining crop production. The second stage
focusses on the utilization of equipment and minimizes the costs for implementing
the minimal energy demand from stage 1.

Sub-objectives are to

1. develop an optimization framework that minimizes the total energy demand
of greenhouses.

2. develop an optimization framework that minimizes the energy costs of green-
houses.

3. quantify the costs saving of the framework for a commercial test case.

4. quantify the energy saving of the framework for a commercial test case.
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1.4 Approach

In order to fulfill the objective and sub-objectives of the research, a natural choice
for the control structure is the optimal control concept. In general, optimal con-
trol deals with finding optimal control inputs for a given system, such that the
goal function is optimized. In order to do this, a dynamic model of the system
is needed. Optimal control techniques have been used in scientific studies in the
field of greenhouse horticulture for more than thirty years (Seginer, 1989; Van
Henten, 1994; Tap, 2000; Van Ooteghem, 2007b; Vanthoor et al., 2011; Bozchalui
and Cañizares, 2014; Lopez-Cruz et al., 2018). It has been shown that the use
of optimization techniques, and especially optimal control, contributes to lower
energy consumption and/or higher income (Van Henten, 1994; Tap, 2000; Van
Ooteghem, 2007b). The focus in the aforementioned studies was mainly on green-
house climate management and control.

There are fewer studies about the deployment, operation, and control of all
equipment that generates and stores warm water (used for heating) and cold water
(used for cooling) for greenhouses. Molenaar et al. (2007) presented optimization
of the energy costs for a closed greenhouse using a given heat, cold, and electric-
ity demand for a typical year. Applications of various optimization techniques
and analyses of energy systems with a wide variety of equipment in various con-
figurations are present in other fields like office buildings, commercial buildings,
and university campuses (Ooka and Ikeda, 2015; Cho et al., 2014). The studies
mentioned in those articles mainly minimize total energy costs for heating and
cooling based on a specified heat and cold demand. Greenhouses differ from the
aforementioned buildings because of different heat and electricity demands, origi-
nating from different processes and requirements and a stronger thermal coupling
to the outdoor climate. Furthermore, the greenhouse industry in the Netherlands
is characterized by a wide deployment of CHP systems.

Despite their clear advantages, as far as known, none of the optimal control
approaches published to date are currently being applied in modern process control
computers in the greenhouse horticultural sector. Reasons include:

1. the lack of reliable crop production models for the wide range of crops and
species grown in horticultural practice;

2. the limited trust of growers and doubts regarding the quality of crop models,
and a lack of experimentally demonstrated advantages (Van Straten, 1999);

3. the widely felt desire to leave part of the decision making freedom in the
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hands of the grower (Van Straten et al., 2000);

4. the lack of suitable on-line plant measurements. The best approach to any
model-based control strategy requires feedback of the crop state (Van Henten
(1994); Day (1998); Van Henten and Bontsema (2009)). Despite recent
developments with e.g. vision techniques, on-line plant measurements are
generally not available;

5. the absence of accurate predictions of market prices for gas, electricity, and
produce.

In this thesis, a hierarchical two-stage approach is proposed (Fig. 1.1) to over-
come most of these practical obstructions to apply optimal control in greenhouse
practice. In stage 1, the grower defines desired trajectories for the greenhouse
climate, for example, the lower and upper bounds of the desired temperature. In
this way, objections 1, 2, and 3 are overcome. Then, the demand for heating,
cooling, and CO2 is calculated with optimal control techniques and a dynamic
greenhouse climate model, including a generic transpiration and photosynthesis
model. The goal of stage one is to minimize total energy input to the greenhouse.
Therefore, the criterium in the optimal control formulation is the total energy
input.
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Stage 1
Climate optimizer
min J = min

∫
(Q2 + C2) dt

Stage 2
Energy optimizer
min J = min

∫
(Gcost + Ecost) dt
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Figure 1.1: Overview of the 2-stage approach for minimizing energy input and
costs for greenhouse crop production systems. In stage 1, the energy input to the
greenhouse is minimized. In stage 2, the costs for production of heat, cold, and
electricity are minimized. The climate optimization needs the climate constraints
(set by the grower), outdoor climate measurements d, controls from the greenhouse
z (here supplementary lighting Suppl and screen position Screen), and greenhouse
and crop parameters. The results of stage 1 are the optimal heat profile Q∗,
optimal cold profile C∗, the CO2 injection pattern Φ∗

inj and, electricity need of
the greenhouse E. Those are fed into the energy cost optimizer. Here, the prices
p of gas pG and electricity pE and parameters of the equipment are needed. The
results of the optimization in stage 2 are the optimal controls u∗ such as the power
of the CHP and boiler, and heat fluxes to the buffers, which lead to the optimal
value of the goal function J∗.

Many studies that minimize greenhouse energy costs include a crop development
and production model e.g. Tap (2000); Van Ooteghem (2007b); Vanthoor (2011).
The optimization method in stage 1 circumvents the need for crop development
and production models (objection 1) yet still minimizes energy consumption. The
principal idea is to exploit the dynamics of the ambient conditions as much as
possible under given constraints with minimal energy input to the greenhouse.
The method focuses on minimizing energy input to the greenhouse while obey-
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ing grower defined bounds for greenhouse air temperature, humidity, and CO2

concentration. Thus, the responsibility for the crop yield and hence, income is
left in the hands of the grower while the cost side is tackled by minimizing the
resource input. The formulation of the optimal control problem allows for settings
that are familiar to growers (e.g. minimum pipe temperature) to be easily taken
into account in the optimization. The optimal control problem is formulated and
designed to meet the perception of growers as close as possible.

In stage 2, the resulting energy demand from stage 1 serves as a reference, and
optimal energy distribution of this demand over the various types of equipment
is calculated with optimal control techniques and models of the technical infras-
tructure. The goal of stage 2 is to minimize total energy costs. Decoupling the
optimization problem into two stages corresponds with the current situation in
practice. A separate controller, next to the process control computer, commonly
controls the energy equipment in greenhouses with a complex configuration of
equipment.

Several issues that hamper the application of this optimization framework had
to be resolved to be able to solve the resource allocation problem. In particular,
the boiler and CHP installation operated in practice in a certain power range for
efficiency and minimal wear. Therefore, zero-or-range constraints (Hansen and
Huge, 1989) were implemented to operate the boiler and CHP between a specified
range when they are active. Also, buffers for the storage of warm and cold water
can not be loaded and unloaded at the same time because of physical limitations.
Therefore, simultaneous loading and unloading of the buffer was prevented by
defining the heat flux, from and to the buffers, as a single flux that can be positive
or negative. Physical models of the equipment were kept as simple as possible so
that most model parameters are known from the properties of the equipment itself
or can be estimated with standard measurement data.

Calculating optimal control inputs used to be very time consuming because of
the computational load of those problems. Due to developments in computational
speed and software in the last decades, calculating optimal control inputs became
more practical even for more complex dynamical system configurations. Different
software packages are (commercially) available to solve optimal control problems
in a much more user-friendly manner than in the past. In order to solve the
problems described in this thesis different solvers from the Tomlab Optimization
company were used (Holmström, 2001; Holmstrom et al., 2010). These solvers are
especially suitable for solving applied optimization problems in MATLABr.
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1.5 Case-study

To demonstrate the benefits of the proposed two-stage approach over the standard
operation, which, in general, is not an easy task, in this thesis, data from a
real greenhouse served as a benchmark. In fact, the main research question was
inspired by a real query of a commercial rose grower (Boonekamp in Bleiswijk).
Their greenhouse served as a test case for the whole project. Because of the
complex energy system present at the nursery, this greenhouse was assumed to be
one of the most advanced systems present in the Netherlands at the start of the
project in 2011. In Fig. 1.2 a schematic overview of the studied greenhouse with
equipment for climate control and energy management is shown.

The greenhouse was a 40 709m2 Venlo-type greenhouse in Bleiswijk, the Nether-
lands (52 °N, 4.5 °E). Eave height was 6.4m and ridge height was 7.2m. The
roof angle was 23°. The spans were equipped with 2020 ventilation windows
1.35m× 1.67m in size (1). A movable shadow screen (XLS 13 F Ultra) with
70% light transmission was used (2), and a blackout screen was also present
(3). In addition, the greenhouse was equipped with 4536 1000W SON-T lamps
(110Wm−2) for providing artificial lighting (4). A pipe rail heating system was
installed, consisting of 1.1m[pipe]m−2 (5). For each 80m2 area of greenhouse, one
air-to-water heat exchanger (OPAC-106) was available and could be used to heat,
cool, and dehumidify the greenhouse air (6). The greenhouse was connected to
the OCAP (organic CO2 for assimilation by plants) network in the Netherlands,
which transports industrial CO2 to growers (Ros et al., 2014). The maximum CO2

injection capacity was 1200 kgh−1. Two Avalanche+ rose cultivars were grown on
a substrate (rockwool) in separate sections of the greenhouse.

The available pieces of equipment to supply the heating and cooling were an
aquifer heat and cold storage (7), heat pump (8), short term low-temperature
heat (LT ) and cold (C) storage (9), a short therm high temperature (HT ) buffer
(10), boiler (11), CHP (combined heat and power installation, 12), and cooling
towers (13). The heat was also delivered to the neighbouring greenhouse by filling
a high-temperature buffer (14).

For 2012, greenhouse climate data and energy data (five-minute time inter-
val) were obtained from the greenhouse process control computer (Hortimax) and
the dedicated energy equipment controller (Lek Habo). The recorded data were
obtained from different sensors and actuators that were already present at the
nursery. In addition, a time series with real gas and electricity prices (15-minute
time interval) was obtained via the electricity and gas supplier of the grower.
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Figure 1.2: Schematic overview of the installations and equipment related to
heating and cooling in the studied greenhouse. Numbers 1-6 are the actuators
in the greenhouse that control the greenhouse climate. Numbers 7-14 are the
installations that generate and store heat, cold, electricity, and CO2 .

1.6 Demarcation

All optimizations in this thesis were performed afterwards on measured data of
the greenhouse climate, outdoor weather, and equipment from the commercial
case-study greenhouse. The prices of gas and electricity over time were given. So,
no weather predictions or predicted prices were used for the optimizations. The
whole case study focused on data from the year 2012. The configuration of the
equipment in the case-study greenhouse was fixed.
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The realized greenhouse climate by the grower is the result of all settings in the
process control computer. This realized climate was assumed to be the desired
climate and served as the basis for the climate constraints as set by the grower
Fig. 1.1. The constraints around the realized climate were assumed to not affect
crop quality and production. No crop development and/or production model was
used. Nevertheless, crop assimilation and transpiration were incorporated in the
greenhouse climate model.

1.7 Outline

In order to build up experience with the methodology and to reveal issues and pe-
culiarities, in the various studies, climate components and greenhouse equipment
were extended piece by piece. Chapters 2 and 3 deal with the first stage of the two-
stage hierarchical optimization approach where the energy input is minimized. In
Chapter 2, the model and optimization procedure for greenhouse temperature and
humidity will be presented and evaluated. This model and the control problem
formulation are extended with the carbon dioxide balance in Chapter 3. Chapters
4 and 5 deal with the second stage of generating the demanded energy given the
available technical infrastructure at minimal costs. In the first part of Chapter
4, a system with a boiler and a heat buffer is optimized. Then, in the second
part, this system is extended with a combined heat and power installation and an
extra buffer for low-temperature heat storage. In Chapter 5, the system is further
extended to the complete system as present in the studied nursery. Minimization
of energy demand within climate constraints leads to a different demand pattern
than realised by the grower in the greenhouse, so a comparison with both the
actual (realised in the greenhouse) as well as the optimized demand profiles (re-
sulting from Chapter 3) is possible. The optimization formulation and results for
the total system are presented for both demand patterns.
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Abstract

In a modern greenhouse there are a number of alternative systems that can be
deployed to control the climate, and the choice what to use and when is not easy
for the grower. A novel management system is proposed, consisting of an energy
input minimizing module, and a module to realise the determined input with the
available equipment. The current paper describes the energy minimization part.

A dynamic optimization tool based on optimal control theory was used to obtain
time trajectories of the energy flux that minimizes total external energy input over
the year, while maintaining greenhouse air temperature and humidity between
grower defined bounds. By giving the grower the lead in defining the bounds, the
method stays as closely as possible to the grower’s daily practice and experience,
and no crop production models and market prices are needed. The underlying
dynamic model of temperature and humidity, based on known physical principles
and parameters, compared very well with unique, year round high frequent data
from a commercial rose greenhouse. A relatively simple crop transpiration model
was validated separately, with very good results.

It was shown that over twelve selected days, distributed over the entire year, the
energy saving potential as compared to the actual grower’s practice is substantial.
This potential was related to the definition of lower and upper bounds, less natural
ventilation at colder days, and more natural ventilation and less heating at warmer
days. The prominent role of the bounds was clearly demonstrated. Relaxing the
temperature and humidity bounds decreases the energy input to the greenhouse.
While this is obvious, the quantification of the effect as demonstrated here is of
great interest to growers, and is essential for the development of the second part
of the system.
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2.1 Introduction

Greenhouse production is, at least in the Netherlands, a large consumer of energy.
Pressure on Dutch growers to reduce energy consumption in greenhouse crop pro-
duction has increased over the last years. On the one hand growers need, as part
of reducing production costs, to increase energy efficiency as international compe-
tition increases. On the other hand growers are forced to save energy as legislation
for reducing consumption of fossil fuel and exhaust of greenhouse gas emissions
becomes more strict (Montero et al., 2009). One possible direction to realise the
required energy saving is the semi-closed greenhouse, which is attractive for the
greenhouse industry because of the increased CO2 levels inside the greenhouse, re-
duced pesticide application, and potential water and energy savings (Teitel et al.,
2012). These systems are characterized by a variety of equipment, i.e. combined
heat and power generation, heat pump, aquifer seasonal energy storage, daytime
energy storage and heat exchangers in the greenhouse for active heating and cool-
ing. Different configurations of such systems are described and analyzed by Van
’t Ooster et al. (2007), De Zwart (2008); Courtois et al. (2008); De Gelder et al.
(2012); Vadiee and Martin (2012, 2013). These systems are complex regarding
the control and utilization of the energy resources. To use all equipment in an
energy optimal manner, while creating a desired greenhouse climate, is a compli-
cated task, which has shown to be very difficult, even for experienced growers.
Reasons for this are the number and interconnectivity of the equipment that is
used, and the uncertainty in expected outdoor weather. The ultimate objective
of this project is to support the grower in his decision making process concerning
the optimal utilization of energy resources in semi-closed greenhouses.

The approach to greenhouse climate management taken in this research differs
from previous work on various aspects. In this research, the total energy input to
the greenhouse was minimized instead of maximizing the total economic profit,
as was done by Gutman et al. (1993); Van Henten et al. (1997); Seginer and
Ioslovich (1998); Van Straten et al. (2002); Van Ooteghem et al. (2005); Ioslovich
et al. (2009). Gutman et al. (1993) used an economic criterion to minimize heating
costs, while others, for example Ioslovich et al. (2009) and Van Straten et al. (2002)
maximize profit.

However, these methods are not used in practice. This is because of the lack
of reliable crop production models for the wide range of crops and species grown
in horticultural practice and the need to leave part of the decision freedom to the
responsibility of the growers (Van Straten et al., 2000). Yet another and maybe
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even more important reason not to use crop models is the fact that growers do
not trust the current crop models, although these models are considered reliable
in academia. Also proper on-line plant measurements to correct for model errors,
and proper predictions of market prices are not available yet.

In current practice, growers set bounds for temperature and humidity usually
according to a predefined pattern. They use weather predictions, status of the
crop, specific knowledge of the crop, production prognosis, and experience to
define the desired patterns for temperature, humidity, CO2 concentration, and
light levels. The equipment is controlled based on a set of rules and settings,
which may not necessarily be the most energy-efficient. The goal of this paper is
to present a novel method to minimize the total energy input to a greenhouse while
maintaining grower defined bounds. The reasoning is that within the believes of
the grower regarding the desired climate it is still useful to minimize the energy
input.

Because of the complexity of the system, the idea is to split the problem of
optimal utilization of energy resources into two parts. The first part, which is
described in this paper, aims at the realization of a desirable greenhouse climate
with a minimal energy input, given a grower defined lower and upper temperature
and humidity bound. The second part, which is not described in this paper, then
focuses on the optimal scheduling and utilization of the equipment needed to fulfill
the required minimal energy input to the greenhouse.

Minimizing the total energy use without an economic criterion has, as far as we
know, only be done by Chalabi et al. (1996), but they used a steady-state temper-
ature model. Dynamic optimization of the total energy input to the greenhouse
was previously presented in Van Beveren et al. (2013). In the current work, the
greenhouse climate model is extended with a dynamic vapour balance, which is
imperative to obtain realistic results. CO2 control is taken for granted.

The paper is organized as follows. First, the dynamic greenhouse climate model
is described in Section 2 together with the optimization procedure. Then, in
Section 3, model simulation and validation results are presented, followed by the
results of the optimization. Finally, the results are discussed and some concluding
remarks and points for further research are made in Section 4 and 5, respectively.
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2.2 Materials and methods

2.2.1 The greenhouse

The data that were used, were of a 40 709m2 Venlo-type greenhouse in Bleiswijk,
the Netherlands (52 °N, 4.5 °E). Eaves height was 6.4m and ridge height was 7.2m.
The roof angle was 23°. The spans were equipped with 2020 ventilation windows
of 1.35m× 1.67m. The following equipment to influence the greenhouse climate
was installed in the commercial greenhouse involved in this research: a shadow and
black-out screen, artificial lighting, natural ventilation, pipe rail heating, and heat
exchangers. The shadow screen (XLS 13 F Ultra) had a light transmission of 70%.
There were 4536 1000W SON-T lamps (110Wm−2) for artificial lighting installed
in the greenhouse. The pipe rail heating system consisted of 1.1m[pipe]m−2. Per
80m2 greenhouse one air-to-water heat exchanger (OPAC-106) was available that
can be used to heat, cool, and dehumidify greenhouse air. Industrial carbon
dioxide was used for CO2 enrichment. The greenhouse is shown in Fig. 2.1. Two
different Avalanche+ rose cultivars were grown on substrate (rockwool) in the
greenhouse.

Figure 2.1: The 4 ha greenhouse with rose crop, ventilation windows, screens,
artificial lighting, pipe rail heating system, and OPAC-106 heat exchangers.
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2.2.2 Model description

In order to minimize the total energy input to a modern greenhouse using optimal
control, a model of the greenhouse air temperature and humidity is needed. While
many dynamic models for greenhouse temperature and humidity have been pre-
sented in the literature, the focus on energy input, and the system configuration
urged us to combine existing knowledge into a newly designed dynamical model
that was suitable for this study. The model was designed such that the optimiza-
tion method is easily applicable to different greenhouse configuration and different
crops. To describe the indoor climate of the greenhouse, physics-based dynamical
balances were set up yielding two differential equations, one for temperature and
one for the absolute humidity (Eqs. (2.1) and (2.2)).

dTair

dt
=

1

ccap
(Qsun −Qcov −Qtrans +Qlamp

−Qvent +Qhe,heat −Qhe,cool +Qpipe) (°Cs−1)

(2.1)

dχair

dt
=

1

h
(ϕtrans − ϕcov − ϕhe,cool − ϕvent) (gm−3s−1) (2.2)

These models were based on greenhouse climate models as described by Van
Henten (1994), De Zwart (1996), Van Ooteghem (2007b), Van Henten and Bontsema
(2009) and Vanthoor (2011). The energy balance is influenced by the following
energy fluxes as shown in Fig. 2.2: incoming radiation Qsun, heat losses through
the cover Qcov, transpiration by the crop Qtrans, artificial lighting Qlamp, natural
ventilation Qvent, heating Qhe,heat and cooling Qhe,cool with the heat exchangers,
and heating by the pipe rail system Qpipe (Wm−2). The vapour balance is influ-
enced by crop transpiration ϕtrans, condensation on the cover ϕcov, condensation in
the heat exchangers due to cooling ϕhe,cool, and vapour exchange with outdoor air
by natural ventilation ϕvent (gm−2s−1). The vapour fluxes are strongly coupled to
the associated heat fluxes. In the next two sections the energy and vapour fluxes
are worked out in detail.
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Tair χair

Qpipe

Qhe,heat / Qhe,cool

ϕhe,cool

ϕtransQtrans

Qcov

Qvent ϕvent

Qsun

ϕcov

Qlamp

Figure 2.2: Overview of the climate variables Tair and χair, and corresponding
energy fluxes Q and vapour fluxes ϕ. To validate the model, all fluxes were
calculated using measured input data. Feed-back effects of changes in Tair and
χair on the uncontrollable fluxes were taken into account. In the optimization
mode the fluxes that can be controlled are represented by the dashed lines.
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For model validation, the fluxes Qvent, Qhe,heat, Qhe,cool, Qpipe, ϕvent, and ϕhe,cool

were calculated based on measurements obtained from the greenhouse process
control computer. For optimization, these fluxes were aggregated to produce one
energy input QE to the system as will be shown in Section 2.2.4. Parameters
and constants that are not mentioned in the text are listed in the Appendix in
Table 2.3.

Energy fluxes

Energy added to the greenhouse air by incoming radiation Qsun was computed
using Eq. (2.3), where the measured outside radiation Irad (Wm−2) is multiplied
by the total light transmission of the cover τtot (−). Total cover transmittance
is the constant cover transmission τcov (−), multiplied by a correction factor for
closing of the shadow screen Clscr (%) and closing of the blackout screen Clscr2
(Eq. (2.4)). In this equation, τscr is the transmissivity of the shadow screen and
τscr2 the transmissivity of the blackout screen. A screen closure of 100% means
that the screen is completely closed.

Qsun = τtot Irad (Wm−2) (2.3)

τtot = τcov

(
1− (1− τscr) Clscr

100

)(
1− (1− τscr2) Clscr2

100

)
(−) (2.4)

Convective heat loss through the cover Qcov was described by

Qcov = αcov
Acov

Afloor

(Tair − Tout) (Wm−2) (2.5)

where αcov is the heat transfer coefficient of the cover material (Wm−2C−1), Acov

is the greenhouse cladding area (m2), Afloor is the greenhouse floor area (m2) and
Tout is the outdoor temperature (°C).

Reliable and relatively simple models are available to predict crop transpiration
in a variety of different greenhouse crops (Stanghellini, 1987; Katsoulas, N., Kittas
C., Baille et al., 2001; Medrano et al., 2005). Crop transpiration is needed in
both the temperature and vapour balance. Here, the energy extraction from
greenhouse air due to crop transpiration Qtrans was described by Eq. (2.6), based
on a Pennman-Monteith equation for transpiration reported by Stanghellini and
De Jong (1995).

Qtrans = ge L (χcrop − χair) (Wm−2) (2.6)
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Here, χcrop is the absolute water vapour concentration at crop level, χair the
absolute water vapour concentration of greenhouse air (gm−3), L the amount of
energy needed to evaporate water from a leaf (Jg−1), and ge the transpiration
conductance (ms−1). Transpiration conductance ge was calculated as

ge =
2LAI

(1 + ϵ)rb + rs
(ms−1) (2.7)

and depends on the leaf area index LAI, the ratio of latent to sensible heat content
of saturated air ϵ, the boundary layer resistance parameter rb, and the stomatal
resistance rs. The LAI of the rose crop is relatively constant during the year and
was assumed to be 2.6m2m−2. The water vapour concentration at crop level χcrop

is calculated as
χcrop = χair,sat + ϵ

rb
2LAI

Rn

L
(gm−3) (2.8)

where χ∗
air is the saturated vapour concentration. For temperatures between 15 °C

and 30 °C the saturated vapour concentration can be approximated, according to
Bontsema et al. (2007), by

χair,sat = 5.5638e0.0572Tair (gm−3). (2.9)

Stomatal resistance rs (sm
−1) was calculated via

rs =
(
82 + 570 e−γ Rn

LAI

) (
1 + 0.023 (Tair − 20)2

)
(2.10)

where the crop specific parameter γ was reported to be 0.008 for roses, whereas for
tomato γ was reported to be 0.4 (Stanghellini, 2010). In Eq. (2.10) (Tair − 20)2

was used instead of (Tair − 24.5)2 as in Stanghellini (2010); Bontsema et al. (2007)
to adapt to the specific crop in this greenhouse. Rn is net radiation at crop level
(Wm−2), based on Bontsema et al. (2007), calculated as

Rn = 0.86(1− e−0.7LAI)(Qsun + PE
fon
100

) (Wm−2) (2.11)

where PE is the rated electric power of artificial lighting installed (Wm−2) and
fon is the fraction of lamps that is switched on (0, 331/3, 662/3, or 100% because
they were divided into three separate groups that can be on or off). Lamps in the
greenhouse produce, next to light, also heat that heats up greenhouse air. Heating
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due to artificial lighting was calculated via

Qlamp = η PE
fon
100

(Wm−2) (2.12)

where η is the part of electric energy consumption of the lamps that is transformed
into heat released to greenhouse air (−).

The specific ventilation gV was calculated with the ventilation model of De Jong
(1990), which depends on window opening, in and outdoor temperature, and wind
speed. Heat loss due to ventilation was then calculated as

Qvent = gV ρairCp,air (Tair − Tout) (Wm−2) (2.13)

where gV is specific ventilation (m3m−2s−1), ρair density of air (kgm−3) and Cp,air

specific heat capacity of air (Jkg−1C−1).

The model for the heat exchangers was only used and needed to validate the
greenhouse climate model. The model for the heat exchangers as used in (Van
Beveren et al., 2013) was revised in order to get a more realistic model performance
for different conditions. To do this, separate equations were used for the energy
flux in heating mode Qhe,heat (Eq. (2.14)) and cooling mode Qhe,cool (Eq. (2.15)).
Model results were then compared with the energy and condensation estimate
from the model as described in De Zwart and Kempkes (2007). The heat transfer
coefficient αhe,heat was set to be 1050Wm−2C−1 for heating and αhe,cool was set
at 525Wm−2C−1 for cooling. After adjusting these parameters, the Spearman
correlation coefficient between the two models was 0.90 for heating and −0.64 for
cooling.

The energy fluxes Qhe,heat and Qhe,cool depend on the heat transfer αhe (Wm−2C−1),
the floor area per heat exchanger Ahe,floor (m2), and the temperature difference
between air Tair and the sheet in the heat exchanger Tsheet (°C).

Qhe,heat = αhe,heat
Tsheet − Tair

Ahe,floor

(Wm−2) (2.14)

Qhe,cool = αhe,cool
Tsheet − Tair

Ahe,floor

(Wm−2) (2.15)

The temperature of the sheet was calculated based on the measured temperatures
of water entering, The,in, and leaving, The,out, the heat exchanger (°C) and the

22



empirically determined weighing factor β.

Tsheet = βThe,in + (1− β)The,out (°C). (2.16)

Heat added by pipe rail heating was calculated based on average pipe temperature
obtained via averaging measured in and outgoing pipe temperature. The amount
of heat added was described by

Qpipe = αpipe (Tpipe,avg − Tair) (Wm−2) (2.17)

where αpipe is the heat transfer coefficient from pipe to air (Wm−2C−1), and
Tpipe,avg the average pipe temperature (°C).

Vapour fluxes

The amount of energy released due to evaporation of the leaves was estimated
via Eq. (2.6). The amount of vapour that is evaporated by the crop ϕtrans was
calculated as

ϕtrans = ge (χcrop − χair) (gm−2s−1), (2.18)
which is the same as ϕtrans = Qtrans/L, where L is the amount of energy that is
needed to evaporate water.

Condensation to the cover ϕcov occurs when the temperature of the cover is
below the dew point temperature of the air. Since Papadakis et al. (1992) showed
that the slope of the cover did not influence the condensation estimate, the con-
densation conductance gC (ms−1) can be estimated based on mass transfer theory.
Therefore, the equations as proposed by Stanghellini and De Jong (1995) could
be simplified to Eq. (2.19) (Bontsema et al., 2007).

ϕcov = gC
(
0.2522e0.0485Tair (Tair − Tout)− (χair,sat − χair)

)
(gm−2s−1) (2.19)

Condensation conductance gC in Eq. (2.19) was calculated as

gC = max
(
0, pgC (Tair − Tcov)

1/3
)

(ms−1) (2.20)

where the parameter pgC , which is related to the properties of the condensation
surface, was 1.8× 103 m°C−1/3s−1.

Condensation in the heat exchanger ϕhe,cool was calculated with the following
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equation
ϕhe,cool = gC,he(χ

∗
sheet − χair)

(
gm−2s−1

)
(2.21)

the saturated vapour concentration at the sheet was calculated via Eq. (2.9), where
the air temperature Tair was replaced by the temperature of the sheet Tsheet. The
condensation conductance gC,he was calculated, based on Stanghellini and De Jong
(1995), as a function of the air temperature Tair and the temperature of the sheet
in the heat exchanger Tsheet.

gC,he = max
(
0, pgC ,he(Tair − Tsheet)

1/3
)

(ms−1). (2.22)

In this equation the value of pgC ,he (0.25× 103 m°C−1/3s−1) was obtained by fitting
Eq. (2.22) to the complex model of De Zwart and Kempkes (2007). A Spearmans
correlation coefficient of 0.99 was found for the relation between those two esti-
mates.

The vapour flux due to ventilation was calculated as

ϕvent = gV (χair − χout) (gm−2s−1) (2.23)

where the specific ventilation term gV is the same as in Eq. (2.13).

2.2.3 Data

The simulation model needs external input data to calculate and validate green-
house air temperature and humidity. To validate the model, the energy and
vapour fluxes related to the fluxes that can be controlled in the optimization pro-
cedure have to be calculated. To do this, for instance realised window opening for
lee and wind side were used to calculate the energy flux due to ventilation. In-
puts for the model were the mean values of the different control groups for lamps,
screens etc.

Temperature and humidity were measured with eight HortiMaX® measurement
boxes, two in each of the four greenhouse compartments. To compare simulation
results with measurements, the box values were averaged to represent the spatial
mean. Outside weather conditions (radiation, temperature, humidity, and wind)
were measured with a HortiMaX® weather station. Data with a time interval of
5min was collected from the HortiMaX® process control computer.
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In this greenhouse also crop transpiration was measured. This was done by
a HortiMaX® Prodrain® weighing gutter system. This gave the opportunity to
validate the crop transpiration model with real measured data.

2.2.4 Optimization procedure

A general optimal control formulation was chosen to formulate the optimization
problem. Given the model, initial conditions Tair(0) and χair(0), constraints on
the climate variables and control inputs, and external inputs, the optimal control
trajectory that minimizes total energy input over time can be found by minimizing
the cost function J over time:

min
QE ,gV

J(QE, gV ) =

∫ tf

t0

Q2
E dt (2.24)

where t0 is the initial time and tf the final time. A quadratic cost function was
chosen because it penalizes larger pertubations more than smaller ones. The
optimal daily energy input

∑
Q∗

E was calculated as the integral of the absolute
optimal energy input Q∗

E to account for both heating and cooling.

Two control inputs were defined. The first control input was defined as the
aggregated controllable energy flux QE. This term includes both the heating flux
of the pipe rail heating system and the heating or cooling flux from the heat
exchangers (Eq. (2.25)).

QE = Qhe,heat −Qhe,cool +Qpipe

(
Wm−2

)
(2.25)

All the terms have associated costs, but the cost-effective allocation of each of the
terms to realise the minimized total energy input QE is of concern only in the
second stage of the dual-stage approach of optimal utilization of energy resources
in the greenhouse. However, since cooling and dehumidification via natural ven-
tilation is cost-free, the specific ventilation gV was defined as the second separate
control input. This procedure assures that equipment energy, as in Eq. (2.25),
is only requested if it is not possible to obey the air temperature and humidity
bounds by natural ventilation alone. Heating with the pipe rail system or heat
exchangers has no effect on the absolute vapour concentration of the air, but
does affect the relative humidity of the air. Cooling with heat exchangers does
affect the absolute vapour concentration of air due to condensation in the heat
exchangers, which is represented in the vapour balance by ϕhe,cool.
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Control inputs QE and gV were constrained by the following control inequality
constraints

Qmin
E (t) ≤ QE(t) ≤ Qmax

E (t) (2.26)

gmin
V (t) ≤ gV (t) ≤ gmax

V (t) (2.27)
where Qmin

E was the maximal cooling capacity and Qmax
E was the maximal heating

capacity. We assumed constant maximum capacities of 200Wm−2 for both cooling
and heating. For the second control constraint Eq. (2.27), bounding the specific
ventilation gV , gmin

V was equal to the leakage ventilation and gmax
V was equal to the

specific ventilation at 100% window opening on both wind and leeward side. It
depends on wind speed and indoor and outdoor temperature, and was calculated
via the ventilation model of De Jong (1990).

The method requires the specification of the bounds. While in a future practical
application this can be left without difficulty to the grower, it is necessary to
make choices here in order to test the method and to show its potential. Hence, it
was decided to take the realised trajectories of the grower, and to specify smooth
bounds around these (moving average with a time span of 4 hours). The reasoning
behind this is that the current trajectories were realised by the climate computer
on the basis of settings that the grower believed to be beneficial to his crop.

The bounds are defined as

Tmin
air (t) ≤ Tair(t) ≤ Tmax

air (t) (2.28)

RHair(t) ≤ RHmax
air (t) (2.29)

where Tmin
air (t) was the lower temperature bound and Tmax

air (t) was the upper tem-
perature bound defined by the grower. In Eq. (2.29), RHair is a function of Tair(t)
and χair(t).

Settings for the deployment of lamps and screens are determined by the grower,
and were therefore assumed to be given. In the practical application of new
approach, the grower is given the lead in defining the bounds on the climate
variables, thus giving the grower the possibility to influence crop growth, crop
development, and crop production in a comparable way as in current practice.
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The optimal control problem was solved with PROPT - Matlab Optimal Control
Software, which is a platform for solving applied optimal control and parameter
estimation problems (Rutquist and Edvall, 2010). PROPT uses a collocation
method for solving optimal control problems, which means that the solution takes
the form of a polynomial which satisfies the differential algebraic equations and
path constraints at the collocation points (Edvall and Goran, 2009). The input
data were interpolated in between the collocation points and an optimization
horizon of one day was used. Data processing, model building, validation, and
optimal control formulation with PROPT were done in Matlab (version 7, The
MathWorks Inc., Natick, USA).

2.3 Results

First the results of the model validation are shown, followed by the results of
minimizing the total energy input to the greenhouse.

2.3.1 Model validation

The presence of a weighing gutter to measure crop transpiration in the greenhouse
gave the opportunity to compare calculated crop transpiration with measured crop
transpiration. These results are presented first, followed by the simulation results
for temperature and humidity of greenhouse air.

Crop transpiration

Crop transpiration was compared for 200 days in 2012. Recordings lower than 5
and higher than 500 gm−2h−1 were excluded from the analysis because they were
seen as measurement errors. This occurred 296 times out of 56700 samples in
200 days (<0.6%). A typical result is shown in Fig. 3 for eight days in April
2012, selected because of wide variation in daily solar radiation. Simulated crop
transpiration showed a good fit with measured crop transpiration over the full
range of radiation levels. In Fig. 2.3 also the global radiation Irad, status of the
lamps fon, and total transmissivity of the cover and screens τtot (Eq. (2.4)) at
these days are shown. Total transmissivity depends on the closure of the shadow
screen and the blackout screen. The blackout screen was closed for some hours
during night. Then, the transmissivity was very low. However, the closure has no
effect on crop transpiration since there is no radiation from the sun during this
time. The shadow screen was closed when global radiation exceeded the threshold
value set by the grower. This can be seen in the early afternoon of some days
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with high radiation values when τtot drops from 0.7 to lower values. The effect
of switching on artificial lighting can be seen in the step in crop transpiration
around midnight. The correlation coefficient between simulated and measured
crop transpiration was 0.86. Average transpiration during night (Irad < 50Wm−2)
was 77 gm−2h−1 for the simulation and 79 gm−2h−1 for the measurement. Average
transpiration during day (Irad > 50Wm−2) was 168 gm−2h−1 for the simulation
and 161 gm−2h−1 for the measurement. There can be various reasons for the
differences between measured and simulated crop transpiration. While a constant
LAI was used for calculation, in practice LAI fluctuates during the year due
to crop maintenance and harvesting. Another possible source of error is that the
weighing gutter integrates over the measurement interval. Due to the non-linearity
with respect to radiation this is not the same as using the average light over the
interval as done in the model. Also local moisture differences can play a role. Yet,
overall, the crop transpiration model performs very well.

Temperature and humidity

Outcomes of simulations with the model as described in Section 2.2.2 were com-
pared with measured data to assess the usability and performance of the model.
Spatial temperature distribution in the greenhouse was evaluated for different pe-
riods during the year 2012. The temperature differences between measurement
boxes was never larger than 2.0 °C. An example of the spatial distribution of tem-
perature in the greenhouse at 10:00 AM on April 16, 2012 is shown in Fig. 2.4.
The standard deviation of each measurement box compared to the mean of the
total number of measurement boxes was in the range of 0.4 °C to 0.7 °C, which is
less than reported in Opdam et al. (2005) who measured a deviation within 1.0 °C
to 1.5 °C from the mean.
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Figure 2.3: (a) Measured (solid line) and simulated (dashed line) crop transpira-
tion (gm−2h−1), (b) global radiation Irad (Wm−2) (solid line) and status of the
artificial lighting fon (percent) (dashed line), and (c) total transmissivity τtot (-)
for April 13, 2012 through April 20, 2012.
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Figure 2.4: Spatial temperature distribution in the greenhouse at 10:00 AM on
April 16, 2012. Temperatures were linearly interpolated between the measurement
boxes. In the morning, sunrise is at the east side (left) of the greenhouse. This is
also the place where the highest temperatures occur in the greenhouse.

Greenhouse air temperature and humidity were simulated for all days in the
year 2012. The mean of the 24 hour temperature sums of all days in 2012 was
469 °Chd−1 (SD=27 °Chd−1 for the measured temperature, and 468 °Chd−1 for the
simulated temperature. The standard deviation (SD) of the measured tempera-
ture sum was 27 °Chd−1 and the standard deviation of the simulated temperature
sum was 41 °Chd−1. Most of the times the simulation followed the dynamic be-
haviour of the measurements quite well. A characteristic example is shown in
Fig. 2.5.

A quantitative comparison between measured and simulated results over the
whole year 2012 is shown in Table 2.1. The correlation coefficient r for tempera-
ture was 0.88 , while for the absolute humidity this was 0.77. Relative humidity
depends on temperature and absolute humidity. For relative humidity the corre-
lation coefficient was 0.60 , which is lower than for both temperature and absolute
humidity, but visual inspection of simulated relative humidity (Fig. 2.5) shows
that it follows the measured relative humidity well, although there can be days
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Figure 2.5: (a) Measured (solid line) and simulated (dashed line) air temperature
Tair, (b) absolute humidity χair, and (c) relative humidity RHair for 13 through
20 April, 2012.

where the model performance is worse. The Root Mean Square Error (RMSE) of
temperature was in the same range as the temperature differences in the spatial
distribution (Fig. 2.4). Differences between the simulation and measurements can
partly be explained by local temperature and vapour gradients.

Table 2.1: Summary of the results of validation of the greenhouse climate model
for 2012. The correlation coefficient r and Root Mean Square Error (RMSE) for
greenhouse temperature (Tair) and absolute humidity (χair), and relative humidity
(RHair).

r RMSE
Temperature 0.88 1.57 °C
Absolute humidity 0.77 1.76 gm−3

Relative humidity 0.60 7.35%
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2.3.2 Optimization

Optimal trajectories for the control inputs (QE and gV ) and corresponding tem-
perature and humidity were computed for different days during the year 2012 as
described in Section 2.2.4. In this research, the real realised air temperature as
measured in the commercial greenhouse was assumed to be the desired tempera-
ture. Lower and upper temperature bounds were obtained by smoothing measured
indoor temperature and by adding a bandwidth of ±1 °C to the smoothed tem-
perature.

In order to study the effect of the number of collocation points on the opti-
mal energy input, calculation time, and accuracy, the effect of different numbers
of collocation points was examined by optimization of the energy input for one
day with different numbers of collocation points. The optimal solution was first
computed for the smallest number of collocation points, and then, using the ob-
tained solution as new initial guess, the optimal solution was computed for the
subsequent number of collocation points.

The optimal energy input for different numbers of collocation points and the
calculation time are shown in Fig. 2.6 for 16 April 2012. A range of collocation
points, starting from six, with steps of six, until 150 points was used. The cal-
culations were done for three choices of RHmax

air , to check whether these choices
affect the convergence to the optimal solution and the computing time.
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Figure 2.6: Evaluation of the effect of number of collocation points n on the
optimal daily energy input

∑
Q∗

E (MJd−1) (left) and the effect of the number of
collocation points on the calculation time (s) (right) for three different constraints
on maximum humidity in the greenhouse (RHmax

air = 90% , RHmax
air = 85%

, and RHmax
air = 80% ) for 16 April, 2012. The temperature bounds were

defined as the smoothed realised temperature in the greenhouse ± 1 °C.

For a low number of collocation points, the optimal daily energy input
∑

Q∗
E

first increases because the data and bounds are only defined at the collocation
points. Faster changes in for example outdoor weather are therefore averaged
out, and not taken into account. This leads to optimal solutions that are not
optimal if a higher number of collocation points is chosen. After 24 collocation
points, the optimal energy input stabilizes. Calculation time increases for all of
the three situations as the number of collocation points increases. A lower value of
RHmax

air leads to slightly higher calculation times. The calculation time to obtain
the first optimal solution (n=6) was relatively high.

To exclude the influence of the number of collocation points on the optimal
energy input, the minimum number of collocation points used for the remaining
calculations was 48. In (Fig. 2.6), left, the optimal energy input remains constant
after 48 collocation points. 48 collocation points correspond to a time interval
of 30minutes, suggesting that fluctuations of the greenhouse variables within a
scale of 30minutes are irrelevant. For the given day, and given settings, the
optimal daily energy input was about 2.7MJm−2d−1 for RHmax

air = 80% and about
1.2MJm−2d−1 for RHmax

air = 90%.
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Optimal temperature and humidity trajectories were calculated for twelve days
in 2012, one day in each month. For these days, the optimal daily energy input∑

Q∗
E and the optimal heat loss due to ventilation

∑
Q∗

vent are shown in Ta-
ble 2.2. In this table also the average outdoor day and night temperature, and
the average global radiation during the day (light) period are shown, to give some
characteristic data of these days. To compare these results with the real situation
in the rose greenhouse operated by the grower, calculated energy fluxes (based on
measurements) of the pipe rail heating, heat exchangers and natural ventilation
are also given. Pipe rail heating was used on all analyzed days. The heat ex-
changers are used on nine of the twelve days to heat, and on four of the twelve
days to cool. An important reason to use the heat exchangers for cooling instead
of natural ventilation in real life is to have higher CO2 levels inside the green-
house. This cannot be captured in the current study, as the analysis including
CO2 was left for further research. At 16 April, 2012, the grower used the heat
exchangers to heat the greenhouse air for some periods during the night and to
cool for one period in the afternoon. In the optimal situation, lowest energy input
Q∗

E of the twelve days was 0.39MJm−2d−1 at 16 August, 2012, which was the
warmest day. The difference between the grower and the optimal result can be
explained by the fact that pipe rail heating was used for the whole day, and cool-
ing with the heat exchangers was applied at the same time. Highest energy input
was 6.22MJm−2d−1 at 16 January, 2012, which was the coldest day of the twelve
days. Besides that, 16 January was a bright day, so direct radiation contributed
to heating the greenhouse during day. Because of the low outside temperatures,
ventilation windows were closed as much as possible in the optimal situation.
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Table 2.2: Optimal energy fluxes
∑

Q∗
E and

∑
Q∗

vent (MJm−2d−1), average out-
door air temperature during night T out,night and during day T out,day (°C), average
global radiation during day Irad,day (Wm−2), and light sum

∑
Irad (MJm−2d−1)

for 12 days in 2012. Day time is defined as (Irad > 50Wm−2). Also the calculated
fluxes prior to optimization (calculated from measured data, based on operation
of the greenhouse by the grower)

∑
Qpipe,

∑
Qhe,heat,

∑
Qhe,cool,

∑
Qvent, and∑

QE,grower (MJm−2d−1) are given. The bounds were defined as ∆T = ± 1 °C
around the smoothed measured indoor temperature and RHmax

air = 85%.

16-Jan 16-Feb 16-Mar 16-Apr 16-May 16-Jun 15-Jul 16-Aug 16-Sep 16-Oct 16-Nov 16-Dec

T out,night 0.1 5.2 8.6 4.7 7.2 14.9 13.9 17.9 14.2 10.6 3.9 7.3
T out,day 2.4 6.9 9.2 6.9 9.6 17.4 15.6 20.8 17.1 13.2 4.4 7.5
Irad,day 195 108 211 430 426 431 332 318 234 250 69 73∑

Irad 4.98 3.31 6.88 18.51 21.19 20.42 16.97 14.14 8.99 6.93 1.29 1.03
Calculated fluxes resulting from operating by the grower∑

Qpipe 3.62 3.94 4.04 4.62 3.35 2.84 3.51 3.80 3.84 4.42 2.82 2.28∑
Qhe,heat 3.81 4.82 3.26 0.63 3.57 0.44 0.00 0.00 0.00 1.73 5.57 3.71∑
Qhe,cool 0.00 0.00 0.00 0.22 0.00 4.97 2.48 7.87 0.00 0.00 0.00 0.00∑
Qvent 2.49 6.49 5.02 6.25 9.37 4.35 3.86 3.25 4.31 4.98 4.50 4.25∑
QE,grower 7.43 8.76 7.30 5.47 6.92 8.25 5.99 11.67 3.84 6.15 8.39 5.99

Optimal solution∑
Q∗

E 6.22 3.13 2.69 1.91 1.71 2.11 1.84 0.39 1.59 1.55 4.54 3.58∑
Q∗

vent 0.13 0.88 2.46 3.90 4.82 7.16 5.43 3.32 4.41 3.60 0.00 1.26

The energy input of the strategy resulting from the optimization procedure
(
∑

Q∗
E) was, at all studied days, lower compared to the strategy resulting from the

grower
∑

QEgrower (
∑

Qpipe+
∑

Qhe,heat+
∑

Qhe,cool). At days with lower outside
temperatures, part of the energy saving in the optimal situation is realised by less
natural ventilation. At those days where the grower used the heat exchangers for
cooling, no cooling was used in the optimal solution, but more natural ventilation
and less heating was applied. Also the bounds on temperature, which allow lower
and higher temperatures compared to the realised air temperature, contributed
to the energy saving in the optimal situation. The mean 24 hour temperature
sum of the twelve days was 462 °Chd−1 (SD=21 °Chd−1) as resulting from growers
operation, and 448 °Chd−1 (SD=29 °Chd−1) obtained from the optimal situation.
Comparative temperature sums indicate comparative conditions for crop growth
and development. The mean time that RHair was higher than 80% was 10.4 h
(SD=8.8 h), while in the optimal situation this was 16.0 h (SD=6.1 h). Since CO2

is not taken into account in the optimization and only twelve days were analyzed it
is not completely fair to compare the energy consumption in the optimal situation
with the realised situation by the grower. However, this study indicates that a
substantial energy saving can be achieved by minimizing the total energy input.

Overall the potential of energy saving with these settings, as a combination of
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minimizing the energy input and the definition of lower and upper temperature
bounds and an upper humidity bound was on average 62% for the twelve days
shown in Table 2.2.

The optimal temperature and humidity trajectories and optimal control trajec-
tories for 16 March, 2012 are shown in Fig. 2.7 and for 16 April, 2012 in Fig. 2.8.
The optimal temperature trajectory at 16 March is as much as possible on the
lower allowable bound since the outside temperature and radiation on this day
were not very high. Bringing the temperature up would require extra heating,
which is not desired. During night, heating is applied such that RHair does not
exceed the upper humidity constraint. RHair is lower during day time due to the
higher temperatures in the greenhouse and the air exchange with outside air due to
ventilation. RHair increases again in the early evening due to lower temperature
bounds and a lower ventilation flux. At 16 March (Fig. 2.7), outside temperature
was higher than at 16 April (Fig. 2.8), but radiation levels were lower. Because
of the higher radiation levels at 16 April, Q∗

E was lower and more ventilation was
applied.

The temperature at 16 March is almost on the lower bound, where one would
expect optimal temperature to be on the upper bound. In the optimal solution,
ventilation is applied between midday and late afternoon. This is necessary in
order not to violate the upper temperature boundary in the late afternoon. Simu-
lations with no ventilation confirmed this result. With no ventilation, simulation
showed that air temperature rises above 40 °C. For both days the maximum ven-
tilation capacity was not limiting.

At 16 April (Fig. 2.8) the difference in energy use is mainly caused by the
higher relative humidity that is allowed in the optimal situation. Greenhouse
air temperature was on the lower temperature bound during night. During day
time, temperature fluctuates between the upper and lower bound because of the
fluctuating outdoor radiation and opening and closure of the shadow screen. The
grower applied some active cooling around 17 hour, while no cooling is used in the
optimal result.

The effect of varying the temperature and humidity bounds on the optimal
solution was studied by minimizing the energy input with different constraints
for 16 April, 2012. Three different temperature bandwidths (±1 °C, ±2 °C and
±3 °C) and two different values for RHmax

air (80% and 90%) were used. In Fig. 2.9
the optimal energy input

∑
Q∗

E and the energy release due to natural ventilation∑
Q∗

vent, which is associated with the specific ventilation gV , are shown.
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Figure 2.7: Optimal temperature T ∗
air (a) and relative humidity RH∗

air (b) and
corresponding optimal control inputs Q∗

E (Wm−2) (c) and specific ventilation g∗V
(ms−1) (d) for 16 March, 2012. The dashed lines are the bounds for temperature
and humidity, and defined as ∆T = ± 1 °C and RHmax

air = 85%. The dashed-
dotted lines are the realised trajectories by the grower.
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Figure 2.8: Optimal temperature T ∗
air (a) and relative humidity RH∗

air (b) and
corresponding optimal control inputs Q∗

E (Wm−2) (c) and specific ventilation g∗V
(ms−1) (d) for 16 April, 2012. The dashed lines are the bounds for temperature
and humidity, and defined as ∆T = ± 1 °C and RHmax

air = 85%. The dashed-
dotted lines are the realised trajectories by the grower.
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Figure 2.9: Minimal energy input
∑

Q∗
E and heat loss due to ventilation

∑
Q∗

vent

for three different temperature bounds ∆T (±1 °C, ±2 °C and ±3 °C) and two
different upper bounds for relative humidity RHmax

air (80% and 90%) for 16 April,
2012. The energy input was calculated as the integral of the absolute energy input
to account for both heating and cooling.

Relaxing the temperature bounds decreases the total energy input
∑

Q∗
E to

the greenhouse (Fig. 2.9). Note that at this day no active cooling was used. All
energy and vapour removal was done via ventilation. As the temperature bounds
are relaxed, lower temperatures are allowed in the greenhouse, thus also less en-
ergy is needed to heat the greenhouse and to stay between the bounds. When the
temperature bounds are lower, the optimal temperature is also more on the lower
bounds, therefore, RHair becomes higher without any dehumidification or venti-
lation. In order not to exceed RHmax

air more ventilation is needed. Greenhouse air
temperature drops as a result of ventilation, and thus more heating is needed not
to exceed the lower temperature bound.

The upper bound on relative humidity RHmax
air has large influence on the energy

input. The higher relative humidity levels are allowed, the lower the amount of
energy is needed. For lower RHmax

air more energy is released via natural ventilation
because of dehumidification purposes.
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2.4 Discussion

2.4.1 The model

In the literature different methods of modelling greenhouse climate have been
described. To compare our model performance with the model performance of
other authors the same measure of performance must be used. Even if similar
performance indicators were available, also the location of the greenhouse, the
type of greenhouse, the crop species, the available equipment in the greenhouse,
the weather conditions, and simulation period need to be comparable. These
factors make it hard to compare different greenhouse climate models with each
other. Some examples of other greenhouse climate models and their performance
are discussed here. The simulation model presented by Du et al. (2012) showed a
simulation error on greenhouse temperature of 1.5 °C. They compared simulations
and measurements for a period of 5 days. Baptista et al. (2010) adapted and
validated a climate model for unheated greenhouses with a tomato crop in a
mild winter climate region and found an overall RMSE for temperature of 1.6
°C and an overall RMSE of 7% for the relative humidity. These values are in
the same range as the values found in this research. El Ghoumari et al. (2005)
found temperature differences in the range of ±2 °C. In most of the literature the
performance measures were in the same range as the performance measures found
here, but none of them performed an analysis of the measured and simulated data
for one whole year with very different weather circumstances in a commercial
scale greenhouse, as was done here. Also, proper validation of crop transpiration
against a long time series of weighing gutter data is unique, and showed very good
performance.

2.4.2 Optimization

The optimization duration was chosen to be one full day. Given the five minute
measurements from the greenhouse there are 288 measurements per day. It was
previously shown by Van Henten and Bontsema (2008) that ”for an open-loop
optimal control problem concerning the realization of an average temperature
during a fixed period of one day using a minimum amount of energy with full
a-priory knowledge of the outdoor weather, a resolution of the heating profile
between half an hour and one hour suffices to produce accurate results in terms
of energy conservation”. This seems to be confirmed by our analysis of the effect
of the number of collocation points on the optimization.
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Boundaries for allowable greenhouse air temperature and humidity were chosen
based on realised greenhouse air temperature. The results confirm that allowing
a wider bandwidth saves energy, which was also stated by (Dieleman and Hem-
ming, 2011) who state that using lower and upper temperature bounds would be
more energy-efficient than following a temperature set-point. However, measured
greenhouse temperature trajectories vary day by day. Hence, in practice, the tar-
get pattern that should be set for each day is not exactly known. Moreover, in
on-line application, it can not be assumed that the expected weather is known.
Based on a forecast and his experience, the grower must set the target and the
bounds. It is also possible for the grower to change the bounds during the day if
needed. A new optimal solution can then be calculated and implemented.

The reported energy saving potential of relaxing the bounds assumes that devi-
ating from the grower’s trajectory is acceptable and not detrimental to the crop.
As was argued before, the realization of the trajectories depends upon the actual
weather, which cannot be exactly known to grower in advance. This means that it
cannot be assumed that the realised trajectories are exactly matching the grower’s
believe on what is good for the crop, and from this it can be argued that deviations
towards the bounds are probably no problem. On the humidity side, when choos-
ing the maximum bound for relative humidity it is important that there is enough
crop transpiration to ensure crop quality and there is no risk of condensation on
crop parts. Taking the latter into account would require good insight in spatial
distributions within the greenhouse, and a model of condensation on parts of the
crop, which is beyond the scope of the current study, but which should make
us careful in reporting exact energy savings. As for the temperature, staying on
the lower bound for a long time alters the temperature integral, and could, when
prolonged, disturb the balanced growth of the crop. However, with the current
methodology the grower remains in control, and can adjust the bounds if needed
when looking at the crop behaviour.

Heating and ventilation or active cooling at the same time did not occur in the
optimization, while in practice growers often use a minimum pipe temperature or
minimum window opening. This is done for other reasons than temperature or hu-
midity control, for example to control air circulation in the greenhouse. However,
minimum pipe temperature or minimum window opening can be implemented in
the optimization procedure as well by adding additional constraints on heating
or ventilation. The methodology as described in this paper can also be used by
growers to get more insight in the effect of a lower minimum pipe temperature
or lower bounds on the relative humidity. Whether to use the pipe rail heat-

41



ing or heat exchangers for heating, or natural ventilation or heat exchangers for
cooling was not studied in this research, but in the second part of this research
that focuses on the optimal scheduling of the equipment. If CO2 is included in
the optimization, this is going to play a role too. The numbers on energy saving
will then also change, however, this can be higher or lower, depending on the
desired CO2 levels, available CO2, and outside weather conditions. The method
we present in this paper will remain valid.

2.5 Conclusions

A novel method was presented and evaluated to minimize the energy input to a
modern greenhouse, instead of the use of full-fledged optimal control as outlined
in Van Straten et al. (2010). Lower and upper bounds were introduced to specify
the greenhouse air temperature and humidity in order to stay as close as possible
to growers daily practice. The grower is given the lead in defining bounds. By
doing so, no crop production models and market prices are needed, making this
approach more suited for implementation in practice.

A dynamic model of greenhouse air temperature and humidity was developed,
which was validated using measurements from a commercial greenhouse. A good
agreement with reality was obtained (RMSE for Tair is 1.57 °C and RMSE for
χair is 1.76 gm−3). The crop transpiration model was validated separately, and
performed very well year round. It was shown that optimal control techniques
can be used to minimize the total energy input to the greenhouse, while keeping
greenhouse air temperature and humidity within desired bounds. A substantial
potential energy-saving was shown for twelve days in 2012, which is related to
the definition of lower and upper bounds, less natural ventilation at colder days,
and more natural ventilation and less heating at warmer days. The effect of
changing the bounds could be clearly demonstrated. Relaxing the temperature
and humidity bounds decreases the energy input to the greenhouse, which is of
great interest to growers. The growers will need to take the effect of these settings
on the development and production of the crop into account.
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Appendix

2.A Parameters and constants

Table 2.3: Parameters and constants used in the dynamic model.

Parameter Description Value
αcov heat transfer coefficient of the cover 5Wm−2C−1

αpipe heat transfer coefficient of the pipe rail heating system1 5Wm−2C−1

η ratio of electric energy from lamps transformed into heat 0.75−
τcov transmittance of the cover 0.7−
τscr transmittance of the shadow screen 0.3−
τscr2 transmittance of the black-out screen 0.99−
ccap heat capacity of the greenhouse2 30 000 JC−1m−2

rb boundary layer resistance 150 sm−1

PE electrical power of lamps 111.4Wm−2

Constant Description Value
Cp,air specific heat of air 4000 Jkg−1C−1

ρair density of air 1.225 kgm−3

L energy needed to evaporate water 2450 kJkg−1

1This parameter was missing in the published paper.
2The value in the published paper was not correct.
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Abstract

Saving energy in greenhouses is an important issue for growers. Here, we present a
method to minimize the total energy that is required to heat and cool a greenhouse.
Using this method, the grower can define bounds for temperature, humidity, CO2

concentration, and the maximum amount of CO2 available. Given these settings,
optimal control techniques can be used to minimize energy input. To do this, an
existing greenhouse climate model for temperature and humidity was expanded
to include a CO2 balance. Heating, cooling, the amount of natural ventilation,
and the injection of industrial CO2 were used as control variables.

Standard optimization settings were defined in order to compare the grower’s
strategy with the optimal solution. This optimization resulted in a theoretical
47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2

injection for the year 2012. The optimal control does not need to maintain a
minimum pipe temperature, in contrast to current practice. When the minimum
pipe temperature strategy of the grower was implemented, heating and CO2 were
reduced by 28% and 10% respectively.

We also analyzed the effect of different bounds on optimal energy input. We
found that as more freedom is given to the climate variables, the higher the
potential energy savings. However, in practice the grower is in charge of defining
the bounds. Thus, the potential energy savings critically depend on the choice
of these bounds. This effect was analyzed by varying the bounds. However,
because the effect can be demonstrated to the grower, the outcome has value
to the grower with respect to decision making, an option that is not currently
available in practice today.
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3.1 Introduction

Greenhouse crop production in temperate climates for example, in the Netherlands
is a major consumer of fossil fuels. Together, growers and the Dutch government
have established targets for reducing the use of fossil fuels and CO2 emissions by
the year 2020 (Van der Valk and Van der Poll, 2007). Reducing energy consump-
tion by greenhouses is beneficial for both growers and society. The total com-
bined area of modern greenhouses in the Netherlands is 9500 ha (LEI Wageningen
UR, 2015), worldwide, greenhouses cover approximately 750.000 ha. Given that
the trend in greenhouse horticultural practices is moving towards more advanced
equipment, the need for more advanced control in order to reduce energy con-
sumption will also become increasingly important.

The primary climate variables that can be controlled in a greenhouse include
temperature, humidity, CO2 concentration, and light intensity at the plant level.
Many studies have investigated the available technologies for controlling the green-
house climate variables that are important for greenhouse crop production. An
overview of different approaches for greenhouse climate control is provided by
Rodríguez et al. (2015b). Also Bakker et al. (1995); Von Zabeltitz (2010) and
ASHRAE (2011) provide an overview of the technologies available for controlling
the indoor climate and design considerations when constructing a greenhouse. The
actuators for greenhouse climate control are usually controlled by the greenhouse
process control computer. Those control systems are developed rather detached
from general building control and are a domain on their own. The majority of
control rules in the process control computer are heuristic rules based on the ex-
perience of the growers and suppliers (Kamp and Timmerman, 1996; Berenguel
et al., 2003; Van Straten, 1999). To achieve the desired greenhouse climate the
grower can use many setting (Rodríguez et al., 2015a). The grower defines and
adapts these settings in the process control computer based on his/her observa-
tions of the crop status, and based on his/her experience (Van Straten et al.,
2000); in addition, the grower uses weather predictions, specific crop knowledge,
production planning and product price forecasts.

Several approaches have been suggested for increasing automation of these pro-
cesses. For example, Seginer et al. (1996) proposed mimicking an expert green-
house grower by monitoring the actions of the expert grower, thereby extracting
more objective knowledge from collected data using a neural-net. However, col-
lecting data using a neural net requires an extremely large amount of data. Other
authors proposed optimal control in order to maximize profit (Van Henten et al.,
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1997; Seginer and Ioslovich, 1998; Pohlheim and Heißner, 1999; Van Straten et al.,
2002; Van Ooteghem et al., 2005; Rodriguez et al., 2008; Ioslovich et al., 2009).
Gutman et al. (1993) minimized heating costs by exploiting deviations allowed
from the standard blueprints expressed in temperature sums and, based on per-
fect weather predictions. Chalabi et al. (1996) presented a strategy to minimize
energy consumption (rather than costs), using steady-state energy balance and
daily weather forecasts.

Incrocci et al. (2008) proposed that optimal CO2 concentration in the green-
house can be based on an economic evaluation. To maintain a given CO2 concen-
tration within the greenhouse, the supply must balance the assimilated CO2 flux
with CO2 flux to the outside air due to ventilation. Linker et al. (1998) optimized
greenhouse operation and in particular CO2 control, using a neural network. Most
of these approaches used crop models and prices of the harvested product.

Despite their clear advantages, to the best of our knowledge, none of the optimal
control approaches published to date are currently being applied in modern process
control computers. Below is a list of some possible reasons for this lack of use.

• A lack of reliable crop production models for the wide range of crops and
species grown in horticultural practice.

• Limited trust of growers and doubts regarding the quality of crop models,
and a lack of experimentally demonstrated advantages (Van Straten, 1999).

• The need to leave part of the decision making freedom in the hands of the
grower (Van Straten et al., 2000).

• The best approach to any model-based control strategy will require feedback
of the crop state (Van Henten, 1994; Day, 1998; Van Henten and Bontsema,
2009). In addition, suitable on-line plant measurements are lacking.

• Accurate predictions of market prices are not currently available.

To overcome the aforementioned obstructions and to implement optimal control
techniques in practice, we propose a method that circumvents the need for crop
models yet still minimizes energy consumption. This method focuses on mini-
mizing energy input to the greenhouse while obeying grower defined bounds for
greenhouse air temperature, humidity, and CO2 concentration. Thus, the respon-
sibility for the crop yield and hence, income is left in the hands of the grower while
the cost side is tackled by minimizing the resource input. Although optimizing
inputs by satisfying set bounds may be common in other industries (Camacho and
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Bordons, 2012), it is a relatively new concept in the greenhouse community (ex-
cept for the abovementioned partial approaches, which focus solely on one aspect).
The formulation of the optimal control problem allows for settings that growers
are familiar with (e.g. minimum pipe temperature) to be easily taken into account
in the optimization process. Minimizing energy input to the greenhouse with a
dynamic energy balance was presented previously by Van Beveren et al. (2013)
and later expanded to include a humidity balance (Van Beveren et al., 2015a).
Here, we expand this process further by including a dynamic CO2 balance. The
addition of the dynamic CO2 balance provides a truly integrated approach that
takes all major aspects of greenhouse climate control into account, which has not
been done before. This is important, given the trade-off between natural ventila-
tion and the injection of industrial CO2 , which occurs in a greenhouse with active
cooling. Optimization was performed for one full year and compared with data
measured from a commercial greenhouse.

In the method presented here, the grower defines the desired climate by tempo-
rally varying the upper and lower bounds on the climate variables. The principal
idea is to exploit the dynamics of the ambient conditions as much as possible under
given constraints with minimal energy input to the greenhouse. The advantage of
this method is that it requires only a crop transpiration model for the humidity
balance and a relatively simple assimilation model for the CO2 balance, rather
than crop models that include crop production. The grower weighs the expected
yield and costs and then makes decisions regarding the bounds based on minimal
energy input. Moreover, by varying the bounds the grower can gain further in-
sight into the effects of his/her choices regarding the expected total energy input
and CO2 injection.

3.2 Materials and Methods

3.2.1 The greenhouse

The data used in this study were collected in a 40 709m2 Venlo-type greenhouse in
Bleiswijk, the Netherlands (52 °N, 4.5 °E) (Fig. 3.1, right). Eave height was 6.4m
and ridge height was 7.2m. The roof angle was 23°. The spans were equipped
with 2020 ventilation windows 1.35m× 1.67m in size. A movable shadow screen
(XLS 13 F Ultra) with 70% light transmission was used, and a blackout screen was
also present. In addition, the greenhouse was equipped with 4536 1000W SON-
T lamps (110Wm−2) for providing artificial lighting. A pipe rail heating system
was installed, consisting of 1.1m[pipe]m−2. For each 80m2 area of greenhouse, one
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air-to-water heat exchanger (OPAC-106) was available and could be used to heat,
cool, and dehumidify the greenhouse air. The greenhouse was connected to the
OCAP (organic CO2 for assimilation by plants) network in the Netherlands, which
transports industrial CO2 to growers. The maximum CO2 injection capacity was
1200 kgh−1. Two separate Avalanche+ rose cultivars were grown on a substrate
(rockwool) in separate sections of the greenhouse.

3.2.2 Dynamic model of greenhouse climate

In this approach, greenhouse climate is defined in terms of temperature (Tair),
absolute humidity (χair), and the carbon dioxide concentration in the greenhouse
air (CO2,air). To minimize energy input to the greenhouse with optimal control
techniques, a model of the greenhouse climate is needed. Therefore, the dynamic
model for temperature (Eq. (3.1)) and absolute humidity (Eq. (3.2)) of greenhouse
air published by Van Beveren et al. (2013) was expanded to include dynamic CO2

mass balance (Eq. (3.3)). The latter is needed to study the utilization of the
active cooling system in the greenhouse. The use of the cooling system reduces
the ventilation requirement, thereby increasing utilization of the injected CO2 .
This results in either higher potential CO2 levels in the greenhouse or a reduced
CO2 requirement. Controls for light levels in the greenhouse were considered to be
set by the grower. The air in the greenhouse was assumed to be homogeneous. A
first-principles model approach was used in order to gain insight into the physical
processes that are related to the greenhouse climate. The model uses parameters
that are relatively easy to obtain when studying other greenhouses. In order to
achieve optimization, for computational reasons it is also beneficial to work with
simple models.

Greenhouse air temperature is influenced by the following heat fluxes: incoming
radiation (Qsun), heat losses through the cover (Qcover), transpiration by the crop
(Qtrans), artificial lighting (Qlamps), natural ventilation (Qvent), cooling (Qhe,cool)
and heating (Qhe,heat) by the heat exchangers, and heating by the pipe rail sys-
tem (Qpipe, in Wm−2). The absolute humidity of greenhouse air is influenced
by the following vapor fluxes: crop transpiration (ϕtrans), condensation on the
cover (ϕcov), condensation in the heat exchangers due to cooling (ϕhe), and va-
por exchange with outside air by natural ventilation (ϕvent in gm−2s−1). The
calculation of fluxes in the energy and vapor balance, as published by Van Bev-
eren et al. (2015a), were largely based on Van Henten (1994); Stanghellini and De
Jong (1995); De Zwart (1996); Van Ooteghem (2007b); Van Henten and Bontsema
(2009); Vanthoor (2011). Energy and vapor exchange with outside air were cal-
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culated using the natural ventilation model published by De Jong (1990). This
approach yields the following equations for air temperature and humidity:

dTair

dt
=

1

ccap
(Qsun −Qcov −Qtrans +Qlamp

−Qvent +Qhe,heat −Qhe,cool +Qpipe) (°Cs−1)

(3.1)

dχair

dt
=

1

h
(ϕtrans − ϕcov − ϕhe − ϕvent) (gm−3s−1) (3.2)

The CO2 model is based on the work of De Zwart (1996); Van Ooteghem
(2007b); Stanghellini et al. (2011). The CO2 mass balance is described as:

dCO2,air

dt
=

1

h
(ϕc,inj − ϕc,ass − ϕc,vent) (gm−3s−1) (3.3)

where h is the average height of the greenhouse, ϕc,inj is the injection of pure
industrial CO2 to the greenhouse, ϕc,ass is the assimilation of CO2 by the crop,
and ϕc,vent is the CO2 exchange with outside air due to ventilation. Fluxes in the
CO2 balance are described in more detail in the following sections.

CO2 obtained from an external industrial source (ϕc,inj) was injected into the
greenhouse. Injection data were available from the process control computer to
validate the model and to compare with the grower’s operation of the greenhouse.

The original assimilation model of Nederhoff and Vegter (1994) was later simpli-
fied by Stanghellini et al. (2011) to achieve a two-variable model that reproduces
the trend and the level of the complex model. In this model (Eq. (3.4)), as-
similation is a function of radiation at the plant level (Irad,plant in Wm−2) and
CO2 concentration (in gm−3). The model of Nederhoff and Vegter (1994) gives
parameters for tomato, cucumber, and sweet pepper, but not for rose. In the
simplified model, the maximum assimilation rate of a tomato crop is 2.2 ·10−3

gm−2s−1. A model of photosynthesis for rose (Rosa hybrida L.) was presented by
Kim and Lieth (2001, 2003). This model has more parameters than the model of
Stanghellini et al. (2011) and is based on measurements from a specific species of
rose. Although the model of Stanghellini et al. (2011) does not include photorespi-
ration, simulations using both models yielded similar performance; therefore, the
simplified model of Stanghellini et al. (2011) was used without further calibration.
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ϕc,ass = 2.2 · 10−3 1

1 + 0.42
CO2,air

(
1− e−0.003Irad,plant

)
(gm−2s−1) (3.4)

Exchange of CO2 with outside air due to natural ventilation was described as:

ϕc,vent = gV (CO2,air − CO2,out) (gm−2s−1) (3.5)

where gV is the specific ventilation (in m3m−2s−1), CO2,air is the carbon dioxide
concentration of indoor air (in (gm−3)) and CO2,out is the carbon dioxide concen-
tration of outside air. Specific ventilation (gV ) is a function of window opening,
indoor and outside temperature, and wind speed and was calculated using the
ventilation model presented by De Jong (1990).

3.2.3 Data collection

Data collected at 5 minute time intervals from the HortiMaX® process control
computer in the greenhouse during the entire year of 2012. Temperature and
humidity were measured using eight measurement boxes (Fig. 3.1, left), with two
boxes in each of the four compartments. CO2 was measured at two locations in the
greenhouse. To compare the simulation results with the measurements, the box
values were averaged to yield the spatial mean. Differences between the separate
temperature, humidity, and CO2 measurements were analyzed by comparing the
mean absolute error (MAE, Eq. (3.6)) between the average and individual sensors
and the correlation coefficient between the average and individual sensors in order
to test the consistency of the measurements.

MAE =
1

n

n∑
i=1

| yi − ŷi | (3.6)

In this equation, ŷi is the simulated value at time i, yi is the measured value at
time i, and n is the number of measurements (Wallach et al., 2014).
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Figure 3.1: Floor plan of the greenhouse with the locations of the eight measure-
ment boxes for temperature and humidity (left) and a photo of the greenhouse
interior (right).

The mean (and standard deviation, SD) MAE between the average and indi-
vidual temperature sensors was 0.31 °C (0.31 °C). The mean correlation coefficient
between the individual sensors was 0.98 on average. The mean (SD) MAE of the
relative humidity, was 1.3% (0.4%). The mean correlation coefficient between the
relative humidity (RH) sensors was 0.94 for the entire year. MAE (SD) between
the two CO2 sensors was 88.4(80) ppm. The correlation coefficient between the
two CO2 measurements was 0.86, which means that considerable differences were
occasionally measured between the sensors.

The following outside weather conditions were measured: solar radiation, tem-
perature, wind speed, relative humidity, and CO2 concentration. Because no
outside CO2 sensor was installed at this greenhouse, we used CO2 measurements
obtained from the Wageningen UR Greenhouse Horticulture Research Station,
which is located approximately four kilometers from the rose greenhouse. All
other outside weather conditions were measured using a HortiMaX® weather sta-
tion.

The crop transpiration model, a modification of the model presented by
Stanghellini (2010), was validated using data from the HortiMaX® Prodrain®

weighing gutter system presented in Van Beveren et al. (2015a).
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3.2.4 Formulation of the optimal control problem

Four control variables were defined in order to maintain temperature, humidity,
and CO2 concentration between the grower-defined bounds while minimizing total
energy input to the greenhouse. In contrast with Van Beveren et al. (2015a), total
energy input was divided into heating and cooling, and a control variable for the
injection of CO2 was added to the optimization.

The first control variable was the energy input to the greenhouse (QE,heat).
This can be in the form of heating with the pipe rail heating system or heating
with the water-to-air heat exchangers. The second control variable was the energy
extracted from the greenhouse by active cooling (QE,cool). Active cooling can be
performed solely using heat exchangers. The reason for separating these two en-
ergy inputs is because it should be possible to supply both heat and cooling at the
same time. This follows from horticultural practice in which ventilation is applied
to remove water vapor while at the same time heat is applied in order to maintain
a desired temperature. This approach also allows for the implementation of a
minimum pipe temperature in the greenhouse. The third control variable was the
specific ventilation (gV ), which is related to opening of ventilation windows. The
amount of air exchange between inside- and outside air influences the tempera-
ture, humidity, and CO2 concentration of the greenhouse air. The fourth control
variable was the injection of industrial CO2 (ϕc,inj) into the greenhouse.

The optimization problem was formulated as a dynamic optimal control prob-
lem. Given the model, the initial conditions Tair(0), χair(0), and CO2,air(0), the
external inputs, and the constraints on the climate variables and control inputs,
the optimal control trajectory that minimizes total energy input over time can be
obtained by minimizing the following functional J :

min
QE,heat,QE,cool,gV ,ϕc,inj

J(QE,heat, QE,cool, gV , ϕc,inj) =

∫ tf

t0

(
Q2

E,heat +Q2
E,cool

)
dt

(3.7)
where t0 is the initial time and tf the final time.

The bounds on the climate variables were defined as

Tmin
air (t) ≤ Tair(t) ≤ Tmax

air (t), (3.8)

RHair(t) ≤ RHmax
air (t), (3.9)
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COmin
2,air(t) ≤ CO2,air(t) ≤ COmax

2,air(t) (3.10)
where Tmin

air (t) and Tmax
air (t) were the lower and upper temperature bounds,

RHmax
air (t) was the upper bound for relative humidity, and COmin

2,air and COmax
2,air

the lower and upper bounds for CO2 .

The control variables were constrained by the following control inequality con-
straints:

Qmin
E,heat(t) ≤ QE,heat(t) ≤ Qmax

E,heat(t) (3.11)

−Qmin
E,cool(t) ≤ QE,cool(t) ≤ Qmax

E,cool(t) (3.12)

gmin
V (t) ≤ gV (t) ≤ gmax

V (t) (3.13)

0 ≤ ϕc,inj(t) ≤ ϕmax
c,inj(t) (3.14)

∫ tf

t0

Φc,injdt ≤ ϕmax,day
c,inj (3.15)

where Qmax
E,heat was the maximum heating capacity and Qmin

E,cool was the maximum
cooling capacity. The minimum specific ventilation (gmin

V ) was equal to the leakage
ventilation, and gmax

V was equal to the specific ventilation at 100% window opening
of both wind and leeward side windows, and thus changed over time. Once the
required gV was obtained from the optimization, the ventilation model was used
to obtain the required window opening at the prevailing wind speed. ϕmax

c,inj was
the maximum CO2 injection rate, and Φmax,day

c,inj was the maximum amount of CO2

that could be injected per day.

To compare the optimization results with the grower’s operation of the green-
house, we first defined a trajectory of the climate variables. Next, for the opti-
mization, bounds were defined as listed in Table 3.1. The choice was guided by
what would be considered realistic in practice. In addition, realistic equipment
capacities were defined in order to be able to compare with the grower’s strat-
egy. Energy use based on the grower’s operation was calculated using the controls
captured from the greenhouse process control computer and calculated with the
model equations as described above.
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Table 3.1: Standard settings of the bounds for optimization.

Symbol Description Value Unit

Tmin
air (t) Lower temperature bound T

′
air,meas(t)− 0.5°C °C

Tmax
air (t) Upper temperature bound T

′
air,meas(t) + 0.5°C °C

RHmax
air (t) Upper RH bound maxRHair,meas(t) %

COmin
2,air(t) Lower CO2 bound 0.97 ·CO

′
2,air,meas(t) gm−3

COmax
2,air(t) Upper CO2 bound 2000 ppm gm−3

Qmax
E,heat(t) Maximal heating capacity 200 Wm−2

Qmin
E,cool(t) Maximal cooling capacity 200 Wm−2

ϕmax
c,inj(t) Maximal CO2 injection capacity 1200 kgh−1

Φmax,day
c,inj Total amount of CO2 available per day

∫
ϕc,inj,measdt gm−3d−1

As temperature bounds, a deviation of 0.5 °C around the smoothed realized
temperature was chosen. Smoothing was performed using a moving average filter
with a span of 36 measurements, which corresponds to a time span of 3 hours.
The upper bound for RH was defined as a constant value per day according to
the highest measured RH on that day. The lower bound for CO2 was defined as
97% of the smoothed, measured CO2 concentration in the greenhouse. The upper
boundary was chosen as a fixed value of 2000 ppm in order to prevent damage to
the crop.

The maximum heating and cooling capacity were fixed at 200Wm−2. For the
standard situation, the minimum heating capacity Qmin

E,heat and minimal cooling
capacity Qmax

E,cool were set to zero. The maximum injection capacity with standard
settings was 1200 kgh−1, which corresponds to 33 gm−2h−1.

For the total amount of CO2 available per day, the total amount of CO2 that
was injected by the grower was used as the upper bound.

To implement minimum pipe temperature as often used in practice a lower
bound for the minimum heating capacity (Qmin

E,heat) was set to the pipe temperature
that the grower used at that time in the greenhouse (a measured time series). The
lower bound for heating was calculated as:

Qmin
E,heat = αpipe (Tpipe,min − Tair) (Wm−2). (3.16)

Here, αpipe is the heat transfer coefficient of the heating pipes (in Wm−2).
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The optimal control problem was solved using PROPT - Matlab Optimal Con-
trol Software (Rutquist and Edvall, 2010). PROPT uses a collocation method
to solve optimal control problems; thus, the solution takes the form of a polyno-
mial that satisfies the differential algebraic equations and path constraints at the
collocation points (Edvall and Goran, 2009). The input data were interpolated
between the collocation points, and an optimization horizon of one day was used.
Data processing, model building, validation, and optimal control formulation with
PROPT were performed using Matlab (version 7, MathWorks Inc., Natick, MA).

3.3 Results

3.3.1 Model performance

Figs. 3.2a and 3.2b show the measured and simulated greenhouse air temperature
(Tair), absolute humidity (χair), relative humidity (RHair), and CO2 concentration
(CO2,air) on a cold (February 18, 2012) and on a warm day (July 23, 2012). On
the cold day in February, mean outside temperature was 7.1 °C, and mean global
radiation was 103Wm−2 during the light period; on the warm day, mean outside
temperature was 18.3 °C and mean global radiation was 437Wm−2.

The simulated values were quite similar to the values measured on these two
days. The largest differences were observed in the simulated CO2 concentration
and in the estimate of relative humidity, which is a function of both temperature
and absolute humidity. This difference is due to the dependence of the CO2

balance on the ventilation model and on the measurement of CO2 injection. The
different fluxes in the CO2 balance are shown in Figs. 3.3a and 3.3b for the
cold and warm days in 2012. The principal factors that influence ambient CO2

concentration are ventilation and CO2 injection. Fig. 3.3 shows that the injection
of CO2 is for the most part needed in order to compensate for CO2 losses due
to ventilation. Compared to the two other fluxes, the assimilation of CO2 has
a relatively small impact on CO2 balance. For the cold and warm days (i.e.
February 18 and July 23), assimilation comprised 7% and 9%, respectively, of
the total CO2 usage (ventilation + assimilation). Higher assimilation rates are
expected during the summer due to higher light levels in the greenhouse.
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Figure 3.2: Measured ( ) and simulated ( ) Tair (a), χair (b), RHair (c), CO2

concentration (d) for 18 February (a) and 23 July (b), 2012.
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Figure 3.3: CO2 injection ( ), ventilation ( ), and assimilation flux ( ) for
18 February (a) and 23 July, 2012 (b).
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The model was validated for the entire year of 2012. To identify possible dif-
ferences in performance over time, the model’s performance was assessed for each
month. The monthly correlation coefficient (r) and Root Mean Square Error
(RMSE, Eq. (3.17)) for the three climate variables are summarized in Table 3.2.
The table shows the results for an open-loop simulation for the whole year at once.
There was no update of the states with measurement data. The simulation result
(temperature, humidity, and CO2 concentration were compared with the average
spatial indoor climate for each time step (5min).

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.17)

In this equation, ŷi is the simulated value at time i, yi is the measured value at
time i, and n is the number of measurements Wallach et al. (2014).

Table 3.2: Correlation coefficient r and Root Mean Square Error RMSE of mea-
sured and simulated greenhouse air temperature, relative humidity, and CO2 con-
centration per month and for the whole year 2012.

r Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Unit
Tair 0.65 0.72 0.85 0.84 0.92 0.92 0.94 0.96 0.92 0.79 0.71 0.69 0.89 −
RHair 0.32 -0.33 0.58 0.79 0.71 0.59 0.66 0.73 0.75 0.76 0.77 0.57 0.54 −
CO2,air 0.49 0.62 0.78 0.73 0.82 0.84 0.75 0.80 0.68 0.75 0.79 0.58 0.75 −

RMSE Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Tot Unit
Tair 1.20 1.64 1.38 1.32 1.26 1.26 1.19 1.11 1.06 1.14 1.16 1.34 1.26 °C
RHair 6.2 14.8 4.3 3.4 6.3 7.4 8.6 6.7 9.0 5.1 6.5 8.4 7.7 %
CO2,air 219 288 159 167 153 153 178 170 213 158 190 237 194 ppm

Correlation was highest between the measured and simulated temperature val-
ues. With respect to RH, a negative correlation was observed in February. At
the beginning of this month, the outside temperature was below zero; in contrast,
in all other months the differential between inside and outside temperature was
smaller than in the beginning February. The correlation was stronger for the three
climate variables in the summer period than in the winter period.

The RMSE for temperature was approximately 1.2 °C for the entire year;
RMSE for temperature was higher in February. A higher RMSE was also ob-
served in February with respect to RH and CO2. RMSE for RH was lowest
the months of March and April. With respect to CO2 , the differences between
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measured and simulated values were relatively high. A visual inspection of the
simulation results for the entire year revealed that some days had a near per-
fect match between measured and simulated values. These days were distributed
throughout the entire year and usually lasted for a few days.

3.3.2 Optimization results

Fig. 3.4 shows the optimization results for June 16, 2012 using the standard set-
tings defined in Table 3.1. This date was chosen because it is a typical example
of a situation in which CO2 is a limiting factor and active cooling was used (both
by the grower and in the optimal situation). CO2 was considered a limiting factor
because all available CO2 was used in the optimal case.
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Figure 3.4: Optimal states ( ) and optimal control trajectories ( ) for June
16, 2012 with standard settings. The dashed black lines are the bounds of the
states. The realized climate variables ( ) and the control trajectories resulting
from grower’s operation ( ) are also shown.
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The temperature sum for the realized situation by the grower and the opti-
mal situation on June 16, 2012 was 504 °Ch and 511 °Ch, respectively. Using the
chosen standard settings, the temperature sum was always similar to the realized
temperature sum by the grower. This ensures comparable plant growth and de-
velopment. The maximum allowed RH in the greenhouse was 85%. RH was kept
at the upper bound during the night and was lower during the day. The amount
of CO2 injected by the grower and in the optimal situation was 355 gm−2d−1in
both cases; thus, all available CO2 was used. In the optimal situation, CO2 was
at the lower bound at all times. Although higher CO2 concentrations are allowed,
they are not favorable, as only a limited amount of CO2 is available; thus, the
amounts of heating and active cooling are minimized at the same time. Although,
higher CO2 levels can be achieved in the greenhouse, additional active cooling is
needed.

The minimal energy input (heating and cooling) on June 16, 2012 was 5.71
MJm−2d−1; minimal energy input was 2.15MJm−2d−1 and 3.54MJm−2d−1 for
heating and cooling, respectively. Heating and active cooling resulting from the
grower’s operation was 8.25MJm−2d−1; 3.28MJm−2d−1 and 4.97MJm−2d−1 was
due to heating and cooling, respectively. The net energy (i.e. heating minus cool-
ing) that was extracted from the greenhouse was 1.39MJm−2d−1 for the optimal
situation and 1.69MJm−2d−1 for the grower’s situation. The energy fluxes due
to artificial lighting, radiation, and heat loss through the cover were similar to
the fluxes realized when following the grower’s strategy. The energy flux due to
transpiration was slightly lower in the optimal case, likely due to differences in
temperature and humidity. Natural ventilation was higher in the optimal situ-
ation. However, in the optimal situation, active cooling was applied in order to
retain CO2 in the greenhouse and to maintain the desired CO2 levels. Therefore,
less heating was applied in the greenhouse in the optimal situation. This differ-
ence was due primarily to the lower heating beginning at 9 pm. From midnight
till 8 am, heating was virtually the same in both situations. Compared to the
grower’s situation, in the optimal situation, active cooling began earlier and less
natural ventilation was applied between 8 am and 12 pm than in the grower situ-
ation. The amount of active cooling was just sufficient to maintain temperature
at the upper bound. Because of the active cooling, less CO2 was injected between
8 am and 12 pm.

Based on the realized greenhouse air temperature (shown as the blue line in
Fig. 3.3a), we conclude that the chosen bandwidth of the smoothed temperature
(±0.5 °C) during the night was also realized by the grower, whereas the grower
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allowed higher fluctuations in indoor temperature during the day. Because, a
larger bandwidth would allow the temperature to be higher, less cooling would
be needed, thereby saving. The daily optimization results with standard settings
for the entire year of 2012 are shown in Fig. 3.5. Within 2012, optimal conditions
were not achieved in 78 days (21% of the year); the majority of these days were
during the summer. For these days, the calculated energy fluxes from the grower
were used as the optimal result. We observed a correlation between days with poor
simulation performance and days with no optimal solution, particularly when RH
was considered. The average RMSE between the simulation and measurements
of RH was 6% for days with an optimal solution, compared to 8% for days in
which no optimal solution was obtained.
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Figure 3.5: Results of daily optimization with standard settings for the year
2012. Optimal heating ( ), optimal cooling ( ), heating grower ( ), cooling
grower ( ), and mean outside temperature( ).

In 2012, the optimal input of heat and cold was lower than the heat and cold
input resulting from the grower’s operation. On the days in which the outside
temperature was <0 °C, energy input was similar to the energy input obtained by
the grower. Active cooling was applied on the same days in the optimal case as
when the grower used active cooling. However, the grower applied active cooling
(Qhe,cool < 0.5MJm−2d−1) on 127 days compared to 105 days in the optimal
situation. In addition, the amount of cooling was lower in the optimal situation.
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Figure 3.6: Daily optimal ventilation ( ) and ventilation of the grower ( )
Qvent (MJm−2d−1) for 2012.

The total amounts of heating, cooling, and CO2 injection in the optimal situation
and based on the grower’s operation are summarized in Table 3.3. In the optimal
case, 47% less heating, 15% less cooling, and 10% less CO2 was supplied to the
greenhouse.

Table 3.3: Total heating, cooling, and CO2 injection of the grower, the optimal
situation with standard settings, and the optimal situation with minimum pipe
temperature as used by the grower for 2012.

Heating Cooling CO2 injection
GJm−2y−1 GJm−2y−1 kgm−2y−1

Grower 2.08 0.71 95.4
Opt standard settings 1.10 0.60 85.7
Opt minimum pipe 1.49 0.71 85.9

In the optimal situation, less CO2 was supplied to the greenhouse in order to
meet the CO2 constraints (Table 3.3). The primary cause for this is the lower daily
ventilation flux in the optimal situation compared to the situation calculated based
on the grower’s operation (Fig. 3.6). In the optimal situation, daily ventilation was
higher during some of the summer days; on these days, less heating and cooling
was applied in the optimal situation, and temperature and humidity constraints

64



were met by a combination of active cooling and natural ventilation. The energy
input during the cold period in February was similar between the optimal situation
and the grower’s strategy. Compared to the optimal situation, less ventilation was
used in the grower’s strategy; thus, less CO2 was injected into the greenhouse.

We also studied optimal heating and cooling for the case with a minimum pipe
temperature. Minimum pipe temperature was similar between the optimal situa-
tion and the grower’s strategy. Two reasons to use a minimum pipe temperature
in practice are to create air movement through the canopy and to prevent of con-
densation on the leaves and fruit (Teitel et al., 1999). For 59 days (16% of the
year), no optimal solution was found with the optimization settings used (all days
were during warm period of the year); for these days we used the data obtained
from the grower. Compared to the grower’s strategy, optimal heating and cooling
was 28% lower and optimal cooling was 1% higher, respectively (Table 3.3). Due
to the minimum pipe temperature, more heat was delivered to the greenhouse, and
greenhouse air temperature was closer to or matched the upper bound. Therefore,
more ventilation and active cooling was applied in the optimal situation with min-
imum pipe temperature. Active cooling was used on 136 days. The CO2 needed
on a yearly basis was similar to the situation using standard settings.

3.3.3 Analysis of optimization settings

Effect of temperature and humidity bounds

Next, we analyzed the effects of the lower and upper temperature bounds, as well
as the upper bound for the relative humidity (RHair), on optimal energy input.
The following temperature deviations (∆T ) were used: 0.5 °C (standard case),
2.0 °C, and 3.5 °C. A deviation of 0.5 °C means that the temperature is permitted
to be either 0.5 °C above or below the smoothed measured indoor temperature.
The range for RHmax

air was −15% to 10% in increments of 5%, according to the
highest measured RHair. This analysis was performed for both February 18 and
June 16.

The energy input needed to meet the constraints with standard settings for
February 18, 2012 was 4.8MJm−2d−1 (Fig. 3.7a). It therefore follows from the
analysis that expanding the permissible temperature range will result in a lower
energy input. Maintaining lower RH levels in the greenhouse increased energy
input due additional heating and ventilation needed to maintain temperature
between the bounds and to remove vapor from the air via natural ventilation.
Similar results were obtained for June 16 (Fig. 3.7b).

65



65 70 75 80 85 90 95
0

4

8

12

16

RHmax
air (%)

Q
∗ E

(M
J
m

−
2
d
−
1
)

(a) 18 February, 2012

65 70 75 80 85 90 95 100
0

4

8

12

16

RHmax
air (%)

Q
∗ E

(M
J
m

−
2
d
−
1
)

(b) 16 June, 2012

Figure 3.7: Optimal energy input Q∗
E for different temperature and humidity

bounds for 18 February, 2012 (a) and 16 June, 2012 (b). Values for ∆Tair were
0.5 °C ( ), 2.0 °C ( ), and 3.5 °C ( ). All other settings were standard
settings. is optimization with standard settings.

Effect of CO2 bounds

Next, we analyzed the effect of the lower bound for CO2,air and the total amount
of CO2 available per day Φmax,day

c,inj on optimal energy input. This analysis was
performed for June 16 and September 4. June 16, 2012 was a cloudier day with
high radiation levels (average radiation was 431Wm−2), and the mean outdoor
temperature during the light period was 17.4 °C. September 4, 2012 was a bright
day; mean outdoor temperature during the light period was 21.0 °C, and average
radiation was 437Wm−2. Active cooling was used by the grower on both days.
The results of optimizing using four different levels of the lower bound (COmin

2,air)
are shown in Fig. 3.8. The data from February 18 were not included in the analysis,
as no active cooling was applied on this day, and CO2 did not limit energy input.
Therefore, small changes in the CO2 bounds had no effect on the energy input.
For the entire year of 2012, all available CO2 was used on 282 days (77% of the
year). The days in which CO2 was not a limiting factor occurred in the spring
and in the winter.
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Figure 3.8: Optimal energy input Q∗
E for different lower CO2 bounds (COmin

2,air)
and available CO2 (Φmax,day

c,inj ) for 16 June, 2012 (a) and 4 September, 2012 (b).
Values for COmin

2,air were the standard settings −20% ( ), −13% ( ), −3%
( ), and 7% ( ). All other settings were standard optimization settings. is
optimization with standard settings.

On both June 16 (Fig. 3.8a) and September 4 (Fig. 3.8b), the total amount
of available CO2 had a strong effect on minimal energy input. Specifically, when
Φmax,day

c,inj was reduced, optimal energy input (Q∗
E) was higher. Thus, less CO2 was

available, and in order to maintain the desired CO2 concentration, the windows
must be closed more to prevent CO2 loss to the environment. On the other hand,
when Φmax,day

c,inj was higher, energy input was lower. This will not be the case in
situations in which CO2 is not a limiting factor and when energy input is needed
in order to meet the temperature and humidity constraints. This situation was
the case on June 16, in which >20% extra CO2 was available during the day.
Changing the lower CO2 bound (COmin

2,air) from the standard settings to lower
values (i.e. when the CO2 concentration can be lower) reduces energy input (and
vice versa). In this situation, the ventilation windows can be more open, and less
active cooling (which costs energy) is needed in order to meet all constraints.

3.4 Discussion

The optimization method presented here has the advantage that it does not require
any crop production models or price forecasts. Thus, one of the most important
factors determining actual energy input in this method is the grower who defines
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the bounds. Defining the bounds based on the current status and the needs
of the crop remains a task for the grower, and these need not to be the most
economic and/or energy-efficient. Nevertheless, the formulation of the optimal
control problem that we proposed has practical implementation, as it can save
energy while ensuring the grower’s desired yield. In addition, settings can be made
easily within the grower’s comfort zone, including minimum pipe temperature
and minimum ventilation. Minimum pipe temperature and minimum ventilation
can be included in the optimization by changing the bounds of Eq. (3.11) and
Eq. (3.13), respectively. After optimization, the effect of these bounds on energy
input becomes clear and can be presented to the grower so that he/she can learn
and make decisions based on a variety of scenarios.

The accuracy of both the model and the measurements clearly influences the
outcome of the optimization. Therefore, good model performance is important
for achieving optimal control in practice. Some of the factors that can influence
model performance, include the accuracy and consistency of the measured data
and incidental spatial differences due to factors such as unrecorded operational
activities and/or unrecorded intervention by people. CO2 concentration was mea-
sured at only two locations in the greenhouse, whereas temperature and humidity
were measured at eight locations. Moreover, differences were measured between
the various sensors (see Section 3.3.1); these differences were similar to the dif-
ferences reported by Bontsema et al. (2011), who studied the effect of inaccurate
measurements on energy consumption within a greenhouse. With respect to the
climate within a greenhouse, spatial differences can be horizontal and/or vertical.
Opdam et al. (2005) noted that the largest temperature differences are due to
the position of the sun. In addition, measuring the outdoor weather and con-
trol inputs can influence energy input and these measures can have inaccuracies.
The sensitivity of the model and the optimization procedure with respect to these
potential errors are currently being studied.

In the optimization procedure, active cooling with heat exchangers was used
when there was a cooling demand and when the total amount of available CO2

was limited. When more CO2 was available, active cooling could be reduced in
order to save energy. However, CO2 has its own costs and benefits. For example,
higher CO2 levels can affect production. In addition, having more CO2 available
means that active cooling can only be reduced if all constraints are satisfied. To
prevent extreme temperatures, more natural ventilation can be used, resulting in
more CO2 being emitted into the environment, which could also be a goal to be
minimized in light of the objectives to reduce greenhouse gas emissions.
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In the current study, minimizing energy input provided less energy savings than
in our previous study (Van Beveren et al., 2015a). In the current study, an entire
year was analyzed with constraints on temperature, humidity, and CO2 concen-
tration; in our previous study, we analyzed only 16 days distributed throughout
the year, and we examined only temperature and humidity. Thus, the addition of
CO2 balance maximum CO2 available per day forces the system to increase the
use of active cooling. This situation applied to many days in which the grower
used active cooling, and this matched the optimal situation. This difference re-
sulted in higher energy input compared to our previous study. Nevertheless, a
clear reduction in both energy and CO2 input was observed using standard set-
tings. How do these figures compare with other figures reported with respect to
energy saving climate control? Other researchers used optimal control techniques
to manage greenhouse climate and found energy savings that ranged from 8%
(Tap, 2000) to 52% (Van Ooteghem, 2007b). Thus, the current results are consis-
tent with previous research. Moreover, recent practical experiments reported high
potential energy savings. For example, De Zwart (2014) recently reported that
energy savings can be as high as 24% for a tomato crop without affecting crop
growth. In addition, Kempkes et al. (2014) reported that using a double glass
cover, implementing new growing strategies, and using a dehumidification system
can yield energy savings of up to 60% without affecting the production levels.

To realize these potential energy savings, practical implementation is needed.
In the climate control system of most modern greenhouses, growers can specify
many settings in the process control computer; however, the resulting greenhouse
climate and the consequences with respect to energy use are not always evident
to the grower. The optimization procedure proposed here can help growers by
providing more insight into their decision-making process with respect to energy
management. However, once the optimal energy strategy has been determined,
the calculated energy demand must be supplied to the greenhouse. Therefore, the
next logical step is to determine which equipment can be used to meet this energy
demand in the most economical manner. This can be done a posteriori, and the
grower can learn from alternative strategies that could be followed, rather than
depending solely on his/her own historical data. This would represent the first
step towards creating a fully automated system in which the grower has merely
a supervisory role, and it would help define long-term goals. This first step is
important for successful implementation and to help the grower build trust in the
outcome of these kinds of systems (Van Straten et al., 2000). An intermediate
step would be to predict the optimal trajectories one day in advance. For such
a prediction, the weather forecast for the next day is needed, and an additional
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tool would be needed to determine the greenhouse climate based on the grower’s
actual settings.

3.5 Conclusion

Here, we present an optimization framework for minimizing energy input in green-
houses; this novel framework takes into account temperature, humidity, and CO2

concentration. We also validated a model incorporating temperature, humidity,
and CO2 concentration using data collected for one full year from a 4 ha commer-
cial greenhouse. Using standard settings, heating and cooling were potentially
reduced by 47% and 15%, respectively. Even after incorporating the grower’s
minimum pipe temperature, heating was still reduced by 28% (under these condi-
tions, cooling was unchanged). In both cases, total CO2 injection was reduced by
10%. Furthermore, the results revealed that active cooling was used on days in
which CO2 was a limiting factor. Finally, changing the bounds can have potential
effects on both energy and CO2 input, and these effects can be demonstrated to
the grower.
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Abstract

In the daily operation of a greenhouse, decisions must be made about the best
deployment of equipment for generating heat and electricity. The purpose of
this paper is two-fold: 1) To demonstrate the feasibility and flexibility of an
optimal control framework for allocating heat and electricity demand to available
equipment, by application to two different configurations used in practice. 2) To
show that for a given energy and electricity demand benefit can be obtained by
minimizing costs during resource allocation.

The allocation problem is formulated as an optimal control problem, with a
pre-defined heat and electricity demand pattern as constraints. Two simplified,
yet realistic, configurations are presented, one with a boiler and heat buffer, and
a second one with an additional combined heat and power generator (CHP) and
a second heat buffer.

A direct comparison with the grower is possible on those days where the other
equipment that was at the grower’s disposal was not used (63 days in the avail-
able 2012 data set). On those days overall costs savings of 20% were obtained.
This shows that a given heat demand does not come with a fixed price to pay.
Rather, benefits can be obtained by determining the utilization of the equipment
by dynamic optimization. It also appears that prior knowledge of gas and elec-
tricity prices in combination with dynamic optimization has a high potential for
cost savings in horticultural practice. To determine the factors influencing the
outcome, different sensitivities to the optimization result were analyzed.
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4.1 Introduction

Greenhouses to produce vegetables, flowers, and ornamentals require heating in
colder periods. High-tech greenhouses in temperate climates, like the Netherlands
and Belgium (Van Den Bulck et al., 2013), consume large amounts of fossil energy.
The quest for energy saving in modern greenhouse horticulture (Van der Valk and
Van der Poll, 2007) has led to investments in a wide variety of equipment. In daily
operation, decisions about the best deployment of this equipment must be made.
This operation is complex due to varying heat and cooling demands, and varying
prices of gas and electricity and calls for effective control schemes to support the
grower in this process. In current greenhouse practice the equipment is controlled
by different controllers that operate based on a set of pre-defined rules. Depending
on the configuration the set of rules is tailor-made. Supervision of the operation is
done by the grower. If necessary the grower can overrule the controller manually.

In order to reduce the energy consumption of greenhouses a two-stage approach
for optimal management of energy resources was introduced in Van Beveren et al.
(2015a,b). This approach decouples greenhouse climate and the generation from
the required energy input (Fig. 4.1). The first stage minimizes the energy input to
the greenhouse for a pre-defined set of bounds to specify the desired greenhouse
climate. The second stage, described in this paper, minimizes the energy costs
of realizing the required energy profile (obtained from the first stage) using the
available equipment. The motivation is that this approach does not rely on a
complex crop model, but rather uses the grower’s experience and knowledge.
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Stage 1
Climate optimizer
min J =

∫
(Q2 + C2) dt

Stage 2
Energy optimizer
min J =

∫
(Gcost + Ecost) dt
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Figure 4.1: Overview of the 2-stage approach. The climate optimization needs the
climate constraints (set by the grower), outdoor climate measurements d, controls
from the greenhouse z (here supplementary lighting Suppl and screen position
Screen), and greenhouse parameters. The results of stage one are the optimal
heat profile Q∗, optimal cooling profile C∗, the CO2 injection pattern Φ∗

inj and,
electricity need of the greenhouse E. Those are fed into the energy optimizer.
Here, the prices p of gas pG and electricity pE and parameters of the equipment
are needed. The results of the optimization in stage 2 are the optimal controls u∗

such as the power of the CHP and boiler, and heat fluxes to the buffers, that lead
to the optimal value of the goal function J∗.

Control is closely kin to dynamic optimization. Optimization of energy systems
in greenhouse horticulture was studied before (e.g. Van Willigenburg et al. (2000);
Tap (2000); Van Ooteghem (2007b); Bozchalui and Cañizares (2014); Husmann
and Tantau (2001); Vanthoor (2011); Seginer et al. (2018)), but the focus was
mainly on greenhouse climate management and control. In those studies, a crop
model is needed, and the operation of equipment is an integral part of the op-
timization and does often not comply with current practice. There are far less
studies about the deployment, operation and control of all equipment that gener-
ate and store warm water (used for heating) and cold water (used for cooling) for
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greenhouses. Molenaar et al. (2007) presented optimization of the energy costs for
a closed greenhouse using a given heat, cold and electricity demand for a typical
year. The problem was solved with linear programming techniques by discretizing
the model equations to an hourly time basis. However, the optimization results in
Molenaar et al. (2007) were not compared with data from practice. Different en-
ergy management strategies for commercial greenhouse are summarized in Vadiee
and Martin (2012, 2014). Here, the focus was not on optimization of an existing
energy system, but more on the configuration and choice of different materials
and equipment to improve the energy conservation of the greenhouse.

Applications of various optimization techniques and analyses of energy sys-
tems with a wide variety of equipment in similar configurations are present in
other fields. For instance, applications of CHP systems and thermal storage can
be found, among others, for residential buildings in Haeseldonckx et al. (2007);
Schütz et al. (2015); Fuentes-Cortés et al. (2015); Ren et al. (2008), for a hospital
in (Vanhoudt et al., 2011), university campus (Pagliarini and Rainieri, 2010; Chan-
dan et al., 2012), and industrial power plants (Mitra et al., 2013). These studies
minimize total energy costs for heating and cooling based on a specified heat and
cold demand. An overview of optimization techniques for thermal energy storage
control of mainly office buildings, commercial buildings, and university campuses
was published in Ooka and Ikeda (2015); Cho et al. (2014). Greenhouses dif-
fer from the aforementioned buildings because of different heat and electricity
demands, originating from different processes and requirements and a stronger
thermal coupling to the outdoor climate. Furthermore, the greenhouse industry
in the Netherlands is characterized by a wide deployment of CHP systems. In
2011, for instance, a total of about 3000MW of electrical power was installed on
a total area of 10 300 ha. Part of the electricity was used for lighting, but most
of the electricity was sold to the public grid (Vermeulen, 2014). CHP systems are
advantageous for greenhouse horticulture since the heat, electricity, and CO2 can
all be used in the greenhouse. Furthermore, these installations are important in
balancing the national power grid.

The purpose of this paper is two-fold: 1) The wide variety of configurations of
equipment requires a formulation that is flexible in terms of type and number of
equipment. Therefore, a framework for managing heat and electricity producing
equipment, based on optimal control is desired. This is offered by an optimal
control method that is presented here. The objective is to study the feasibility
and flexibility of the method. 2) To show that for a given energy and electricity
demand that satisfies minimum overall energy use, further benefit can be obtained
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by minimizing costs during resource allocation. If the sources and prices are fixed,
there is a fixed price to pay for energy. However, the freedom to achieve further
benefits is, in principle, in the possibility to shift the mix of sources to fulfill
the heat and electricity demand, and the exploitation of time variation in energy
market prices. In order to investigate this question, ideally an optimized energy
profile, as developed in(Van Beveren et al., 2015a) would be the best starting point.
In this paper the starting point is different. Instead of an optimized profile, actual
energy profiles as realized by the grower on days where the configuration coincides
with the one in Fig. 4.3 are used. The motivation for this choice is that in this
way a comparison with real data is possible, thus increasing the credibility of the
results. The formulation and demonstration of an optimization method for energy
equipment utilization applied to the horticultural greenhouse and compared to real
data is novel.

In this paper we demonstrate the generality of the optimization method with
two commercially used configurations of equipment: 1) A system with a heat de-
mand from a greenhouse equipped with a boiler and a single high temperature
heat buffer. This case serves as a demonstration to test and evaluate the opti-
mization method. 2) A system with a boiler, CHP, and two buffers; one for high
temperature heat storage and one for low temperature heat storage. We compare
the optimization results with real heat and electricity data from a commercial
full-scale greenhouse in the Netherlands.

4.2 Materials and methods

For 2012, greenhouse climate and energy data (five-minute time interval) were
obtained from the greenhouse process control computer of a 4 ha commercial rose
greenhouse in Bleiswijk, The Netherlands (see Van Beveren et al. (2015a,b) for
more details). The recorded data were obtained from different sensors and actua-
tors in the greenhouse. These measurements are standard in modern greenhouses.

In addition, a time series with real gas and electricity prices (15-minute time in-
terval) was obtained via the electricity and gas supplying company of the grower.
This makes it possible to compare the optimal scenarios with the grower’s oper-
ation. In the Netherlands, electricity generated from horticultural CHP installa-
tions is partly used for artificial lighting, but mostly sold to the national power
grid (Vermeulen and Van der Lans, 2011). Growers in the Netherlands have the
possibility to trade electricity on different markets that operate on different time
scales. The greenhouse in this study traded electricity on the so-called unbalance
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market only. On this market, prices fluctuate every 15 minutes. Although rare, a
negative electricity price can occur, meaning that the grower gets paid for using
electricity.

All data were collected for the whole year of 2012. However, in the real system
of the actual greenhouse there was additional equipment, such as a heat pump and
aquifer, which are not considered in this study. Therefore, we could only compare
the days where the configuration of the actual greenhouse was congruent with the
configuration of the optimization. There are, altogether, 63 days for which the
configuration was congruent with that of the grower, as explained in more detail
in Section 4.B.

A general optimal control formulation defines the optimization problem in a
flexible and generic manner. The optimal control problem in this paper was
solved using Tomlab optimization software (Edvall and Goran, 2009) in Matlab
(version 7, The MathWorks Inc., Natick, USA) on a PC with core i5 CPU 660
3.33GHz,4GB RAM and Windows 7 x64 installed. “Tomlab is a general-purpose
development, modeling, and optimal control environment in Matlab for research,
teaching, practical solution of optimization problems” (Holmstrom et al., 2010).

Tomlab requires the definition of the number of collocation points to solve the
optimization problem (Edvall and Goran, 2009). All optimizations were done
using a sequence of collocation points, starting from 24 collocation points per day.
When an optimal solution was obtained, the result served as the initial guess for
the next optimization with a higher number of collocation points. This procedure
was repeated for 48, 96 and 144 collocation points per day. The raw data were
re-sampled to the number of collocation points needed for the optimization. It was
found that the result converged with the number of collocation points, and that
the step from 96 to 144 points hardly gave further improvement, so 144 points are
enough. The reported CPU times were recorded using 144 collocation points per
day.

4.2.1 Case 1: Demonstration of the optimal control method with
configuration of boiler and buffer

System configuration

The first configuration considered in this work consists of a boiler and a high
temperature buffer (HT) (Fig. 4.2). The heat demand from the greenhouse (Qdes

= QHT,grh) as a function of time is assumed to be known. This constraint fol-
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lows from the two-stage approach described in Van Beveren et al. (2015b,a), but
could also have another pre-defined pattern. The heat demand of the greenhouse
depends among other things largely on the desired greenhouse climate and the
outside weather. The boiler in this example has a maximum capacity (Qmax

HT,boil)
of 3MW (75Wm−2). When the boiler is active it should be on for at least 80%
of capacity. In addition, the number of switching instances should be reduced
(Fransen, 2015). Both constraints have been implemented for reasons of efficiency
and minimal wear of the boiler.

The buffer had a maximal capacity of 3.1MJm−2. The heat flux from or to
this buffer is defined as QHT,buf . From a physical point of view a heat flux should
be considered as positive. From this perspective, two heat fluxes would have
to be introduced: one for loading and one for unloading of the buffer. With
such a formulation the optimal control method does not preclude the possibility
of simultaneously loading and unloading. This is unwanted and in practice not
possible. Therefore, here, the problem is reformulated such that the heat flux
from or to the buffer is either negative (loading the buffer with heat) or positive
(unloading the buffer). This definition ensures that loading and unloading of the
buffer cannot occur at the same time. The total heat flux to the greenhouse (Qdes)
is determined by the sum of the heat flux coming from the boiler (QHT,boil) and
the heat flux coming from, or going to the heat buffer (QHT,buf ). The properties
of the heat buffer are given in Table 4.1.

Greenhouse + Boiler

Buffer HT

QHT,boil

QHT,buf

QHT,grh Gboil

Figure 4.2: Schematic overview of the system configuration using a boiler and
buffer. Colors of the arrows: high temperature heat fluxes ( ) and gas flux
( ).
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In this configuration it is assumed that CO2 coming from the boiler is not used
for CO2 enrichment of the greenhouse. This is the practice for a growing number
of greenhouses in the Netherlands that use CO2 from industrial sources distributed
via a pipe network maintained by the company OCAP (Organic Carbon dioxide
for Assimilation of Plants). However, the use of exhaust CO2 from the boiler for
CO2 enrichment can easily be included in the optimal control formulation due to
its generic nature.

Formulation of the optimization problem

The energy content of the buffer is described by:

dHHT,buf (t)

dt
= −QHT,buf (t), (4.1)

with the known initial high temperature heat (HT ) in the buffer from the grower
(HHT,grower),

HHT,buf (t0) = HHT,grower(t0). (4.2)
In the sequel, for easier readability, the explicit time dependency of the variables
is dropped from the notation where the dependency is evident.

The amount of heat delivered by the boiler (QHT,boil) and buffer (QHT,buf )
at each moment in time is equal to the heat demand of the greenhouse (Qdes)
(Eq. (4.3)). Eq. (4.3) acts as a constraint in the optimization.

QHT,boil +QHT,buf = Qdes (4.3)

No losses from the buffer are assumed in order to keep the formulation as simple
as possible. Due to their nature, all fluxes have non-negativity constraints, except
for the buffer flux, since it can be positive or negative as explained before. The
buffer flux is constrained by:

Qmin
HT,buf (t) ≤ QHT,buf (t) ≤ Qmax

HT,buf (t), (4.4)

where Qmin
HT,buf = −Qmax

HT,buf . The buffer state has the following state constraint:

0 ≤ HHT,buf (t) ≤ Hmax
HT,buf (t). (4.5)

In order to cope with the operation range of the boiler, a zero-or-range constraint
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was introduced (Hansen and Huge, 1989). This range constraint is represented in
the optimal control problem with the following definition:

QHT,boil −Qmax
HT,boilbboil ≤ 0 (4.6)

QHT,boil − rboilQ
max
HT,boilbboil ≥ 0 (4.7)
QHT,boil ≥ 0 (4.8)

where Eq. (4.8) is a trivial constraint on the heat flux from the boiler, which can
only be positive. Eq. (4.6) and Eq. (4.7) give the following constraint for bboil = 0:
QHT,boil = 0. For bboil = 1, the constraint is rmin

boil Q
max
HT,boil ≤ QHT,boil ≤ Qmax

HT,boil.
The value of rmin

boil was 0.8.

The selected control variables are:

u =

u1

u2

u3

 =

QHT,boil

QHT,buf

bboil

 , bboil ∈ {0, 1}. (4.9)

Then, the goal is to find the optimal control u∗(t), t0 ≤ t ≤ tf that minimizes
the cost function in Eq. (4.10) which is the total gas cost of the boiler for the
given time evolution of the gas price (pG) in em−3 (Eq. (4.11)). The optimization
period can be any period in this formulation. When time periods longer than
24 hour are taken, the gas price varies over time.

min
u

J = min
u

∫ tf

t0

(pGGboil(u)) dt, (4.10)

pG(t), t0 ≤ t ≤ tf . (4.11)

The amount of gas used by the boiler (Gboil) is proportional to the amount of
heat produced by the boiler:

Gboil =
QHT,boil

ηboil · S
(4.12)

The parameters for the optimization in Section 4.2.1 are listed in Table 4.1.

Switching the boiler on and off too frequently should be avoided in order to save
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maintenance costs (Fransen, 2015). This kind of requirements can be implemented
in the optimal control formulation by adding a penalty accounting for the number
of switching moments to the goal function:

J̃ =

∫
pGGboil + 10−3Q̇2

HT,boildt. (4.13)

The penalty parameter (1× 10−3) is hard to assess a priori and was therefore
chosen empirically to obtain a realistic switching behavior.

Experiments

Three experiments were performed with this configuration to demonstrate the
optimization procedure and to demonstrate the performance of the optimizations
with different initial buffer fill status (f0). The first two experiments were per-
formed with goal function (Eq. (4.10)), to test the effect of the initial buffer status
on the performance. In the third experiment the effect of the buffer switch re-
striction according to Eq. (4.13) was investigated.

4.2.2 Case 2: Optimization of a configuration with boiler, CHP,
and buffers and comparison with real data

System configuration

The second configuration consisted of a boiler, combined heat and power instal-
lation (CHP), and two heat buffers (Fig. 4.3). The main reason to have a boiler
installed next to the CHP is to serve as a back-up for heat production in case the
CHP cannot run because of maintenance or repair. The CHP has a maximum
thermal capacity (Qmax

chp ) of 2520 kW (62Wm−2); of which 70% of the heat is at
a high temperature, and 30% at a low temperature. The former is gained from
the exhaust gas condenser. The thermal efficiency of the CHP (ηQ,chp) is 0.46 and
the electrical efficiency (ηE,chp) is 0.37. Thus, the maximum electricity production
is 2060 kW (51Wm−2). The thermal and electrical efficiency of the CHP were
assumed to be constant for the operating range that was used, which is reason-
able in view of the restricted operation range between 0.85 and 1. The thermal
and electrical efficiencies are obtained from the supplier and are in line with the
values reported in (Vermeulen, 2014). Electricity from the CHP is either used in
the greenhouse for artificial lighting (Edes) or sold to the public electricity grid
(Esell). Electricity can also be bought from the grid (Ebuy).
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High temperature heat from the boiler or CHP can be stored in the high tem-
perature buffer (HHT,buf ) or directly go to the greenhouse. Low temperature heat
(LT) can be stored in the low temperature heat buffer (HLT,buf ) or directly go to
the greenhouse. High temperature heating of the greenhouse air is done with the
pipe rail heating system and low temperature heating is done with heat exchang-
ers above the crop. In the analysis, we assume that there is no difference between
applying greenhouse heating with heating pipes or with heat exchangers.

As explained in Section 4.2.1, the heat fluxes to or from the buffers (QHT,buf ,
QLT,buf ) are positive (unloading of the buffer), negative (loading of the buffer), or
zero. In Figs. 4.2 and 4.3 this is indicated by the two-sided arrows.

Greenhouse

+ CHP

+

+

+

Boiler

Buffer LT

Buffer HT

QLT,chpQLT,buf

QLT,grh

QHT,chp

QHT,boil

QHT,buf

QHT,grh

Gboil

Gchp Gtot

Echp

EgridEgrh

Figure 4.3: Schematic overview of the system configuration using boiler, CHP, and
buffers. Colors of the arrows: high temperature heat fluxes ( ), low temperature
heat fluxes ( ) gas fluxes ( ), and electricity fluxes ( ).

Formulation of the optimization problem

The energy content of the high temperature buffer (HHT ) is described by Eq. (4.1)
and the energy content of the low temperature heat buffer (HLT ) is described by
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Eq. (4.14). The energy content of the low temperature buffer depends only on
the low temperature buffer flux (QLT,buf ). Again, no losses from the buffer are
assumed. However, the effect of this assumption was investigated. Therefore,
Eq. (4.1) and Eq. (4.14) were extended as described in Section 4.C according to
the numbers given in (Van Steekelenburg et al., 2011).

dHLT,buf

dt
= −QLT,buf (4.14)

To ensure fair comparison between grower and optimization, the heat with-
drawn or stored in the buffer over the day must be considered. Therefore, in
the optimization the initial and final fill status are taken like the values obtained
from the data of the grower. This leads to the following initial and terminal state
constraints:

HHT,buf (t0) = HHT,grower(t0), (4.15)
HLT,buf (t0) = HLT,grower(t0), (4.16)
HHT,buf (tf ) = HHT,grower(tf ), (4.17)
HLT,buf (tf ) = HLT,grower(tf ). (4.18)

The buffers have state constraints that represent the minimum and maximum
storage capacity:

0 ≤ HHT,buf (t) ≤ Hmax
HT,buf (t), (4.19)

0 ≤ HLT,buf (t) ≤ Hmax
LT,buf (t). (4.20)

The total heat demand from the greenhouse can be satisfied by the boiler,
high temperature buffer, low temperature buffer, directly from the CHP, or a
combination of those. The sum of these fluxes must be equal to heat demand
from the greenhouse (Qdes).

QHT,boil +QHT,chp +QLT,chp +QHT,buf +QLT,buf = Qdes (4.21)

The heat demand from the greenhouse in this paper is obtained from the realized
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controls (see Section 4.B). In the final two-stage approach the heat demand will
be obtained by minimization of the energy input of the greenhouse as explained
and calculated in Van Beveren et al. (2015a,b).

The electricity demand (Edes) is taken equal to the electricity consumption of
the artificial lighting in the greenhouse. It can be delivered by the CHP (Echp) or
by the grid (Egrid):

Echp + Egrid = Edes. (4.22)

If the CHP produces more electricity than Edes, the electricity is sold to the grid
(Egrid). Egrid is positive if electricity is bought from the grid and negative if sold
to the grid. The cost of electricity generated by the CHP is already accounted in
the gas price.

The CHP has a similar constraint as the boiler and must operate in a certain
power range. Therefore, just like the zero-or-range constraint for the boiler (Sec-
tion 4.2.1), another zero-or-range constraint has been implemented for the CHP.
This introduces next to bboil another boolean control variable (bchp). The lower
bound of the operating range of the CHP (rmin

chp ) was determined from the data of
the grower to be 0.85.

In summary, the problem is subject to the following inequality control con-
straints (similar as in Section 4.2.1),

QHT,boil −Qmax
HT,boilbboil ≤ 0, (4.23)

QHT,boil − rboilQ
max
HT,boilbboil ≥ 0, (4.24)

QHT,boil ≥ 0, (4.25)
Qchp −Qmax

chp bchp ≤ 0, (4.26)
Qchp − rchpQ

max
chp bchp ≥ 0, (4.27)

Qchp ≥ 0, (4.28)
bboil, bchp ∈ {0, 1}, (4.29)

Qmin
HT,buf (t) ≤ QHT,buf (t) ≤ Qmax

HT,buf (t), (4.30)

Qmin
HT,buf (t) ≤ QHT,buf (t) ≤ Qmax

HT,buf (t), (4.31)
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In Eqs. (4.30) and (4.31) Qmin
buf,HT = −Qmax

buf,HT , and Qmin
buf,LT = −Qmax

buf,LT , since
it was assumed that the minimum and maximum fluxes of loading and unloading
are equal.

The amount of gas used by the CHP (Gchp) is proportional to the amount of
heat produced by the CHP:

Gchp =
Qchp

ηQ,chpS
(4.32)

where the total efficiency of the CHP ηchp = 0.83 was determined from data from
the grower’s gas meter and power data. The electricity production by the CHP is
calculated as:

Echp =
ηE,chp

ηQ,chp

Qchp. (4.33)

The ratio between ηE,chp and ηQ,chp was obtained from the power data of the CHP
from a full year based on five minute data. A constant value of 0.81 was found.

For this configuration of equipment, the control variables are:

u =


u1

u2

u3

u4

u5

u6

 =


QHT,boil

QHT,chp

QHT,buf

QLT,buf

bboil
bchp

 , bboil, bchp ∈ {0, 1}. (4.34)

Then, the goal function minimizing the total costs of buying gas, and buying
or selling electricity - representing the revenues as negative costs - for the given
time evolution of the gas and electricity price (Eq. (4.36) and Eq. (4.37)) is:

min
u

J = min
u

∫ tf

t0

(pGGtot + pEEgrid) dt, (4.35)

pG(t), t0 ≤ t ≤ tf , (4.36)

pE(t), t0 ≤ t ≤ tf , (4.37)

Gtot = Gboil +Gchp. (4.38)
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And Egrid is given through Eqs. (4.21), (4.22) and (4.33) by:

Egrid = Edes −
ηEchp

ηQchp

· (Qdes −QHT,boil −QHT,buf −QLT,buf ) (4.39)

Contrary to Eq. (4.13), no penalty was added for frequent on/off switching of
the boiler and CHP in the standard optimization runs. However, different penalty
values were tested. On most days, the control was not affected by the penalty.
On some days, there was a slight reduction of the number of switching events per
day (i.e. six instead of seven switching events per day). The total energy costs
were not influenced.

The optimization was performed over a full day period. The parameters for
the optimization in Section 4.2.2 are listed in Table 4.1. The CPU time for the
optimization over a day varied between 1 and 48 s, with a mean value of 6 s and
a standard deviation of 7 s.

Table 4.1: Parameters for optimization of system with boiler, CHP, and buffer in
Section 4.2.2.

Symbol Description Value Unit
A Greenhouse area 40 709 m2 [grh]
Hmax

HT,buf Heat storage capacity buffer HT 3.14× 106 Jm−2 [grh]
Hmax

LT,buf Heat storage capacity buffer LT 1.05× 106 Jm−2 [grh]
Qmax

HT,buf Maximal heat flux to buffer HT 150 Wm−2 [grh]
Qmax

LT,buf Maximal heat flux to buffer LT 150 Wm−2 [grh]
− Installed boiler capacity in the greenhouse 2× 106 W
− Installed CHP capacity in the greenhouse 2.52× 106 W
Qmax

HT,boil Maximum boiler thermal flux 49 Wm−2[grh]
Qmax

chp Maximum CHP thermal flux 62 Wm−2[grh]
rmin
boil Minumum of the range for operating the boiler 0.8 −
rmin
chp Minumum of the range for operating the CHP 0.85 −
S Combustion heat of natural gas 35.17× 106 Jm−3 [gas]
ηboil Boiler efficiency 0.94 -
ηQ,chp Thermal efficiency CHP 0.46 -
ηE,chp Electrical efficiency CHP 0.37 -
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Experiments

Various scenarios were analyzed to assess the optimization for the configuration
with boiler, CHP, and buffers all using the desired heat pattern as calculated with
the procedure explained in Section 4.B. In the first scenario fixed prices for gas
and electricity were used.

The second scenario was to perform the optimization with real heat and electric-
ity demand patterns. In order to determine the factors that influenced the costs
most heavily, the effect of the buffer filling terminal constraints and the sensitivity
for the desired heat and electricity pattern was analyzed. In order to study the
sensitivity of the optimization result to the final buffer fill status, the final buffer
fill status for the high temperature buffer was changed by 10%. Furthermore,
the heat and electricity demand, calculated from the grower’s operation, as well
as the prices of electricity and gas were varied by 10%. Apart from changing
the electricity price with a fixed percentage, additional scenarios were analyzed
with randomly modified prices. For each value of the electricity price (time series)
the price was modified by picking a random value (uniform discrete distribution)
from a pre-defined interval. After obtaining the random modification factors, the
values where normalized, such that the mean percentage of change was zero. A
range of −10% to 10%, and a range of −50% to 50% were used and repeated
five times. Lastly, the effect of extending the buffer models with a heat loss factor
was investigated.

4.3 Results

4.3.1 Case 1: Demonstration of the optimal control method with
configuration of boiler and buffer

The result of optimizing the utilization of the boiler and buffer is shown in Fig. 4.4
for three different scenarios using the same artificial heat demand profile. The gas
price was fixed at 0.34em−3 for the three presented scenarios.
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(c) J̃ =
∫
pGGboil + 10−3Q̇2

HT,boil dt

Figure 4.4: Desired heat profile of the greenhouse (top row), optimal control of
the boiler (second row), optimal buffer flux (third row), and corresponding heat
stored in the buffer (bottom row).

In Fig. 4.4a the result of minimizing the gas cost with an initial buffer fill status
(f0) of 0.5 is shown. The buffer is empty at the end of the optimization period
(Fig. 4.4a). This is the expected result since the goal is to minimize the total
gas cost. The effect of the zero-or-range constraint (Section 4.2.1) can be seen in
Fig. 4.4a. When the boiler is active, it is active between 60 and 75Wm−2 (i.e.
between 80 and 100% of full capacity). The surplus of heat is stored in the buffer
as indicated by the negative buffer flux (QHT,buf ) during these periods. When the
boiler is not active, the greenhouse is heated using heat from the buffer. At 22 h
the boiler is active for 90% and some heat is coming from the buffer in order to
empty it completely. The total gas cost for this day was 1186e for the whole
greenhouse, and therefore equal to 2.92× 10−2em−2.

When the initial buffer fill status is zero (Fig. 4.4b), the only heat source avail-
able for heating the greenhouse is the boiler. The first half of the day the boiler is
active, and the surplus heat is stored in the buffer. The second half of the day the
buffer and boiler are active in such a way that the buffer is empty again at the end
of the optimization period. The total gas cost for this day were 4.54× 10−2em−2,
which is higher than in the previous case because no ’free’ heat was available in

88



the buffer at the start.

In order to reduce the switching behavior of the boiler, a penalty on the switch-
ing of the control was implemented by replacing the goal function with Eq. (4.13)
as described in Section 4.2.1.

Because the value of the goal functions is different, a direct comparison is not
possible, but when we compare the gas costs component, it appears that the
total gas costs remain the same. This reveals that there are several buffer control
solutions for the optimization with the original goal function, meaning that the
control solution found in Fig. 4.4b is not unique. In fact, by adding the penalty,
the solution is forced to the quieter operation of Fig. 4.4c, without additional
costs.

4.3.2 Case 2: Optimization of a configuration with boiler, CHP,
and buffers and comparison with real data

Optimization with fixed prices

The desired heat and electricity demand profile to be delivered to the greenhouse
and prices for November 1, 2012 are shown in Fig. 4.5a and b, respectively. The
electricity demand is the electricity consumption of the lamps for artificial lighting
in the greenhouse. The maximum capacity of the lamps was 112.5Wm−2. The
heat demand (Fig. 4.5a) was higher during the period when the lamps were off.
The buffer fill status at beginning and end were fixed at the observed values.
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Figure 4.5: Desired heat (solid) and electricity demand (dashed) (a), and gas price
(solid, em−3) and electricity price (dashed, ekWh−1) (b) for November 1, 2012
with fixed prices for gas and electricity.

Fig. 4.6 shows the results for November 1, 2012 with a fixed gas price of 0.24
em−3 and a fixed electricity price of 0.014× 10−6eJ−1 (0.05ekWh−1) (equal to
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the mean prices for the whole year 2012). Heat fluxes of the boiler and CHP, the
buffers, and the energy content of the buffers are shown in Fig. 4.6a, b, and c for
the optimal situation and in Fig. 4.6d, e, and f for the grower’s operation.
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Figure 4.6: Optimal (a) and grower’s operation (d) of operating the boiler (solid)
and CHP (dashed), for the optimal scenario (b) and grower’s operation (e), and
energy content of the high (solid) and low temperature (dashed) buffers for the
optimal scenario (c) and grower’s operation (f) for November 1, 2012 with fixed
prices for gas and electricity.

The total costs in the optimal scenario were 0.11em−2, while in the grower’s
scenario this would have been 0.12em−2 (using the same fixed prices). In the
optimal scenario the CHP was always running, producing 5.3MJm−2, while the
grower produced 4.5MJm−2 with the CHP. The remaining heat demand was pro-
duced by the boiler.

The optimization with fixed prices was also performed for a summer day (July
13, 2012) with a lower electricity and heat demand profile (not shown). The
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total costs were 0.037em−2, while in the grower’s scenario this would have been
0.040em−2. The CHP was used to produce all heat in both cases. However, the
moments when the CHP was on were different. Less electricity was bought from
the grid, and more electricity was sold to the grid in the optimal scenario.

For both days, it appears that varying the level of the gas and electricity prices
affected the total costs but did not affect the amount of heat and electricity
produced.

Optimization with real, time variant, prices

Optimization results
Two days were selected in order to demonstrate the grower’s operation of the
system and of the optimized operation. The first selected day was July 13, 2012,
which was a day with a relatively low electricity demand. The second day was
October 9, 2012, which was a day with a higher electricity demand. The heat
and electricity demand and prices for July 13, 2012 are shown in Fig. 4.7a and b,
respectively. The heat and electricity demand and prices for October 9, 2012 are
shown in Fig. 4.9a and b, respectively.

Heat fluxes of the boiler and CHP, heat fluxes of the buffers, and the energy
content of the buffers are shown in Fig. 4.8a, b, and c for the optimal situation,
and Fig. 4.8d, e, and f for the grower’s operation.
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Figure 4.7: Desired heat (solid) and electricity (dashed) demand (a), and gas
(solid, em−3) and electricity price (dashed, ekWh−1) (b) for July 13, 2012.
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Figure 4.8: Optimal (a) and grower’s operation (d) of operating the boiler (solid)
and CHP (dashed), high (solid) and low temperature (dashed) buffer fluxes for
the optimal scenario (b) and grower’s operation (e), and energy content of the
high (solid) and low temperature (dashed) buffers for the optimal scenario (c)
and grower’s operation (f) for July 13, 2012.
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The breakdown of heat and electricity production for the selected days is sum-
marized in Table 4.2. For July 13, 2012 the boiler was not used in both the optimal
and grower’s scenario. All heat was produced by the CHP. The total amount of
heat produced by the CHP was slightly higher in the optimal scenario. More
electricity was sold to the grid, while a similar amount of electricity was bought
from the grid. The total costs for buying the electricity were lower and the total
revenues from selling electricity were higher in the optimized scenario compared
to the grower’s operation. It can be seen that between the fixed initial and final
values, that are identical for both optimization and grower, the time pattern of
the energy content of the buffers (Hbuf,HT and Hbuf,LT ) were quite similar in both
scenarios.

For October 9, 2012, the boiler was used in the optimal scenario but not by the
grower. In the optimized scenario the CHP was used less. More electricity was
bought from the grid to fulfill the electricity demand. Therefore, the electricity
costs were slightly higher than in the grower’s scenario, but this was more than
compensated by the lower expenditure for gas.
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Figure 4.9: Desired heat (solid) and electricity (dashed) demand (a), and gas price
(solid, em−3) and electricity price (dashed, ekWh−1) (b) for October 9, 2012.
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Figure 4.10: Optimal (a) and grower’s operation (d) of operating the boiler (solid)
and CHP (dashed), high (solid) and low temperature (dashed) buffer fluxes for
the optimal scenario (b) and grower’s operation (e), and energy content of the
high (solid) and low temperature (dashed) buffers for the optimal scenario (c)
and grower’s operation (f) for October 9, 2012.
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The boiler was utilized, such that the heat demand at each time is delivered
and the constraints on the filling of the buffers at the end of the optimization
period were fulfilled.

There is a slight difference in heat and electricity produced between the optimal
scenario and the scenario of the grower (Table 4.2). This is because of noise in
the assessment of the energy content of the buffers in the data of the grower
(Section 4.B). The heat profile sometimes showed negative values (Section 4.B)
since in the current set up it is not possible to take cooling needs into account;
they were set to zero. For days with no negative values in Qdes, the total produced
heat and electricity in the optimal scenario and grower’s scenario were equal (not
shown).

Table 4.2: Performance indicators calculated from grower’s operation of the green-
house and optimization for two example days: July 13, 2012 and October 9, 2012.

Symbol July 13, 2012 October 9, 2012 Unit
Optimal Grower Optimal Grower

Energy∫
Qtot

HT,boil 0.00 0.00 1.29 0.00 MJm−2∫
Qtot

chp 1.69 1.64 3.00 4.22 MJm−2∫
Ebuy 1.72 1.74 5.06 4.14 MJm−2∫
Esell 0.91 0.67 0.55 0.38 MJm−2

Costs of energy∫
Gtot 0.025 0.025 0.058 0.070 em−2∫
Ebuy 0.007 0.008 0.057 0.051 em−2∫
Esell -0.015 -0.009 -0.007 -0.005 em−2

J 0.018 0.025 0.114 0.116 em−2
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The optimization results for the 63 days where the configuration was congruent
with that of the grower, are summarized in Fig. 4.11.
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Figure 4.11: Energy costs (a) and total energy fluxes (b) of the grower’s scenario
(red) and the optimal scenario (blue) for 63 days in 2012.

The cumulative cost function value (J∗) on those 63 days was 20% lower in the
optimal scenario compared to the costs of the grower. This is mostly explained
by the lower costs for buying electricity from the grid Ebuy (−19%) and the
higher benefits from selling electricity to the grid Esell (140%). The optimization
can make use of the prior and full knowledge of the prices over the optimization
horizon, in contrast to the grower. The costs for gas vary much less over time than
the costs for electricity, therefore, the difference between the total costs for gas
differs much less (5%) between the optimal scenario and the grower’s scenario.

A comparison of energy consumption and utilization of equipment for the an-
alyzed days is shown in Fig. 4.11b. In the optimal scenario the amount of heat
coming from the boiler is higher than in the grower’s scenario. The boiler only
produces heat but has a higher efficiency for heat production than the CHP. This
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means that less natural gas must be bought to produce the same amount of heat.
Another difference between the optimal scenario and the grower is that more
electricity is sold to the grid and more electricity is bought from the grid.

Fig. 4.12 shows the difference of the total costs between the grower and the
optimized scenario for all 63 days considered. The optimal cost function value is
lower on all 63 days than the costs of the grower.
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Figure 4.12: Difference in the cost function value of the grower’s scenario and the
optimized scenario (Jgrower - Joptimal) for all analyzed days in 2012. See Section 4.B
for the corresponding dates and day numbers.

Sensitivity analysis
The results of the single parameter sensitivity analysis (Section 4.2.2) on the final
buffer fill status (HHT ), desired heat demand (Qdes) and desired electricity demand
(Edes) are shown in Table 4.3.

A lower total buffer fill status of the high temperature buffer at the end of the
optimization period of 10% led to a lower gas use of 0.7m3m−2 and lower total
costs of 0.11em−2. A higher terminal buffer fill status led to higher gas use and
costs. The total extra costs for the extra gas are relatively low because more
electricity was produced that was sold to the grid. This means that a higher heat
demand does not necessary lead to higher costs when the surplus electricity is
sold for a price that is high enough. The same holds for overall lower and higher
desired heat profile. The difference in total costs are relatively low. The costs and
gas use for the case with 10% lower heat demand were about the same as in the
standard scenario.
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Table 4.3: Effect of final buffer fill status, desired heat demand, desired electricity
demand, and prices of electricity and gas on the goal function (J∗) and optimal
gas use (G∗

tot) over the selected 63 days.

# Standard scenario New scenario
∑

J∗ ∑∫
G∗

tot

em−2 m3m−2

1 HHT,buf (tf ) = HHT,grower(tf ) 5.22 13.9
2 HHT,buf (tf ) = HHT,grower(tf ) HHT,buf (tf ) ≥ HHT,grower(tf ) 5.22 13.9
3 HHT,buf (tf ) = HHT,grower(tf ) HHT,buf (tf ) ≥ 0.9 ·HHT,grower(tf ) 5.11 13.2
4 HHT,buf (tf ) = HHT,grower(tf ) HHT,buf (tf ) ≥ 1.1 ·HHT,grower(tf ) 5.32 14.5
5 Qdes(t) 0.9 ·Qdes(t) 5.04 12.8
6 Qdes(t) 1.1 ·Qdes(t) 5.41 14.9
7 Edes(t) 0.9 · Edes(t) 4.69 13.9
8 Edes(t) 1.1 · Edes(t) 5.74 13.9
9 pG(t) 0.9 · pG(t) 4.86 14.4
10 pG(t) 1.1 · pG(t) 5.56 13.3
11 pE(t) 0.9 · pE(t) 5.03 13.3
12 pE(t) 1.1 · pE(t) 5.38 14.4
13 a = 0% a = 1% 5.24 14.0
14 a = 0% a = 2% 5.26 14.0

The total gas use was similar when the electricity demand profile was varied
because more electricity was bought from the grid when the electricity demand
was higher than the electricity production of the CHP. The total costs were much
more sensitive to the electricity demand than the heat demand for the analyzed
days.

Lowering the gas price always by 10% led to lower energy costs and higher
gas use. This is because, compared to the standard scenario, there were more
moments with electricity demand from the greenhouse for which it was cheaper
to generate the electricity with the CHP instead of buying the electricity from
the grid. Also, the costs of producing electricity when sold to the grid was lower.
Higher electricity prices also lead to higher gas use, for the same reasons, but
the total energy costs become somewhat higher. Lower electricity prices led to
somewhat lower energy costs and gas use as in the standard scenario.

The effect of a perfect price forecast for electricity was investigated by by ran-
dom modification of the electricity price at each time with a random percentage
from a pre-defined range. The standard deviation of the optimal solutions was
0.0007e for the interval of −10% to 10%, and 0.004e for the interval of −50%
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to 50%. This effect is rather small, because the mean percentage of the changed
price was zero.

The effect of heat loss from the buffer for 1% heat loss per day led to an increase
of 0.4% of the total costs for energy. The total costs for scenario 14 in Table 3
were 0.8% higher than the costs of the standard scenario. The gas use increased
proportionally with the heat loss.

4.4 Discussion

4.4.1 Configuration

In this study, optimizations were first performed using a boiler and heat buffer
(configuration 1) and secondly using a boiler, CHP, and two different heat buffers
(configuration 2). Both configurations occur in Dutch greenhouse horticulture
practice. Clearly, in practice, configurations may vary; for instance, in config-
uration 2, often just one heat buffer is installed. However, the optimal control
method is flexible and can easily be adapted to the actual scenario, such as selling
heat to the neighboring greenhouse or adding additional equipment.

CO2 for the enrichment of greenhouse air was not taken into account for the
two configurations optimized in this paper. The reason is that in this case an in-
dustrial CO2 source was used. The desired CO2 concentration or dosing strategy
in modern greenhouses depends, among others, on the type of crop, crop develop-
ment stage, light conditions, and the ventilation rate. However, by virtue of the
generic character of the optimization problem this scenario can be accommodated
as well, provided that like heat and electricity demand, the CO2 demand pattern
is specified in advance. CO2 from the boiler is often used directly for CO2 enrich-
ment (Bailey, 2002). CO2 from the CHP is also often used but the exhaust gas
is mostly cleaned in order to prevent crop damage due to noxious gasses in the
exhaust gas. To implement this in the optimization framework, the desired CO2

must be produced by the boiler or CHP (both with their own efficiency for the
production of CO2) or come from an external CO2 source. The efficiency or costs
of running the exhaust gas cleaner need to be considered in case of a CHP with
exhaust gas cleaner.

4.4.2 Optimization

The desired heat and electricity profiles for generating the greenhouse climate were
taken equal to those of the grower. These profiles of the grower were calculated
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from data of power production by the CHP, boiler and buffers stored in the green-
house process control computer. In the optimization, the amount of heat stored
in the buffers depends on the incoming and outgoing heat flux. Heat losses during
transportation and storage were neglected, and it was assumed that all heat that
was stored in the buffer was regained, which could lead to an underestimation of
the true energy consumption of about 0.4% per percent of heat loss per day as
shown in the sensitivity analysis. The available measured buffer data showed very
fluctuating behavior (Section 4.B).

More than one buffer control solution is possible if the buffer efficiency is equal
to 1, as assumed in the paper, and when the gas price is constant. Even when
the efficiency of the buffer is smaller than 1, there can be multiple controls that
can deliver the same amount of heat to the greenhouse. However, in that case the
total costs will be slightly higher since not all heat that is put in the buffer can
be regained.

The costs for electricity and gas found in the optimization were 20% lower than
in the grower’s scenario. An important difference is that, in the optimization, the
costs of gas and electricity were perfectly known in advance. Differences between
the energy fluxes in the optimized and grower’s scenario were sometimes small but
could result in large differences in the costs because of the strong fluctuations that
occurred in the electricity price. Therefore, we emphasize that a reliable prediction
of the prices, together with a proper prediction of the heat and electricity demand
of the greenhouse would be very valuable for growers. Zaheer-uddin and Zheng
(2000) also suggest that it is possible to take advantage of the storage possibilities
and electricity prices by allowing the demand of heat and electricity to vary within
acceptable limits. This is also in line with the energy savings found by widening
the bounds in Van Beveren et al. (2015b).

The presented optimization is an open loop optimization. In the current form,
the optimization is performed afterwards and can be used as a tool to analyze the
performance and find possibilities for improvement. In order to implement the
optimization procedure in the current greenhouse practice as a forecasting tool,
a receding horizon optimal control approach would be suitable Tap (2000); Van
Straten et al. (2002); Van Ooteghem et al. (2005); Oldewurtel et al. (2012). In
that case, a reliable weather forecast and price forecasts for electricity and gas
must be available for the horizon of the optimization (e.g. one or a few days).
The prediction of outdoor weather is important because the heat and electricity
profiles that must be realized depend strongly on the weather conditions.
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Also, in practice, the calculation time is an important aspect for implementa-
tion. The calculation times found for the optimization with fixed prices were far
below the chosen time interval of one hour. Even the longest calculation time of
316 s for three successive days is still shorter than the time interval of one hour.
The CPU time for the optimization with real prices were all shorter than one
minute. Therefore, we do not expect problems with calculation time in practice.
Another aspect for practical implementation is the prevention of frequent switch-
ing of the equipment. The current quadratic method did not provide a satisfactory
solution, thus, requires further investigation.

In practice, many different configurations and combinations of equipment for
heat and cold production and storage occur. This work aimed to be a start-
ing point for optimizing and understanding optimal scheduling of these systems.
Therefore, the next logical step would be to expand the optimization framework
with other equipment like a heat pump, aquifer storage, cold storage in short term
buffers, and cooling machines. Heat and cold storage in aquifers is typically used
for long term (seasonal) energy storage. Extension of the optimization framework
in such systems requires a solution to handle long term buffering.

Optimizing the configurations as described in this paper for a longer period are
expected to decrease the energy use and costs since the buffers can be used more
effectively. In case of a longer optimization period, the buffers have more freedom
and time to anticipate to the desired heat and electricity profile. This is supported
by the results of the sensitivity analysis on the final buffer filling.

If there are no constraints on the buffer capacity and final buffer filling, the
cost effectivity of the CHP can be assessed as follows: The boiler has a thermal
efficiency of 0.94. To produce 1MJ of heat, 35.17m3 of gas must be burned. As
1MWh is equivalent to 3600MJ, the production of 1MWh of heat with the boiler
requires 109m3 gas with associated costs of pG (em−3) * 109 (m3). The thermal
efficiency of the CHP is 0.46 for heat (Table 4.1). To produce 1MWh of heat with
the CHP, 223m3 gas must be burned, so it seems that the costs of 1MWh CHP
heat are pG (em−3) * 223 (m3). However, this comparison is not fair since the
CHP also produces electricity. So, the total efficiency (heat + electricity) of the
CHP is 0.83. With an efficiency of 0.83, 123m3 gas is needed to produce 1MWh
(heat + electricity), whereby, about 45% is electricity and 55% is heat. Although
it seems that the CHP is not as energy efficient as the boiler, economically the
CHP is in general more efficient, provided that the electricity price is high enough.
For example, burning 114m3 gas produces 0.8MWh electricity, in this case, the
CHP is more cost-effective if the electricity price is larger than 0.14 * pG.
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4.5 Conclusion

Several issues that hamper the application of the flexible dynamic framework for
resource allocation in greenhouses have been solved. In particular, zero-or-range
constraints were implemented in order to operate the boiler and CHP between
a specified range when they are active. In addition, simultaneous loading and
unloading of the buffer was prevented by defining the heat flux from and to the
buffers as a single flux that can be positive or negative. It was shown that these
modifications, together with a powerful numerical tool, ensured the feasibility of
the dynamic optimization approach.

The application of open-loop optimization for a realistic greenhouse configura-
tion showed a potential benefit in the order of 20% as compared to the actual
operation of the grower, at least for those days where the configurations were
congruent. It shows that a given heat demand does not necessarily come with a
fixed price to pay. Rather, using price information in conjunction with dynamic
optimization appears to pay off. It underlines that trading and short-term fore-
casting of gas and electricity prices in combination with dynamic optimization
have a high potential for cost savings in horticultural practice. The total energy
cost for the studied greenhouse was more sensitive to the electricity demand than
to the heating demand.

The benefits of the optimization procedure implemented this way are two-fold:
1) it facilitates the decision on when and how to deploy which piece of equipment,
and 2) it provides an economically optimal solution.

The presented framework will be the basis for further development and exten-
sion with other equipment for heating and cooling.
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Appendices

4.A Nomenclature

Table 4: Nomenclature

Symbol Description Unit
a Buffer heat loss factor %d−1

A Greenhouse area m2

b Boolean control variable −
E Electricity flux Wm−2[grh]
G Gas flux m3[gas]m−2[grh]s−1

H Heat content Jm−2[grh]
J Goal function em−2[grh]
p Price e
Q Heat flux Wm−2[grh]
r Range of operation −
S Heat of combustion Jm−3[gas]
t Time s
u Control variable
α Buffer heat loss factor %s−1

η Efficiency −

Subscript
boil Boiler
buf Buffer
buy Bought from the grid
chp Combined heat an power installation
des Desired
E Electricity
f Final
grh Greenhouse
grower Grower
G Gas
grid Public electricity grid
HT High Temperature
LT Low Temperature
load Loading
optimal Optimal
sell Sold to the grid
unload Unloading
Superscript
min Minimum
max Maximum
∗ Optimal
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4.B Derivation of the desired heat profile

In order to compare the optimization results with the operating strategy resulting
from grower’s operation of the greenhouse, the desired heat and electricity profiles
were calculated from the realized production and delivery of heat and electricity
as registered by the process control computer at the greenhouse facility (Eq. (40)).

Qdes,grower = QHT,boil +Qchp −QHT,buf,load

+QHT,buf,unload −QLT,buf,load +QLT,buf,unload (40)

The greenhouse also delivered heat to a neighboring greenhouse (Qbuf,ext). This
heat must also be delivered, so it was assumed to be part of Qdes,grower.

The five minute data of the buffer fill rate showed rather fluctuating behavior,
while the data of the boiler and CHP were less fluctuating and more smooth. The
fluctuating behavior was stronger for the low temperature heat buffer than for the
high temperature heat buffer. To obtain data that better represent the inertia of
the heat buffers, the high frequency was removed by taking hourly mean values
for Qdes (Fig. 13). A possible explanation for the behavior of the data can be the
update interval of the energy content calculation and delays in the system due to
the volume of the heating system.

0 6 12 18 24

−100

0

100

200

Time (h)

Q
d
es

(W
m

−
2
)

Figure 13: Calculated desired heat pattern using five minute data ( ) and hourly
means ( ) for October 9, 2012

Only days when the heat pump was not used were selected for comparison
between the utilization of the equipment by the grower and the optimal scenario
because the heat pump and heat buffering in the aquifer are not part of the
model and optimization procedure yet. This extension will be considered in future
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research. In 2012 there were 64 days without heat pump usage. Some data
were missing during one of the days, therefore, this day was excluded from the
analysis. A list of the selected days is given in Table 5. Within these 63 days, the
low temperature heat storage was not used on 17 days. On those days the low
temperature heat buffer was used as storage of cold water for greenhouse cooling.
In the optimization procedure, this was implemented by adapting the maximum
heat storage capacity, namely by setting Hmax

LT,buf = 0.

Table 5: Selected days for analysis.

Index Day of year Date Index Day of year Date Index Day of year Date
1 24 24-Jan-12 22 198 16-Jul-12 43 279 5-Oct-12
2 44 13-Feb-12 23 199 17-Jul-12 44 280 6-Oct-12
3 62 2-Mar-12 24 200 18-Jul-12 45 282 8-Oct-12
4 65 5-Mar-12 25 201 19-Jul-12 46 283 9-Oct-12
5 70 10-Mar-12 26 255 11-Sep-12 47 284 10-Oct-12
6 97 60-Apr-12 27 256 12-Sep-12 48 286 12-Oct-12
7 105 14-Apr-12 28 257 13-Sep-12 49 287 13-Oct-12
8 106 15-Apr-12 29 260 16-Sep-12 50 290 16-Oct-12
9 124 3-May-12 30 261 17-Sep-12 51 291 17-Oct-12
10 131 10-May-12 31 264 20-Sep-12 52 292 18-Oct-12
11 156 4-Jun-12 32 265 21-Sep-12 53 293 19-Oct-12
12 157 5-Jun-12 33 266 22-Sep-12 54 294 20-Oct-12
13 158 6-Jun-12 34 267 23-Sep-12 55 295 21-Oct-12
14 159 7-Jun-12 35 268 24-Sep-12 56 296 22-Oct-12
15 161 9-Jun-12 36 269 25-Sep-12 57 298 24-Oct-12
16 170 18-Jun-12 37 270 26-Sep-12 58 299 25-Oct-12
17 176 24-Jun-12 38 271 27-Sep-12 59 301 27-Oct-12
18 191 9-Jul-12 39 272 28-Sep-12 60 306 1-Nov-12
19 192 10-Jul-12 40 273 29-Sep-12 61 312 7-Nov-12
20 195 13-Jul-12 41 277 3-Oct-12 62 313 8-Nov-12
21 197 15-Jul-12 42 278 4-Oct-12 63 319 14-Nov-12
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4.C Derivation of heat loss factor buffer

The buffer without heat loss is modeled as (Eq. (4.1) and Eq. (4.14)):

dH

dt
= −Q (41)

Suppose the heat loss Qloss is proportional to the heat content:

Qloss = −αH (42)

Eq. (41) then becomes:
dH

dt
= −αH −Q (43)

Heat loss factors for different buffers used in greenhouse horticulture can be
found in (Van Steekelenburg et al., 2011). Suppose the heat loss for 1 day (24
hours) is a% of the starting energy content. Assume Q = 0. Then it follows from
Eq. (43) that:

H(tf ) = H(t0)e
(−α(tf−t0)) (44)

Since H(tf) = (1− 0.01 ∗ a)H(t0) it follows that:

−α(tf − t0) = ln(1− 0.01a) (45)

From this it follows that with tf − t0 = 24h = 24 · 3600s, α is given by:

α = −(ln(1− 0.01a))/(24 · 3600) (46)

In this way, the empirically known value of daily heat loss a is replaced by the
parameter α, so that the optimization including heat loss can be performed by
replacing Eq. (41) by Eq. (43).
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Abstract

Increasing variability in energy-saving equipment and systems in the greenhouse
industry raises the question of how to best utilize the various equipment in such
a setting. The development of adequate solutions for deployment and control of
this diversity of equipment has not kept pace with the innovations in the green-
house industry. In earlier work a two-step dynamic optimization framework was
developed, where in step one energy demand for heating and cooling is optimized
within the climate constraints set by the grower, and in step two energy costs are
minimized of alternative equipment use to satisfy that demand. Here the aims
are: 1) to develop step two; 2) to illustrate the potential cost savings of both steps
by comparing optimization results with real-life data from one specific grower, as
a benchmark.

The energy equipment of a 4 ha semi-closed greenhouse was optimized on a daily
basis using dynamic optimization for a period of one year. Predefined heating,
cooling, and electricity demand patterns computed from available grower data
served as input, together with realized prices for gas and electricity. The installed
equipment contained a boiler, a CHP (combined heat and power installation),
short term buffers for high and low temperature heat and cold water storage, a
heat pump, an aquifer for long term heat and cold storage and cooling towers.
Cooling towers are a new element in the field of greenhouse energy optimization.

The results show that cost optimization of the energy system is feasible and
beneficial. Energy cost savings of 29% were obtained for the optimized situation
as compared to the real situation at the grower. All available equipment was
utilized in the optimal situation. The results show that trading of electricity and
short-term forecasting of gas and electricity prices in combination with dynamic
optimization has a high potential for cost savings in horticultural practice. Dy-
namic optimization pointed to a higher share of sustainable energy in the energy
budget.
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5.1 Introduction

A greenhouse is a permanent glass or plastic covered building for the production of
fruits, vegetables, flowers, or ornamentals that has means for controlling the crop
environment (Stanghellini et al., 2019). The high energy demand of greenhouses,
especially in Northern latitudes, led to the development of the closed greenhouse
concept (Opdam et al., 2005; Bakker et al., 2006; Grisey et al., 2011; Vadiee and
Martin, 2012, 2013). The main idea of the closed greenhouse is to maximize the
utilization of solar energy through seasonal storage (Vadiee and Martin, 2013). It
is called closed greenhouse because of the absence of air exchange with outdoor
air. Heating, cooling, and dehumidification are needed to maintain temperature
and relative humidity (RH) levels within acceptable bounds for plant production
(Van Beveren et al., 2015a). Cooling and dehumidification are usually done via
heat-exchangers in the greenhouse (Bakker et al., 2006; De Zwart, 2011) as well as
low temperature heating. This enables higher CO2 concentrations in the green-
house and consequently a higher potential plant production at lower injection
rates (Dieleman and Hemming, 2011; Gieling et al., 2011). In a typical summer
situation, the surplus heat is stored in the short term (diurnal) buffers or long term
(seasonal) storage in underground aquifers (Van ’t Ooster et al., 2007). In con-
trast to the summer situation, warm water from the aquifer heats the greenhouse
in periods where no cooling is required. A heat pump increases the temperature
of the stored water to a level that is suitable for heating.

The concept of the completely closed greenhouse evolved over the last decade
in the direction of the semi-closed greenhouse concept. Semi-closed greenhouses
have a smaller cooling capacity than the closed greenhouse and have ventilation
windows that are opened when the cooling system has insufficient capacity (Qian
et al., 2011). Next to cooling, ventilation is occasionally also needed for dehumid-
ification. The semi-closed greenhouse can save a lot of energy by minimizing the
ventilation and storing the surplus heat. In this way, natural gas consumption
for heating is minimized. Several studies analyzed the performance of semi-closed
greenhouses (De Zwart, 2008; Campen and Kempkes, 2011; Gieling et al., 2011;
Qian et al., 2012).
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However, the control of closed and semi-closed greenhouses was studied less.
Molenaar et al. (2007) optimized by means of linear programming the energy costs
of a closed greenhouse for a whole year using an artificially generated heat and
electricity demand. Van Ooteghem (2007b) presented a (receding horizon) optimal
control formulation for a semi-closed greenhouse with aquifer thermal storage and
a boiler. Van Willigenburg et al. (2000) proposed a three time-scale receding
horizon optimal control approach to optimize a greenhouse with heat storage
tank. In these examples only a limited set of equipment was considered, not fully
reflecting the wide range of equipment available to greenhouse industry today. It
seems the development of adequate solutions for deployment and control has not
kept pace with the rapid adoption of such equipment in greenhouse industry in
past years.

Scrutinizing work of Yu et al. (2015) shows that a similar kind of control issues
are encountered in air conditioning of buildings using complex heating, cooling
and energy storage systems. However, solutions from that application domain
cannot be one to one projected on greenhouse practice due to significant differences
between greenhouse systems and building systems.

Accounting for the growing complexity of the energy systems installed and
fluctuating prices on the energy market, further extend the work presented in
Van Beveren et al. (2015a,b, 2019) and addresses the fundamental question on
how to best utilize the available equipment. To deal with the complexity of the
optimization and control problem, in Van Beveren et al. (2015b, 2019) a two-step
optimization paradigm was introduced. The first step consists of minimizing the
energy input while realizing a desirable greenhouse climate, as defined by lower
and upper temperature, humidity, and CO2 bounds set by the grower. This step
yields patterns for heating, cooling, and CO2 enrichment (Van Beveren et al.,
2015a,b). Then, the second step addresses the optimal scheduling and utilization
of the equipment needed to fulfill the required demands calculated in step one
and minimizing operating costs (Van Beveren et al., 2019). It is worth noting
that in the second optimization step also demand patterns can be used based,
in retrospect, on real-life data obtained in a practical greenhouse, thus offering
the opportunity to evaluate practical system operation strategies compared to
optimized strategies.
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The current paper addresses the second optimization step and builds on and
extends the work of Van Beveren et al. (2019). The novelty of this paper is
threefold. First, while Van Beveren et al. (2019) addressed two simple yet realistic
system configurations to build understanding for the optimization problem at
hand, the current work addresses a realistic energy system configuration in its
full complexity including, besides a boiler, CHP, short term low temperature and
high temperature buffers, also a heat pump, aquifer long term energy storage
and cooling towers. Addressing the optimal utilization of cooling towers in such
an energy system is the second novelty of this work. Optimal control of energy
systems for buildings that include cooling towers or cooling machines are presented
among others by Kintner-Meyer and Emery (1995); Ma et al. (2009); Pavlov and
Olesen (2012). Greenhouse systems with cooling towers have been described by
Buchholz et al. (2005); Bakker et al. (2006); Blanco et al. (2014), but to the best of
our knowledge optimal control of such an energy system in greenhouse cultivation
has not been addressed before. Thirdly, the optimization is evaluated for a full
year and compared to operational data of a real greenhouse utilizing this energy
system in its full complexity.

This paper is organized as follows. First, the data of the greenhouse and equip-
ment is disclosed (Section 5.2.1), then the formulation of the dynamic optimization
problem addressing energy equipment and use is presented (Section 5.2.3). Sec-
ondly, in Sections 5.3.1 to 5.3.3 optimal operation of the semi-closed greenhouse is
illustrated and compared with practical operation of the studied greenhouse with
the realized heating, cooling, and electricity demand of the year 2012. In addition
to taking the real demands as a starting point, also the minimized energy demand
of the greenhouse (Van Beveren et al., 2015a) was taken as a starting point for
optimization of the energy costs (Section 5.3.4). This demonstrates the potential
cost saving of application of the optimization procedures in both the stages of
energy demand and energy supply optimization.
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5.2 Materials and methods

5.2.1 Data

Data was collected from a four-hectare (40 709m2) rose producing greenhouse in
Bleiswijk, the Netherlands (52 °N, 4.5 °E). Operational data from both the green-
house process control computer and the energy control system were obtained for
the whole year 2012, thus allowing comparison of the optimal control results with
practice. The data from the energy control system included temperature measure-
ments and control settings of pumps and valves. Data from both sources had a
five-minute sampling interval. The outdoor climate for 2012 is shown in Appendix
5.B. Furthermore, the real dynamic electricity and gas prices for the whole year
2012 were obtained through the energy supplier of the grower (15-minute time in-
terval). In the Netherlands, electricity produced with CHP installations is partly
used for artificial lighting but mostly sold to the national power grid (Vermeulen
and Van der Lans, 2011). Growers can trade electricity on different markets that
operate on different time scales. The greenhouse in this study traded electricity
on the so-called unbalance market only. In this market, prices fluctuate every 15
minutes. Although rare, a negative electricity price can occur, meaning that the
grower gets paid for using electricity.

5.2.2 Greenhouse description

The greenhouse dimensions were 281m by 160m, where a part of about 140m by
32m were office, equipment and storage space. Eave height was 6.4m and ridge
height was 7.2m.

The following equipment was present in the greenhouse to control greenhouse
climate: 1) pipe rail heating system, 2) ventilation windows, 3) water-to-air heat-
exchangers for heating, cooling and dehumidification (OPAC106, De Zwart and
Janssen (2010)), 4) supplementary lighting, and 5) energy and shading screens.
The heat-exchangers (3) were placed above the crop. In the heat-exchangers cold
or warm water was led to a large contact surface to exchange energy with the air.
Air was recirculated through the unit by an internal fan. The use of such units
is not common in greenhouse industry, yet. Active cooling may result in active
dehumidification, so less ventilation is needed and higher CO2 concentrations can
be maintained in the greenhouse.
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The available energy equipment to supply the heat and cold were an aquifer
storing warm and cold water, heat pump, short term low temperature (LT ) buffer
and cold water (C) storage, short term high temperature (HT ) buffers, boiler,
CHP (combined heat and power installation), and cooling towers. Heat was also
delivered to the neighboring greenhouse. Photos of the greenhouse and some of
the equipment are shown in Fig. 5.1.

(a) The greenhouse with crop (b) Building with HT heat buffer (c) CHP installation

(d) Aquifer pumps (e) Heat pump (f) Cooling tower

Figure 5.1: Photos of the greenhouse and equipment.
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5.2.3 System configuration

A schematic overview of the system configuration is shown in Fig. 5.2. All symbols
are explained in Appendix 5.A.
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Figure 5.2: System configuration for heating and cooling the greenhouse. High
temperature heat fluxes ( ), low temperature heat fluxes ( ), electricity fluxes
( ) and gas fluxes ( ) are represented by arrows.

Heating can be applied with the pipe rail heating system under the crop or
with the heat-exchangers above the crop. The pipe rail heating system requires
high temperature heat (>35 °C). Heating with the heat-exchangers requires low
temperature heat (25 °C to 35 °C). Cooling can only be applied with the heat-
exchangers.
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In greenhouses without or with limited active cooling, the ventilation windows
are opened to lower the greenhouse air temperature on warm sunny days. As a
consequence, the CO2 concentration drops under the desired CO2 level because of
limited CO2 dosing capacity. The advantage of active cooling is that ventilation
loss of CO2 is neutralized, and CO2 remains available for assimilation which is
beneficial for crop production and the environment.

Cooling is not only applied to lower greenhouse air temperature, but also to
dehumidify greenhouse air. When using the heat-exchangers for cooling, vapor
from the air condensates in the heat-exchanger. Dehumidification of greenhouse
air is needed to prevent too high humidity levels in the greenhouse. High humidity
levels increase the risk of diseases and fungi threatening crop health (Dieleman
and Hemming, 2011). The need for dehumidification does occur more frequent in
the late summer and autumn period in the Netherlands. Illuminated rose crops,
as grown in the studied greenhouse, require a high number of dehumidification
hours due to higher transpiration rates in cold and dark periods (Campen et al.,
2003). It was observed in the data from the grower that heating and cooling were
sometimes applied at the same time in order to correct both temperature and
humidity.

High-temperature heat can either come from the boiler or the CHP. The CHP
produces heat, electricity, and carbon dioxide gas (CO2). Most greenhouses in the
Netherlands use a gas-fired boiler combined with a CHP for heating the green-
house. While burning gas, CO2 is produced to enrich the greenhouse air. The CO2

from the CHP was not used in the studied greenhouse. All CO2 came from a CO2

distribution network (OCAP, Ros et al. (2014)) in the west of the Netherlands
except for a couple of days that OCAP CO2 was not available. On those days,
CO2 from the boiler was applied. The CHP in the greenhouse was a Cummins
QSV 91 G 18 bar with a total thermal capacity of 2.5MW.

The cold water buffer and low-temperature heat buffer are two large water
storages under the greenhouse floor of about 2650m3 each. These buffers are
so-called ’Klimrek’ buffers (Brand et al., 2008), and can either be used as a low-
temperature heat storage (25 °C to 35 °C) or as a cold water storage (7 °C to
17 °C). As depicted in Fig. 5.3, buffers were initially employed by the grower as
low-temperature heat storage in 2012. After 75 days, one buffer was designated as
cold storage and the other as low-temperature buffer. During 16 weeks in summer,
both buffers were operated as cold buffers. After this period, one buffer was in
use as a low-temperature heat storage again, and finally, both buffers were used
as low-temperature heat buffers.
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The function of the heat pump is to bring low-temperature water to a higher
temperature level, so that it is suitable for heating the greenhouse via the heat-
exchangers or for temporary storage in the LT buffer. At the same time, water
with a lower temperature (cold water) is leaving the heat pump. The heat pump
can also be employed to fill the cold water buffer. Alternatively, the heat pump
cools the warm water coming from the greenhouse or buffer. The produced cold
water is then stored for later use. This is a typical summer situation.

The heat pump installed in the greenhouse was an electrical Carrier Evergreen
Chiller 19XR with refrigerant type R-134a. The maximum thermal power of the
heat pump was 2.5MW. The COP (coefficient of performance) of the heat pump
was determined from measured data as 5.5 (SD=1.0).

An aquifer is a water-bearing sand layer to store warm or cold water. The
aquifer used at the greenhouse consisted of four cold wells and four warm wells.
The mean (measured) temperature of the water on the cold side of the aquifer
was 10.7 °C (SD=4.0 °C) and the mean (measured) temperature of the water on
the warm side of the aquifer was 20.6 °C (SD=4.8 °C).

The cooling towers were installed to fulfill governmental regulations on the
storage of heat in aquifers, which state that the cold and the warm well should
be in balance in the long term (Van Steekelenburg et al., 2011). This means that
the same amount of heat that is extracted should be injected into the aquifer over
multiple years. Rose greenhouses in the Netherlands with supplementary lighting
have in general a surplus of heat. The cooling towers are intended to waste surplus
heat in summer and to produce cold water to store in the aquifer in winter. These
cooling towers have relatively low operating costs.

Electricity is primarily used for supplementary lighting (112.5Wm−2 SON-T).
The other consumers of electricity in the greenhouse are the heat pump and cooling
towers. In the current case, electricity can be produced with the CHP or can be
bought from the public electricity grid. Grower’s in the Netherlands can also sell
electricity to the grid at a dynamic market price. Electricity consumption from
other equipment like pumps and controllers was not taken into account.
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Optimal control formulation

In order to optimize the utilization of equipment for the presented configuration,
an optimal control problem was formulated. The optimal control formulation of
the semi-closed greenhouse configuration is an extension of the formulation of the
second configuration (CHP, boiler and two heat buffers) in (Van Beveren et al.,
2019), with a heat pump, aquifer heat storage, a cold buffer, and cooling towers.

All heat fluxes are defined as positive heat gains in the direction of the arrows
in Fig. 5.2.

Extraction of heat e.g. from greenhouse or buffer was defined as a positive
cold flux. All heat and electricity fluxes are expressed in W per square meter
greenhouse floor area.

The system contains four different buffers. A buffer heat flux is either positive
(unloading of the buffer) or negative (loading of the buffer). For the standard case,
heat loss during transport and storage is ignored. Eqs. (5.1) to (5.4) describe the
energy content (H) of the high temperature buffer (HHT,buf ), aquifer (Haq), low
temperature heat buffer (HLT ), and cold buffer (HC), respectively.

dHHT,buf

dt
= −QHT,buf (5.1)

dHaq

dt
= −QLT,aq (5.2)

dHLT

dt
= −QLT,buf (5.3)

dHC

dt
= −QC,buf (5.4)

The effect of heat loss from the LT and HT buffer was studied before in Van
Beveren et al. (2019) and proved to have little effect on the optimization result.
Heat loss from the aquifer is about 0.08% per day (Van Steekelenburg et al.,
2011). The effect of incorporating the loss factor for the aquifer was analyzed
using the same approach as in Van Beveren et al. (2019).
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Since the two Klimrek buffers could be used as low-temperature heat storage or
as a storage of cold water, these buffers together are treated in the optimal control
formulation as one low-temperature (LT) storage and one cold water storage (C)
with varying capacities throughout the year (as depicted in Fig. 5.3). The capaci-
ties of the low-temperature buffer and cold buffer were adapted, based on the day
of the year, similar to the grower’s operation in 2012. The maximal heat storage
capacity for a single Klimrek buffer was 1.85MJm−2 for low temperature water
and 0.82MJm−2 for cold water (Table 5.1). It can be seen that both Klimrek
buffers contain LT heat in the first and last period of the year (day 1 to day 75
and day 334 to day 365). From day 146 to day 260, both Klimrek buffers stored
cold water. In the remaining periods, one buffer served as low-temperature water
storage and the other buffer served as cold water storage.
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Figure 5.3: Total capacity of the low-temperature heat buffer ( ) and cold buffer
according to the practical use by the grower in 2012 ( ). In total, two Klimrek
buffers were present in the greenhouse that serve either as a low-temperature
buffer (LT) or cold buffer (C).

All buffers have limitations on the minimum and maximum amount of energy
that can be stored in the buffer, Eqs. (5.5) to (5.8). The capacities of the buffers
and aquifer are given in Table 5.1.
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0 ≤ HHT ≤ Hmax
HT (5.5)

0 ≤ Haq ≤ Hmax
aq (5.6)

0 ≤ HLT ≤ Hmax
LT (t) (5.7)

0 ≤ HC ≤ Hmax
C (t) (5.8)

To enable a fair comparison between the grower’s operation and the optimiza-
tion, the heat withdrawn or stored in the buffers and aquifer over the day must
be considered. Therefore, in the optimization, the initial fill status was taken
from the data obtained from the grower. This leads to the following initial state
constraints:

HHT,buf (t0) = HHT,grower(t0), (5.9)
Haq(t0) = Haq,grower(t0), (5.10)

HLT,buf (t0) = HLT,grower(t0), (5.11)
HC,buf (t0) = HC,grower(t0). (5.12)

The measured data of the buffers showed sometimes unrealistic values e.g. too
large heat extraction in a short period for reasons not understood. Introducing a
lower and upper bound with a small deviation of 1% (fdev = 0.01) on the final
state constraints of the buffers and aquifer solved this problem. This leads to the
following final state constraints:

(1− fdev)HHT,grower ≤ HHT,buf (tf ) ≤ (1 + fdev)HHT,grower(tf ), (5.13)
(1− fdev)Haq,grower(tf ) ≤ Haq(tf ) ≤ (1 + fdevHaq,grower(tf ), (5.14)

(1− fdev)HLT,grower(tf ) ≤ HLT,buf (tf ) ≤ (1 + fdev)HLT,grower(tf ), (5.15)
(1− fdev)HC,grower(tf ) ≤ HC,buf (tf ) ≤ (1 + fdev)HC,grower(tf ). (5.16)

When the low-temperature buffer is not used in summer, the heat flux to the
buffer should be equal to 0. bLT,buf is an apriori defined boolean (no control
variable) that is zero when there is no low-temperature buffer (Fig. 5.3). In the
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problem formulation this is implemented via the following constraint:

0 ≤ QLT,buf ≤ bLT,bufQLT,buf . (5.17)

Three different states of heating and cooling can occur in the greenhouse at the
same time: 1) heating only, 2) cooling only, and 3) combined heating and cooling.
The latter occurs mainly in the spring and autumn season when too high humidity
levels in the greenhouse are prevented by cooling out vapor from the air with the
heat-exchangers. At the same time, the indoor temperature is increased by heating
so that the air can contain more water vapor and the temperature stays within the
desired bounds. To cope with these three situations, a boolean bC was calculated
(apriori) from the pre-defined cooling demand and was not a control variable.
When the greenhouse had a cooling demand, bC was equal to one and otherwise,
bC was zero. When a cooling demand exists, heat could only be delivered via the
high-temperature heating (QHT,grh). When no cooling demand exists, heat can
be delivered via low (QLT,grh) or high-temperature heating (Eq. (5.18)).

QHT,grh + (1− bC)QLT,grh = Qtot,grh (5.18)

The high-temperature heat could either come from the boiler (QHT,boil), high-
temperature buffer (QHT,buf ), or the high-temperature CHP outlet (QHT,chp) (Eq.
5.19). As an extra option, the low-temperature heat produced by the CHP
(QLT,chp) could be mixed with the high-temperature heat. The part of the LT
heat from the CHP that is added to the high-temperature heat is QLT,chp,2. It was
assumed that the resulting warm water is of sufficient temperature for heating the
greenhouse. The mixing is inevitable in the summer period when both Klimrek
buffers store cold water.

The division of low temperature heat from CHP is determined via Eq. (5.20).
Eq. (5.21) is an additional constraint that limits the control variable QLT,chp,2.

QHT,grh = QHT,boil +QHT,buf +QHT,chp +QLT,chp,2 (5.19)
QLT,chp,1 = QLT,chp −QLT,chp2 (5.20)

QLT,chp,2 ≤ QLT,chp (5.21)

For reasons of efficiency and avoiding faster deterioration of parts, the boiler and
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CHP are preferably not run below a specific minimum operating power. To cope
with this operation range of the boiler, a zero-or-range constraint was introduced
(Hansen and Huge, 1989). In the case of the boiler it reads:

QHT,boil −Qmax
HT,boilbboil ≤ 0, (5.22)

QHT,boil − rmin
boil Q

max
HT,boilbboil ≥ 0, (5.23)

QHT,boil ≥ 0, (5.24)
bboil ∈ {0, 1} (5.25)

where Eq. (5.22) and Eq. (5.23) give the following constraint for bboil = 0: QHT,boil =
0. For bboil = 1, the constraint is rmin

boil Q
max
HT,boil ≤ QHT,boil ≤ Qmax

HT,boil. The value of
rmin
boil was 0.8. Eq. (5.24) is a trivial constraint on the heat flux from the boiler,

which can only be positive.

A similar zero-or-range constraint for the CHP is given by Eqs. (5.26) to (5.29).
This introduces the next boolean control variable (bchp). The lower bound of the
operating range of the CHP (rmin

chp ) was determined from the data of the grower
and turned out to be 0.85 in practice.

Qchp −Qmax
chp bchp ≤ 0, (5.26)

Qchp − rmin
chp Q

max
chp bchp ≥ 0, (5.27)

Qchp ≥ 0, (5.28)
bchp ∈ {0, 1} (5.29)

The low-temperature heat fluxes when QLT,grh is in heating mode were calcu-
lated as:

QLT,buf +QLT,hp,out +QLT,chp −QLT,chp,2 = (1− bC)QLT,grh. (5.30)

The low-temperature heat fluxes when the greenhouse has a cooling demand
were calculated as:

−QLT,aq +QC,buf −QLT,ct −QLT,hp,in = bCQLT,grh. (5.31)
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The electricity production of the CHP (Echp) served the greenhouse (Egrh),
powers the heat pump (Ehp) and the cooling towers (Ect), or is sold to the grid
(Egrid < 0, Eq. (5.32)). The cost of electricity generated by the CHP is already
accounted for in the gas price.

Echp + Egrid − Ehp − Ect = Egrh (5.32)

The electricity production by the CHP was calculated as:

Echp =
ηE,chp

ηQ,chp

Qchp. (5.33)

The ratio between the electrical efficiency of the CHP ηE,chp and the thermal
efficiency ηQ,chp was obtained from the power data of the CHP from a full year
with a five minute time step. A ratio of 0.81 was found (Table 5.1).

The heat pump is either on or off. This is represented by the boolean control
variable bhp ∈ {0, 1} in the following equation:

QLT,hp,out = bhpQ
max
hp . (5.34)

The maximum thermal power of the heat pump Qmax
hp was 62.5Wm−2. The electric

power uptake of the heat pump (Ehp) is

Ehp =
QLT,hp,out

COPhp

(5.35)

where QLT,hp,out is the heat flux leaving the heat pump. The COPhp (5.5) is the
thermal coefficient of performance of the heat pump. The cold flux produced by
the heat pump is then calculated as:

QLT,hp,in = QLT,hp,out − Ehp (5.36)

Also, cooling towers have no variable control. They are either on or off. This
is represented by the boolean control variable bct ∈ {0, 1}. Minimum value Qmin

LT,ct

was introduced to allow cooling tower use on days when the grower did not use
them. On other days the capacity was limited to the actual value observed. This
was done to avoid the need for modeling the capacity of the cooling tower as a
function of the external conditions; the actual operation by the grower served as
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a proxy. The heat flux to the cooling towers QLT,ct depends on the maximum
realized heat flux on that specific day.

QLT,ct = bct max
(
Qmin

LT,ct, Q
max,grower
LT,ct

)
(5.37)

Following the previous description, the optimization problem has twelve control
variables:

u =


u1

u2

.

.

.
u12

 =



QLT,buf

QHT,buf

QLT,grh

QHT,boil

QHT,chp

QC,buf

QLT,aq

bboil
bchp
bct
bhp

QLT,chp,2



(5.38)

where
bboil, bchp, bct, bhp ∈ {0, 1}, (5.39)

and the other variables are continuous and need to satisfy the constraints as
described above.

The goal function to minimize the total gas costs, electricity costs for buying
or selling electricity (revenues are negative costs) for the given time evolution of
the gas price (Eq. (5.41)) and electricity price (Eq. (5.42)) is:

min
u

J = min
u

∫ tf

t0

(pG (Gboil(u) +Gchp(u)) + pEEgrid(u)) dt, (5.40)

pG(t), t0 ≤ t ≤ tf , (5.41)
pE(t), t0 ≤ t ≤ tf , (5.42)

where pG is the (dynamic) gas price (em−3) and pE is the (dynamic) electric-
ity price (eJ−1). The price for buying and selling electricity were equal, as for
the grower. The unit of the gas consumption (G) is m3m−2s−1 and the unit of
electricity bought or sold to the grid (Egrid) is Wm−2.
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The gas consumption of the boiler (Gboil) is proportional to the amount of heat
produced by the boiler:

Gboil =
QHT,boil

ηboil · S
. (5.43)

where ηboil is the boiler efficiency and S the combustion heat of natural gas. The
gas consumption of the CHP (Gchp) is proportional to the amount of heat produced
by the CHP:

Gchp =
Qchp

ηQ,chpS
, (5.44)

where the efficiency of the CHP for heat (ηQ,chp) was 0.46. This number was
obtained from the total efficiency of the CHP (ηchp), which was determined from
data from the grower’s gas meter and power data.

The capacities of the buffers and aquifer, and power of the equipment are listed
in Table 5.1. The costs of the grower were determined with measured data from
the electricity and gas meters present in the greenhouse. The (dynamic) prices of
electricity and gas were equal in the grower’s situation and the optimized situation.
The average gas price for 2012 was 0.24em−3 (SD = 0.017em−3, Min = 0.21
em−3, Max = 0.31em−3). The average electricity price for 2012 was 0.05ekWh−1

(SD = 0.112ekWh−1, Min = −0.45ekWh−1, Max = 0.54ekWh−1).

124



Table 5.1: System defining parameters used for case study.

Symbol Description Value Unit
ηboil Boiler efficiency 0.94 -
ηE,chp Electrical efficiency of the CHP 0.37 -
ηQ,chp Thermal efficiency of the CHP 0.46 -
A Greenhouse area 40 709 m2 [grh]
COPhp Coefficient of performance of the heat pump 5.5 −
Hmax

aq Maximum capacity aquifer 540 MJm−2 [grh]
Hmax

C,buf Maximum capacity buffer Ca 1.65× 106 Jm−2 [grh]
Hmax

HT,buf Maximum capacity buffer HT 3.14× 106 Jm−2 [grh]
Hmax

LT,buf Maximum capacity buffer LTa 3.71× 106 Jm−2 [grh]
Qmax

HT,buf Maximum heat flux to buffer HT 150 Wm−2 [grh]
Qmax

LT,buf Maximum heat flux to buffer LT 150 Wm−2 [grh]
Qmin

LT,ct Minimum cooling capacity of the cooling towers 50 Wm−2

− Installed boiler capacity in the greenhouse 2.00 MW
− Installed thermal CHP capacity in the greenhouse 2.52 MW
− Installed heat pump capacity in the greenhouse 2.50 MW
Qmax

HT,boil Maximum boiler thermal flux 49 Wm−2[grh]
Qmax

hp Maximum heat pump thermal flux 62.5 Wm−2[grh]
Qmax

chp Maximum CHP thermal flux 62 Wm−2[grh]
Qmin

LT,ct Minimum thermal flux cooling towers 50 Wm−2

rmin
boil Minimum of the range for operating the boiler 0.8 −
rmin
chp Minimum of the range for operating the CHP 0.85 −
S Combustion heat of natural gas (upper calorific value) 35.17× 106 Jm−3 [gas]
tf Final time 86 400 s

a Maximum capacity depends on day of the year according to Fig. 5.3.

Optimizations were performed per day (tf = 84 600 s) to stay as close as possible
to grower’s practice and to be able to compare the optimization results and control
of the equipment with the control of the grower and the performance obtained.
The consecutive days were optimized independently from each other. The initial
buffer and aquifer filling for every day were taken from the grower. The buffer and
aquifer filling at the end of the day were, as described before, allowed to deviate
slightly around the grower’s realization.

All optimizations in this paper were performed using Tomlab optimization soft-
ware (Edvall and Goran, 2009) in Matlab (version 7, The MathWorks Inc., Natick,
USA) on a PC with core i5 CPU 660 3.33GHz, 4GB RAM and Windows 7 x64 in-
stalled. The optimization problem was solved with TOMLAB/CPLEX for solving
large-scale mixed-integer linear and quadratic programming problems. “Tomlab
is a general-purpose development, modeling, and optimal control environment in
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Matlab for research, teaching, practical solution of optimization problems” (Holm-
strom et al., 2010).

Experiments

First, in experiment 1, optimization for the 365 individual days in 2012 was per-
formed for the given heating and cooling demand of the grower. Optimal results
were compared with the grower’s result. The heating and cooling demand of
the grower was obtained by extending the procedure Van Beveren et al. (2019),
Appendix 5.B, with measured data from the cold storage, cooling towers, heat
pump, and aquifer. Second, in experiment 2, optimizations were performed with
the minimal energy input (heating and cooling) obtained from Van Beveren et al.
(2015b). The electricity demand remained unchanged compared to Experiment 1.
The minimal energy input was obtained with the practical screen positions and
supplementary lighting from the grower. It is interesting to compare the standard
situation based on pre-defined demands copied from the grower to a situation
where these demands themselves are optimized, within the climate constraints set
around the values of the grower. This will demonstrate the potential cost saving
when stage 1 (minimizing energy input) is coupled to stage 2 (minimizing energy
costs).

5.3 Results

First, the optimization results for two individual days, one day in summer and
one day in winter, are presented to demonstrate the optimization in detail. The
greenhouse air temperature, relative humidity, and CO2 concentration for these
days are shown in Fig. 5.4. Second, the results of daily optimization of the whole
year 2012 are presented and compared with the realization of the grower using the
realized heating, cooling, and electricity demand as constraints. The electricity
demand was the realized electricity consumption of the lamps. The heat delivery
to the neighboring greenhouse was accounted for in the heat demand. Last, the
daily optimization results are presented using the minimal heating and cooling
demand for the year 2012 as constraints, these were obtained by optimizing the
energy input to the greenhouse (Van Beveren et al., 2015a).
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Figure 5.4: Greenhouse climate for June 16, 2012 ( ) and March 6, 2012 ( ):
a) greenhouse air temperature (°C), b) Relative humidity (%), c) CO2 concentra-
tion (ppm).

5.3.1 Summer day

The practical heating, cooling, and electricity demand of a warm summer day in
2012 (day number 168, June 16, 2012) is shown in Fig. 5.5. The corresponding
prices for electricity and gas are shown in Fig. 5.6. The utilization of the boiler,
CHP, heat pump, and cooling towers is shown in Fig. 5.7 for the optimal situ-
ation and in Fig. 5.8 for the grower’s situation. On June 16, 2012, the outdoor
temperature was lower than the greenhouse air temperature for the whole day.
The grower used active cooling to cool the greenhouse (12:00 to 21:00 hour) and
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supplementary lighting (2:00 to 8:30 hour). Supplementary lighting heats the
greenhouse air as well. The maximum outdoor radiation was about 1000Wm−2.
Therefore, the shading screen was closed between 11:00 and 16:00 hour. The pipe
rail heating system was used during the dark period, and at some moments during
the day. Despite the active cooling, the ventilation windows were slightly opened,
this is likely to remove water vapor from the greenhouse. Nevertheless, the grower
succeeded in maintaining a CO2 concentration around 1000 ppm during the light
period (Fig. 5.4).
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Figure 5.5: Desired heating ( ), cooling ( ), and electricity (for supplemen-
tary lighting) profile ( ) for June 16, 2012 (day number 168).
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Figure 5.6: Prices for electricity (ekWh−1, ) and gas (em−3, ) for June 16,
2012 (day number 168).
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Figure 5.7: Optimal result for June 16, 2012 (day number 168). Boiler ( ),
CHP ( ), heat pump ( ), and cooling towers ( ).
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Figure 5.8: Grower result for June 16, 2012 (day number 168). Boiler ( ), CHP
( ), heat pump ( ), and cooling towers ( ).

The total energy costs were −0.005em−2 in the optimal case and 0.044em−2

in the grower’s operation. There was a negative electricity price for some hours in
the early morning of day 168 (Fig. 5.6). The effect of this negative price is that
it is cheaper to buy electricity from the grid than to generate electricity using
the CHP, meaning that the power company rewards electricity consumption. At
later hours, the price is positive, but low, thus making it beneficial to use the
heat pump. Therefore, the heat pump is used for a longer period in the optimal
case compared to the grower’s operation. Heat production was not only needed
for heating the greenhouse but could also be the result of electricity production
with the CHP. In the optimal case, 3.3MJm−2 of electricity was bought from the
grid, while this was 1.5MJm−2 in the grower’s operation. The cooling towers were
used by the grower between 14:00 and 22:00 hour, while in the optimal situation
they were used in the night to waste heat ahead. This is possible because the cold
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water could be stored in either the cold buffer or aquifer. The boiler remained
switched off in both situations.

5.3.2 Winter day

The practical heating, cooling, and electricity demand of a cold winter day in 2012
(day number 66, March 6, 2012) is shown in Fig. 5.9. The outdoor light level was
much lower for the day in March (8.0MJm−2) compared to the day in June (20.1
MJm−2). Therefore, supplementary lighting was (partially) active for 24 hours
(not shown). The lamps were switched on completely between 0:00 and 8:00 hour.
The lamps also contribute to heating, therefore the desired heating profile is lower
compared to the afternoon period. The maximum outdoor radiation was about
500Wm−2 in the afternoon. Because of the lower outdoor temperature, cooling of
the greenhouse was not applied. The greenhouse air temperature was slightly lower
compared to June 16 (Fig. 5.4). The corresponding prices for electricity and gas
are shown in Fig. 5.10. The utilization of the boiler, CHP, heat pump, and cooling
towers is shown in Fig. 5.11 for the optimal situation and in Fig. 5.12 for the
grower’s situation. Although there was no cooling demand from the greenhouse,
the cooling towers were active in the grower’s situation between 0:00 and 10:30
hour and between 22:30 and 24:00 hour on this winter day in order to produce
cold water that is stored in the aquifer for cooling purposes in summer. The pipe
rail heating system was applied the whole day (not shown). The heat-exchangers
were used for heating during the dark period and at the end of the afternoon (not
shown).

0 2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

200

Time (h)

En
er

gy
(W

m
−
2
)

Figure 5.9: Desired practical heating ( ), cooling ( ), and electricity profile
( ) for March 6, 2012 (day number 66).
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Figure 5.10: electricity (ekWh−1, ) and gas (em−3, ) for March 6, 2012
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Figure 5.11: Optimal result for March 6, 2012 (day number 66). Boiler ( ),
CHP ( ), heat pump ( ), and cooling towers ( ).

The total energy costs were 0.102em−2 in the optimal case and 0.112em−2 in
the grower’s operation. Around 10:00 hour the electricity price was negative for
a short period, but otherwise, it was rather constant on day number 66, except
from two high peaks (around 19:00 and 23:00 hours). The effect of the higher
price is that the optimization uses the CHP on the moments that the electricity
price was high. Consequently, 0.08MJm−2 electricity was delivered to the grid
in the optimal case, as opposed to no delivery of electricity by the grower. The
heat pump was active between 10:30 and 21:00 hour in the grower’s operation,
while the optimization distributed the use of the heat pump over the whole day in
order to minimize the total energy costs. The cooling towers were activated more
frequently for shorter periods in the optimal case. The cooling towers consume
electricity, therefore, the cooling towers were active when the electricity price was
low.
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Figure 5.12: Grower result for March 6, 2012 (day number 66). Boiler ( ), CHP
( ), heat pump ( ), and cooling towers ( ).

5.3.3 Experiment 1: Full year with realized climate

The mean gas and electricity price for 2012 were 0.24 (SD=0.017) em−3 and 0.05
(SD=0.11) ekWh−1, respectively (Section 5.2.3). The total heat demand was 2.4
GJm−2y−1, the total cooling demand was 0.7GJm−2y−1, and the total electricity
demand of the greenhouse for supplementary lighting was 2.0GJm−2y−1. The
total amount of CO2 dosing was 95.4 kgm−2.

The optimal values of the goal function (Eq. (5.40)) for the daily optimization
for all days in 2012 with the heat and cold demand profile of the grower is shown
in Fig. 5.13. The difference between optimal operation and the grower’s operation
is shown in Fig. 5.14.

For all days, the optimal result has lower costs than the grower. The 2012 year
costs for the optimal result were 26.79em−2, whereas the costs of the grower were
37.71em−2. So, the total energy costs in the optimized scenario were 29% less
than the energy cost realized by the grower.

Fig. 5.13 shows that despite the cooling, the highest energy cost occurs in the
winter period, which is not surprising. The outside temperature is lower and
the day length shorter, which results in a much higher demand for heating and
electricity for lighting than in the summer period. Despite this, the difference
between the optimization and the grower is smaller in winter. Due to the high
demands, there is apparently less freedom for the optimization to shift heat load
and electricity trade within the optimization period of one day. A substantial part
of the gains of the optimization is therefore obtained in summer (Fig. 5.14).
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Figure 5.13: Optimal goal function value ( ) and grower’s result ( ) for each
day in 2012.
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Figure 5.14: Difference between the optimal goal function value and the grower’s
result per day in 2012.
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The utilization of the different equipment for optimal operation, sorted for the
whole year 2012, is shown in Fig. 5.15a, and for the grower in Fig. 5.15b. It can
be seen that in the grower’s operation the CHP was used for 6348 h and operated
most of the time at 100% (62.5Wm−2) and some time between 85% (53.1Wm−2)
and 100% of the maximum capacity. The boiler was operated for only 695 h in
2012. This is because the boiler was only used as a back-up in case of malfunction
of the CHP for heat production, or as a back-up for CO2 production in case of
malfunction of the OCAP industrial CO2 network.

The heat pump was used for 5356 h in the optimal case compared to 3122 h in
the grower’s operation, while the CHP was used for 3042 h in the optimal case
compared to 6348 h in the grower’s operation. Thus, the heat pump and the CHP
exchanged the number of operating hours roughly. Supplementary lighting was
active for 6318 hour in 2012. The CHP was turned on most of the time when
the lamps were on in the grower’s operation. The cooling towers were operated
for 2371 h in the optimal case compared to 2158 h in the grower’s operation. The
plateau visible in the cooling tower operating curve in the optimal case is due to
fixing the cooling tower capacity to a pre-defined value on days without grower
data (see Table 5.1). The total amount of wasted heat was 0.55GJm−2 in the
optimal case and 0.45GJm−2 in the grower’s operation.
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Figure 5.15: Sorted curves for the optimal (a) and grower’s situation (b) for the
year 2012. Boiler ( ), CHP ( ), heat pump ( ), and cooling towers ( ).
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The energy content of the aquifer throughout the year 2012 for the grower’s
situation is shown in Fig. 5.16. From day number 1 till day number 140 the energy
content decreases because heat is extracted and used for heating the greenhouse.
From day number 140 till day number 250, the energy content of the aquifer
increases because the greenhouse demands cooling and the extracted heat from
the greenhouse is stored in the aquifer. After day number 250 the energy content
decreases again. Although the amount of energy in the aquifer at the start of each
day was equal to the grower, the cumulative net amount of heat extracted from
the aquifer in the optimal situation was 100MJm−2 higher than in the grower’s
situation. This is possible in the optimization because the final state constraint
(per day) on the aquifer energy content (Hmax

aq ) was a percentage of the realized
energy content by the grower. Therefore, the allowed deviation from the realized
amount of energy in the aquifer at the end of the optimization period varied
accordingly throughout the year.
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Figure 5.16: Energy content of the aquifer per day for the grower’s situation in
2012.

5.3.4 Experiment 2: Full year with minimal energy

Instead of the realized heating and cooling demand of the grower (Section 5.3.3),
the optimized energy demand pattern, as obtained from Van Beveren et al. (2015b),
was used. The electricity demand remained unchanged, as well as the begin and
end constraints on the buffers and aquifer. The total heating demand was 47%
lower and the total cooling demand was 15% lower compared to the grower (Van
Beveren et al., 2015b). With the optimized heating and cooling demand, the to-
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tal energy costs were 29.9% less than in the grower’s situation for the whole year
2012. The difference between 29% (cost-saving with realized climate in Experi-
ment 1, Section 5.3.3) and 29.9% is rather limited. Note that the constraints on
the buffers and aquifer do not necessarily match the utilization of the equipment.
The optimal heating and cooling demand were not applied in practice and con-
straints did not necessarily match with the optimized demand. Thus, it was not
possible to modify the constraints (buffer and aquifer energy content) in such a
way that a fair comparison is possible.

5.4 Discussion

The optimization procedure in this paper is an open-loop optimization. In the
current form, the optimization is done for historical days. The practical use of
the optimization results is twofold: 1) analysis of the current performance of the
system and 2) to demonstrate how the performance can be improved. Implemen-
tation of the optimization procedure as a forecasting tool could be done via a
receding horizon optimal control approach (Tap et al., 1996; Van Straten et al.,
2002; Oldewurtel et al., 2012). Such implementation requires reliable forecasts of
the weather and prices of electricity and gas.

Obtaining the demands and operational constraints from the grower’s data is
difficult and is subject to uncertainty and measurement errors. Modern green-
houses have many different sensors and measuring systems in place. Those systems
collect data with different sensors, at different time intervals, and with different
accuracy (Bontsema et al., 2011). Several sources of uncertainties and possible
errors arise from uncertain measured data. Another factor that introduces un-
certainty is the fact that some ’measurements’ are not real measurements but
calculated data. For the calculations, it is necessary that all data is consistent.
It turned out that this was not always the case. For example, the energy content
of the buffers and aquifer at the start and end of the daily optimization were cal-
culated from the buffer fill percentage registered by the process control computer
and the known buffer capacity. It turned out that these measurements showed
sometimes unrealistic values, and with these inconsistencies, it can happen that
no optimal solution exists. Introducing a small upper and lower bound on the
daily final state of buffers and aquifer solved this problem.
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The heat and cold demand patterns of the grower were calculated based on
heat and cold fluxes using common energy and mass balance based models of the
greenhouse climate (Van Beveren et al., 2015b,a). For application in practice, it
is desired to limit the number of model parameters. Also, some parameters are
difficult to measure or to determine from historical data. Therefore, the models
of the equipment were kept relatively simple in the problem formulation of the
optimization. It turned out that the performance of the model was sufficient for
optimization.

The optimization period in this study was one day. The aquifer is used in
practice to store warm and cold water for longer periods (seasonal storage). The
daily initial and final state constraints on the energy in the aquifer were taken
equal to the realized energy content in the aquifer by the grower. There are likely
other trajectories of the energy content of the aquifer that will lead to lower energy
costs when longer optimization periods are used. One solution to the problem of
choosing the energy content of the aquifer is to use receding horizon optimal
control approach with a pre-defined reference curve for the aquifer energy content
with upper and lower bounds over a longer period (Van Ooteghem, 2007b). This
at least would show the direction of optimality.

CO2 for the enrichment of greenhouse air was not taken into account in this
paper. The reason is that in this greenhouse an industrial CO2 source was used.
To make the proposed optimization method applicable to greenhouses that use
CO2 from the boiler and/or CHP, the required CO2 dosing could be incorporated
in the optimal control formulation. To do so, the efficiency of the boiler and CHP
with respect to CO2 production needs to be known. As flue gas from the CHP
cannot be used directly in the greenhouse, the efficiency and running costs of the
flue gas cleaner must be considered as well.

The difference between the cost saving of the optimization with realized cli-
mate (Section 5.3.3) and the optimization with minimal energy (Section 5.3.4)
was surprisingly small at first sight. It was expected that the proposed two-stage
approach would result in more savings, and it would be interesting to know which
effort brings most of the benefit: minimizing energy input, or optimizing the oper-
ation of the equipment. However, because the aim was to compare the optimized
costs with those of the grower, we restricted ourselves to stay close to the con-
straints as observed. It was demonstrated before (Van Beveren et al., 2019) that
relaxing the bounds of the final state constraints will lower the total energy costs,
however, to allow comparison with the grower’s situation, in this study the con-
straints were kept equal in both experiments. Furthermore, the energy content of
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the buffers and aquifer that corresponds to the minimized energy input are not
known since this situation was not realized in practice. It is expected that the
optimization procedure is also valuable for other energy management problems in
different applications e.g. animal housing, commercial buildings, storage facilities
with multiple sources of heating, cooling and electricity combined with storage of
heat and cold water.

The optimizations were performed for historical days where the energy demand,
the realization of the grower, and prices of electricity and gas are fully known in
advance. As to the weather, this is not a limitation, as weather forecasts for one
single day are fairly reliable, and the optimization is fast enough to obtain the daily
operation schedule. However, forecasting the electricity price is more complicated.
In addition, the operational schedule calculated for the day may easily be adjusted
by recalculation as soon as true prices start to deviate considerably from the pre-
set prices. Moreover, the grower can learn from the optimal strategies and try to
apply the lessons learned in future decisions. In any case, predictions of weather
and prices of electricity and gas are of paramount importance. Finally, it is
necessary to translate the optimal strategy, either automatically or manually, to
settings in the greenhouse (climate) control system.

5.5 Conclusion

A successful optimization framework was presented for a real commercial green-
house, taking practical constraints on the utilization of the different equipment
into account. Daily energy cost optimization was demonstrated for a 4 ha semi-
closed greenhouse with a complex energy equipment configuration existing of a
boiler, CHP, multiple short-term buffers, heat pump with aquifer heat storage,
and cooling towers.

Optimization of the utilization of advanced energy systems in greenhouses is
feasible, and is a major innovation as compared to the current more heuristic
approach. Application of open-loop optimization for a realistic greenhouse config-
uration showed a potential cost saving of 29% for the year 2012 using the heating,
cooling, and electricity demand of the grower. All available equipment was utilized
in the optimal situation. The heat pump was operated about 2300 h more than
in the grower’s situation and the CHP was operated about 3300 h less than in the
grower’s situation. The expected additional gains of enhancing the beneficial op-
timal equipment control in this paper by simultaneous optimization of the energy
demand could not be demonstrated due to the forced constraints imposed in order
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to stay close to the climate believed by the grower to be necessary for the health
of the crop. The results indicate that combining dynamic optimization with prior
knowledge of dynamic gas and electricity prices is beneficial. It underlines that
trading of electricity and short-term forecasting of gas and electricity prices in
combination with dynamic optimization has a high potential for cost savings in
horticultural practice.
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Appendices

5.A Nomenclature

Table 5.2: Nomenclature

Symbol Description Unit
A Greenhouse floor area m2

b Boolean control variable −
E Electricity usea Wm−2

G Gas usea m3m−2
H Heat contenta MJm−2

I Outdoor radiation MJm−2d−1

J Goal functiona em−2

p Price e
Q Heat fluxa Wm−2

r Range of operation −
RH Relative humidity %
S Heat of combustion of natural gasb MJm−3

t Time s
T Temperature °C
u Control variable
v Speed ms−1

η Efficiency −

Subscript
aq Aquifer
boil Boiler
buf Buffer
C Cold
ct Cooling towers
chp Combined heat an power installation
des Desired
E Electricity
f Final
G Gas
glob Global
grh Greenhouse
grid Public electricity grid
HT High Temperature
hp Heat pump
in In
LT Low Temperature
out Out
wind Wind
Superscript
min Minimum
max Maximum
sum Sum
a per unit greenhouse floor area
b upper calorific value
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5.B Outdoor climate
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Figure 5.17: Outdoor climate for Bleiswijk, the Netherlands in 2012: a) Radiation
sum (MJm−2d−1), b) Average temperature (°C), c) Average relative humidity (%),
d) Average wind speed (ms−1).
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6
Conclusion and discussion

P.J.M. van Beveren
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6.1 Introduction

Costs of gas and electricity, social acceptance of greenhouse crop production, and
agreements between the horticultural sector and the government in The Nether-
lands increased the quest for energy saving in modern greenhouse horticulture.
This has led to investments of growers in a wide variety of equipment for control-
ling the greenhouse climate. To modify the indoor environment, growers can use
air conditioning units for heating and cooling, pipe rail heating systems, a CO2

supply system, different types of screens, ventilation windows, and supplementary
lighting. CO2 and electricity are commonly generated by a combined heat and
power installation (CHP). Equipment for production, storage, and conversion of
thermal energy include (a combination of) CHP’s, boilers, heat pumps, short-term
buffers, aquifer heat storage, cooling towers, and geothermal sources. Given the
broad range of available climate conditioning equipment and energy sources, their
optimal deployment in view of energy conservation has become a complex matter.
A guideline in solving the operational management of the grower could be to focus
on an operation that minimizes energy and costs. This is possible by minimizing
the energy input to the greenhouse and by minimizing the costs for the required
energy.

The main objective of this thesis was to develop an optimization framework for
minimizing the total energy consumption and energy costs of greenhouse horti-
culture in the Netherlands. Sub-objectives were to

1. develop an optimization framework that minimizes the total energy demand
of greenhouses (chapters 2 and 3).

2. develop an optimization framework that minimizes the energy costs of green-
houses (chapters 4 and 5).

3. quantify the costs saving of the framework for a commercial test case (chap-
ters 4 and 5).

4. quantify the energy saving of the framework for a commercial test case
(chapters 2 and 3).

In theory, the problem of optimal operation under known external conditions
can be solved by dynamic optimization based on models of all components of
the system, including the crop Tap (2000); Van Ooteghem (2007b); Vanthoor
(2011). However, this approach has some significant drawbacks with regard to the
application in practice e.g. the need for complex crop models and computational
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complexity. Therefore, a two-stage approach was proposed in this thesis. In
the first stage, the grower defines desired trajectories for the greenhouse climate,
i.e. the climate recipe. Then, the optimal demands for heating, cooling, and
CO2 were calculated using models of greenhouse climate physics. The optimal
energy distribution of the energy demand over the various types of equipment was
calculated using models of the technical infrastructure.

In this thesis, the proposed model-based two-stage approach was successfully
demonstrated for one 4 ha rose nursery in Bleiswijk, the Netherlands. The po-
tential energy and cost savings of dynamic optimization were shown for this test
greenhouse. The energy optimization in the first stage resulted in a theoretical
47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2

injection for the year 2012 (Chapter 3). The costs optimization in the second stage
resulted in a potential cost savings of 29%, given the prices for gas and electricity
and the known weather (Chapter 5). The results showed that optimization of the
greenhouse energy system is feasible and beneficial. The two-stage method is in
close connection with the grower’s daily practice.

This chapter elaborates on the research results and main assumptions in this
thesis regarding the two-stage approach, model performance, technical challenges,
and future perspectives.

6.2 Comments on the two-stage approach

The two-stage approach separates control of the greenhouse climate from the
management of energy resources. In stage 1, bounds are set to define the desired
greenhouse climate instead of defining production goals. The optimization in stage
1 results in minimal energy input to the greenhouse. By setting bounds for the
climate, the grower controls the different processes in the greenhouse that are
difficult to measure, predict and to model, but known, observed, and believed by
the grower. Furthermore, advanced crop production models are not needed. This
is advantageous because many aspects that are important for crop management
like infection risk for diseases, pest control, etc are not included in current crop
models and are (yet) difficult to monitor. Another advantage of omitting crop
production models in the optimization is that the optimization period can be
shorter than one whole production cycle.

The two-stage approach is close to the practical implementation of control sys-
tems present at greenhouses. The first stage is flexible in the sense that different
actuators for greenhouse climate control can be incorporated in the greenhouse cli-
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mate model and in the optimization routine. The most important greenhouse char-
acteristics are incorporated in the parameters of the greenhouse climate model.
The optimal control formulation in stage 1 does not need to maintain a minimum
pipe temperature, in contrast to current practice. The methodology, however, al-
lows for implementing a minimum pipe temperature, as demonstrated in Chapter
3. Growers could have specific reasons to maintain a minimum pipe temperature
in the greenhouse such as stimulating crop transpiration (air movement) and to
prevent condensation on leaves and fruits (Teitel et al., 1999). Including the min-
imum pipe temperature in the optimization reduced the potential energy saving.

The second stage minimizes the costs for realizing the heat and electricity de-
mand. Potentially, costs can be saved in this stage because of the dynamic prices
for gas and electricity and the presence of heat buffers through which supply
and demand of energy can be partially decoupled. The flexibility of this stage
is that different equipment for storage and production of warm and cold water
and electricity can be incorporated into the model and optimization routine. The
structure of the total procedure remains unchanged when components are added
or removed. A library with the most common equipment would help to configure
the optimization procedure depending on the greenhouse and equipment configu-
ration.

The energy-saving resulting from stage 1 seems optimistic, however, previous
studies on optimizing the greenhouse climate and energy consumption reported
savings between 8% (Tap, 2000) to 52% (Van Ooteghem, 2007a). The energy
savings in stage 1 depend largely on the choice of the bounds and the availability
and correctness of the weather forecast. In the optimizations in Chapters 2 and
3, full prior knowledge of the weather was assumed, so the ’weather forecast’ was
perfect. The possibilities for costs savings within the energy demand constraints
obtained from stage 2 must come from three elements: (1) the better exploitation
of the allowable bounds around the demand trajectories (2) profiting from the
most efficient operating point of energy equipment (3) profiting from forecasts or
prior knowledge about gas and electricity prices. It is not easy to quantify the
relative contribution of each to the final optimal result.

As to the utilization of the energy demand bounds, it is clear that allowance
of other energy trajectories than those realized by the grower would increase the
potential for energy saving, and, consequently, costs savings. However, this is
constraint by the necessity to stick - in stage 1 - to the bounds set by the grower.
The basis for the bounds was the realization of the grower. It was assumed that
the realized climate was the desired climate, however, this is not necessarily the
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case for the whole year. For example, it could be that the desired greenhouse
temperature was higher than the realised temperature during the cold period in
February. Furthermore, the desired climate of the grower is not necessarily the
greenhouse climate resulting in the highest production or highest financial result.
To utilize the potential of the temperature bounds most, temperature integration
(Korner et al., 2003) over a longer period could be implemented. For different
crops, the implementation and allowance of deviation from the bounds will be
different.

The possibilities of cost savings by energy management based on forecasts of
electricity and gas prices entirely depend upon the quality of short-term energy
and price forecasts. Short-term energy forecasts can either come from stage 1
or any other system that translates a weather forecast to the desired greenhouse
climate. The quality of the commercially available short-term, 24 hours, weather
forecasts is reasonably good. There are even possibilities to improve the local
weather forecast using local weather data, which is usually available from the
outdoor climate measurements, and Kalman filtering (Doeswijk and Keesman,
2005). Therefore, it is expected that the effect of uncertainty in the weather will
have a marginal effect on the energy and cost-saving when closing the loop in a
Receding Horizon Optimal Control implementation.

Short-term prediction of electricity prices is more difficult and is not as com-
monly available. The electricity market in the Netherlands is subject to increas-
ingly large fluctuations in supply and demand, which leads to strongly fluctuating
prices that are difficult to predict. The effect of strongly fluctuating and uncer-
tainty in prices could be investigated by a kind of gaming scenarios or Monte-
Carlo simulation. It is clear that the cost-saving largely depends on the quality
and availability of the price forecast, and further investigation on the source of
the energy savings could lead to valuable insights for growers.

6.3 Comments on the model performance

The climate model in this thesis (Chapter 2 and 3) aimed to serve the optimiza-
tion. One requirement for the application of optimization methods was that the
models should be simple and compact (Lentz, 1998). Therefore, the greenhouse
climate model was kept as simple and compact as possible, and still performs
well. An explanatory dynamic greenhouse climate model with three balances was
developed based on the literature. López-Cruz et al. (2018) presented an overview
of the development and analysis of dynamical mathematical models of greenhouse
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climate. Most other greenhouse climate models for optimal and predictive control
have 3-5 states. Models with more states, parameters, and processes, as for ex-
ample the model in (Van Ooteghem, 2007a), lead to more complexity. Complex
models are more difficult to validate and apply in practice since more parameters
need to be estimated. The precision of a more complex model could be higher and
explain all processes in more detail. However, if a model is simple and accurate
at the same time this would be preferable to use in the optimization. Most model
parameters needed in the presented greenhouse climate model are known from the
properties of the greenhouse or can be estimated with commonly measured data
in commercial greenhouses. Estimation of the parameters could be performed
based on historical data (Guzmán-Cruz et al., 2009) and or online as shown in
(Boaventura Cunha et al., 1997; Speetjens et al., 2009).

Validation of greenhouse climate models over a longer period is rarely presented
in the literature. Especially for regions with large seasonal differences in outdoor
conditions, it is necessary to validate the model for a period that includes those
differences. In this thesis, the climate model was validated for one full year.
In most of the literature, the performance measures were in the same range as
the performance measures found in Chapters 1 and 2 (i.e. (El Ghoumari et al.,
2005; Baptista et al., 2010; Du et al., 2012; Righini et al., 2020)). None of them
performed an analysis of the measured and simulated data for one whole year
with very different weather circumstances in a commercial scale greenhouse, as
was done in this thesis.

The models for the equipment in Chapters 4 and 5 were kept relatively simple
for optimization purposes, similar to the greenhouse climate model. It is possible
to extend the models and include dynamics in the utilization of the equipment.
However, there is a trade-off between a perfect description of the system and
the optimization result. Extending the models with a more detailed description
of the heat pump could lead to a better model performance regarding the heat
pump. It also means that the model needs more parameters that are possibly
unknown and difficult to estimate. Current parameters like the capacity and size
of equipment are available in practice. Those numbers are needed as constraints
for the optimization. Costs for pumps were not taken into account in the model
and heat loss from the system was neglected. However, technically it is possible
to incorporate them into the model. The trade-off between cost and benefits of
system completeness (perfect model description) versus complexity has to be made
here as well.
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6.4 Technical challenges

In practice, many different configurations and combinations of equipment for heat
and cold production and storage occur. The work in this thesis aimed to be a
starting point for optimizing and understanding the optimal scheduling of these
systems. Optimization requires a model description for each part of the system
that describes the behavior sufficiently. On the other hand, the optimization
benefits from simple models in order to minimize calculation time and convergence
to optimal solutions. The capacity and size of equipment are often easily available.
Those numbers are needed as constraints for the optimization.

Completeness and correctness of the measurement data are important for the
successful application of the optimization procedures. The optimization needs
measurement data and control signals for lamps and screens (if applicable) as
input. Furthermore, measurement data is necessary to compare the optimization
result with the grower’s realization. Modern greenhouses have many different
sensors and measuring systems in place. Those systems collect data with various
sensors, at different time intervals, and with different accuracy. Several sources of
uncertainties and possible errors occur from the measurement data. It turned out
that measurement data from the equipment (pump data, temperature sensors,
etc.) sometimes showed unrealistic values, and with these inconsistencies, no
optimal solution may exist.

Another factor that introduces uncertainty is the fact that some ’measurements’
are not real measurements but calculated data. Measured input data must be mu-
tually consistent for the optimization. It turned out that this was not always the
case. For example, the energy content of the buffers and aquifer at the start
and end of the daily optimization were calculated from the buffer fill percentage
registered by the process control computer and the known buffer capacity. It
turned out that the calculated and measured data were not always consistent.
Introducing a small upper and lower bound on the daily terminal state of buffers
and aquifer solved this problem. Filtering techniques and data processing could
solve some of the problems with uncertainty in measurement data as well. How-
ever, this will also depend on the measurements themselves; e.g. type, frequency,
number of sensors, the configuration of equipment, etc. Proper pre-processing
and checking of the measurement data could also prevent the optimization from
not finding feasible solutions. For historical days, a solution should always exist,
namely the realization of the grower.
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The calculation time of the optimization is an important aspect for implemen-
tation in practice. The optimizations in this thesis were all performed per day.
The calculation time was within the order of minutes. This is within the time
interval of the data. Despite the short calculation time, there are possibilities to
decrease calculation time by e.g. using a faster computer and optimizing the code.
Therefore, no problems are expected with calculation time in practice.

6.5 Future perspectives

In this thesis, all optimizations were performed afterward and can be used as a
tool to analyze the performance and find possibilities for improvement. This is
the first step, but is not yet ready for day-to-day application in practice. This
first step is important for successful implementation and to help the grower build
trust in the outcome of these kinds of systems (Van Straten et al., 2000). For both
stages and the combination of the two stages, three steps can be distinguished for
implementation of the optimization routines in practice:

1. Implementation as a forecasting tool one day ahead.

2. Implementation as a forecasting tool for longer time periods.

3. Implementation as a forecasting tool with online control.

Forecasting one day ahead

In order to implement the optimization procedure as a forecasting tool (1), a
receding horizon optimal control approach would be suitable Tap (2000); Van
Straten et al. (2002); Van Ooteghem et al. (2005); Oldewurtel et al. (2012). For
stage one, the upper and lower bounds on the climate variables (temperature,
relative humidity, and CO2 concentration) for the next day have to be supplied to
the optimization procedure. Those bounds could be set manually by the grower,
based on e.g. the weather forecast and state of the crop. Similarly, a prediction
of the external inputs (supplementary lighting and screen positions) should be
provided for the optimization. Again, the grower should supply these data to
the optimization. The choice of the bounds is a critical factor for the energy
demand of the solution (Chapter 3). For example, allowing a higher temperature
in the greenhouse reduces the ventilation and CO2 demand. The results of the
optimization are optimal temperature, humidity, and CO2 trajectories for the
coming day. It is also possible to run the optimization multiple times per day.
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The second stage needs a reliable weather forecast and price forecasts for elec-
tricity and gas for the coming day. To obtain optimal utilization of the equip-
ment the initial and final buffer filling for all buffers should be supplied. The
initial buffer filling is then the current energy content of the different buffers. The
energy content at the end of the optimization period should be supplied by the
grower. This can also be a minimal filling per buffer. The grower should consider
the future heat demand and prices for electricity and gas when specifying these
constraints. The future heat demand could be derived from the optimization in
the first stage of the energy input. If the final buffer constraints are not supplied,
the optimization is likely to empty the buffers, such that the amount of heat to be
generated is minimized. When the electricity price is high and the heat demand
on the next day is low, it is profitable to run the CHP. The surplus heat is then
stored in the heat buffer. This would not have been possible when the heat buffer
was already full.

Forecasting longer time period

All optimizations in this thesis were performed for individual days. Optimization
of energy input and utilization of equipment can also be done for multiple days
(2). Optimization of multiple consecutive days is expected to decrease energy
use and costs since the buffers can be used more effectively. In case of a longer
optimization period, the buffers have more freedom and time to anticipate to
the desired heat and electricity profile. This is supported by the results of the
sensitivity analysis on the final buffer filling (Chapter 3).

Another potential energy saving is in minimizing the energy input to the green-
house for multiple days. The bounds on the climate variables in Chapters 1 and 2
were hard boundaries. It was demonstrated that relaxing the bounds for temper-
ature reduced the energy input substantially (Chapter 1). Relaxing the bounds
for RH and CO2 reduced energy input to the greenhouse as well (Chapter 2).
Optimization of energy input over a longer period of several days, combined with
relaxing the temperature bounds and incorporating the concept of temperature in-
tegration could potentially decrease energy use further. Temperature integration
allows for more variation of the greenhouse temperature, as long as the average
temperature over a certain period is realized (Sigrimis et al., 2000; Körner and
Challa, 2003). Warm of cold periods are allowed, as long as they are compensated
within the specified period.
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Forecasting with online control

The optimizations in this thesis are all open-loop optimizations. In order to apply
the results of the optimization directly in the greenhouse (3), the optimization
system should be connected to real-time data from sensors and actuators in the
greenhouse. The optimal climate trajectories cannot be put in the greenhouse
process control computer directly and have to be translated into settings in order
to be realized in the greenhouse. This can be done manually by the grower, or
automatically with an additional tool to determine the greenhouse climate based
on the grower’s actual settings. As to the weather, this is not a limitation, as
weather forecasts for one single day are fairly reliable, and the optimization is fast
enough to obtain the daily operation schedule. However, forecasting the electricity
price is more complicated. It depends on the energy trading strategy and contracts
of the grower if the future electricity and gas price are known. In addition, the
operational schedule calculated for the day may easily be adjusted by recalculation
as soon as true prices start to deviate considerably from the pre-set prices.
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Summary

Costs of gas and electricity, societal acceptance of greenhouse crop production, and
agreements between the horticultural sector and the government in The Nether-
lands increased the quest for energy saving in modern greenhouse horticulture.
This has led to investments of growers in a wide variety of equipment for control-
ling the greenhouse climate. To modify the indoor environment, growers can use
air conditioning units for heating and cooling, pipe rail heating systems, a CO2

supply system, different types of screens, ventilation windows, and supplementary
lighting. CO2 and electricity are commonly generated by a combined heat and
power installation (CHP). Equipment for production, storage, and conversion of
thermal energy include (a combination of) CHP’s, boilers, heat pumps, short term
buffers, aquifer heat storage, cooling towers, and geothermal sources. Given the
broad range of available climate conditioning equipment and energy sources, their
optimal deployment in view of energy conservation has become a complex matter.

The main objective of this thesis was to develop an optimization framework for
minimizing the total energy consumption and energy costs of greenhouse horti-
culture in the Netherlands. Sub-objectives were to

1. develop an optimization framework that minimizes the total energy demand
of greenhouses (chapter 2 and 3).

2. develop an optimization framework that minimizes the energy costs of green-
houses (chapter 4 and 5).

3. quantify the costs saving of the framework for a commercial test case (chap-
ter 4 and 5).

4. quantify the energy saving of the framework for a commercial test case
(chapter 2 and 3).

A two-stage approach was proposed in this thesis in order to minimize the energy
consumption and costs of modern greenhouses. In the first stage, the grower
defines desired trajectories for the greenhouse climate, i.e. the climate recipe.
Then, optimal control techniques using models of the greenhouse climate physics,
are used to calculate the demand for heating, cooling, and CO2 . In the second
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stage, this energy demand serves as a reference, an optimal energy distribution
of this demand over the various types of equipment was calculated using models
of the technical infrastructure. An optimal control approach of minimizing the
energy input of a commercial greenhouse (stage 1) was demonstrated in chapters
2 and 3. Subsequently, minimizing the energy costs of the same greenhouse was
demonstrated in chapters 4 and 5. The studied greenhouse was a 4 ha rose nursery
in Bleiswijk, the Netherlands.

In chapter 2, optimal control trajectories that minimize the total external en-
ergy input while maintaining greenhouse air temperature and humidity between
grower-defined bounds were calculated with a dynamic optimization tool. By giv-
ing the grower the lead in defining the bounds, the method stays as close as possi-
ble to the grower’s daily practice and experience, and no crop production models
and market prices are needed. The underlying dynamic model of temperature and
humidity, based on known physical principles and parameters, compared very well
with unique, year-round measurements from the studied greenhouse. A relatively
simple crop transpiration model was validated separately, with very good results.

It was shown that over twelve selected days, distributed over the entire year, the
energy-saving potential as compared to the actual grower’s practice is substantial.
This potential was related to the definition of lower and upper bounds, less nat-
ural ventilation at colder days, and more natural ventilation and less heating at
warmer days. The prominent role of the bounds was demonstrated. Relaxing the
temperature and humidity bounds decreases the energy input to the greenhouse.
While this is obvious, the quantification of the effect as demonstrated here is of
great interest to growers.

The optimization framework developed in chapter 2 was extended in chapter
3 with the CO2 balance. Heating, cooling, the amount of natural ventilation,
and the injection of industrial CO2 were the control variables. This optimization
resulted in a theoretical 47% reduction in heating, 15% reduction in cooling,
and 10% reduction in CO2 injection for the year 2012. The optimal control
formulation does not need to maintain a minimum pipe temperature, in contrast to
current practice. The methodology, however, allows for implementing a minimum
pipe temperature, as demonstrated in Chapter 3. Including the minimum pipe
temperature in the optimization reduced the potential energy saving.

Optimization results depend on the bounds. Consequently, the sensitivity of the
optimization result to the bounds for temperature, humidity, CO2 concentration,
and maximum amount of CO2 per day was investigated. Relaxing the temperature
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and humidity bounds decreases the energy input to the greenhouse. While this is
obvious, the quantification of the effect as demonstrated here is of great interest to
growers. The effect on optimal energy input of different bounds for temperature,
humidity, CO2 concentration, and maximum amount of CO2 per day was analyzed.
The more freedom is allowed to the climate variables, the higher the potential
energy saving. However, in practice, the grower is in charge of defining the bounds.
Thus, the potential energy saving critically depends on the choice of these bounds.
This outcome has value to the grower with respect to decision making because
the energy saving can be quantified, which is currently not possible in practice.

The second stage deals with realizing the heat and electricity demand of the
greenhouse with minimal costs. In chapter 4, first, a simplified, but realistic, con-
figuration with a single buffer and boiler was presented. Second, minimizing the
energy costs with a heating and electricity demand using a boiler, CHP, and heat
buffers was demonstrated for 63 days in 2012. On those days overall cost sav-
ings of 20% were obtained. This shows that a given heat demand does not come
with a fixed price to pay. Rather, benefits can be obtained by determining the
utilization of the equipment by dynamic optimization. It also appears that prior
knowledge of gas and electricity prices in combination with dynamic optimization
has a high potential for cost savings in horticultural practice. A sensitivity anal-
ysis was performed to study which (input) factors influence the optimization the
most. The results of the sensitivity analysis showed that the total energy cost for
the studied greenhouse was more sensitive to the electricity demand than to the
heating demand.

In chapter 5, the energy costs with the complete energy installation, as present
in the studied greenhouse, were minimized for the whole year 2012. The installed
equipment contained a boiler, a CHP (combined heat and power installation),
different buffers, a heat pump, and aquifer heat storage. Furthermore, cooling
towers were present. The results showed that optimization of the energy system
is feasible and beneficial. Potential energy cost savings of 29% were obtained for
the optimized situation, given the prices for gas and electricity, and the known
weather. It was shown that it is beneficial to combine dynamic optimization
with prior knowledge of gas and electricity prices for complex configurations. It
underlines that trading and short-term forecasting of gas and electricity prices in
combination with dynamic optimization have a high potential for cost savings in
horticultural practice.
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In this thesis, the proposed model-based two-stage approach was demonstrated
for one test greenhouse. The potential energy and cost savings of dynamic opti-
mization were successfully shown for this test greenhouse. The potential energy
and cost savings of dynamic optimization were shown for this test greenhouse.
The energy optimization in the first stage resulted in a theoretical 47% reduction
in heating, 15% reduction in cooling, and 10% reduction in CO2 injection for the
year 2012 (Chapter 3). The costs optimization in the second stage resulted in
a potential cost savings of 29%, given the prices for gas and electricity and the
known weather (Chapter 5). The results showed that optimization of the green-
house energy system is feasible and beneficial. The two-stage method is in close
connection with the grower’s daily practice. It is to be expected that with online
application in practice the energy and cost savings will be lower, but still sub-
stantial. The application of the two-stage approach in practice seems promising.
A number of challenges still need to be solved for this, such as tuning the mod-
els online, availability of consistent data, including weather forecasts, and price
information.
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Samenvatting

Kosten van gas en elektriciteit, maatschappelijke acceptatie van glastuinbouw
en afspraken tussen de tuinbouwsector en de overheid in Nederland vergrootten
de zoektocht naar energiebesparing in de moderne glastuinbouw. Dit heeft in de
afgelopen decennia geleid tot investeringen van telers in een breed scala aan appa-
ratuur om het kasklimaat te beheersen. Om het kasklimaat aan te passen, kunnen
telers gebruik maken van verschillende methoden voor verwarming en koeling, CO2

dosering, verschillende soorten schermen, ventilatieramen en belichting. CO2 en
elektriciteit worden veelal opgewekt door een warmtekrachtkoppelingsinstallatie
(WKK). Apparatuur voor productie, opslag en conversie van warmte omvat (een
combinatie van) WKK’s, boilers, warmtepompen, buffers, aquifer-warmteopslag,
koeltorens en geothermische bronnen. Gezien het brede scala aan beschikbare
apparatuur en energiebronnen is het optimaal inzetten daarvan met het oog op
energiebesparing een complexe zaak geworden.

Het hoofddoel van dit proefschrift was het ontwikkelen van een optimalisatiekader
voor het minimaliseren van het totale energieverbruik en de energiekosten van de
glastuinbouw in Nederland. Subdoelen waren:

1. het ontwikkelen van een een   optimalisatieraamwerk dat de totale energievraag
van kassen minimaliseert (hoofdstuk 2 en 3).

2. het ontwikkelen van een optimalisatieraamwerk dat de energiekosten van
kassen minimaliseert (hoofdstuk 4 en 5).

3. het kwantificeren van de kostenbesparing van het raamwerk voor een com-
merciële kas (hoofdstuk 4 en 5).

4. het kwantificeren van de energiebesparing van het raamwerk voor een com-
merciële kas (hoofdstuk 2 en 3).

In dit proefschrift wordt een tweetrapsbenadering gepresenteerd om het en-
ergieverbruik en de kosten van moderne kassen te minimaliseren. In de eerste fase
definieert de teler gewenste trajecten voor het kasklimaat, oftewel het klimaatre-
cept. Vervolgens worden optimale regeltechnieken in combinatie met modellen
van de kasklimaatfysica gebruikt om de benodigde verwarming, koeling en CO2
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te berekenen. In de tweede fase dient deze energievraag als referentie. Met behulp
van modellen van de technische infrastructuur is een optimale energieverdeling van
deze vraag over de verschillende soorten apparatuur berekend. Het minimaliseren
van de energie-input van een commerciële kas met optimale besturingstechnieken
(fase 1) werd gedemonstreerd in hoofdstuk 2 en 3. Vervolgens werd het minimalis-
eren van de energiekosten van dezelfde kas gedemonstreerd in hoofdstuk 4 en 5.
De bestudeerde kas was een 4 ha rozenkwekerij in Bleiswijk, Nederland.

In hoofdstuk 2 werden optimale regeltrajecten berekend die de totale externe
energie-input minimaliseren, terwijl de temperatuur en vochtigheid van de kaslucht
binnen door de teler gedefinieerde grenzen worden gehouden met een dynamische
optimalisatietool. Door de teler de grenzen te laten bepalen blijft de methode zo
dicht mogelijk bij de dagelijkse praktijk en ervaring van de teler en zijn er geen
teeltmodellen en marktprijzen nodig. Het onderliggende dynamische model van
temperatuur en luchtvochtigheid, gebaseerd op bekende fysische principes en pa-
rameters, kwam goed overeen met unieke, jaarrond metingen uit de bestudeerde
kas. Een relatief eenvoudig gewastranspiratiemodel werd apart gevalideerd, met
zeer goede resultaten.

Gebleken is dat op twaalf geselecteerde dagen, verdeeld over het hele jaar, het
energiebesparingspotentieel ten opzichte van de praktijk van de teler groot is.
Dit potentieel hangt samen met de definitie van onder- en bovengrenzen, minder
natuurlijke ventilatie op koudere dagen en meer natuurlijke ventilatie en minder
verwarming op warmere dagen. De prominente rol van de grenzen werd gedemon-
streerd. Door de temperatuur- en vochtigheidsgrenzen te versoepelen, neemt de
energietoevoer naar de kas af. Hoewel dit voor de hand ligt, is de kwantificering
van het effect zoals hier aangetoond van groot belang voor telers.

Het in hoofdstuk 2 ontwikkelde optimalisatiekader is in hoofdstuk 3 uitgebreid
met de CO2 balans. Verwarming, koeling, de hoeveelheid natuurlijke ventilatie
en de injectie van industriële CO2 waren de stuurvariabelen. Deze optimalisatie
resulteerde in een theoretische reductie van 47% in verwarming, 15% reductie in
koeling en 10% reductie in CO2 -injectie voor het jaar 2012. De optimale besturing
hoeft, in tegenstelling tot de huidige praktijk, geen minimum buistemperatuur aan
te houden. De methodiek maakt het echter wel mogelijk om een   minimum buis-
temperatuur te implementeren, zoals aangetoond in hoofdstuk 3. Het meenemen
van de minimum buistemperatuur in de optimalisatie verminderde de potentiële
energiebesparing.
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Optimalisatieresultaten zijn afhankelijk van de grenzen. Daarom werd de gevoe-
ligheid van het optimalisatieresultaat voor de grenzen voor temperatuur, vochtigheid,
CO2 concentratie en maximale hoeveelheid CO2 per dag onderzocht. Door de
temperatuur- en vochtigheidsgrenzen te versoepelen, neemt de energietoevoer naar
de kas af. Hoewel dit voor de hand ligt, is de kwantificering van het effect zoals
hier aangetoond van groot belang voor telers. Het effect op de optimale energie-
input van verschillende grenzen voor temperatuur, vochtigheid, CO2 concentratie
en maximale hoeveelheid CO2 per dag werd geanalyseerd. Hoe meer vrijheid de
klimaatvariabelen hebben, hoe hoger de potentiële energiebesparing. In de prak-
tijk bepaalt de teler echter de grenzen. De potentiële energiebesparing hangt in
grote mate af van de keuze van deze grenzen. Deze uitkomst heeft waarde voor
de teler bij de besluitvorming omdat de energiebesparing kwantificeerbaar is, wat
nu in de praktijk niet mogelijk is.

De tweede fase gaat over het realiseren van de warmte- en elektriciteitsvraag van
de kas met minimale kosten. In hoofdstuk 4 werd eerst een vereenvoudigde, maar
realistische configuratie met een enkele buffer en ketel gepresenteerd. Daarna is
voor 63 dagen in 2012 het minimaliseren van de energiekosten met een warmte-
en elektriciteitsvraag met een ketel, WKK en warmtebuffers gedemonstreerd. Op
die dagen werd een totale kostenbesparing van 20% behaald. Dit toont aan dat
een bepaalde warmtevraag niet gepaard gaat met een vaste prijs. In plaats daar-
van kunnen voordelen worden behaald door de inzet van de apparatuur te bepalen
door dynamische optimalisatie. Ook blijkt dat voorkennis van gas- en elektriciteit-
sprijzen in combinatie met dynamische optimalisatie een groot potentieel heeft
voor kostenbesparingen in de tuinbouwpraktijk. Er is een gevoeligheidsanalyse
uitgevoerd om te onderzoeken welke factoren de optimalisatie het meest beïnvloe-
den. Uit de resultaten van de gevoeligheidsanalyse bleek dat de totale energiekost
voor de bestudeerde kas gevoeliger was voor de elektriciteitsvraag dan voor de
warmtevraag.

In hoofdstuk 5 zijn de energiekosten met de complete energie-installatie, zoals
aanwezig in de bestudeerde kas, geminimaliseerd voor het hele jaar 2012. De
geïnstalleerde apparatuur bevatte een ketel, een WKK, verschillende buffers, een
pomp, en een aquifer. Verder waren er koeltorens aanwezig. De resultaten toon-
den aan dat optimalisatie van het energiesysteem mogelijk is en financiele voorde-
len biedt. Potentiële energiekostenbesparingen van 29% werden verkregen voor
de geoptimaliseerde situatie, gegeven de prijzen voor gas en elektriciteit, en het
(vooraf) bekende weer. Er is aangetoond dat het voordelig is om dynamische
optimalisatie te combineren met voorkennis van gas- en elektriciteitsprijzen voor
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complexe configuraties. Dit onderstreept dat handel en kortetermijnprognoses van
gas- en elektriciteitsprijzen in combinatie met dynamische optimalisatie een groot
potentieel hebben voor kostenbesparingen in de tuinbouwpraktijk.

In dit proefschrift werd de voorgestelde modelgebaseerde tweetrapsbenadering
gedemonstreerd voor één kas. De potentiële energie- en kostenbesparingen van
dynamische optimalisatie werden met succes aangetoond voor deze kas. Voor
deze kas werden de potentiële energie- en kostenbesparingen van dynamische op-
timalisatie getoond. De energie-optimalisatie in de eerste fase resulteerde in een
theoretische 47% reductie in verwarming, 15% reductie in koeling en 10% reduc-
tie in CO-injectie voor het jaar 2012 (hoofdstuk 3). De kostenoptimalisatie in
de tweede fase resulteerde in een potentiële kostenbesparing van 29%, gegeven de
prijzen voor gas en elektriciteit en het bekende weer (hoofdstuk 5). De resultaten
toonden aan dat optimalisatie van het energiesysteem in de kas mogelijk is. De
tweetrapsmethode sluit nauw aan bij de dagelijkse praktijk van de teler. Het is te
verwachten dat bij online toepassing in de praktijk de energie- en kostenbesparing
lager, maar nog steeds substantieel zal zijn. De toepassing van de tweetraps-
benadering in de praktijk lijkt veelbelovend. Hiervoor moeten nog een aantal
uitdagingen worden opgelost, zoals het online parameteriseren van de modellen,
beschikbaarheid van consistente data en prijsinformatie.
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