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a b s t r a c t

Imbalanced datasets affect the performance of machine learning algorithms adversely. To cope with
this problem, several resampling methods have been developed recently. In this article, we present
a case study approach for investigating the effects of data balancing approaches. The case study
concerns the discrimination between growth hormone treated and non-treated animals using Liquid
Chromatography-High Resolution Mass Spectrometry (LC-HRMS) data. Our LC-HRMS dataset contains
1241 bovine urine samples, of which only 65 specimens were from animal studies and guaranteed
to contain growth-stimulating hormones while the rest has been reported to be untreated, making
it a ∼5% imbalanced dataset. In this research, classification algorithms, combined with resampling
strategies and dimensionality reduction methods, were investigated to find a prediction model to
correctly identify the samples of treated animals. Furthermore, to cope with a large number of
missing data points in the given dataset, a replacement with random low values strategy was
applied. Our results showed that the replacement method was effective, and LogisticRegression
combined with the oversampling algorithms SMOTE or ADASYN, GaussianProcessClassifier with the
oversampling algorithm SMOTE, and LinearDiscriminantAnalysis were the best performing models after
log transformation of the dataset was followed by Recursive Feature Elimination.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Imbalanced datasets affect the performance of machine learn-
ng algorithms adversely. Imbalanced or skewed datasets are
atasets where the samples-of-interest form a minority within
hat dataset. Several examples of such datasets mentioned in
he literature include fraud case detection cases among credit
ard users [1], software fault prediction [2,3], hacking activity
dentification within Internet data streams [4], and detection of
atients within a healthy population [5].
To cope with the class imbalance, several resampling methods

ave been developed recently. Datasets containing many fea-
ures often benefit from dimensionality reduction by reducing
he number of features. However, most of the dimensionality
eduction methods do not deal well with imbalanced datasets.
urthermore, most classifiers do not cope well with missing data
oints in the dataset. Several methods exist to deal with miss-
ng data points, but the assumptions on which these methods
ork, based on either discarding features containing missing data
oints, or imputation of the missing data points with values from
eighboring samples, do not work well in all situations.

∗ Corresponding author.
E-mail address: ccatal@qu.edu.qa (C. Catal).
ttps://doi.org/10.1016/j.asoc.2022.109853
568-4946/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
In this article, we present a case study approach for investi-
gating the effects of data balancing approaches. The case study
concerns the discrimination between growth hormone treated
and non-treated animals using Liquid Chromatography-High Res-
olution Mass Spectrometry (LC-HRMS) data. The European Union
forbids the use of growth-stimulating hormones for cattle fatten-
ing in the livestock industry.1 To determine if cattle have illegally
been treated with growth hormones, reliable detection methods
are needed. Liquid Chromatography–Mass Spectrometry (LC–MS)
analysis of cattle urine and blood serum samples is a commonly
used method for detecting these growth hormones and their
derivatives [6,7]. Although the technique is sensitive enough to
detect minute amounts of compounds, distinguishing hormone
abuse cases from naturally occurring hormones is difficult. It is
further complicated by the large amounts of data that the LC-
(HR)MS instrument produces. Furthermore, the expected small
number of hormone-abuse cases within the Dutch cattle breeding
industry makes it a typical case of an imbalanced dataset.

The goal of this research is to develop a classification model
that can correctly identify cases of illegal hormone usage in the
Dutch cattle industry. This was done by investigating a dataset

1 https://ec.europa.eu/food/food/chemical-safety/hormones-meat_en
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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roduced by LC-HRMS analysis of a large number of bovine urine
amples, of which a small sample number was treated with
ormones. The imbalance in the dataset, the large number of
eatures, and a large number of missing data points was a rather
nique combination of dataset traits that, to our knowledge, has
ever been investigated before using machine learning meth-
ds. To achieve our goals, the following research questions were
ormulated:

• RQ-1: What is the state of the art in data balancing algo-
rithms to deal with imbalanced datasets?

a RQ-1a: What is the state of the art in dealing with
missing data points within a dataset?

b RQ-1b: Which state-of-the-art data balancing algo-
rithms are being used for imbalanced datasets derived
from LC–MS data?

• RQ-2: Which data balancing methods work best for training
machine learning algorithms to detect illegal hormone usage
in LC–MS analysis results of bovine urine samples?

a RQ-2a: Which data imputation strategy can be used
for our LC–MS-data derived imbalanced dataset?

b RQ-2b: Which combination of feature selection, data
balancing methods, and classification algorithm work
best for detecting illegal hormone usage in LC–MS
analysis results of bovine urine samples?

The dataset was produced by performing LC-HRMS analysis on a
total of 1241 bovine urine samples, of which only 65 specimens
were from animal studies and guaranteed to contain growth-
stimulating hormones while the rest has been reported to be
untreated, making it a ∼5% imbalanced dataset. The trimmed LC-
RMS dataset contained 271 features and a multitude of missing
ata points that resulted from signals falling below the detection
hreshold of the LC–MS instrument. To the best of our knowledge,
he combination of an imbalanced, high-dimensional dataset with
n alternative requirement for dealing with missing data points
as never been reported before. In the data availability statement
ection, we provide the source code of this project and the data
amples used in this research.
The remainder of the paper is organized as follows. Section 2

rovides the related work, followed by Section 3, which presents
he adopted research method. Section 4 presents the results,
ection 5 explains the discussion, and finally, Section 6 concludes
he paper.

. Related work

.1. Machine learning applications in LC–MS research

We retrieved machine learning applications in LC–MS research
y searching electronic databases, however, we observed that the
ases mainly focused on metabolomics studies.
Liebal et al. [8] performed a review where they investigated

ommonly used machine learning methods such as Random For-
st, Support Vector Machines, Artificial Neural Networks, and
enetic Algorithms. They mention the notorious complexity of
pectrometry data and the problems that missing data, noisy
ata, and a high number of features can have on a classifier’s
earning skill. They stated that the data should be normalized.
heir research did not include imbalanced datasets.
Bouwmeester et al. [9] used Deep Learning, which is a subset

f machine learning, in LC–MS research to aid in the identification
f proteins, however, no imbalanced datasets were mentioned
ither.
2

A few papers were found describing strategies for detecting
illegal hormones using LC–MS analysis. However, they focused on
the LC–MS detection and quantification of hormones in the sam-
ples. Machine learning strategies to identify abuse cases based
on the found hormone patterns were neither described in these
papers nor was there mentioning of imbalanced datasets.

Rocha et al. [10] proposed a new strategy to detect bolde-
none undecyclenate misuse in cattle using LC–MS. They collected
serum samples from 4 treated and 8 control crossbred animals.
They developed a statistical model to predict the boldenone treat-
ment based on the selected biomarkers. While their research
provides interesting results, they did not use machine learning
algorithms and their sample size was rather limited compared to
our dataset.

Benedetto et al. [11] aimed to identify molecular markers to
detect the illegal use of sex steroids and B2-agonists on veal
calves. Their focus was to develop a Real-Time PCR array anal-
ysis for profiling multiple biomarkers. They used Partial Least
Squares-Discriminatory Analysis (PLS-DA) to identify candidate
biomarkers. This PLS-DA is based on the PLS regression technique,
which is a statistical technique.

Benedetto et al. [12] stated that advanced statistics can over-
come some limitations of current omics workflows and multi-
omics data fusion can help for animal science research. They
reviewed some biomarkers-based approaches related to domestic
cattle.

Draisci et al. [13] focused on the LC–MS detection and quan-
tification of nortestosterone, testosterone, progesterone, and their
derivatives in bovine blood serum and urine samples and claimed
a 99.99% confidence in their identification.

Rijk et al. [14] investigated the effect of the prohormone
dehydroepiandrosterone (DHEA) on the accumulation of certain
metabolites by ultraperformance liquid chromatography in com-
bination with time-of-flight accurate mass spectrometry (UPLC-
TOFMS) analysis of bovine urine samples. They refer to the pa-
per of Angeletti et al. [15], who claimed that the testosterone
vs. epitestosterone ratio, which is used as a marker for hor-
mone abuse in humans, cannot be applied to detect hormone
abuse cases in the cattle industry, due to a far higher 17α-
hydroxysteroid oxidoreductase activity in calves than in men.

Verheyden et al. [16] described how ultra-high performance
liquid chromatography coupled to a triple quadrupole mass spec-
trometry (U-HPLC-QqQ-MS-MS) can be used to detect minute
amounts of illegal hormones in the wood of crates used for
housing veal calves.

2.2. Machine learning research for imbalanced datasets

Richardson and Lidbury [17] investigated the resampling
methods of simple downsizing, multiple downsizing, and SMOTE,
and used a combination of Random Forest and SVM for clas-
sification. The Random Forest algorithm was used to limit the
number of features to the top five variables. They claimed that
rescaling and log transformation did not contribute significantly
to the performance of their classifier, but that data rescaling is
performed to some degree by the SVM classifier.

Low et al. [18] investigated random oversampling, random un-
dersampling, and an extension of SMOTE named SMOTE-Nominal
Continuous in combination with Gradient Boosting to develop an
activity prediction model for vehicles. They make use of feature
selection to decrease the size of their dataset, thereby the training
time is reduced.

Karatas et al. [19] used six machine learning methods (K-
Nearest Neighbors, Random Forest, Gradient Boosting, AdaBoost,
Decision Tree, and Linear Discriminant Analysis) in their research
on the detection of hacking attempts but limited the resampling
strategies to SMOTE.
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Kaya et al. [20] used seven classification methods (Random
Forest, SVM, RusBoosted Trees, LDA, subspace discriminant al-
gorithm, AdaBoost, and KNN) for software vulnerability predic-
tion models and made a comparison between an unbalanced
dataset and the resampling methods ADASYN, Borderline-SMOTE,
cluster-SMOTE, and SMOTE.

Lin and Chen [21] used three classification algorithms (i.e., di-
agonal LDA (DLDA), random forests, and SVMs) to investigate the
effects of high-dimensional datasets. They claimed that DLDA and
Random Forests do not perform well when the dataset contains
highly correlated features. Feature selection was found to signifi-
cantly improve the performance of DLDA, however, rebalancing
the dataset was not found to guarantee high performance for
their classifiers.

Liu et al. [5] emphasized the importance of recursive feature
addition for a network anomaly detection method and claimed to
have found high-performance results for the Random Forest clas-
sifier when used in combination with a data balancing method
based on KNN outlier detection.

Deep learning algorithms were found to become an increas-
ingly more common practice, and several cases were found where
this type of machine learning method was combined with the re-
sampling of imbalanced datasets. Versions of SMOTE and
Borderline-SMOTE were commonly used to achieve a balanced
dataset, although RUS and ROS were found to be effective as well
[22].

Jiang and Li [23] used a one-dimensional Convolutional Neural
Network (CNN) for wind turbine malfunction detection, in which
they suggested a modified version of SMOTE for rebalancing their
dataset.

2.3. Dealing with missing data

Search for information involving strategies for dealing with
missing data has led us to Jason Brownlee’s website (https://
machinelearningmastery.com/handle-missing-data-Python/).
The suggested strategies for dealing with missing data involved
the removal of columns containing missing data, the imputation
of missing data values based on the available data of similar
samples/features, and the use of algorithms that support the
use of datasets containing missing data. Patrician [24] described
the methods as listwise deletion, pairwise deletion, weighting
techniques, and single and multiple imputations as variations on
the removal and imputation strategies. Gorard [25] described a
method that comes close to our approach, where missing data
values are replaced with the mean of all known values. However,
in our case, listwise deletion would result in the deletion of
(almost) the whole dataset, while all the retrieved imputation
methods assume that the missing data values can be replaced
with values close to the known values. This assumption is not
correct in our situation. None of the retrieved strategies are,
therefore, applicable to our dataset. Finally, Jason Brownlee’s
suggested strategy for investigating both machine learning algo-
rithms and coping with imbalanced datasets was the basis of this
research [26].

2.4. Summary of the related work and contributions

In summary, our work builds on previous research in literature
and aims to build a machine learning-based prediction model
to correctly identify the samples of guaranteed treated animals.
While earlier work used machine learning in LC–MS research, our
focus is particularly on the detection of illegal hormone abuse in
the Dutch cattle breeding industry. Furthermore, we had to deal
with many challenges regarding the dataset such as imbalanced

data distribution and most of the relevant work in this domain c

3

did not address imbalanced learning. Since we were able to work
with real-world data retrieved from the cattle industry, different
data pre-processing techniques had to be applied in this research.

We had to investigate several rescaling and dimensionality
reduction strategies of the dataset and their effects on the per-
formance of a set of classifiers. Recursive Feature Elimination
(with LogisticRegression for feature importance determination)
after log transformation of the dataset was found to significantly
improve the performance of the classifiers. We investigated sev-
eral classifiers in combination with oversampling and undersam-
pling methods on the log-transformed + Recursive Feature Elimi-
nated (RFE) dataset. LogisticRegression, GaussianProcessClassifier,
and LinearDiscriminantAnalysis, combined with an oversampler
(SMOTE, Borderline-SMOTE, or ADASYN), in some cases combined
with an undersampler (Tomek Links or Neighbor Cleaning Rule)
were identified as well-performing classifiers on our dataset, with
limited numbers of false positive and false negative predictions
on the test dataset.

3. Methodology

Once the literature review had supplied sufficient insight into
the state-of-the-art approach for optimizing a classifier on an
imbalanced dataset, in combination with resampling strategies
and feature selection, a promising approach was investigated for
our dataset. Details of the approach are discussed in Section 4,
however, a summary of the methodology is described in this
section.

3.1. Creating the dataset

The hormone-related data was extracted as follows:

• Extraction of hormone data from the LC-Orbitrap-MS data
acquired in negative mode.

• Isotope patterns fitting the elemental compositions of the
compounds given in the attachments as well as the elemen-
tal compositions of their phase II conjugates (sulphates and
glucuronides) were filtered out of all individual data files.

• Estrogenic (generally C18), androgenic (generally C19), and
gestagenic (generally C21) hormones are mostly present as
sulphate and/or glucuronide conjugates.

• Prostaglandins (generally C20), lipoxins (C20),
HODE/HETE/ETE (C18/C20), and bile acid (variable) type
compounds are expected to be present as glucuronides or
in the free form.

• Per the data file intensities of compounds with the same
elemental composition were added together; this is done to
eliminate the retention time dimension so as to simplify the
matrix.

This led to the following structure: data file, elemental compo-
sition, and the sum of intensities. The dataset consisted of the
LC–MS analysis results of 1241 bovine urine samples, of which
65 samples were derived from cows that were treated with
growth-stimulating hormones. The remaining 1176 samples were
assumed to be non-hormone-treated, although of only 21 samples
this claim could be guaranteed.

If a hormone was not detected in a certain sample, a random
‘low’ threshold value was inserted in the cell in the range of
10.000 ± 5.000 since the detection threshold during LC–MS anal-
sis was set at 10.000. A final column containing the class label
or the hormone treatment was added as follows: class_label=0
or non-hormone-treated samples, and class_label=1 for hormone-
reated samples. Samples for which the hormone treatment was
nknown were assumed to be non-treated and were assigned to
lass 0.

https://machinelearningmastery.com/handle-missing-data-Python/
https://machinelearningmastery.com/handle-missing-data-Python/
https://machinelearningmastery.com/handle-missing-data-Python/
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Fig. 1. Overview of the strategy for answering the Research Question-1 (RQ-1).
Table 1
Basic statistical information of the dataset.

C18H22O2 C18H22O3 C18H22O5S1 ... C33H50O17 C33H52O15

count 1241 1241 1241 ... 1241 1241
mean 69713.16 92272.66 6689762 ... 25507.1008 13772.5797
std 391191.6 355551.1 28719780 ... 73740.5542 24864.3716
min 5016.415 5016.629 5006.237 ... 5007.25441 5001.78862
25.00% 7767.79 8168.393 8675.246 ... 7737.57733 7803.98978
50.00% 10456.37 11381.37 12435.46 ... 10470.1746 10300.0278
75.00% 13175.11 14413.19 76087.16 ... 13281.4815 12792.3322
max 6544897 4652422 354611500 ... 971381.25 410041.25
The dataset was clearly not only imbalanced but also con-
ained a large number of features, where a majority of the feature
alues were compensated for ‘missing data’. These traits are
nown to complicate the learning process of machine learning
lgorithms.

.2. Main steps

The LC–MS data files prepared for this research were com-
ined into one table. Missing data points that were the result of
ignals in certain samples falling below the detection threshold of
he LC-HRMS instrument were replaced by random values around
he threshold in the range of 10.000 +/- 5.000.

The dataset was split into a training and test dataset, after
hich a baseline performance for several classifiers was deter-
ined. LogisticRegression was found to be the best performing
lassifier at this stage. Several normalizations and rescaling op-
ions were investigated, using LogisticRegression to determine
he effects on a classifier’s performance, in which log transfor-
ation of the dataset was found to give the best results. Several
imensionality reduction methods were investigated, with Recur-
ive Feature Elimination (using the cost-sensitive version of Logis-
icRegression for feature importance determination) eventually
roviding the best results.
The produced log-transformed + Feature Eliminated dataset

as used to re-test the best performing classifiers, combined
ith several undersampling and oversampling methods. Several
ost-sensitive learning classifiers were also investigated. The hy-
erparameter tuning of the classifiers LinearDiscriminantAnal-

sis, GaussianProcessClassifier, and AdaBoost was investigated

4

to improve their performance. Eventually, the best-performing
combinations of resamplers and classifiers were tested on the
test dataset. The strategy used to address RQ-1 is summarized in
Fig. 1. The results for RQ-1 were summarized in the Related Work
section. Fig. 2 shows the strategy that we used to address RQ-2.
We elaborate on this in the following section.

4. Results

In this section, we provide answers to the following research
questions: RQ-2, RQ-2a, RQ-2b.

4.1. Data analysis

4.1.1. Exploration of the dataset
For the data analysis, we developed a script that starts by read-

ing the data file, producing a summary of the class distribution,
then providing a statistical overview of the dataset as shown in
Table 1.

A visual inspection of the feature information showed that
none of the features followed a normal distribution. This made
sense since each feature (i.e., hormone) is only present in a rela-
tively small number of samples; each collection of feature values
is, therefore, a combination of true detected intensity values and
artificially generated intensity values for the ‘below the threshold’
cases as described above.

Both the Shapiro–Wilk test and the d’Agostino–Pearson test

confirmed the finding that the features did not follow a Gaussian
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Fig. 2. Overview of the strategy used for the Research Question-2 to find an optimal resampling and classifier combination.
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Fig. 3. Visual inspection of the distribution for two features (hormones C20H3005 and C20H30O7S1).
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istribution. Visual inspection also suggested that a log trans-
ormation of the feature values might improve the distribution
lthough no normal distribution could be achieved. This means
hat for statistical tests no tests assuming a normal distribution
ould be used. Fig. 3 shows the visual inspection of the distribu-
ion for two features (i.e., hormones C20H3005 and C20H30O7S1)
efore and after log transformation.

.1.2. Splitting the dataset into a training and test set
A 70%–30% split between training and test set is not uncom-

on. However, due to the small number of minority samples in
ur dataset and the expected difficulties that this may imply for
he learning skills of our classifiers, a training set that is as large
s possible is preferred. It was, therefore, decided to go for a 90%–
0% training/test set ratio. Class distribution of the training and
est datasets are shown as follows:

Information of the training set:
Total number of samples: 1116
Total samples of class 0: 1058 (94.80%)
Total samples of class 1: 58 (5.20%)
Total number of features: 271
Information of the test set:
Total number of samples: 125
Total samples of class 0: 118 (94.40%)
Total samples of class 1: 7 (5.60%)
Total number of features: 271

.1.3. Setting the performance baseline for the classifiers
The following nine basic classifiers were used for tests: Lo-
isticRegression (LR), LinearDiscriminantAnalysis (LDA), KNeigh- t

6

orsClassifier (KNN), DecisionTreeClassifier (DecisionTree),
uadraticDiscriminantAnalysis (QDA), GaussianNaiveBayes (Gaus-
ianNB), MultinomialNaiveBayes (MNB), GaussianProcessClassi-
ier (GaussianProc), and SupportVectorMachine (SVM).

The following nine decision tree-based ensemble algorithms
ere used for tests on the raw dataset: BaggingClassifier
Bagging), RandomForestClassifier (RandomForrest), ExtraTrees
lassifier (ExtraTrees), RUSBoostClassifier (RusBoost), Balance-
RandomForestClassifier (BalancedBagging), GradientBoostingClas
ifier (GradientBoosting), EasyEnsembleClassifier (EasyEnsemble),
GBClassifier (XGBoost), and AdaBoostClassifier (AdaBoost).
For comparison of the classifier performance, the following ten

easures were selected: F1-score, Precision, Recall, Precision–
ecall curve - Area Under the Curve (PR_AUC), Receiver Operating
haracteristics curve - Area Under the Curve (ROC_AUC), Brier
kill Score, True Positives (TP), False Negatives (FN), False Posi-
ives (FP), and True Negatives (TN). For evaluating the classifiers,
repeated stratified k-fold cross-validation strategy was used

i.e., the number of folds k = 10, and the number of repeats
= 10).
The mean F1 scores with their standard deviations and medi-

ns were plotted in a box–whisker plot, as shown in Fig. 4.
For each tested classifier, the mean measure scores with their

tandard deviations were summarized in Table 2.
Based on the F1 scores, LR AdaBoost, XGBoost, GradientBoost-

ng, EasyEnsemble, and RusBoost were the only classifiers having
n above no-skill performance, with LR and AdaBoost performing
est. All other classifiers showed an F1 score below the no-skill

hreshold of 0.5.
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Fig. 4. Performance comparison of nine basic classifiers and nine decision tree-based ensemble classifiers on the raw dataset using RepeatedStratifiedKFold cross
validation (k=10, n=10) and F1-score for performance measure.
Table 2
Performance comparison of nine basic classifiers and nine decision tree based ensemble classifiers on the raw dataset using
RepeatedStratifiedKFold cross validation (k=10, n_repeats=10) and ten performance measures.
4.1.4. Testing the effects of data rescaling techniques
Since baseline performance for the classifiers was determined,

he effects of several normalizations and transformation tech-
iques are needed to be investigated. Since AdaBoost is a complex
nd time-consuming classifier, it was decided to use LR for in-
estigating the effect of these rescaling methods. The dataset
as rescaled using Normalization, MinMaxScaler, StandardScaler,
owerTransformation, Log transformation, and several combina-
ions of these re-scalers, after which its effect on the LR classifier
erformance was compared to the basic LR performance. In all
ases, LR was run with the following hyperparameter settings
solver=‘liblinear’ and max_iter=500). The classifier’s training and
alidation was performed using cross-validation with the Re-
eatedStratifiedKFold method (n_splits = 10, n_repeats = 10,
andom_state = 1). The mean F1 scores with their standard
eviations and medians were plotted in a box–whisker plot, as
hown in Fig. 5.
The effects of the dataset modifications on the LR were sum-

arized in Table 3.
Log transformation of the dataset alone and the combina-

ion of normalization + log transformation were found to pro-
ide the best performance on the LR classifier, followed by log
ransformation + standard scaling and normalization + Power-
ransformation. It was further noticed that the order in which
he modifications were applied to the dataset can have a large
ffect on the classifier’s performance. In the following step, the
7

log-transformed dataset and the normalized + log-transformed
dataset were tested on the set of nine basic classifiers and nine
decision tree-based ensemble classifiers. The mean F1 scores
with their standard deviations and medians were plotted in a
box–whisker plot, as shown in Fig. 6.

The effects of the log transformation or normalization + log
transformation of the dataset on the performance of different
classifiers were summarized in Tables 4 and 5. Table 4 shows
the performance results of basic classifier algorithms and Table 5
represents the performance of decision tree-based classifiers.

On the log-transformed dataset, GaussianProc appeared to
perform the best, followed by LDA and LR. LR, however, seemed
to perform slightly better on the normalized + log-transformed
dataset. To determine whether the difference was significant, a
statistical test was required. First, a Shapiro–Wilk test was run to
determine whether the F1-score distribution was Gaussian.

Since the Shapiro–Wilk test showed that most of the dis-
tributions were not Gaussian, Wilcoxon’s signed-rank test was
used to determine whether the classifiers performed significantly
differently on the log-transformed and the normalized+log trans-
formed datasets.

Results showed that the log-transformed dataset provided a
significantly different performance on all classifiers as the nor-
malized + log-transformed dataset, except for LR and LDA, which
show no significant difference. Nevertheless, it was decided to
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Fig. 5. Performance comparison of the LR classifier with 23 rescaling combinations of the dataset.

Fig. 6. Performance comparison of nine basic classifiers (top) and nine decision tree based ensemble classifiers (bottom) on the log transformed dataset (left) and
the normalized + log transformed dataset (right).
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Table 3
Performance comparison of the LogisticRegression classifier with 23 rescaling combinations.
Table 4
Performance comparison of nine basic classifier algorithms on the log transformed dataset (top), and the normalized + log transformed
dataset (bottom).
test both the log-transformed and normalization + log transfor-
mation dataset with LR and LDA as options for the Recursive
Feature Elimination.

4.1.5. Dimensionality reduction by feature removal
Our raw dataset contains a total of 271 features. Most likely

ot all of these features are informative. Features may have
o relationship to the class 1 specific traits and can, therefore,
nhibit a classifier’s learning process. There are several types of
ninformative features. Low variance features are features with
ittle variation among the samples, and, therefore, aid little in a
lassifier’s learning process. They are better removed from the
ataset. Highly correlated features are features that show similar
atterns among their samples. Although they can be informative,
he presence of both such features is known to complicate several
lassifiers’ learning processes. If two features show a similar
attern, it is best to remove one of them.
Highly collinear features are features that may not share a

imilar pattern but do have a cause–effect relationship. The pres-
nce of such features can complicate a classifier’s learning skills.
9

To remove these features and simplify a dataset’s complexity,
there are several functions available in the scikit-learn software
library (https://scikit-learn.org/stable/modules/feature_selection.
html). Unsupervised feature selection methods are based on the
analysis of the variance within a feature. They include but are not
limited to, low variance, highly correlated, and multicollinear fea-
ture removal. Supervised feature selection methods try to select
features based on their relevance to the class labels within the
dataset. SelectKBest and Recursive Feature Elimination are two
such methods.

4.1.5.1. Low variance feature removal. This function makes use
of the sklearn function VarianceThreshold to remove all features
whose variance among its samples is lower than the set thresh-
old. A threshold of 0.90 or 0.95 is suggested to remove all low
variance threshold features. Low Variance feature removal was
attempted with these default thresholds, along with several other
thresholds in the range of 0.5 to 1.0, but none resulted in the
removal of any features.

https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html
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Table 5
Performance comparison of nine decision tree based classifiers on the LogTransformed dataset (top), and the normalized + log transformed
dataset (bottom).
T

T

i
(

4.1.5.2. Multicollinear feature removal. Features may not only be
irectly correlated; they may also have a strong cause–effect re-
ationship (multicollinearity) that is not detected by performing a
ighly correlated feature removal. The presence of multicollinear
eatures may complicate a classifier’s learning skills. Therefore,
t is recommended to remove all but one of such multicollinear
eatures. Based on the script on the following link https://www.
aggle.com/ffisegydd/sklearn-multicollinearity-class,
ulticollinear feature removal was performed with its default

hreshold of 5.0. This script detects and discards the feature with
he highest variance inflation factor (vif) and repeats this process
ntil the set threshold is met. Features with a vif below 1 are
onsidered non-correlated, a vif between 1–5 indicates that fea-
ures are moderately correlated, while a vif above 5 indicates that
eatures are highly correlated. Prior to the Multicollinear Feature
emoval, the dataset was normalized and log-transformed. This
ulticollinear Feature Removal discarded 266 of the 271 features.
esting this 5 feature counting dataset with the basic classifiers
nd ensemble classifiers resulted in a no-skill performance for all
lassifiers (PR_AUC and ROC_AUC scores of ∼0.5 and lower, and
egative BrierSkill scores).

.1.5.3. Feature removal with SelectKBest. Besides several unsu-
ervised feature removal methods, there are also several super-
ised methods. The first supervised feature selection method that
as tested made use of the sklearn function SelectKbest. This

unction makes use of several scoring functions to determine
he feature’s importance and removes all but the k-best features.
or this experiment, the scoring functions chi2, f_class, and mu-
ual_info_regression were tested. Although SelectKBest is a super-
ised method, it is not built to deal with imbalanced datasets. For
his reason, our dataset was first run through the oversampling
ethod Borderline-SMOTE, prior to running SelectKbest. The test
as performed both on the normalized + log-transformed dataset
nd the log-transformed dataset. As k-value (i.e., the number of
eatures to keep) values, the numbers 10, 20, 50, 100, 200, 250,
nd 260 were tested. The Borderline-SMOTE modified dataset was
ompared with several Borderline-SMOTE + SelectKBest-filtered
atasets by using LogisticRegression and seeing the effect on its
lassification performance.
Used dataset:
10
• Log transformed dataset
• Normalized + log-transformed dataset

ested modifications:

• Borderline-SMOTE oversampling
• Borderline-SMOTE + SelectKbest with chi2, k=10
• Borderline-SMOTE + SelectKbest with f_class, k=10
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=10
• Borderline-SMOTE + SelectKbest with chi2, k=20
• Borderline-SMOTE + SelectKbest with f_class, k=20
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=20
• Borderline-SMOTE + SelectKbest with chi2, k=50
• Borderline-SMOTE + SelectKbest with f_class, k=50
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=50
• Borderline-SMOTE + SelectKbest with chi2, k=100
• Borderline-SMOTE + SelectKbest with f_class, k=100
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=100
• Borderline-SMOTE + SelectKbest with chi2, k=200
• Borderline-SMOTE + SelectKbest with f_class, k=200
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=200
• Borderline-SMOTE + SelectKbest with chi2, k=250
• Borderline-SMOTE + SelectKbest with f_class, k=250
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=250
• Borderline-SMOTE + SelectKbest with chi2, k=260
• Borderline-SMOTE + SelectKbest with f_class, k=260
• Borderline-SMOTE + SelectKbest with mutual_info_

regression, k=260

ested basic classifiers:
• LogisticRegression (LR) (with max_iter=500)
The classifier’s training and validation was performed us-

ng cross-validation with the RepeatedStratifiedKFold method
n_splits=10, n_repeats=10, random_state=1).

https://www.kaggle.com/ffisegydd/sklearn-multicollinearity-class
https://www.kaggle.com/ffisegydd/sklearn-multicollinearity-class
https://www.kaggle.com/ffisegydd/sklearn-multicollinearity-class
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Fig. 7. Comparison of the effect of combinations of Borderline-SMOTE oversampling and SelectKBest Feature Selection on the log transformed dataset using LR
classifier for validation.
Table 6
The effect of several combinations of Borderline-SMOTE + SelectKBest Feature Selection on the log transformed dataset on the classification
performance of the LR classifier.
The mean F1 scores with their standard deviations and medi-
ns were plotted in a box–whisker plot, as shown in Fig. 7.
The effects of several combinations of Borderline-SMOTE +

electKBest Feature Selection of the dataset on the LR classifier’s
erformance were summarized in Table 6. The test was also per-
ormed on the normalized + log-transformed dataset, however,
his did not only provide poorer results in all cases but also
aused ‘‘nan’’ errors for the test performed with chi2 as a scoring
unction. As such, those results are not shown in the table.

Although it was expected that the classifier’s performance
ould improve as the dataset is narrowed down more towards
he best features, the classifier’s performance decreased dras-
ically as more features were removed. The best results were
chieved when only 21 of the 271 features were discarded, using
_class as the scoring function with only a moderate improvement
ompared to the use of Borderline-SMOTE oversampling alone.
or this reason, this method was not investigated any further.
11
4.1.5.4. Recursive feature elimination. Recursive Feature Elimina-
tion is another supervised feature selection algorithm. It needs
a relatively well-performing classifier to determine the feature’s
importance, which is used to determine which features need to
be removed. Since we were dealing with an imbalanced dataset,
it was important not to discard features that were linked to class
1 (i.e., minority class). Therefore, the choice of the classifier-to-
use for this feature importance determination was based on the
results of our baseline classifier performance experiments. These
experiments had shown that the choice of a suitable classifier
was limited to GaussianProc, LDA, and LR. For Recursive Feature
Elimination, a classifier is required to produce either a coef or
a feature_importances_ attribute. Since GaussianProc does not
produce such attributes, the choice was further limited to either
LR or LDA.

Recursive Feature Elimination was performed on both the
log-transformed dataset and the normalized + log-transformed
dataset using LR or LDA for feature importance determination.
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Table 7
Number of selected and discarded features after performing Recursive Feature Elimination on the log transformed
or normalized + log transformed dataset, with either LR or LDA for feature importance determination.

Recursive Feature Elimination

On log transformed dataset On normalized + log transformed dataset

Feature Importance classifier LR LDA LR LDA
Selected features 114 234 130 246
Discarded features 157 37 141 25
Original nr of features 271 271 271 271
Table 8
Performance comparison of nine basic classifiers on the log transformed dataset with Recursive Feature Elimination performed with either
LR (top) or LDA (bottom) for feature importance determination.
Table 9
Performance comparison of nine basic classifiers on the normalized + log transformed dataset with Recursive Feature Elimination performed
with either LR (top) or LDA (bottom) for feature importance determination.
The sklearn function Recursive Feature Eliminator with CrossVali-
dation (RFECV) was used with LR (solver= ‘liblinear’, class_weights
=‘balanced’, max_iter=500) or LDA as model, and RepeatedStrat-
ifiedKfold for cross-validation (n_splits=10, n_repeats=10, ran-
dom_state=1). Although the LR hyperparameter class_weights=
‘balanced’ was not used during the baseline and feature value
scaling using, it was thought necessary to be used here to stimu-
late the selection of class 1-related features.

Results in Table 7 showed that more features were removed
hen the log-transformed dataset was used instead of the nor-
alized + log-transformed dataset. Also, more features were re-
oved when LR was used for feature importance determination
12
compared to LDA. The effects of the four produced Recursive
Feature Elimination datasets were tested on the classifiers.

Fig. 8 shows the performance comparison of the nine ba-
sic classifiers on the log-transformed dataset and normalized +
log-transformed dataset with Recursive Feature elimination per-
formed with LR and LDA for feature importance determination.
Fig. 9 depicts the performance comparison of nine tree-based
ensemble classifiers on the log-transformed and normalized +
log-transformed dataset with Recursive Feature Elimination per-
formed with LR and LDA for feature importance determination.
Table 8 shows the performance comparison of nine basic clas-
sifiers on the log-transformed dataset with Recursive Feature
Elimination performed with LR and LDA for feature importance
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Table 10
Performance comparison of nine tree based ensemble classifiers on the log transformed dataset with Recursive Feature Elimination performed
with either LR (top) or LDA (bottom) for feature importance determination.
Table 11
Performance comparison of nine tree based ensemble classifiers on the normalized + log transformed dataset with Recursive Feature
Elimination performed with either LR (top) or LDA (bottom) for feature importance determination.
determination. Table 9 represents the performance comparison
of nine basic classifiers on the normalized + log-transformed
dataset with Recursive Feature Elimination performed with LR
and LDA for feature importance determination. Table 10 shows
the performance comparison of nine tree-based ensemble classi-
fiers on the log-transformed dataset with Recursive Feature Elim-
ination performed with either LR or LDA for feature importance
determination. Table 11 represents the performance compari-
son of nine tree-based ensemble classifiers on the normalized
+ log-transformed dataset with Recursive Feature Elimination
performed with LR and LDA (bottom) for feature importance
determination.

These results showed that all basic classifiers performed best
n the log-transformed dataset with Recursive Feature Elimina-
ion performed with LR for feature importance determination.
he same was the case for the above no-skill performing tree-
ased ensemble classifiers. In general, the classifiers showed bet-
er performance on the log-transformed dataset compared to the
13
normalized + log-transformed dataset, and better performance
on the LR Recursive Feature Elimination compared to the LDA
Recursive Feature Elimination. The best performing classifiers (in
order of performance) were LR, LDA, GaussianProc, and AdaBoost.

To confirm that the two different Recursive Feature Elim-
ination methods (LR vs. LDA) had a significant effect on the
performance of the classifiers, a statistical test was performed.
First, a Shapiro–Wilk test was performed on the F1 scores of all
the results to see if the results followed a Gaussian distribution.

Most of the classifier performance measures using the F1
scores did not show a Gaussian distribution. For this reason,
a Wilcoxon’s signed-rank test was run to compare the perfor-
mance of the used classifiers, on the Recursive Feature Eliminated
dataset that was either produced using LR or LDA for feature
selection.

The dataset that was produced using Recursive Feature Elim-
ination with LR for feature importance determination provided
significantly better performance for all tested classifiers, except
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Fig. 8. Performance comparison of the nine basic classifiers on the log transformed dataset (top) or normalized + log transformed dataset (bottom).
hen tested with KNN, DecisionTree, and XGBoost, in which case
o significant difference was found. In a similar way, the effect
f log transformation vs. normalization + log transformation of
he dataset was tested. Again, a Wilcoxon’s signed-rank test was
erformed to confirm that the performance difference was sig-
ificant. For this, the F1-performance scores of the seven basic
lassifiers were compared after running them on the either log-
ransformed + RFE dataset or the normalized + log-transformed +
FE dataset.
Results demonstrated that the log-transformed dataset pro-

ided significantly better performance than the normalized +
og-transformed dataset for all tested classifiers.

.1.5.5. Highly correlated feature removal. Since the Spearman
orrelation matrix provided the impression that several features
ere highly correlated, these features need to be removed. This
as done by first producing a correlation matrix of the feature
ata, followed by the removal of all features that were at least
0% correlated to other features. This was the case for 16 features,
eaving 255 selected features.

Removed features are shown as follows:

‘C18H24O5S1’, ‘C19H26O6S1’, ‘C19H28O5S1’, ‘C19H28O6S1’,
C19H30O5S1’, ‘C19H30O6S1’, ‘C19H32O5S1’, ‘C19H32O6S1’,
C20H32O3’, ‘C24H30O8’, ‘C25H40O9’, ‘C26H45N1O5S1’,
C27H42O11’, ‘C27H42O8’, ‘C27H44O8’, ‘C27H44O9’]

It was assumed that the removal of these highly correlated
features, combined with the Recursive Feature Elimination, which
at this stage had given the so-far best results, would give a further
improvement of the classifier’s performance. This assumption

was tested by comparing the performance of the classifier with

14
the results achieved with only Recursive Feature Elimination.
However, this achieved no improvement, as such, this data is not
shown here. Furthermore, of the 16 features removed by Highly
correlated feature removal, 10 were also removed by Recursive
Feature Elimination (marked in bold). For these reasons, this
method was not considered an improvement and was, therefore,
rejected.

4.2. Investigating the effect of undersampling and oversampling
methods

Since LR provided the best performance of all tested classifiers,
in this experiment, the effect of using different undersampling
and oversampling methods was investigated. The
oversampling methods ROS, SMOTE, Borderline-SMOTE, SVM-
SMOTE, and ADASYN, and the undersampling methods RUS, Near
Miss, CNN, Tomek Links, ENN, OSS, and NCL were tested using
the ten performance measures. The functions for these methods
were imported from the Python package imbalanced-learn 0.8.0.
The mean F1 scores with their standard deviations and medians
were plotted in a box–whisker plot, as shown in Fig. 10.

The effects of all tested oversamplers and undersamplers on
the LogisticRegression classifier were summarized in Table 12.
Of the oversampling methods SMOTE, Borderline-SMOTE and
ADASYN provided the best results on the LR classifier. Of the
undersampling methods Edited Nearest Neighbor Rule, One-Sided
Selection, and Neighborhood Cleaning Rule provided the best
results. These methods all improved the performance of the basic
LR classifier, which optimum was so far found at an F1-score of
0.940.
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Fig. 9. Performance comparison of nine tree based ensemble classifiers on the log transformed (top) or normalized + log transformed dataset (bottom).
Fig. 10. The effects of several oversampling and undersampling methods on the performance of the LR classifier, on the log transformed + Recursive Feature filtered
ataset (with LR for feature importance determination).
.2.1. LogisticRegression classifier
The best performing oversampling methods SMOTE,

orderline-SMOTE, and ADASYN and the undersampling methods
omek Links, Edited Nearest Neighbor Rule, One-Sided Selection,
nd Neighborhood Cleaning Rule were tested in all possible
ombinations to investigate the effect on the performance of the
R classifier. The mean F1 scores with their standard deviations
nd medians were plotted in a box–whisker plot, as shown in
ig. 11.
15
A Wilcoxon signed-rank test was performed to determine
if the differences in performance were significant, this analysis
result is provided in Appendix. Use of the oversamplers SMOTE,
Borderline-SMOTE, and ADASYN provided significantly improved
performance over the basic LR, and all performed equally well.
Only adding an undersamplers provided no significantly differ-
ent performance over the basic LR classifier. The addition of an
undersampler to SMOTE provided no significant improvement.
The addition of an undersampler to Borderline-SMOTE provided
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Table 12
The effects of several oversampling and undersampling methods on the performance of the LR classifier tested on the log transformed +
RFE dataset.
Fig. 11. The effects of several oversampling and undersampling combinations on the LR classifier performance (F1-score) tested on the log transformed + RFE dataset.
no significant improvement. The addition of an undersampler to
ADASYN provided no significant improvement. Performing the
ENN undersampling method, after an oversampler provided con-
sistently significantly poorer results on the performance. It was
further noticed that this was the only undersampler that pro-
vided better performance if undersampling took place before
oversampling, but the addition of this undersampler provided no
improved performance over running an oversampler alone. The
effects of several oversampling and undersampling combinations
on the performance of the LR classifier were summarized in
Table 13.

4.2.2. LinearDiscriminantAnalyser classifier
For comparison reasons, the best performing oversampling

ethods SMOTE, Borderline-SMOTE, and ADASYN and the under-
ampling methods Tomek Links, Edited Nearest Neighbor Rule,
ne-Sided Selection, and Neighborhood Cleaning Rule were also
ested in all possible combinations on the second-best classifier
DA. The mean F1 scores with their standard deviations and me-
ians were plotted in a box–whisker plot, as shown in Fig. 12. In
16
Table 14, the effects of several oversampling and undersampling
combinations on the performance of the LDA classifier, tested on
the log-transformed + RFE dataset are shown.

This test showed that the use of an oversampler, with or
without the use of an undersampler, provided no improved per-
formance over the basic LDA classifier.

4.2.3. GaussianProcessClassifier
For comparison reasons, the second-best performing classifier,

GaussianProc was tested with the combinations of the oversam-
pling methods SMOTE, Borderline-SMOTE, and ADASYN and the
undersampling methods Tomek Links, Edited Nearest Neighbor
Rule, One-Sided Selection, and Neighborhood Cleaning Rule. The
mean F1 scores with their standard deviations and medians were
plotted in a box–whisker plot, as shown in Fig. 13. Table 15
shows the effects of several oversampling and undersampling
combinations on the performance of the GaussianProc, tested on
the log-transformed + RFE dataset. This test showed that the
addition of an oversampler, with or without the addition of an
undersampler, provided poorer performance than using only the
basic GaussianProc.
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Table 13
The effects of several oversampling and undersampling combinations on the performance of the LR classifier, tested on the log transformed
+ RFE dataset.
Fig. 12. The effects of several oversampling and undersampling combinations on the LDA classifier performance (F1-score), tested on the log transformed + RFE
dataset.
4.2.4. Combinations of oversampling and undersampling
Finally, the Adaboost classifier was tested with combinations

of the oversampling methods SMOTE, Borderline-SMOTE, and
ADASYN and the undersampling methods Tomek Links, Edited
Nearest Neighbor Rule, One-Sided Selection, and Neighborhood
Cleaning Rule. The mean F1 scores were plotted in a box–whisker
plot, as shown in Fig. 14. The effects of several oversampling and
undersampling combinations on the performance of AdaBoost
17
tested on the log-transformed + RFE dataset are shown in Ta-
ble 16.

Again, a Wilcoxon’s signed-rank test was performed to deter-
mine whether the observed differences were significant.

This test showed that Adaboost combined with Borderline-
SMOTE+NeighborCleaningRule performed significantly better on
the log transformed+ RFE dataset. AdaBoost combined with
SMOTE+One-Sided Selection performed significantly poorer. All
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Table 14
The effects of several oversampling and undersampling combinations on the performance of the LDA classifier, tested on the log transformed + RFE dataset.
On log transformed + RFE dataset

Method F1 Precision Recall PR_AUC ROC_AUC BrierSkill TP FN FP TN

mean std mean std mean std mean std mean std mean std

basic_classifier 0.872 0.097 0.919 0.110 0.847 0.140 0.787 0.153 0.921 0.070 0.745 0.193 4.9 0.9 0.5 105.3
SMOTE 0.826 0.101 0.757 0.151 0.940 0.105 0.713 0.150 0.960 0.052 0.557 0.309 5.5 0.3 2.1 103.7
BorderSMOTE 0.811 0.107 0.732 0.155 0.939 0.106 0.691 0.162 0.959 0.053 0.513 0.310 5.5 0.3 2.3 103.5
ADASYN 0.814 0.112 0.719 0.151 0.963 0.092 0.697 0.165 0.970 0.047 0.500 0.352 5.6 0.2 2.5 103.3
SMOTE+Tomek 0.824 0.108 0.752 0.154 0.942 0.102 0.711 0.162 0.961 0.051 0.549 0.321 5.5 0.3 2.1 103.7
SMOTE+OneSided 0.825 0.114 0.781 0.153 0.905 0.133 0.712 0.172 0.944 0.066 0.578 0.310 5.2 0.6 1.8 104.0
SMOTE+NeighClean 0.829 0.103 0.763 0.155 0.937 0.103 0.717 0.153 0.959 0.051 0.565 0.313 5.4 0.4 2.0 103.8
BorderSMOTE+Tomek 0.808 0.110 0.731 0.158 0.936 0.110 0.688 0.164 0.957 0.055 0.506 0.322 5.4 0.4 2.3 103.5
BorderSMOTE+OneSided 0.803 0.124 0.765 0.169 0.882 0.153 0.682 0.178 0.932 0.076 0.527 0.330 5.1 0.7 1.9 103.9
BorderSMOTE+NeighClean 0.805 0.105 0.728 0.147 0.931 0.118 0.680 0.154 0.954 0.059 0.503 0.304 5.4 0.4 2.3 103.5
ADASYN+Tomek 0.812 0.103 0.716 0.144 0.965 0.088 0.693 0.152 0.970 0.044 0.498 0.324 5.6 0.2 2.5 103.3
ADASYN+OneSided 0.818 0.120 0.742 0.149 0.937 0.134 0.703 0.172 0.959 0.068 0.544 0.317 5.4 0.4 2.1 103.7
ADASYN+NeighClean 0.789 0.108 0.682 0.146 0.966 0.085 0.661 0.155 0.969 0.043 0.421 0.347 5.6 0.2 3.0 102.8
Table 15
The effects of several oversampling and undersampling combinations on the performance of the GaussianProc, tested on the log transformed + RFE dataset.
On log transformed + RFE dataset

Method F1 Precision Recall PR_AUC ROC_AUC BrierSkill TP FN FP TN

mean std mean std mean std mean std mean std mean std

basic_classifier 0.839 0.114 0.801 0.150 0.903 0.123 0.732 0.178 0.944 0.062 0.622 0.286 5.2 0.6 1.5 104.3
SMOTE 0.688 0.097 0.551 0.114 0.940 0.104 0.524 0.125 0.948 0.052 0.066 0.363 5.5 0.3 4.8 101.0
BorderSMOTE 0.723 0.097 0.598 0.121 0.940 0.102 0.567 0.129 0.951 0.051 0.209 0.350 5.5 0.3 4.0 101.8
ADASYN 0.695 0.094 0.561 0.113 0.940 0.102 0.532 0.123 0.948 0.050 0.098 0.355 5.5 0.3 4.6 101.2
SMOTE+Tomek 0.694 0.097 0.559 0.114 0.942 0.098 0.531 0.125 0.949 0.049 0.089 0.371 5.5 0.3 4.6 101.2
SMOTE+OneSided 0.727 0.104 0.611 0.140 0.931 0.109 0.573 0.140 0.948 0.054 0.229 0.356 5.4 0.4 3.8 102.0
SMOTE+NeighClean 0.690 0.099 0.553 0.113 0.940 0.104 0.526 0.126 0.948 0.053 0.076 0.367 5.5 0.3 4.7 101.1
BorderSMOTE+Tomek 0.724 0.099 0.601 0.127 0.940 0.102 0.569 0.132 0.951 0.051 0.212 0.355 5.5 0.3 4.0 101.8
BorderSMOTE+OneSided 0.739 0.104 0.631 0.137 0.926 0.116 0.588 0.143 0.946 0.057 0.278 0.362 5.4 0.4 3.5 102.3
BorderSMOTE+NeighClean 0.719 0.101 0.596 0.127 0.934 0.108 0.561 0.134 0.948 0.054 0.197 0.357 5.4 0.4 4.0 101.8
ADASYN+Tomek 0.695 0.095 0.561 0.118 0.942 0.098 0.532 0.122 0.949 0.049 0.092 0.365 5.5 0.3 4.6 101.2
ADASYN+OneSided 0.708 0.098 0.579 0.120 0.939 0.102 0.548 0.129 0.949 0.051 0.149 0.367 5.5 0.3 4.3 101.5
ADASYN+NeighClean 0.673 0.102 0.534 0.126 0.950 0.096 0.510 0.125 0.950 0.047 −0.028 0.450 5.5 0.3 5.3 100.5
Table 16
The effects of several oversampling and undersampling combinations on the performance of AdaBoost.
other combinations provided no significant differences in perfor-
mance.

4.2.5. Effect of cost-sensitive learning on several classifiers
Several classifiers have a built-in option to use cost-sensitive

earning. These classifiers can use the scale of imbalance within
dataset to provide different penalties/rewards for the correct/

ncorrect predictions of a sample’s class. In this test, these meth-
ds were tested on the log-transformed + RFE (LR version) dataset
nd compared to their basic, non-cost-sensitive version.
The cost-sensitive versions of the classifiers LR (solver=

liblinear’, class_weight=‘balanced’, max_iter=500), SVM((gamma=
scale’, class_weight=‘balanced’)), RandomForrest (class_weight=
balanced’, n_estimators=1000), DecisionTree (class_weight=
balanced’), ExtraTrees (class_weight=‘balanced’, n_estimators=
000), and XGBoost (booster=‘gblinear’, scale_pos_weight=81.5)
ere compared to the performance of the basic LR classifier
18
(solver=‘liblinear’, max_iter=500). The classifier’s training and
validation was performed using crossvalidation with the Re-
peatedStratifiedKFold method (n_splits=10, n_repeats=10, ran-
dom_state=1).

For all classifiers, except for XGBoost, the cost-sensitive learn-
ing option was set with the hyperparameter class_weight=
‘balanced’. For XGBoost, the cost-sensitive learning option was set
with the hyperparameter scale_pos_weight=81.5. This optimal hy-
perparameter value was determined by performing a grid search
with the function xgboost_grid_search, for which the strategy
mentioned at https://machinelearningmastery.com/xgboost-for-
imbalanced-classification was used.

The mean F1 scores with their standard deviations and me-
dians were plotted in a box–whisker plot, as shown in Fig. 15.
Table 17 shows the performance of several classifiers with cost-
sensitive learning, and their basic, non-cost-sensitive versions,
tested on the log-transformed + RFE dataset. Table 18 shows

https://machinelearningmastery.com/xgboost-for-imbalanced-classification
https://machinelearningmastery.com/xgboost-for-imbalanced-classification
https://machinelearningmastery.com/xgboost-for-imbalanced-classification
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Fig. 13. The effects of several oversampling and undersampling combinations on the GaussianProc performance (F1-score), tested on the log transformed + RFE
dataset.
Fig. 14. The effects of several oversampling and undersampling combinations on the AdaBoost classifier performance (F1-score), tested on the log transformed + RFE
dataset.
the performance of several classifiers with cost-sensitive learn-
ing, and their basic, non-cost-sensitive versions, tested on the
normalized + log-transformed + RFE dataset.

Since again a Shapiro–Wilk test showed that the samples
ere non-Gaussian, a Wilcoxon’s Signed Rank test was performed
n the F1-scores produced by these cost-sensitive classifiers
nd their basic, non-cost-sensitive versions, on both the log
ransformed+ RFE dataset, and the normalized+log transformed
ataset. Wilcoxon’s signed-rank test was performed on the F1-
easures of several cost-sensitive classifiers (CSL), and their
asic, non-cost-sensitive versions (basic), when tested on the log
19
transformed+RFE dataset or the normalized+ log transformed+
RFE dataset (n_l_rfe).

These results showed that LR remains the best-performing
classifier and that its cost-sensitive version provided significantly
better performance than its basic classifier. In all cases, the cost-
sensitive version of a classifier provided better performance than
its basic version. Using the log-transformed + RFE dataset pro-
vided significantly better performance for the LR, SVM, and Ex-
traTrees classifiers. However, the normalized + log-transformed +
RFE dataset turns out to provide significantly better performance
for the DecisionTree and XGBoost classifier. RandomForest is the
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Table 17
The performance of several classifiers with cost-sensitive learning, and their basic, non-cost-sensitive versions, tested on the log transformed
+ RFE dataset.
Table 18
The performance of several classifiers with cost-sensitive learning, and their basic, non-cost-sensitive versions, tested on the normalized +
log transformed + RFE dataset.
Fig. 15. The F1 performance measure of several classifiers with cost-sensitive learning, and their basic, non-cost-sensitive versions, tested on the log transformed +
RFE dataset (left) and the normalized + log transformed + RFE dataset (right).
only classifier found to provide no significantly different perfor-
mance between tests on the log transformed+RFE dataset and the
normalized+log transformed+RFE dataset.

4.3. Investigating extra approaches to improve the performance of
the second-best classifiers

LR was so far found to be the best performing classifier. How-
ver, the lesser performing classifiers, LDA, GaussianProc, and
daBoost, could possibly still be improved.

.3.1. Hyperparameter tuning for LinearDiscriminantAnalysis
As described by Brownlee (https://machinelearningmastery.

om/linear-discriminant-analysis-with-python), LDA’s
erformance can possibly be improved by performing a grid
earch on its ‘solver’ hyperparameter. As variations, the solvers
svd’ (Singular Value Decomposition), ‘lsqr’ (least-squares), and
eigen’ were tested. A RepeatedStratifiedKFold cross-validation
pproach was used (10 repeats, 10 folds) using accuracy for
coring, and the log transformed+RFE dataset as input. The ‘svd’
20
solver was found to provide the best performance with a mean
accuracy of 0.988.

The test was repeated using an F1 score for scoring, which
resulted in the selection of the same solver, but with a mean F1
score of 0.872. Test of this new LDA(solver=‘svd’) setting with
all combinations of over/undersampling, using the log trans-
formed+RFE dataset resulted in a mean F1-score of 0.872 (sd
0.097). Adding an oversampler/undersampler provided signifi-
cantly poorer performance in all cases, as such, these results are
not shown.

4.3.2. Hyperparameter tuning for GaussianProcessClassifier
As described by Brownlee (https://machinelearningmastery.

com/gaussian-processes-for-classification-with-python),
GaussianProc’sperformance can possibly be improved by per-
forming a grid search on the ‘kernel’ hyperparameter. As vari-
ations, the kernels RBF, DotProduct, Matern, RationalQuadratic,
and WhiteKernel were tested. A RepeatedStratifiedKFold cross-
validation approach was used (10 repeats, 10 folds) using accu-
racy for scoring and using the log transformed+RFE dataset as

https://machinelearningmastery.com/linear-discriminant-analysis-with-python
https://machinelearningmastery.com/linear-discriminant-analysis-with-python
https://machinelearningmastery.com/linear-discriminant-analysis-with-python
https://machinelearningmastery.com/gaussian-processes-for-classification-with-python
https://machinelearningmastery.com/gaussian-processes-for-classification-with-python
https://machinelearningmastery.com/gaussian-processes-for-classification-with-python
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Table 19
The performance of GaussianProc(kernel=1*DotProduct(sigma_0=1) with several combinations of oversampling and undersampling on the log
transformed + RFE dataset.
input. The DotProduct(sigma_0=1) kernel was found to provide
the best performance with a mean accuracy of 0.994. Test of
this new GaussianProc(kernel=1*DotProduct(sigma_0=1)) setting
with all combinations of over/undersampling using the log trans-
formed+RFE dataset resulted in the following scores shown in
Table 19.

These results show that GaussianProc performed best on the
og transformed+RFE dataset, in combination with either the
versamplers SMOTE, SMOTE+NeigborCleaningRule, Borderline-
MOTE, Borderline-SMOTE+Tomek Links, ADASYN, or ADASYN+
omek Links.
A Wilcoxon’s signed-rank test (i.e., samples were shown to

e non-Gaussian in a Shapiro–Wilkes test) showed that these
ombinations were significantly different. The addition of an un-
ersampler did not provide any further improvement.

.3.3. Hyperparameter tuning for AdaBoost
As Brownlee mentions (https://machinelearningmastery.com/

daboost-ensemble-in-python), the AdaBoost hyperparameters
earning_rate and n_estimators are good candidates for improv-
ng the classifier’s performance. As optimal hyperparameters
he settings AdaBoostClassifier(base_estimator =LogisticRegres-
ion(solver=‘liblinear’), learning_rate=1.4, n_estimators=50) was
ound, resulting in a mean F1-score of 0.897 (sd 0.108). As second
est settings AdaBoostClassifier(learning_rate=1.1, n_estimators=
000) was found, resulting in a mean F1-score of 0.756 (sd
.155). Both versions were tested elaborately, however, the per-
ormance could not be further improved, making it the fourth-
est classifier. For this reason, the classifier was not further
nvestigated.

.4. Testing the best performing classifiers with their best resampling
ethod(s) on the test dataset

The best performing classifiers (in order of performance) were
dentified to be LR, GaussianProc, and LDA. In this experiment,
hese classifiers were used to predict the classes of the test
ataset samples to determine the classifiers’ performances on
amples it has never seen before.
The classifiers were first trained on the log-transformed + RFE

ataset. LR training was performed with the solver=‘liblinear’,
ax_iter=1000, with the resampling combinations SMOTE (with
nd without NeighborCleaningRule), Borderline-SMOTE (with and
ithout Tomek Links), and ADASYN (with and without Tomek
inks). The cost-sensitive version was trained without resam-
ling. GaussianProc training was performed with the hyperpa-
ameter setting kernel=DotProduct(sigma_0=1), with the
versamplers SMOTE, Borderline-SMOTE, and ADASYN. LDA train-
ng was performed with the hyperparameter setting solver=‘svd’,
ithout the use of a resampler. After the training phase, the
est dataset was log-transformed and the same features were
elected as those selected during the RFE step in the training
21
dataset. The class labels were predicted for all samples in the
test dataset, and an overview table was produced, containing
the predicted classes and the true class for each sample, and
the confusion matrix values for each classifier. For a complete
overview, the Appendix includes additional tables. Table 20
shows the TP/FN/FP/TN results of the LR, GaussianProc, and LDA
with several over/undersamplers, when tested on the test dataset.

Of the tested combinations with LR as the classifier, the use
of the oversampler Borderline-SMOTE provided the best results,
with all positive minority samples correctly predicted. In most
tests with an oversampler, two false-positive samples were found.
Two false positives were found to be the lowest number, but if
the predictions were repeated, SMOTE, Borderline-SMOTE, and
Borderline-SMOTE+Tomek Links were seen to fluctuate between
two and three false positives. The default LR classifier, trained
without the use of resampling methods also performs remarkably
well, and even outperformed the cost-sensitive learning LR ver-
sion, with only one false negative sample (Sample_032), and one
false positive (Sample_022). GaussianProc with and without the
use of an over/undersampler provided identical results as LR. LDA,
which was tested without an over/undersampler, also provided
one false positive and one false negative sample.

The two consistently False Positives were identified as Sam-
ple_022 and Sample_045. The third frequently found False Posi-
tive was Sample_033. The appendix contains an additional table
for this purpose. Checking these samples in the description files
showed that for Sample_022, a comment was made that the
sample was remarkably dirty. For Sample_045, no stored remarks
were found in the description files. For Sample_033, the remark
is that a blank sample was found, which should clearly be a
negative sample. Sample_032 was found to be a false negative
in three predictions (basic LR, GPC(DotProduct), and LDA (svd))
while being identified correctly in all other cases. Since this
sample is described as treated with the hormone Stanozolol, the
false-negative predictions are likely to be indeed false negatives.

5. Discussion

5.1. General discussion

The LC-HRMS dataset used in this study, which is both imbal-
anced, contains a large number of features, and a large number of
missing data points is rather unique compared to datasets used
in literature (ref). Our strategy to replace the missing data points
with random values close to the detection threshold of the LC–
MS (10.000 +/- 5.000) worked well. However, combined with the
imbalance, and a large number of features in our dataset, the
traits of our dataset seem to complicate the learning skill of many
machine learning algorithms. In hindsight, choosing random val-
ues with a larger difference from the ‘real’ data, and with less
variation, might have made the dataset less noisy, and simplified
the situation for the classifiers’ learning skills.

https://machinelearningmastery.com/adaboost-ensemble-in-python
https://machinelearningmastery.com/adaboost-ensemble-in-python
https://machinelearningmastery.com/adaboost-ensemble-in-python
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Table 20
Predicted numbers of True Positives (TP), False Negatives (FN), False Positives (FP), and True Negatives (TN) by LR, GaussianProc, and LDA
with several over/ undersamplers, when tested on the test dataset.
Predictions with Logistic Regression

LR +SMOTE +SMOTE +NCR +BSMOTE +BSMOTE +Tomek +ADASYN +ADASYN +Tomek

TP 6 7 7 7 7 7 7
FN 1 0 0 0 0 0 0
FP 1 3 3 3 2 3 3
TN 117 115 115 115 116 115 115

Predictions with Gaussian Process Classifier and Linear Discriminant Analysis

GPC (DotProduct) +SMOTE +BSMOTE +ADASYN LDA (svd) y_true

TP 6 7 7 7 6 7
FN 1 0 0 0 1 0
FP 1 3 2 3 1 0
TN 117 115 116 115 117 118
Our findings have confirmed that the F1-score, Precision, Re-
all, PR_AUC, and to some degree the BrierSkill score are suitable
easures for comparison of the classifier’s performances when
ealing with an imbalanced dataset. However, The ROC_AUC is
ound to give too positive impressions and is, therefore, an un-
uitable measure for imbalanced datasets. Since the ROC_AUC is a
requently used measure in other research though, it was decided
o include this measure in our overviews.

Although it is not common practice to include the confu-
ion matrix values in a performance measure overview, we have
ound it quite informative to include, since it provides the viewer
aluable insight into why measures are changing. Test of the
aw dataset on the set of different classifiers only showed above
o-skill performance for LR, XGBoost, and AdaBoost. All other
lassifiers either showed around no-skill performance or were not
ble to produce an output at all.
Our findings showed that the log transformation of our dataset

as crucial for the performance of many classifiers. The classifiers
R, LDA, GaussianProc, and AdaBoost were found to provide the
est performance. Although several other classifiers also showed
bove-skill improved performance after log transformation, they
id not perform as well as the above-mentioned classifiers.
Although a claim was found that normalization of the data

s a necessity [8], in our case, normalization did not provide a
ignificant improvement over log transformation alone for our
est-performing classifiers. Since the features in our dataset were
hown to be far from Gaussian distribution, with our random
alues for the missing data points being a large cause for this,
t made sense that standardization of the dataset did not work.
pecial scaling methods like MaxAbsScaler to deal with sparse
atasets do exist, however, were beyond the scope of this re-
earch.
Of the tested feature removal methods, Recursive Feature

limination was found to be the best performing method, when
sed with the LR classifier for feature importance determination
nd log transformation of the dataset. The Recursive Feature
limination was also attempted with LDA for feature importance
etermination, and with normalization + log transformation of
he dataset, but these methods were found to give a lesser
erformance for most classifiers.
The Recursive Feature Removal with LR for feature importance

etermination was performed with the hyperparameter setting
lass_weights=‘balanced’ to stimulate the selection of features
inked to the minority class. Although the cost-sensitive version of
R was found to give significantly better performance than its ba-
ic version, the basic LR classifier was found to perform quite well.
n retrospect, it may not have been strictly necessary to use its
ost-sensitive version for the Recursive Feature Elimination step.
ptions of using an oversampler before Recursive Feature Elim-
nation, so that other classifiers without cost-sensitive learning
ould be used were not investigated during this research.
22
Alternative variance-based feature selection methods like Low
Variance and Multicollinear feature selection did not work well
for our dataset. Since we were working with an imbalanced
dataset, where the missing data points, replaced by random val-
ues, formed the majority within most features, the minority class-
related features were expected to be low in variance. It, therefore,
makes sense that the Low Variance method was not suitable
for our dataset. A good explanation of why the Multicollinear
Feature Elimination method did not work well was not found.
Possibly the replacement of the missing data points by random
values caused the dataset to only give the impression that a
multitude of features was highly correlated, resulting in a discard
of most of the features when Multicollinear Feature Elimination
was performed.

Finally, the Feature Removal with SelectKBest was tested in
combination with Borderline-SMOTE to create a more balanced
dataset. It was noted that the more features were removed with
this method, the lower the performance of the LR classifier be-
came, indicating that this method is not capable of selecting
the important features within our dataset. The best results were
found when 250 features were kept out of the total of 271
features in our original dataset, meaning that 21 features were
discarded using this method. However, these features could also
be discarded by only using the Recursive Feature Elimination
method, making the SelectKBest-based method no improvement.

Repeated stratified k-fold cross-validation is commonly per-
formed with 10 folds [26] and a varying number of repeats. We
chose to follow this example by performing all cross-validation
steps with 10 folds and 10 repeats. With our low number of 65
minority class samples, in retrospect, it might have been a better
choice to decrease the number of folds, and increase the number
of repeats, to create a test situation where misclassifications of
some minority samples have less effect on the variance.

Our tests showed that the use of the oversamplers SMOTE,
Borderline-SMOTE, and ADASYN on our dataset significantly im-
proved the performance of LR, GaussianProc, and AdaBoost. The
addition of an undersampler (Tomek Links, Edited Nearest Neigh-
bor Rule, One-Sided Selection, or Neighborhood Cleaning Rule) re-
peatedly gave slightly, but not a significant improvement. Edited
Nearest Neighbor Rule was the only undersampler consistently
giving significantly poorer results. In our case, the performance
of the classifiers LDA worsened when combined with a resam-
pling method. Using an undersampler before an oversampler, in
general, provided a poorer performance on the classifier except
for the Edited Nearest Neighbor Rule.

The classifiers LR, SVM, RandomForest, DecisionTree, Extra
Trees, and XGBoost were tested with both their basic setting and
their cost-sensitive learning option. All cost-sensitive classifiers
were found to provide significantly improved performance over
their basic versions. LR was still found to be the best performing
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lassifier with its cost-sensitive version providing the best perfor-
ance. However, the cost-sensitive LR classifier was not found to
utperform the basic LR classifier when combined with SMOTE,
orderline-SMOTE, or ADASYN.
LR was found to be the best performing classifier on our

ataset. Although the basic classifier performed quite well with-
ut the need for a resampler (F1 score 0.940), the addition of
he oversamplers SMOTE or ADASYN was seen to provide signifi-
antly best performance (F1-score 0.965), followed by Borderline-
MOTE+Tomek Links (F1-score 0.962) and Borderline-SMOTE
F1-score 0.961). Predictions on the test dataset showed no false
egatives when a resampler was used, and one false negative
hen no resampler was used. The best resampling combina-
ions (SMOTE, ADASYN, and Borderline-SMOTE) showed three
alse positives, while Borderline-SMOTE showed only two false
ositives. Why the best performing classifier/resampling combi-
ations showed one more false positive is most likely caused by
he (test) dataset. The use of the basic LR classifier in combination
ith a resampler seemed to provide better performance than
sing LR’s cost-sensitive version.
GaussianProc was found to be the second-best performing

lassifier although hyperparameter tuning was needed to achieve
hese results. Best results were found when the hyperparameter
etting solver=‘svd’ was used, in combination with the over-
ampler SMOTE (F1-score 0.965), followed by the addition of
he oversamplers Borderline-SMOTE or ADASYN (F1-score 0.962).
redictions on the test dataset showed quite similar results as LR:
he classifier without a resampler shows one false positive and
ne false negative. All combinations with an oversampler showed
o false negatives, three false positives when SMOTE or ADASYN
as used, and two false positives when Borderline-SMOTE was
sed.
LDA was found to be the third-best classifier. Here hyperpa-

ameter tuning was crucial to achieving the best performance as
ell. With the hyperparameter setting solver=‘svd’, this classifier
as found to perform optimally without the addition of a re-
ampler, resulting in a mean F1 score of 0.872. Predictions with
his classifier on the test dataset showed similar results as the
on-resampled versions of LR and GaussianProc.
AdaBoost was found to perform reasonably well, but compared

ith the other classifiers, it was considered not well enough.
yperparameter tuning was shown to improve performance. Best
esults were found with the following settings:

• AdaBoost(base_estimator=LogisticRegression
(solver=‘liblinear’), learning_rate=1.4, n_estimators=50), re-
sulting in a mean F1-score of 0.897

• Second best results were found with the settings
AdaBoost(learning_rate=1.1, n_estimators=1000), resulting
in a mean F1-score of 0.756

ll three classifiers trained without resampling showed similar
esults, showing one false positive (Sample_022) and one false
egative (Sample_032). Classifiers trained with the addition of
resampler repeatedly showed Sample_022, Sample_033, and

ample_045 to be false positives. Sample_032 was found to be
false negative in three cases. This sample was claimed to be

reated with the hormone Stanozolol. No irregularities in the
ample preparation and/or LC–MS analysis were found for these
amples, which could explain the incorrect predictions for some
esampling/classifier combinations. The false-positive/ negative
redictions for these samples are, therefore, indeed considered
o be incorrect predictions of our classifiers.

Of the hormone-treated samples in our dataset, it could be
uaranteed that they were hormone-treated. However, of the
23
samples that were labeled as being non-hormone-treated, this
was only an assumption. The fact that our dataset may have
contained hormone-treated samples that were labeled as non-
hormone-treated, due to lack of information, may have had neg-
ative effects on the training of the classifiers. Outlier removal by
use of a one-class classifier like IsolationForest and/or
OneClassSVM might offer a solution, but this option could not be
fully investigated.

• RQ1: What is the state of the art in data balancing algorithms,
to deal with imbalanced datasets?
From our literature search, we conclude that the oversam-
plers SMOTE, Borderline-SMOTE and ADASYN are the state-
of-the-art data balancing methods used to cope with an
imbalance in a dataset. RUS was the only undersampler
mentioned that was found in our search. Although tech-
nically not data balancing methods, feature reduction by
Recursive Feature Elimination or a RandomForest approach
were mentioned in articles to aid in the reduction of the
dataset complexity and thereby improving a classifier’s learn
ing skill.

• RQ 1a: What is the state of the art in dealing with missing data
points within a dataset?
Brownlee [26] mentions three strategies for dealing with
missing data points; discarding of all features containing
missing data, imputation of missing data values from neigh-
boring samples, and use of a classifier that can cope with
missing data points. To our knowledge, our strategy of re-
placing the below the LC–MS detection threshold missing
data points with artificial random values has never been
attempted before.

• RQ 1b: Which state-of-the-art data balancing algorithms are
presently being used for imbalanced datasets derived from
LC–MS data?
No articles mentioning data balancing methods being used
on LC–MS-derived datasets were found during our literature
search.

• RQ2: Which data balancing methods work best for training
machine learning algorithms to detect illegal hormone usage
in LC–MS analysis results of bovine urine samples?
Our findings confirm that the oversamplers SMOTE,
Borderline-SMOTE, and ADASYN provide the best perfor-
mance on our tested classifiers when trained on our LC–MS
derived dataset. In some cases, the addition of the un-
dersamplers Tomek Links or Neighbor Cleaning Rule was
found to improve a classifier’s performance even further. LR
was found to be the best-performing classifier, followed by
GaussianProc and LDA.

• RQ2a: Which data imputation strategy can be used for our
LC–MS-data derived imbalanced dataset?
Since the three missing data strategies mentioned in the
answer of RQ-1a were not an option for our specific sit-
uation, the replacement of the missing data points with
random values close to the detection threshold of the LC–MS
instrument was investigated in this research. Our strategy
was found to work and resulted in the identification of three
promising classifiers for the detection of illegal hormone
abuse in the cattle industry.

• RQ 2b: Which combination of feature selection, data balancing
methods, and classification algorithm work best for detecting
illegal hormone usage in LC–MS analysis results of bovine urine
samples?
Our results show that log transformation followed by Re-
cursive Feature Elimination (with LR for feature importance
determination) of the dataset was necessary.
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.2. Threats to validity

onstruct validity: As measures of a classifier’s performance, the
easures F1-score, Precision, Recall, PR_AUC, ROC_AUC, Brier-
killScore, and the (mean) confusion matrix values were chosen.
OC-AUC is frequently mentioned in the literature to give an
verly positive impression of a classifier’s performance when
sed on imbalanced datasets, it was nevertheless decided to be
ncluded as a measure for comparison purposes with other pa-
ers. All other chosen metrics have been proven in other studies
o be valid measures.

Although deliberate attempts were made to perform all tests
s unprejudiced as possible, include as many alternative ap-
roaches as possible, and test a broad selection of classification
lgorithms, resampling strategies, and feature selection methods,
he authors of this paper were aware that by the choice to use
R for several performance improvement attempts, this may have
teered the selection of the best performing classifier towards LR.
y no means was the selection of strategies a complete list of all
lassification, resampling, and feature selection methods.
There can be different combinations for ensemble methods so

hat the performance might be better when ensemble methods
re applied.

nternal validity: As can be seen in the Related Work section
f this paper, the approach described in this article to reach a
ell-performing classifier is based on the approach suggested by
rownlee [26] and similar approaches have been described in
ther articles as well. To our knowledge, the approach to replace
elow-the detection-threshold missing data points in our dataset
ith random values has never been attempted before. If the

mpression of collinearity for many features and the poor learning
kill for several classifiers can be explained by our random value,
he approach cannot be excluded.

onclusion validity: We do not claim that the combinations of
eature selection, resampling, and classifiers that were found to
erform well on our dataset are the only combinations that can
ork. Other combinations may perform equally well after further
yperparameter tuning, but investigation of all these combina-
ions was beyond the scope of this research. Statistical tests
ere frequently performed to determine if the effects of a test
pproach were significant. If variants of a certain approach were
ot found to be significantly different, in general, the simplest
pproach was selected for continued experiments.

xternal validity: It should be noted that the experimental ap-
roach described in this paper was performed on a dataset pre-
ared by the last two authors of this article. Similar datasets
hat combine the traits of being imbalanced, high in a number of
eatures, and high in a number of below-the-threshold missing
ata points, to our knowledge were not publicly available, and
ere, therefore beyond the scope of this research.

. Conclusions

This research aimed to identify a classification model that can
iscriminate between hormone-treated and non-treated animals.
he dataset used for this research was produced by performing
n LC-HRMS analysis on a large number of bovine urine samples.
nly a small number were from studies whereby animals were
reated with hormones, making it an imbalanced dataset. Further-
ore, the dataset contained many features and a large number of

missing data points’ that resulted from certain signals not rising
bove the LC-HRMS instrument’s detection threshold in certain
amples. To our knowledge, the combination of these dataset

raits has never been analyzed with classifiers before. A strategy
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of replacing the missing data points with random values close
to the LC-HRMS instrument’s detection threshold was applied.
Log transformation followed by Recursive Feature Elimination
(with LR for feature importance determination) of the dataset was
found to be crucial. Data balancing with SMOTE or ADASYN was
found to provide the best performance for LR (max F1-score of
0.965). Data balancing with SMOTE + NeighborCleaningRule was
found to provide the best performance for GaussianProc (max F1-
score of 0.966). LDA was found not to benefit from data balancing
(max F1-score of 0.872). Test of the three classifiers with their
preferred resampling strategy on a test dataset provided simi-
lar classification results with minimal false positives and false
negatives.

Based on the findings of this research, we make the follow-
ing suggestions for future research: (see Table 21,Table 22,Ta-
ble 23,Table 24,Table 25a,Table 25b,Table 26b).

1. Use of alternative random values for the missing data:
For this research, the missing data points were replaced
by values close to the detection threshold of the LC–MS
instrument. In retrospect, this might have created a rather
noisy dataset that complicated the learning skill of many
classifiers. Using random values that are separated further
from the ‘true’ data values might improve the learning skill
of these classifiers.

2. Use of pre-data balancing and alternative classifiers for
Recursive Feature Elimination: Recursive Feature Elimi-
nation was said to need a classifier that produces either
a coef, or a feature_importances_ attribute. Since we were
dealing with an imbalanced dataset, it was our assumption
that we would need a classifier with cost-sensitive learning
to stimulate the selection of minority class-related features.
This combination of requirements seriously limited the op-
tions for such a classifier. Not only did it turn out that sev-
eral classifiers performed quite well without cost-sensitive
learning or a resampling strategy, but the option of first
creating a more balanced dataset by use of an oversampler,
followed by Recursive Feature Elimination with alternative
(non-cost-sensitive learning) classifiers was not considered
during the development of the Recursive Feature Elimi-
nation function. It is, therefore, our recommendation to
investigate the option to perform data balancing before
feature selection.

3. Removal of outliers by the use of a one-class classifier: A
potential threat in this research was the fact that samples
that were labeled as non-hormone-treated could not be
guaranteed to be non-hormone-treated. Our tests on the
test dataset showed that several samples were consistently
predicted to be hormone-treated, however, this prediction
could not be confirmed. Furthermore, the presence of in-
correctly labeled samples can seriously inhibit the learning
skill of many classifiers. A one-class classifier can aid in
such cases by identifying and discarding outliers within
each class before the dataset is used for the classifiers’
training phase. It is, therefore, our recommendation to
investigate outlier removal from the majority class samples
before resampling and training the classifiers.

4. Use of alternative settings for StratifiedKFold
cross-validation: During all tests of this research, the Strat-
ifiedKFold cross-validation was performed with 10 folds
and 10 repeats. With the rather small number of minority
class samples in our dataset, in retrospect, it might have
been a better choice to decrease the number of folds and
increase the number of repeats. This way, the number
of minority class samples in each fold would increase,

resulting in a lessened impact of possible outliers. It is,
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Table 21
Recursive Feature Elimination results of selected and discarded features on the log transformed dataset, using LR for feature importance
determination.
Selected features:

[‘C18H22O5S1’, ‘C18H22O6S1’, ‘C18H24O3’, ‘C18H24O4’, ‘C18H24O6S1’, ‘C18H24O8S2’, ‘C18H26O6’, ‘C18H26O9S1’, ‘C18H28O4’,
‘C18H28O6’, ‘C18H30O6S1’, ‘C18H30O8S1’, ‘C18H32O6S1’, ‘C19H26O2’, ‘C19H26O3’, ‘C19H26O5S1’, ‘C19H28O2’, ‘C19H28O3’,
‘C19H30O3’, ‘C19H30O5S1’, ‘C19H32O6S1’, ‘C19H32O8S2’, ‘C20H30O3’, ‘C20H30O4’, ‘C20H30O6’, ‘C20H30O9S1’, ‘C20H32O4’,
‘C20H32O5’, ‘C20H32O6S1’, ‘C20H32O7S1’, ‘C20H32O8S1’, ‘C20H34O7S1’, ‘C20H34O9S1’, ‘C20H36O5’, ‘C21H28O6’,
‘C21H30O12S2’, ‘C21H30O2’, ‘C21H30O8S1’, ‘C21H30O9S1’, ‘C21H32O11S2’, ‘C21H32O2’, ‘C21H32O5S1’, ‘C21H32O6’,
‘C21H32O7S1’, ‘C21H32O9S2’, ‘C21H34O3’, ‘C21H34O4’, ‘C21H34O5’, ‘C21H34O5S1’, ‘C21H34O6S1’, ‘C21H36O5S1’,
‘C21H36O9S2’, ‘C23H38O4’, ‘C23H38O7S1’, ‘C24H30O8’, ‘C24H30O9’, ‘C24H32O10’, ‘C24H32O11S1’, ‘C24H32O9’, ‘C24H34O12’,
‘C24H34O5’, ‘C24H36O10’, ‘C24H36O12’, ‘C24H36O13’, ‘C24H38O12’, ‘C24H38O4’, ‘C24H40O4’, ‘C24H40O5’, ‘C24H40O6S1’,
‘C24H40O8S1’, ‘C25H32O9’, ‘C25H34O8’, ‘C25H36O12S1’, ‘C25H38O11S1’, ‘C25H38O12S1’, ‘C25H40O11S1’, ‘C26H36O12’,
‘C26H38O9’, ‘C26H40O10’, ‘C26H40O11’, ‘C26H40O9’, ‘C26H42O10’, ‘C26H42O12’, ‘C26H43N1O6’, ‘C26H43N1O8S1’,
‘C26H43N1O9S1’, ‘C26H44O11’, ‘C26H45N1O5S1’, ‘C26H45N1O6S1’, ‘C26H45N1O8S2’, ‘C26H45N1O9S2’, ‘C27H36O14S1’,
‘C27H38O10’, ‘C27H38O12’, ‘C27H38O13S1’, ‘C27H38O14S1’, ‘C27H38O8’, ‘C27H38O9’, ‘C27H40O10’, ‘C27H40O11’,
‘C27H40O12’, ‘C27H40O12S1’, ‘C27H40O9’, ‘C27H42O10’, ‘C27H42O11’, ‘C27H42O13S1’, ‘C27H44O9’, ‘C30H46O10’,
‘C30H46O11’, ‘C30H47N3O9S1’, ‘C30H48O10’, ‘C33H46O16’, ‘C33H48O17’, ‘C33H50O15’]

Discarded Features:

[’C18H22O2’, ‘C18H22O3’, ‘C18H24O10S2’, ‘C18H24O2’, ‘C18H24O5S1’, ‘C18H24O7S1’, ‘C18H24O9S2’, ‘C18H28O10S1’,
‘C18H28O7’, ‘C18H28O7S1’, ‘C18H28O9S1’, ‘C18H30O3’, ‘C18H30O5’, ‘C18H30O6’, ‘C18H30O9S1’, ‘C18H32O3’, ‘C19H24O3’,
‘C19H24O6S1’, ‘C19H26O6S1’, ‘C19H28O5S1’, ‘C19H28O6S1’, ‘C19H28O9S2’, ‘C19H30O2’, ‘C19H30O6S1’, ‘C19H30O8S2’,
‘C19H30O9S2’, ‘C19H32O2’, ‘C19H32O3’, ‘C19H32O5S1’, ‘C19H32O9S2’, ‘C20H28O6’, ‘C20H28O9S1’, ‘C20H30O5’, ‘C20H30O6S1’,
‘C20H30O7S1’, ‘C20H30O8S1’, ‘C20H32O3’, ‘C20H34O10S1’, ‘C20H34O4’, ‘C20H34O5’, ‘C20H34O6’, ‘C20H34O7’, ‘C20H34O8S1’,
‘C20H36O8S1’, ‘C21H28O11S2’, ‘C21H28O5’, ‘C21H28O8S1’, ‘C21H28O9S1’, ‘C21H30O10S2’, ‘C21H30O11S2’, ‘C21H30O3’,
‘C21H30O4’, ‘C21H30O5’, ‘C21H30O5S1’, ‘C21H30O6’, ‘C21H30O6S1’, ‘C21H30O7S1’, ‘C21H32O10S2’, ‘C21H32O12S2’,
‘C21H32O3’, ‘C21H32O4’, ‘C21H32O5’, ‘C21H32O6S1’, ‘C21H32O8S1’, ‘C21H32O9S1’, ‘C21H34O10S2’, ‘C21H34O11S2’,
‘C21H34O2’, ‘C21H34O7S1’, ‘C21H34O8S1’, ‘C21H34O9S2’, ‘C21H36O2’, ‘C21H36O3’, ‘C21H36O6S1’, ‘C23H37N1O5S1’,
‘C23H37N1O8S2’, ‘C24H32O12S1’, ‘C24H32O13S1’, ‘C24H32O8’, ‘C24H34O8S1’, ‘C24H38O11’, ‘C24H38O5’, ‘C24H38O7S1’,
‘C24H38O8S1’, ‘C24H38O9’, ‘C24H40O3’, ‘C24H40O7S1’, ‘C24H40O9’, ‘C25H34O9’, ‘C25H36O8’, ‘C25H36O9’, ‘C25H38O8’,
‘C25H38O9’, ‘C25H39N1O6S1’, ‘C25H39N1O9S2’, ‘C25H40N2O6S1’, ‘C25H40N2O9S2’, ‘C25H40O12S1’, ‘C25H40O8’, ‘C25H40O9’,
‘C26H38O10’, ‘C26H38O11’, ‘C26H38O12’, ‘C26H42O11’, ‘C26H42O13’, ‘C26H43N1O4’, ‘C26H43N1O5’, ‘C26H43N1O7S1’,
‘C26H45N1O10S2’, ‘C26H45N1O7S1’, ‘C27H36O11’, ‘C27H36O12’, ‘C27H36O15S1’, ‘C27H38O11’, ‘C27H38O15S1’,
‘C27H40O13S1’, ‘C27H40O14S1’, ‘C27H40O15S1’, ‘C27H40O8’, ‘C27H42O12S1’, ‘C27H42O14S1’, ‘C27H42O8’, ‘C27H42O9’,
‘C27H44O12S1’, ‘C27H44O8’, ‘C29H45N1O11S1’, ‘C29H46O10’, ‘C30H40O14’, ‘C30H40O15’, ‘C30H40O16’, ‘C30H42O11’,
‘C30H47N3O12S2’, ‘C30H48O11’, ‘C30H48O9’, ‘C31H44O15’, ‘C31H46O14’, ‘C31H46O15’, ‘C31H47N1O12S1’, ‘C31H48N2O12S1’,
‘C31H48O14’, ‘C31H48O15’, ‘C32H51N1O10’, ‘C32H51N1O11’, ‘C32H51N1O12’, ‘C32H53N1O11S1’, ‘C32H53N1O12S1’,
‘C32H53N1O13S1’, ‘C33H44O17’, ‘C33H44O18’, ‘C33H46O17’, ‘C33H46O18’, ‘C33H48O15’, ‘C33H48O16’, ‘C33H48O18’,
‘C33H50O16’, ‘C33H50O17’, ‘C33H52O15’]

Used model for feature importance determination: LogisticRegression()
With log transformation.
Number of selected features: 114
Number of discarded features: 157
Table 22
Recursive Feature Elimination results of selected and discarded features on the log transformed dataset, using LDA for feature importance
determination. Marked in bold: Features that were selected for discard both by LR and LDA.
Selected features:

[’C18H22O2’, ‘C18H22O3’, ‘C18H22O5S1’, ‘C18H22O6S1’, ‘C18H24O10S2’, ‘C18H24O2’, ‘C18H24O3’, ‘C18H24O4’, ‘C18H24O5S1’,
‘C18H24O6S1’, ‘C18H24O8S2’, ‘C18H24O9S2’, ‘C18H26O6’, ‘C18H26O9S1’, ‘C18H28O10S1’, ‘C18H28O4’, ‘C18H28O6’,
‘C18H28O7’, ‘C18H30O5’, ‘C18H30O6S1’, ‘C18H30O8S1’, ‘C18H30O9S1’, ‘C18H32O3’, ‘C18H32O6S1’, ‘C19H24O3’, ‘C19H26O2’,
‘C19H26O3’, ‘C19H26O5S1’, ‘C19H26O6S1’, ‘C19H28O2’, ‘C19H28O3’, ‘C19H28O6S1’, ‘C19H28O9S2’, ‘C19H30O3’, ‘C19H30O5S1’,
‘C19H30O6S1’, ‘C19H30O8S2’, ‘C19H32O2’, ‘C19H32O5S1’, ‘C19H32O6S1’, ‘C19H32O8S2’, ‘C19H32O9S2’, ‘C20H28O6’,
‘C20H28O9S1’, ‘C20H30O3’, ‘C20H30O4’, ‘C20H30O5’, ‘C20H30O6’, ‘C20H30O6S1’, ‘C20H30O9S1’, ‘C20H32O3’, ‘C20H32O4’,
‘C20H32O5’, ‘C20H32O6S1’, ‘C20H32O8S1’, ‘C20H34O4’, ‘C20H34O5’, ‘C20H34O6’, ‘C20H34O7’, ‘C20H34O7S1’, ‘C20H34O8S1’,
‘C20H34O9S1’, ‘C20H36O5’, ‘C20H36O8S1’, ‘C21H28O11S2’, ‘C21H28O5’, ‘C21H28O6’, ‘C21H28O8S1’, ‘C21H30O11S2’,
‘C21H30O12S2’, ‘C21H30O2’, ‘C21H30O3’, ‘C21H30O5’, ‘C21H30O5S1’, ‘C21H30O6S1’, ‘C21H30O8S1’, ‘C21H30O9S1’,
‘C21H32O10S2’, ‘C21H32O11S2’, ‘C21H32O12S2’, ‘C21H32O2’, ‘C21H32O3’, ‘C21H32O4’, ‘C21H32O5’, ‘C21H32O5S1’,
‘C21H32O6’, ‘C21H32O6S1’, ‘C21H32O7S1’, ‘C21H32O8S1’, ‘C21H32O9S1’, ‘C21H32O9S2’, ‘C21H34O10S2’, ‘C21H34O11S2’,
‘C21H34O2’, ‘C21H34O3’, ‘C21H34O4’, ‘C21H34O5S1’, ‘C21H34O6S1’, ‘C21H34O7S1’, ‘C21H34O8S1’, ‘C21H36O2’, ‘C21H36O3’,
‘C21H36O5S1’, ‘C21H36O6S1’, ‘C21H36O9S2’, ‘C23H37N1O5S1’, ‘C23H37N1O8S2’, ‘C23H38O7S1’, ‘C24H30O8’, ‘C24H30O9’,
‘C24H32O10’, ‘C24H32O11S1’, ‘C24H32O12S1’, ‘C24H32O13S1’, ‘C24H32O8’, ‘C24H32O9’, ‘C24H34O12’, ‘C24H34O5’,
‘C24H34O8S1’, ‘C24H36O10’, ‘C24H36O12’, ‘C24H36O13’, ‘C24H38O11’, ‘C24H38O12’, ‘C24H38O5’, ‘C24H38O7S1’,
‘C24H38O8S1’, ‘C24H38O9’, ‘C24H40O4’, ‘C24H40O5’, ‘C24H40O6S1’, ‘C24H40O7S1’, ‘C24H40O8S1’, ‘C24H40O9’, ‘C25H34O8’,
‘C25H34O9’, ‘C25H36O12S1’, ‘C25H36O8’, ‘C25H36O9’, ‘C25H38O11S1’, ‘C25H38O12S1’, ‘C25H38O9’, ‘C25H39N1O6S1’,
‘C25H39N1O9S2’, ‘C25H40N2O6S1’, ‘C25H40O11S1’, ‘C25H40O12S1’, ‘C25H40O8’, ‘C25H40O9’, ‘C26H36O12’, ‘C26H38O10’,
‘C26H38O12’, ‘C26H38O9’, ‘C26H40O10’, ‘C26H40O11’, ‘C26H40O9’, ‘C26H42O10’, ‘C26H42O12’, ‘C26H42O13’, ‘C26H43N1O4’,
‘C26H43N1O6’, ‘C26H43N1O7S1’, ‘C26H43N1O8S1’, ‘C26H43N1O9S1’, ‘C26H44O11’, ‘C26H45N1O10S2’, ‘C26H45N1O5S1’,
‘C26H45N1O6S1’, ‘C26H45N1O7S1’, ‘C26H45N1O8S2’, ‘C26H45N1O9S2’, ‘C27H36O11’, ‘C27H36O14S1’, ‘C27H36O15S1’,
‘C27H38O10’, ‘C27H38O11’, ‘C27H38O12’, ‘C27H38O13S1’, ‘C27H38O14S1’, ‘C27H38O15S1’,

(continued on next page)
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Table 22 (continued).
Selected features:

‘C27H38O8’, ‘C27H38O9’, ‘C27H40O10’, ‘C27H40O11’, ‘C27H40O12’, ‘C27H40O12S1’, ‘C27H40O13S1’, ‘C27H40O14S1’,
‘C27H40O15S1’, ‘C27H40O8’, ‘C27H40O9’, ‘C27H42O11’, ‘C27H42O12S1’, ‘C27H42O13S1’, ‘C27H42O14S1’, ‘C27H42O8’,
‘C27H42O9’, ‘C27H44O12S1’, ‘C27H44O8’, ‘C27H44O9’, ‘C29H45N1O11S1’, ‘C29H46O10’, ‘C30H40O14’, ‘C30H40O15’,
‘C30H46O11’, ‘C30H47N3O9S1’, ‘C30H48O10’, ‘C30H48O11’, ‘C30H48O9’, ‘C31H44O15’, ‘C31H46O14’, ‘C31H46O15’,
‘C31H47N1O12S1’, ‘C31H48N2O12S1’, ‘C31H48O14’, ‘C31H48O15’, ‘C32H51N1O10’, ‘C32H51N1O11’, ‘C32H51N1O12’,
‘C32H53N1O11S1’, ‘C32H53N1O12S1’, ‘C32H53N1O13S1’, ‘C33H44O17’, ‘C33H44O18’, ‘C33H46O16’, ‘C33H46O17’, ‘C33H46O18’,
‘C33H48O15’, ‘C33H48O17’, ‘C33H48O18’, ‘C33H50O15’, ‘C33H50O16’, ‘C33H50O17’, ‘C33H52O15’]

Discarded features:

[’C18H24O7S1’, ‘C18H28O7S1’, ‘C18H28O9S1’, ’C18H30O3’, ’C18H30O6’, ‘C19H24O6S1’, ’C19H28O5S1’, ’C19H30O2’,
’C19H30O9S2’, ’C19H32O3’, ’C20H30O7S1’, ‘C20H30O8S1’, ’C20H32O7S1’, ’C20H34O10S1’, ‘C21H28O9S1’, ‘C21H30O10S2’,
’C21H30O4’, ‘C21H30O6’, ’C21H30O7S1’, ‘C21H34O5’, ’C21H34O9S2’, ‘C23H38O4’, ‘C24H38O4’, ‘C24H40O3’, ‘C25H32O9’,
‘C25H38O8’, ’C25H40N2O9S2’, ‘C26H38O11’, ‘C26H42O11’, ‘C26H43N1O5’, ‘C27H36O12’, ‘C27H42O10’, ‘C30H40O16’,
‘C30H42O11’, ‘C30H46O10’, ‘C30H47N3O12S2’, ‘C33H48O16’]
Used model for feature importance determination: LinearDiscriminantAnalysis ()
With log transformation.
Number of selected features: 234
Number of discarded features: 37
Table 23
Recursive Feature Elimination results of selected and discarded features on the normalized + log transformed dataset, using LR for feature
importance determination.
Selected features:

[’C18H22O2’, ‘C18H22O5S1’, ‘C18H22O6S1’, ‘C18H24O2’, ‘C18H24O4’, ‘C18H24O6S1’, ‘C18H24O8S2’, ‘C18H26O6’, ‘C18H26O9S1’,
‘C18H28O4’, ‘C18H28O6’, ‘C18H28O7S1’, ‘C18H30O6S1’, ‘C18H30O8S1’, ‘C18H32O6S1’, ‘C19H26O2’, ‘C19H26O3’, ‘C19H26O5S1’,
‘C19H28O2’, ‘C19H28O3’, ‘C19H30O3’, ‘C19H30O5S1’, ‘C19H32O6S1’, ‘C20H30O3’, ‘C20H30O4’, ‘C20H30O6’, ‘C20H30O9S1’,
‘C20H32O3’, ‘C20H32O4’, ‘C20H32O5’, ‘C20H32O6S1’, ‘C20H32O7S1’, ‘C20H32O8S1’, ‘C20H34O4’, ‘C20H34O7S1’, ‘C20H34O9S1’,
‘C20H36O5’, ‘C21H28O6’, ‘C21H30O12S2’, ‘C21H30O2’, ‘C21H30O3’, ‘C21H30O8S1’, ‘C21H30O9S1’, ‘C21H32O10S2’,
‘C21H32O11S2’, ‘C21H32O2’, ‘C21H32O5S1’, ‘C21H32O6’, ‘C21H32O7S1’, ‘C21H32O9S2’, ‘C21H34O3’, ‘C21H34O4’, ‘C21H34O5’,
‘C21H34O5S1’, ‘C21H34O6S1’, ‘C21H34O8S1’, ‘C21H36O5S1’, ‘C21H36O9S2’, ‘C23H37N1O8S2’, ‘C23H38O4’, ‘C23H38O7S1’,
‘C24H30O8’, ‘C24H30O9’, ‘C24H32O10’, ‘C24H32O11S1’, ‘C24H32O9’, ‘C24H34O12’, ‘C24H34O5’, ‘C24H36O10’, ‘C24H36O12’,
‘C24H36O13’, ‘C24H38O12’, ‘C24H38O4’, ‘C24H38O5’, ‘C24H40O4’, ‘C24H40O5’, ‘C24H40O6S1’, ‘C24H40O8S1’, ‘C25H32O9’,
‘C25H34O8’, ‘C25H36O12S1’, ‘C25H38O11S1’, ‘C25H38O12S1’, ‘C25H38O8’, ‘C25H40O11S1’, ‘C26H36O12’, ‘C26H38O9’,
‘C26H40O10’, ‘C26H40O11’, ‘C26H40O9’, ‘C26H42O10’, ‘C26H42O12’, ‘C26H42O13’, ‘C26H43N1O8S1’, ‘C26H43N1O9S1’,
‘C26H44O11’, ‘C26H45N1O5S1’, ‘C26H45N1O6S1’, ‘C26H45N1O8S2’, ‘C26H45N1O9S2’, ‘C27H36O11’, ‘C27H36O14S1’,
‘C27H38O10’, ‘C27H38O12’, ‘C27H38O13S1’, ‘C27H38O14S1’, ‘C27H38O8’, ‘C27H38O9’, ‘C27H40O10’, ‘C27H40O11’,
‘C27H40O12’, ‘C27H40O12S1’, ‘C27H40O8’, ‘C27H40O9’, ‘C27H42O10’, ‘C27H42O11’, ‘C27H42O13S1’, ‘C27H44O8’, ‘C27H44O9’,
‘C30H40O15’, ‘C30H46O10’, ‘C30H46O11’, ‘C30H47N3O9S1’, ‘C30H48O10’, ‘C31H47N1O12S1’, ‘C33H46O16’, ‘C33H48O15’,
‘C33H48O17’, ‘C33H50O15’, ‘C33H50O16’]

Discarded features:

[’C18H22O3’, ‘C18H24O10S2’, ‘C18H24O3’, ‘C18H24O5S1’, ‘C18H24O7S1’, ‘C18H24O9S2’, ‘C18H28O10S1’, ‘C18H28O7’,
‘C18H28O9S1’, ‘C18H30O3’, ‘C18H30O5’, ‘C18H30O6’, ‘C18H30O9S1’, ‘C18H32O3’, ‘C19H24O3’, ‘C19H24O6S1’, ‘C19H26O6S1’,
‘C19H28O5S1’, ‘C19H28O6S1’, ‘C19H28O9S2’, ‘C19H30O2’, ‘C19H30O6S1’, ‘C19H30O8S2’, ‘C19H30O9S2’, ‘C19H32O2’,
‘C19H32O3’, ‘C19H32O5S1’, ‘C19H32O8S2’, ‘C19H32O9S2’, ‘C20H28O6’, ‘C20H28O9S1’, ‘C20H30O5’, ‘C20H30O6S1’,
‘C20H30O7S1’, ‘C20H30O8S1’, ‘C20H34O10S1’, ‘C20H34O5’, ‘C20H34O6’, ‘C20H34O7’, ‘C20H34O8S1’, ‘C20H36O8S1’,
‘C21H28O11S2’, ‘C21H28O5’, ‘C21H28O8S1’, ‘C21H28O9S1’, ‘C21H30O10S2’, ‘C21H30O11S2’, ‘C21H30O4’, ‘C21H30O5’,
‘C21H30O5S1’, ‘C21H30O6’, ‘C21H30O6S1’, ‘C21H30O7S1’, ‘C21H32O12S2’, ‘C21H32O3’, ‘C21H32O4’, ‘C21H32O5’,
‘C21H32O6S1’, ‘C21H32O8S1’, ‘C21H32O9S1’, ‘C21H34O10S2’, ‘C21H34O11S2’, ‘C21H34O2’, ‘C21H34O7S1’, ‘C21H34O9S2’,
‘C21H36O2’, ‘C21H36O3’, ‘C21H36O6S1’, ‘C23H37N1O5S1’, ‘C24H32O12S1’, ‘C24H32O13S1’, ‘C24H32O8’, ‘C24H34O8S1’,
‘C24H38O11’, ‘C24H38O7S1’, ‘C24H38O8S1’, ‘C24H38O9’, ‘C24H40O3’, ‘C24H40O7S1’, ‘C24H40O9’, ‘C25H34O9’, ‘C25H36O8’,
‘C25H36O9’, ‘C25H38O9’, ‘C25H39N1O6S1’, ‘C25H39N1O9S2’, ‘C25H40N2O6S1’, ‘C25H40N2O9S2’, ‘C25H40O12S1’, ‘C25H40O8’,
‘C25H40O9’, ‘C26H38O10’, ‘C26H38O11’, ‘C26H38O12’, ‘C26H42O11’, ‘C26H43N1O4’, ‘C26H43N1O5’, ‘C26H43N1O6’,
‘C26H43N1O7S1’, ‘C26H45N1O10S2’, ‘C26H45N1O7S1’, ‘C27H36O12’, ‘C27H36O15S1’, ‘C27H38O11’, ‘C27H38O15S1’,
‘C27H40O13S1’, ‘C27H40O14S1’, ‘C27H40O15S1’, ‘C27H42O12S1’, ‘C27H42O14S1’, ‘C27H42O8’, ‘C27H42O9’, ‘C27H44O12S1’,
‘C29H45N1O11S1’, ‘C29H46O10’, ‘C30H40O14’, ‘C30H40O16’, ‘C30H42O11’, ‘C30H47N3O12S2’, ‘C30H48O11’, ‘C30H48O9’,
‘C31H44O15’, ‘C31H46O14’, ‘C31H46O15’, ‘C31H48N2O12S1’, ‘C31H48O14’, ‘C31H48O15’, ‘C32H51N1O10’, ‘C32H51N1O11’,
‘C32H51N1O12’, ‘C32H53N1O11S1’, ‘C32H53N1O12S1’, ‘C32H53N1O13S1’, ‘C33H44O17’, ‘C33H44O18’, ‘C33H46O17’,
‘C33H46O18’, ‘C33H48O16’, ‘C33H48O18’, ‘C33H50O17’, ‘C33H52O15’]

Used model for feature importance determination: LogisticRegression()
With normalization + log transformation
Number of selected features: 130
Number of discarded features: 141
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Table 24
Recursive Feature Elimination results of selected and discarded features on the normalized + log transformed dataset, using LDA for feature
importance determination.
Selected features:

[’C18H22O2’, ‘C18H22O3’, ‘C18H22O5S1’, ‘C18H24O10S2’, ‘C18H24O2’, ‘C18H24O3’, ‘C18H24O4’, ‘C18H24O5S1’, ‘C18H24O6S1’,
‘C18H24O7S1’, ‘C18H24O8S2’, ‘C18H24O9S2’, ‘C18H26O6’, ‘C18H26O9S1’, ‘C18H28O10S1’, ‘C18H28O4’, ‘C18H28O6’,
‘C18H28O7’, ‘C18H30O5’, ‘C18H30O6S1’, ‘C18H30O8S1’, ‘C18H30O9S1’, ‘C18H32O3’, ‘C18H32O6S1’, ‘C19H24O3’, ‘C19H24O6S1’,
‘C19H26O2’, ‘C19H26O3’, ‘C19H26O5S1’, ‘C19H26O6S1’, ‘C19H28O2’, ‘C19H28O3’, ‘C19H28O6S1’, ‘C19H28O9S2’, ‘C19H30O3’,
‘C19H30O5S1’, ‘C19H30O6S1’, ‘C19H30O8S2’, ‘C19H30O9S2’, ‘C19H32O2’, ‘C19H32O5S1’, ‘C19H32O6S1’, ‘C19H32O8S2’,
‘C19H32O9S2’, ‘C20H28O6’, ‘C20H28O9S1’, ‘C20H30O3’, ‘C20H30O4’, ‘C20H30O5’, ‘C20H30O6’, ‘C20H30O6S1’, ‘C20H30O7S1’,
‘C20H30O8S1’, ‘C20H30O9S1’, ‘C20H32O3’, ‘C20H32O4’, ‘C20H32O5’, ‘C20H32O6S1’, ‘C20H32O8S1’, ‘C20H34O4’, ‘C20H34O5’,
‘C20H34O6’, ‘C20H34O7’, ‘C20H34O7S1’, ‘C20H34O8S1’, ‘C20H34O9S1’, ‘C20H36O5’, ‘C20H36O8S1’, ‘C21H28O11S2’,
‘C21H28O5’, ‘C21H28O6’, ‘C21H28O8S1’, ‘C21H30O11S2’, ‘C21H30O12S2’, ‘C21H30O2’, ‘C21H30O3’, ‘C21H30O5’, ‘C21H30O5S1’,
‘C21H30O6S1’, ‘C21H30O8S1’, ‘C21H30O9S1’, ‘C21H32O10S2’, ‘C21H32O11S2’, ‘C21H32O12S2’, ‘C21H32O2’, ‘C21H32O3’,
‘C21H32O4’, ‘C21H32O5’, ‘C21H32O5S1’, ‘C21H32O6’, ‘C21H32O6S1’, ‘C21H32O7S1’, ‘C21H32O8S1’, ‘C21H32O9S1’,
‘C21H32O9S2’, ‘C21H34O10S2’, ‘C21H34O11S2’, ‘C21H34O2’, ‘C21H34O3’, ‘C21H34O4’, ‘C21H34O5S1’, ‘C21H34O6S1’,
‘C21H34O7S1’, ‘C21H34O8S1’, ‘C21H36O2’, ‘C21H36O3’, ‘C21H36O5S1’, ‘C21H36O6S1’, ‘C21H36O9S2’, ‘C23H37N1O5S1’,
‘C23H37N1O8S2’, ‘C23H38O4’, ‘C23H38O7S1’, ‘C24H30O8’, ‘C24H30O9’, ‘C24H32O10’, ‘C24H32O11S1’, ‘C24H32O12S1’,
‘C24H32O13S1’, ‘C24H32O8’, ‘C24H32O9’, ‘C24H34O12’, ‘C24H34O5’, ‘C24H34O8S1’, ‘C24H36O10’, ‘C24H36O12’, ‘C24H36O13’,
‘C24H38O11’, ‘C24H38O12’, ‘C24H38O5’, ‘C24H38O7S1’, ‘C24H38O8S1’, ‘C24H38O9’, ‘C24H40O3’, ‘C24H40O4’, ‘C24H40O5’,
‘C24H40O6S1’, ‘C24H40O7S1’, ‘C24H40O8S1’, ‘C24H40O9’, ‘C25H34O8’, ‘C25H34O9’, ‘C25H36O12S1’, ‘C25H36O8’, ‘C25H36O9’,
‘C25H38O11S1’, ‘C25H38O12S1’, ‘C25H38O8’, ‘C25H38O9’, ‘C25H39N1O6S1’, ‘C25H39N1O9S2’, ‘C25H40N2O6S1’,
‘C25H40O11S1’, ‘C25H40O12S1’, ‘C25H40O8’, ‘C25H40O9’, ‘C26H36O12’, ‘C26H38O10’, ‘C26H38O12’, ‘C26H38O9’, ‘C26H40O10’,
‘C26H40O11’, ‘C26H40O9’, ‘C26H42O10’, ‘C26H42O11’, ‘C26H42O12’, ‘C26H42O13’, ‘C26H43N1O4’, ‘C26H43N1O5’,
‘C26H43N1O6’, ‘C26H43N1O7S1’, ‘C26H43N1O8S1’, ‘C26H43N1O9S1’, ‘C26H44O11’, ‘C26H45N1O10S2’, ‘C26H45N1O5S1’,
‘C26H45N1O6S1’, ‘C26H45N1O7S1’, ‘C26H45N1O8S2’, ‘C26H45N1O9S2’, ‘C27H36O11’, ‘C27H36O12’, ‘C27H36O14S1’,
‘C27H36O15S1’, ‘C27H38O10’, ‘C27H38O11’, ‘C27H38O12’, ‘C27H38O13S1’, ‘C27H38O14S1’, ‘C27H38O8’, ‘C27H38O9’,
‘C27H40O10’, ‘C27H40O11’, ‘C27H40O12’, ‘C27H40O12S1’, ‘C27H40O13S1’, ‘C27H40O14S1’, ‘C27H40O15S1’, ‘C27H40O8’,
‘C27H40O9’, ‘C27H42O11’, ‘C27H42O12S1’, ‘C27H42O13S1’, ‘C27H42O14S1’, ‘C27H42O8’, ‘C27H42O9’, ‘C27H44O12S1’,
‘C27H44O8’, ‘C27H44O9’, ‘C29H45N1O11S1’, ‘C29H46O10’, ‘C30H40O14’, ‘C30H40O15’, ‘C30H42O11’, ‘C30H46O10’,
‘C30H46O11’, ‘C30H47N3O12S2’, ‘C30H47N3O9S1’, ‘C30H48O10’, ‘C30H48O11’, ‘C30H48O9’, ‘C31H44O15’, ‘C31H46O14’,
‘C31H46O15’, ‘C31H47N1O12S1’, ‘C31H48N2O12S1’, ‘C31H48O14’, ‘C31H48O15’, ‘C32H51N1O10’, ‘C32H51N1O11’,
‘C32H51N1O12’, ‘C32H53N1O11S1’, ‘C32H53N1O12S1’, ‘C32H53N1O13S1’, ‘C33H44O17’, ‘C33H44O18’, ‘C33H46O16’,
‘C33H46O17’, ‘C33H46O18’, ‘C33H48O15’, ‘C33H48O17’, ‘C33H48O18’, ‘C33H50O15’, ‘C33H50O16’, ‘C33H50O17’, ‘C33H52O15’]

Discarded features:

[’C18H22O6S1’, ‘C18H28O7S1’, ‘C18H28O9S1’, ‘C18H30O3’, ‘C18H30O6’, ‘C19H28O5S1’, ‘C19H30O2’, ‘C19H32O3’, ‘C20H32O7S1’,
‘C20H34O10S1’, ‘C21H28O9S1’, ‘C21H30O10S2’, ‘C21H30O4’, ‘C21H30O6’, ‘C21H30O7S1’, ‘C21H34O5’, ‘C21H34O9S2’,
‘C24H38O4’, ‘C25H32O9’, ‘C25H40N2O9S2’, ‘C26H38O11’, ‘C27H38O15S1’, ‘C27H42O10’, ‘C30H40O16’, ‘C33H48O16’]

Used model for feature importance determination: LinearDiscriminantAnalysis()
With normalization + log transformation
Number of selected features: 246
Number of discarded features: 25
therefore, our recommendation that for datasets with a
small number of minority class samples, the number of
folds should be kept low, while the number of repeats
should be increased.

5. Using an alternative dataset: The traits of the dataset used
for this research determined the strategy to eventually
identify three classifiers. Our proposed strategy is gen-
eral and robust to work on other similar datasets as well.
However, we could not investigate whether our strategy
works on other datasets or not due to a lack of comparable
datasets with similar traits. It is, therefore, our recom-
mendation that the proposed strategy should be tested on
similar other datasets whenever they are publicly available
or created.

6. Using Deep Learning algorithms: There is a growing inter-
est in the use of deep learning algorithms that are based on
Artificial Neural Networks. We, therefore, recommend this
alternative as an option to investigate for future research.
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Table 25a
Predicted classes by LR. combined with several over/ undersamplers, for all samples of the test dataset, with the
total number of True Positives (TP), False Negatives (FN), False Positives (FP), and True Negatives (TN).
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Table 25b
Continuation of the predicted classes by LR with several over/ undersamplers, for all samples of the test
dataset.
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Table 26a
Predicted classes by GaussianProc (GPC) and LDA combined with several over/ undersam-
plers, for all samples of the test dataset, with the total number of True Positives (TP), False
Negatives (FN), False Positives (FP), and True Negatives (TN).
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Table 26b
Continuation of predicted classes by GaussianProc (GPC) and LDA combined with several
over/ undersamplers.
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