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Smartphones are ubiquitous in modern society; in 2021, the number of active subscriptions surpassed 6
billion. These devices have become more than a means of communication; smartphones are powerful,
continuously connected, miniaturized computers capable of passively and actively collecting (private)
information for us and from us. Their implementation as detectors or instrumental interfaces in
emerging smartphone-based (bio)sensors (SbSs) has facilitated a shift towards portable point-of-care
platforms for healthcare and point-of-need systems for food safety, environmental monitoring, and
forensic applications. These familiar, handheld devices have the capacity to popularize analytical
chemistry by simplifying complicated laboratory protocols and automating advanced data handling
without requiring expensive equipment or trained analysts. To elucidate the technological, legal, and
ethical challenges associated with developing SbSs, we reviewed the existing literature (2016e2021),
providing an in-depth critical analysis of state-of-the-art optical and electrochemical SbSs. This analysis
revealed the key areas to consider for emerging SbSs, which we will address in a set of review papers.
Part I (this review) will consider (i) how the SbS data are acquired and processed and (ii) the imple-
mentation of privacy and data protection strategies to keep this data secure. Part II will then focus on (iii)
the development and validation of biosensors and (iv) how to assess the usability and (potential) social
impact of emerging SbSs.

Finally, these insights are applied to generate proposed best practices to help guide the future ethical
data handling and development of smartphone-based devices for analytical chemistry applications.
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Industry 4.0, the amalgamation of smart technologies, is
breaking the boundaries between physical, digital, and biochemical
disciplines. Industry 4.0 includes artificial intelligence (AI), mobile
technologies, cloud computing, 3D-printing, and the Internet of
esearch (WFSR), Wageningen
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jn).
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Things (IoT), a network of interconnected devices with embedded
sensors that communicate with each other via the Cloud [1]. The
ubiquity of smartphones makes them the foundation of industry
4.0; in 2022, over 6.6 billion people will own a smartphone
worldwide [2,3]. Smartphones are essentially handheld computers,
and their software applications (i.e., Apps) can passively collect
temporal, geographical, screen usage, and other information from
an array of embedded sensors, including accelerometers, gyro-
scopes, barometers, proximity, and pressure sensors. Additionally,
their powerful central processing units (CPUs) enable them to
actively acquire data using their front-facing cameras [4], rear-
facing cameras [5], ambient light sensors (ALS) [6], capacitive
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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touch sensors [7], microphones, and geolocating sensors. See
Supplementary Information (SI) Fig. S1 for a graphical representa-
tion of these on-device sensors. Moreover, smartphones can wire-
lessly receive data from externally connected devices that
transduce signals into digital information before transmitting the
results via Wi-Fi, Bluetooth, or near-field communication (NFC)
[8,9]. Likewise, smartphone-connected physical activity (PA)
trackers and smartwatches allow consumers to self-monitor
several variables related to daily activity and sleep performance.
The PA information from thesewearables can help individuals learn
about themselves, potentially providing a powerful healthcare
intervention tool [10,11]. At the same time, connected devices that
track the user's location, behavioral patterns, and spending habits
present unprecedented security and personal privacy risks.

Besides their widespread use in society, as alluded to above,
smartphones have been the subject of many scientific studies
exploring their applicability to perform portable (bio)chemical
analysis. In this context, smartphones can be standalone devices for
collecting and analyzing data, or combined with compact attach-
ments/adapters for specific biosensing applications [12].
Smartphone-based Sensors (SbSs), often using affordable and cus-
tomizable (3D-printed) parts [13], have emerged as a trendwith the
potential to popularize analytical chemistry. These familiar, rapid,
handheld devices help simplify complicated laboratory protocols
without requiring expensive equipment or technical expertise.
Portable SbS platforms can enable next-generation personalized
healthcare at the point-of-care (PoC) [14], enhance food safety for
industry and consumers [15e17], and facilitate real-time moni-
toring of environmental contaminants at the point-of-need (PoN)
[18]. Since 2016, over 50 review articles have been published on
electrochemical [19e21] and optical SbSs [22], using labeled
colorimetric [23], fluorescence [24], chemiluminescence, biolumi-
nescence, photoluminescence [25], and label-free ALS [6], spec-
troscopic [3] and plasmonic [26] detection mechanisms. The
number and diversity of these reviews affirm the trend in using
SbSs for portable analytical applications across healthcare, food
safety, environmental monitoring, forensics, and beyond. More-
over, these numerous publications highlight a shift towards
enabling consumers to carry out (bio)chemical analysis using their
personal smartphones.

A key advantage of SbSs is their ability to collect (approx. 1e5
MB/photo, or 100e600 MB/min of video e depending on the data
format and applied quality configuration), analyze (over 1 GHz in
clock rate e the running frequency of the CPU [27]), and store
(8e512 GB) or transfer (up to approx. 100 megabites per second
(MbPS) for 4G mobile networks [28]) large quantities of raw in-
formation [29] and to securely transmit the interpreted results to
relevant authenticated parties by network encryption protocols
[30]. Yet, the complexities associated with SbS data handling
related to data collection, processing, interpretation, and storage/
persistence, are rarely reported in the literature. Furthermore,
despite having the potential to decentralize analytical chemistry,
the (mis)use of SbSs poses several risks for end-users and myriad
legal and ethical challenges related to handling private, personal
data. Here, the number of papers describing smartphone-based
analytical devices, optical biosensors, electrochemical biosensors,
and mobile phone biosensors were plotted per year of publication
(Fig. 1A) to elucidate the trend of using SbSs for applications in
analytical chemistry. These publications were then further cate-
gorized based on specific parameters related to (i) data acquisition
and handling and (ii) privacy and data protection (Fig.1B); these are
also the main aspects of SbSs discussed in this review. To this end, a
structured keyword search was carried out using predefined in-
clusion and exclusion criteria. In brief, a keyword search was con-
ducted in the Web of Science, Scopus, and IEEE Explore online
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databases. Only peer-reviewed research papers published between
2016 and 2022 were included in this review. After removing du-
plicates, 886 unique articles were identified by the keyword search
(see also Supplementary Information (SI) for more detail).

The first section of this review will provide an in-depth analysis
of the state-of-the-art optical and electrochemical SbSs, assessing
emerging trends for efficient, authentic analytical data acquisition
and handling. The following section of the review will deconstruct
privacy and data protection legislations and ethical frameworks
related to interfacing smartphones with biosensing devices for data
collection. This review (Part I) will finish with perspectives and
proposed best practices for advanced data handling and privacy
protection for emerging SbSs. Finally, the companion review (Part
II) will explore how ethical R&D practices should guide and enable
the sustainable design, development, and validation of emerging
SbSs and assess the broader impact of such SbSs on consumers
allowing for a holistic reflection on their implementation and
acceptance in society. Parts I and II of this review series will
generate insights that should help to shape the future ethical
development and data handling of SbSs for analytical chemistry
applications.

2. Acquisition & handling of data from smartphone-based
(bio)sensors

Smartphones can acquire signals from connected biosensors,
but the raw data from optical measurements or electrochemical
information they collect requires further processing before the end
user can interpret the test result. The data handling process can be
split into four steps, as described in Table 1: (1) data collection, (2)
data processing, (3) data interpretation, and (4) data persistence.
From an SbS perspective, data collection involves translating the
physical [31], chemical [32], or biological [33] properties of a
sample into digital, analytical data. Following collection, the
analytical data requires processing to minimize any compromising
noise (e.g., random noises [34] and dust on the camera lens [35])
and to compensate for the lack of standardized conditions (e.g.,
variations in background [36], illumination [37], and intrinsic
camera properties [38]). Afterwards, the SbS interprets the pro-
cessed analytical data, on-device, or remotely before presenting it
back to the end-user as either qualitative [39], semi-quantitative
[40], or quantitative [41] test results. Finally, the collected data
and interpreted results are stored in databases (i.e., data persis-
tence), either locally on the smartphone [42] or remotely on a
desktop computer [40] or cloud server [33], for data management,
future auditing, and (further) analysis.

2.1. Analytical data formats

Currently, the two main categories of SbSs reported in the
literature are based on ‘optical’ (155/886) and ‘electrochemical’ (104/
886) detection (Fig. 1A). Optical detection mechanisms use the
smartphone camera or ambient light sensor (ALS) to collect data. In
contrast, electrochemical SbSs typically use portable ‘plug-in’
potentiostats that connect with a smartphone as a power source
and computer. Both optical and electrochemical measurements can
be susceptible to variation. For electrochemical analysis, these
variations can arise from differences in voltage, current, and overall
power output as well as differences in electrolyte and reference
solutions which can result in increased noise in the measurement
[58]. Still, these variations do not arise from the smartphone itself,
as it is not the sensing device in electrochemical measurements. In
contrast, optical SbS data are highly susceptible to variability during
data collection; variations can come from camera differences, the
distance at which the photo is recorded, and contaminating



Fig. 1. Overview of the number of publications related to smartphone-based devices, (A) per search term, per year, and (B) per specific keyword.

Table 1
Attributes for data handling in SbSs.

Attributes Example values

Analytical data formats R(ed)G(reen)B(lue) image [36], RGB video [32], Raw image & video data [43], luminance [32], potentiometric [44] voltametric [45]
amperometric [46], impedimetric [47]

Conditions during data
acquisition

Scene background (controlled [48], semi-controlled [49], uncontrolled [31])

Data collection Smartphone App interfaces (built-in App [49], third-party App [39], custom-developed App [39])
Data processing Color space transformation, demosaicing [50], denoising [50] calibration [51], illumination and sensor property normalization [51]
Data interpretation Feature extraction (e.g., wavelength selection by support vector regression (SVR) [39]), regression (e.g., polynomial regression) [52],

classification (e.g., principal component analysis-support vector machine (PCA-SVM) [40]), decision fusion (e.g., support vector machine
(SVM) [40]), nyquist plot [47] voltammogram [45]

Data persistence Image gallery [53], local data storage managed by App [52], and in the cloud [54], blockchain [55]
Artificial intelligence (AI) Machine learning [42], federated learning [56]
Online or offline data

handling
Data handling on the cloud (online) [48], data handling on a smartphone (offline) [57]
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ambient light, which is why this review focuses mainly on the
(advanced) processing of optical data. The literature also reflects
this higher complexity; out of 886 articles, 33 specifically focused
on ‘data processing’ (Fig.1), and of these,11 focused on optical, and 7
on electrochemical detection, with the remaining 15 concentrating
on technical issues related to SbS system architecture and advanced
data handling.
2.1.1. Electrochemical data
Electrochemical sensing detects (bio)molecules by converting a

chemical (oxidation or reduction) reaction into a (quantifiable)
electrochemical signal that is read by a potentiostat. Smartphone-
based electrochemical sensors typically use a smartphone to con-
trol and/or collect data from a connected potentiostat. Important
embodiments of electrochemical SbSs typically rely on techniques
such as potentiometry [59], voltammetry [45], amperometry [46],
and impedance spectroscopy [60]. After the electrochemical data is
transferred from the potentiostat to the smartphone, it is plotted
(e.g., in a voltammogram [45], or Nyquist plot [47]), and differences
in the shape of the plot reveal characteristics of the (organic or
inorganic) analyte, which enable (quantitative) detection [61]. In
3

smartphone-based electrochemical biosensing, the smartphone
thus functions as a portable computer, so the use of the smartphone
should not directly influence the data acquisition process. For this
reason, the data acquisition process for electrochemical SbSs is not
discussed here in detail, and instead, the reader is directed to a
dedicated review on PoC electrochemical SbSs [21].

Still, it is interesting to consider how data is transferred from the
connected potentiostat to the smartphone, which can be physically
(through the data cable, or audio jack) or wirelessly (by Bluetooth,
NFC, or Wi-Fi connection). In one study, researchers used smart-
phone audio channels (physically connected to a potentiostat by
the audio jack) to control the potentiostat, and the smartphone
microphone to measure the response [47]. One audio channel was
used for powering the impedimetric sensor and for setting the
potential, and the other audio channel was used to generate the
stimulus for the sensor. Still, this approach was limited because the
smartphone only supported two audio output channels, but needed
to supply 4 signals (power, AC stimulus, DC bias voltage, and a
control signal) which required reusing the audio outputs for
different functions, limiting its current usability [47]. In another
study, a Bluetooth-operated ‘universal wireless electrochemical
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detector’ (UWED) was developed where a smartphone was used as
the user interface for setting the experimental parameters,
following the result in real-time, and for transmitting the acquired
data from the smartphone to the cloud [62]. Moreover, because the
UWED wirelessly transfers data via Bluetooth, it is compatible with
all modern smartphones [62]. Alternatively, electrochemical SbSs
can be developed using commercial potentiostats and software,
which can e.g., be connected to the smartphone by Bluetooth (or by
data cable to the USB-C port) [63]. In such work, the potentiostat
can be controlled by a dedicated companion app, and the user can
view the results in real-time as a video on the smartphone screen
[63]. Clearly, electrochemical SbSs offer versatile data transfer op-
tions. Moreover, these SbSs can be developed as low-cost, open-
source devices, or can use commercial components to accelerate
their development.

2.1.2. Optical data
Smartphone camera sensors are based on a color filter array

(CFA), called the Bayer filter mosaic; when a raw image is captured,
the CFA is superimposed on the image sensor, converting pixels in
the image to red, green, and blue signals [50]. The resulting raw
output contains spatially separated color information about the
scene, but before this data is useful, it requires a demosaicing step
to reconstruct the data to a RGB image containing full color infor-
mation at each pixel position [43,50]. Most smartphones auto-
matically apply an image signal processing step to improve image
quality; this step comprises demosaicing, color balance adjust-
ments, and sensor noise mitigation (denoising).

Two main formats of optical data were identified in the
reviewed literature, namely, (i) RGB (red, green, blue) images [36]
and videos [57] acquired by smartphone cameras, and (ii) light
intensity [32] measured by the ALS [64]. Both formats of optical
data are useful for different applications, indicating that the sensor
choice and data type are application-dependent. For instance, ALS
can detect light across a wide range of wavelengths (visible to near-
infrared spectrum from approximately 350 nme1000 nm in
wavelength) and luminosity intensities (from 0 to 2000 lx), making
it useful for spectrophotometry and colorimetry applications [3,65].
In one study, the smartphone ALS was combined with a 3D-printed
cuvette holder and a narrow-spectral-bandwidth LED to acquire
spectrophotometric measurements of protein assays such as the
Bradford assay, providing a low-cost, open-source alternative to
commercial spectrophotometers [65]. In another study, an ALS-
based SbS was developed for measuring competitive immuno-
blotting assays. In this approach, the intensity of the light able to
penetrate to the ALS was inversely proportional to the number of
precipitates in the assay, which could be (semi)quantified on-
device by a dedicated App [66]. These studies demonstrate that
ALS-based SbSs can provide a more affordable and portable alter-
native for reading enzyme-linked immunosorbent assays (ELISA) or
othermicroplate-based turbidity assays compared with laboratory-
based spectrophotometers.

The primary optical data generated by SbSs are RGB images
captured by the smartphone camera. An RGB image is composed of
millions of pixels; each pixel quantifies the red, green, and blue
light sampled at the corresponding location (together covering the
visible spectrum from approximately 400 nme700 nm) [37]. When
many smartphone images are collected (e.g., one per second) and
analysed together, these can be used for the real-timemonitoring of
dynamic processes [67]. Comparatively, an RGB video contains even
more data than an image, i.e., up to 60 frames per second (FPS)
collected by the smartphone camera [68]. Such RGB video-based
data allows for monitoring important assay characteristics, such
as assay signal development over time [69,70]. While video data
may provide temporal information, acquiring video measurements
4

will also introduce additional noise to the data (e.g., motion blur),
drain the smartphone battery, and require substantially more
storage space.

For optical SbS applications, light intensity reveals information
about concentration in colorimetric analysis. In contrast, RGB im-
ages report spatial and spectral information about the biosensor or
sample, and RGB videos can even contain temporal details on assay
development. However, aside from small areas/regions of interest
(ROIs), smartphone images and videos contain vast amounts of
redundant data that do not contribute to the analytical signal [71];
removing this data before further processing is necessary to pre-
vent it from convoluting the signal.

2.1.3. Metadata
Metadata describes the characteristics of certain data; it is data

about data. For example, metadata collected by a smartphone may
include geo-coordinates produced by the geolocating sensor, de-
vice posture information provided by the gyroscope and acceler-
ator, user interactions provided by touch sensors, and timestamp
information. Such metadata can reveal necessary information
about a user’s lifestyle and therefore presents personal privacy
risks. When an SbS generates data, metadata adds describers or
classifiers to the analytical data, including the information input by
users, such as the sample (or matrix) type, sample number, batch
number, date, and description. These metadata and control signals
can also be collected and transmitted by SbSs as part of the total
data package.

2.2. Conditions during data acquisition

The miniaturization of analytical equipment can facilitate on-
site/in-field analysis outside of centralized laboratories. However,
the data acquisition conditions still require control as they influ-
ence the analytical performance of SbS, especially for optical
measurements. In addition, different conditions during acquisition
may also pose different levels of risk (e.g., inaccurate interpretation
of the tests [36] or leaking of personal information) and operational
burdens on the end-user. As shown in Fig. 2, the acquisition con-
ditions can be split into three categories: i.e., (i) controlled, (ii)
semi-controlled, and (iii) uncontrolled conditions.

One way to control and standardize the conditions under which
data is acquired (scene backgrounds) during optical measurements
is to use a custom-developed light-shielding attachment to mini-
mize interference from ambient light [32,48,52,73]. To rapidly
prototype these attachments, they can be 3Dprinted; 49/886 arti-
cles mention ‘3D printing’ in their keywords/abstract, and 18 of
these 49 specifically use the technology to develop lightboxes for
SbSs. In one example, a modular 3D-printed lightbox was designed
that was compatible with several smartphone models [54]. This
plug-and-play approach integrated different modules, including (i)
a commercial smartphone case, (ii) a customized connection unit to
attach the 3D-printed lightbox, (iii) a customized 3D-printed
lightbox with a changeable external light source, and (iv) an
adapter to support different assay platforms, e.g., microfluidic chips
and lateral flow immunoassays (LFIAs) [54]. In another example, a
3D-printed SbS attachment was developed for the multiplex
detection of food allergens [74]; the attachment was later reused to
acquire RGB videos of LFIAs to differentiate between false-negative
results caused by the hook-effect [69]. Finally, the 3D-printed
attachment was repurposed again to analyze commercial domoic
acid LFIAs [75], showing that carefully designed SbS attachments
can be used for different applications and sometimes work with
different smartphone models, as long as the device is of a similar
size and camera configuration. Another interesting and low-cost
($0.15) 3D-printed attachment was reported that coupled the



Fig. 2. Overview of three types of scene backgrounds during acquisition, i.e., uncontrolled, semi-controlled, and controlled conditions, with examples for each type. Reprinted with
permission from Refs. [39,54,57,67,72].
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smartphone’s ALS with a microplate for measuring transmitted
light intensity in ELISA measurements. The results from the SbS
colorimetric reader were consistent with laboratory-based micro-
plate readers, and the attachment is compatible with different
smartphone models [76].

As highlighted above, low-cost and customizable attachments
can convert conventional smartphones into biosensing devices
replicating the functions of expensive and inaccessible laboratory
equipment. Furthermore, conditions can be semi-controlled by
imposing requirements or restrictions on data acquisition, such as
requiring a certain distance or viewing angle between the test/
sample and the SbS [33,40,49,67,77]. In contrast, uncontrolled
conditions have no specific restrictions for image capture but
require additional data processing for normalization and noise
removal before result interpretation [31,73]. It has been reported
that for some colorimetric assays, background image correction is
more efficient compared with using a light-shielding attachment to
control acquisition conditions, provided that the assays are not
carried out in direct sunlight [78].

Controlled conditions might result in more reliable results [54],
but this is a compromise between the usability of the SbS and
reducing its portability by introducing (bulky) hardware acces-
sories. However, if the attachment improves the reliability of re-
sults from the SbS, this additional burden could be warranted [79].
Moreover, while uncontrolled conditions might improve the
portability of an SbS, uncontrolled conditions impose stricter data
processing requirements, unless the image correction procedures
are automated. As will be discussed in detail in Part II of this review
series, during the R&D and validation of SbSs, it is crucial to find an
appropriate balance between the analytical performance of the SbS
and its usability. Therefore, SbSs designed for use by consumers
should be compact, discrete, intuitive, and if they rely on attach-
ments, these should be interchangeable between different smart-
phone models.

2.3. Smartphone app interfaces for data collection

There are three main types of smartphone Apps for analytical
5

data collection: (i) built-in, (ii) third-party, and (iii) custom-
developed Apps. These Apps can be either open-source or closed-
source, with each presenting unique risks to data privacy. Pro-
prietary or closed-source software licenses are covered by copy-
right, contract law, patents, and trade secrets, restricting their free
use by emerging SbSs. Proprietary software is typically commercial
software, including pre-installed software on smartphones. Before
developers can use closed-source software, theymust sign a license
or enter an End User License Agreement (EULA) that defines what
the user can and cannot do with the software. Closed-source soft-
ware can be attractive for commercial SbSs as the ownership of the
software remains the intellectual property (IP) of the company/
developer. At the same time, closed-source data and handling
procedures are not made public, but companies can use them for
analytics. Numerous commercial companies offer Apps for trans-
forming the user’s smartphone into an optical LFIA reader based on
annual subscriptions or pay-per-use licenses [14].

Data handling software is open-source when source codes are
openly available. Moreover, handling is partially open-source when
a portion of the software is available as open-source while the rest
is proprietary (closed-source). For example, many open-source
freeware Apps are still financially supported by closed-source
third-party advertisements, and such embedded adware can
cause in-application advertisement attacks making data vulnerable
to privacy leakage [80]. Of the 886 unique articles, only 18 specif-
ically mention implementing ‘open-source’ data handling. Despite
this low number, open-source data handling is often considered
more trustworthy, transparent, and traceable than closed-source
handling. Open-source licenses are the agreements proposed by
the original software developers for the other contributors to
follow. Therefore, researchers and companies developing smart-
phone applications must understand and adhere to the most
popular open-source licenses. Three frequently used open-source
licenses, i.e., MIT, Apache, and GNU General Public License (GPL)
[81], are summarized in plain language and ranked in order of
strictness in the SI, Fig. S2.

Smartphone operating systems provide built-in camera Apps
that usually have simple graphical user interfaces (GUIs) and
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multiple color profiles (e.g., portrait mode, scenery, night mode,
etc.) designed to be operated by non-experts for daily photography.
These color profiles improve the perceptual quality of the photos;
the camera App can apply color profiles before image capture or
during editing. Likewise, smartphones with professional or ‘pro’
modes enable user control over camera functions such as shutter
speed, focus, and white-balance, which can improve the sensitivity
of SbSs. It was demonstrated that manually setting the SbS camera
exposure time for analyzing LFIAs made it possible to differentiate
faint test lines (at low analyte concentrations) from the near-white
strip background, thus enhancing the assay detection limit up to
five-fold compared with using the automated exposure settings
[82]. Yet, such camera optimization, color enhancement and pro-
prietary closed-source modifications to image color can present
challenges to scientific imaging, which requires consistent color
reproduction to maintain accuracy in interpretation. Therefore, to
ensure data integrity when using a smartphone camera to acquire
data for analytical applications, it is necessary to disclose any color
profiles or specific modes used during image capture, or any
applied processing/image manipulation (such as contrast
enhancement).

Numerous SbSs use third-party Apps that are freely available
and (often) open-source [83]. For instance, the Android app ‘Open
Camera’ gives users manual control over camera functionalities
such as shutter speed and sensitivity towards light, enabling con-
trol over the brightness of a photo, and it even allows users to tag
photos with timestamps and location coordinates. This app
essentially unlocks ‘pro mode’ features on standard smartphone
models. Another popular open-source App used by proof-of-
concept SbSs includes the ‘Color Picker’ type Apps that enable
users to specify ROIs within a photo to find their average RGB
values. Compared to the built-in camera Apps, these third-party
Apps allow better user control over smartphone camera, flash,
and ALS sensor functions and enable manual export of the collected
sensory data to universal data formats such as CSV and for local
storage of the raw images (see Section 2.1.2.) on the smartphone.
The advantage of such user control and data export capabilities is
that it allows customized data processing and interpretation ca-
pacities, while a disadvantage is that it reduces the usability of the
SbS by introducing too many manual control options. Therefore,
such Apps are primarily helpful for researchers during the devel-
opment stage of SbSs.

Custom-developed Apps offer the maximum degree of flexi-
bility in the design of functionality and automation of data handling
(e.g., executing a customized data handling procedure). Moreover,
custom Apps enable the calling of Application Programming In-
terfaces (APIs) to control smartphone sensors and modules to
collect, process, interpret, transfer, and store data [31]. Still,
custom-developed Apps take longer to develop than existing free
software and, therefore, might be unrealistic for all proof-of-
concept SbSs. Software development kits (SDKs) are software tool
packages that allow developers to create software or Apps for a
specific platform. As such, SDKs can facilitate the development of
Apps with GUIs that improve data collection and overall usability of
SbSs for end-users [84]. They can be either open-source or closed-
source. For instance, several ‘open-source’ SbS ‘potentiostats’ have
been described in the literature (7/886) that use SDKs to create
Apps that connect with the potentiostats via Bluetooth, NFC, or
USB-C and use the phone as a user interface and for transmitting
data to the cloud [62,85e89]. Certain commercialized smartphone-
connectable potentiostats have base versions of the system that the
company-delivered App controls, but SDKs are available for
customizing Android applications for specific SbS purposes [90].
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2.4. Data processing

Data processing procedures can be implemented online or off-
line to transform, normalize, and remove noise from the data
collected by SbSs. See Table 2 for an overview of different ap-
proaches used in data processing for SbSs.

2.4.1. Color space transformation
The color system used in smartphone complementary metal

oxide semiconductor (CMOS) sensors is the RGB system, but data
processing procedures can involve transforming RGB data into
different color spaces. Color spaces or models are mathematical
representations, typically based on coordinates, that describe the
range of colors perceivable to human vision. Color spaces reduce
the inherent uncertainty related to person-to-person perceptual
differences in color interpretation by using an empirical system to
identify color [97]. Hardware color spaces (e.g., RGB for storage and
digital display and CMYK for printing) are device-oriented, as are
color spaces based on RGB (e.g., HSV/L/B). In contrast, perceptual
color spaces (e.g., XYZ and LAB) more accurately describe the nu-
merical relationship between the colors and human response to
observed color change [97].

The choice of color space transformation is assay dependent,
with some color spaces/channels offering more relevant informa-
tion than others. For example, if an assay measures a change in
color intensity, the lightness channel of LAB might be most
appropriate [98], or if it measures a color change, the hue channel
of the HSL could provide the most relevant information [99].
Recently, color space channel performance was compared across
multiple smartphone models, and it was concluded that assays
based on color change, rather than those based on changes in in-
tensity, are the easiest to follow for the end-user [78]. While such a
finding can be intuitively appreciated, the nature of the color
change (different color, or different intensity) is dictated by the
chemistry, not the demand, and therefore cannot always be
selected. Still, the use of smart labels that can change color as a
result of biorecognition events, might help to overcome such lim-
itations [100]. Yet, so far, there has not been any attempt at stan-
dardization or harmonization of image analysis using an SbS.
Moreover, the currently used approaches often lack an accurate
description of the image analysis procedure, which results in a lack
of literature references for implementing image analysis for
emerging methods.

2.4.2. Normalization and noise removal
Normalization and noise removal minimize interference that

can compromise image or video quality [93]. For example, SbSs can
correct non-uniform illumination and dust on the camera lens by
subtracting a background image [37], whereas morphological
methods that work with the shape or morphology of features
(explained in more detail in Section 2.5) can be applied to remove
non-informative data [42]. Additional variation frommeasurement
to measurement can originate from different sensors, sensor drift
(i.e., small variations in sensor response), or environmental
changes. Emerging SbSs require proper calibration to minimize
these variations [101].

Calibration is the process of establishing the correct input-to-
output mapping for the measuring system. Sensor calibration is
used to measure device-dependent sensor responses, such as cal-
ibrating the SbS camera response for intensity correction [54]. Yet
the inter-calibration of smartphone cameras is inherently compli-
cated owing to the constantly evolving market [43]. Recently a
standardized methodology and database (SPECTACLE) was devel-
oped for calibrating smartphone cameras (based on linearity, bias
variations, ISO speed, and RGB spectral response) for radiometric



Table 2
Reported popular data processing techniques for SbSs.

Category Name Explanation

Color space
transformation

RGB A device-oriented color space; is widely used for color storage of images, and R, G, and B color channels quantify long,
medium, and short wavelengths of light, each represented by an axis of a Cartesian coordinate system [91].

CMY A device-oriented color space that is mainly used for color printing. C, M, and Y are the three prime color inks, i.e., cyan,
magenta, and yellow.

XYZ A perception-oriented color space; Defined by International Commission on Illumination (CIE) for color reproduction.
LAB A perception-oriented color space; Developed based on XYZ and designed to be perceptually uniform.
HSV/L/B A device-oriented color space. Proposed mainly to mimic the painting color mixture by artists; H, S, and V or L or B stand for

hue, saturation, and value or luminance or Brightness.
Normalization and

noise removal
Baseline correction Subtracting a background signal, e.g., correcting non-uniformly distributed illumination [54] and residual current correction

[92].
Demosaicing An algorithm for reconstructing raw images into full RGB images [50]
Denoising and
deblurring

The process of removing noise and blurring artifacts in the signal, such as spike removal by moving median filter and
periodic noise removal by Fourier Transform [92], and those caused by low-quality sensors [93] and motion [91].

White Balance The process of correcting image color shifts due to varied colors of illumination [91].
Sensor response
calibration

Measuring and correcting non-linear sensor response to a linear input to output mapping, e.g., camera response calibration
using standard calibration references [94]. Spectral and radiometric calibration of smartphone cameras [43,95]

Segmentation Superpixel Grouping of similar pixels to form larger homogeneous regions, known as superpixels [67]; Pixel values in a superpixel are
homogenous while it is not in adjacent superpixels [96].

ROI cropping Cropping of the signal to only keep the region that contains information of interest [97].
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and photometric measurements [43] and to promote interopera-
bility between devices for citizen science applications.

Standard reference calibrations are those based on fixed criteria,
such as color reference charts or known wavelengths of light
sources. These standard references may improve the performance
of SbSs but can be expensive and difficult for non-experts to access
and implement [102]. Calibration can take place before, during
image capture, or in post-processing. In a recent example, a method
was developed for calibrating raw images alongside standard cali-
bration targets under fixed conditions. Following raw image cap-
ture, three linear post-processing operations were applied to
transform the images to a device-independent color space and
extract the linearized color information for auto-detection of the
target analyte [36]. Recently, the SPECTACLE database was used to
calibrate wavelengths (using a reference spectrum of fluorescent
light) against the RGB response from a smartphone camera for
portable spectroscopy and polarimetry [43,95]. An alternative
approach is to use color reference charts to normalize the colors in
SbS acquired data against a set of standardized colors. In one study,
images pairs were captured both with and without flash for
ambient light subtraction. After decreasing the variation caused by
ambient light, the images were mapped against a standard color
chart allowing for conversion between different color spaces,
thereby providing a device-independent mechanism for color
calibration [103]. In another study, the smartphone camera’s white
balance was normalized to a standardized value by calibrating it
against a printed grey shade reference chart [104]. In this study, it
was further demonstrated that calibration can be achieved by
manually imposing specific camera conditions; here, the smart-
phone camera’s exposure was locked and SbSs images were
captured in a 3D-printed lightbox that illuminated the assay with a
constant smartphone-independent light source (e.g., two white
LEDs) [104]. As such, calibration can help to improve an SbS by
enhancing accuracy, limiting uncertainty by reducing errors in the
measurements, and enabling interchangeability between devices.
Still, it cannot be overlooked that such calibration would be chal-
lenging e and potentially expensive e to implement for the non-
expert, so if an SbS requires calibration, this should be performed
before the device is released to the end-user.
2.4.3. Segmentation
In addition to color transformation and data normalization, it is

often beneficial to process data to retain informative data while
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reducing the total data size. The aim of the segmentation process is
to simplify or change an image into something more meaningful
and easier to analyze [97,105]. As such, segmentation can be used to
identify and distinguish an object from a scene background. Seg-
mentation groups homogeneous regions and keeps any two inho-
mogeneous adjacent regions as ROIs [106]. In one approach, SbS-
acquired images were clustered into groups of similar pixels,
called superpixels [67]. After clustering, the superpixels were
segmented into classes, called light background, dark background,
dirt, or oocyte, making it possible to differentiate the target (oocyte)
from the other parts of the image. Alternatively, data can be
segmented by cropping distinct ROIs from a dataset [57]. An ROI
cropping procedurewas applied to data from a handheld SbS-based
m-capillary electrophoresis system for COVID-19 detection; to
minimize the background noise on the fluorescent signal, the
redundant video data were cropped, leaving behind only the ROI
for analysis. Such segmentation approaches typically do not require
a training process and are instead based on applying a pre-
processing step that simplifies subsequent processing procedures.
Such models have advantageous segmentation capacity, which al-
lows the identification of ROIs from complex backgrounds. Still,
these segmentation models have a higher complexity, compro-
mising their usability on portable devices with limited computing
resources. The following section provides further examples of
applying learning models in SbSs.
2.5. Data interpretation and artificial intelligence

Data interpretation procedures by SbSs are required to analyze
the raw or processed analytical data and provide the final test re-
sults. Data interpretation usually involves feature selection,
regression, classification, and decision fusion techniques (see
Table 3). Here, features are individual measurable properties spe-
cific to the processes under study.

Artificial intelligence (AI) technologies have stimulated oppor-
tunities for a wide range of smartphone analytical data interpre-
tation and privacy protection applications. Data processing by ‘AI’
was used in 8 out of 886 articles. Machine learning (ML) is a sub-
domain of AI that makes predictions from data, 14 out of 886 ar-
ticles mention using ‘machine learning’ for result prediction. AI and
ML can be involved in data processing and interpretation steps,
such as feature selection, regression, and classification.



Table 3
Examples of data interpretation techniques for SbSs.

Category Name Explanation Application/Example

Feature Area-under-
curve (AUC)

Definite integral between two points (a þ b) A feature used for LFIA and colorimetric assay quantification [31]

Resonant
position
tracking

Position sensitive method for tracking resonant signals of SPR SPR signal enhancement [107]

Regression Logarithmic
regression

Models situations where growth or decay first rapidly accelerates and
then slows over time

Quantification of LFIAs for the detection of aflatoxin B1,
zearalenone, deoxynivalenol, T-2 toxin, and fumonisin B1 in
cereals [48]

Exponential
regression

Models situations in which growth/decay begins slowly and then
accelerates with no bounds, or begins rapidly and slows closer to 0

Fluorescence polarization value predicted by sample viscosity [64]

Polynomial
regression

Models situations to identify a curvilinear relationship between
independent and dependent variables

Predicting by the color change of pH test strip [54]

Classification Support Vector
Machine (SVM)

A supervised learning-based classifier that works by maximum
marginal separating

Identification of adulterants in green tea [39]

Random forest
(RF)

A learning-based classifier that combines multiple decision trees; Classification of superpixels for oocyte counting [67]

Decision
fusion

PCA-SVM Principal Component Analysis (PCA) for feature selection and SVM for
classification

Decision fusion of smartphone image with sample spectrum for
black tea evaluation [40]
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2.5.1. AI for feature selection
Conventionally, deterministic and heuristic models are applied

to interpret analytical data [108]. Features that require manual
extraction should be intrinsic to the data, such as the area-under-
curve that calculates the summed intensity of an ROI on a test
strip or the signal's shape from voltammetry-based measurements
[109].When extracting features that are not intrinsic to the data set,
learning-based models such as a Support Vector Machine (SVM)
can automate feature selection if sufficient training data is available
[110].

Currently, most ML models learn to recognize both low and
high-level features, i.e., directly identifiable features in the data
(e.g., object classification), and process these features from the
training data without explicit coding [51,67]. Therefore, ML allows
SbSs to interpret biosensor signals, even in complex sample
matrices and uncontrolled scene background conditions, assuming
the AI model has been adequately trained [36]. In ML approaches,
selecting robust features and predicting models can improve the
accuracy of data interpretation by helping the model better un-
derstand data and reducing the computation requirements
enabling enhanced predictor performance [111]. For instance, re-
searchers reported an SbS using a principal component analysis-
support vector machine (PCA-SVM) model to select color,
textural, and spectral features from samples to evaluate black tea
quality [40]. Using this combination of features enhanced the ac-
curacy of the SbS results from the PCA-SVM (100% for calibration
set, 94.29% for prediction set) compared with the results based on
individual features for color (97.14% calibration, 88.57% prediction),
texture (84.29% calibration, 60% prediction), and spectra (88.57%
calibration, 82.86% prediction) [40]. Furthermore, training a model
to select multiple identifying features is beneficial for SbS data
interpretation as it means that even if a single element is missing
from a particular dataset, the algorithmwould be able to work with
the other features to elucidate the results.
2.5.2. AI in result interpretation (regression)
After selecting features, the AI model must correlate their

related metrics to an experimental variable. A popular approach is
for the algorithm to apply linear regression to interpret the result;
regression calibrates a linear relationship between a selected
feature (e.g., color or intensity change) and the variable to be
determined (e.g., analyte concentration) [53]. When linear regres-
sion is insufficient, other nonlinear regression models, such as
exponential [64], and logarithmic regression [48], can be either
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manually [112] or automatically [54] applied for SbS data inter-
pretation. The ability of a SVM to analyze multivariate, complex
datasets makes them attractive and competitive models for appli-
cation in SbSs. Artificial neural network (ANN) based regression
models can be used to predict output variables as a function of the
input variable. Still, ANNs have large sample size requirements with
their performance directly related to the adequacy of their training
data [113]. Therefore, regression algorithms for interpreting SbS
results should be trained on large quantities of data acquired under
diverse conditions (e.g., different lighting conditions, angles, times
of day, recorded by different users, etc.) to ensure that the devel-
oped ANN can robustly handle variations in the data and thus be
applied in the real world.
2.5.3. Conventional and federated ML
In one example, on-smartphone ML algorithms, such as a

random forest (RF) and an ANN, were used to investigate how an-
alyte concentration influenced electrochemical signal development
[114]. In yet another demonstration of ML applied to an SbS plat-
form, screening for disease in orchids was performed by training an
algorithm using optical data and results from polymerase chain
reaction (PCR) assays, resulting in an algorithm with 89% result
prediction accuracy [115]. These studies indicate that SbSs using
ANNs can largely automate data processing. However, these algo-
rithms are based on conventional centralized ML, where data are
uploaded from each connected device to a single repository, such as
a cloud server, to train a generic model before distributing the
model across all connected devices for interpretation. In addition,
conventional ML relies on ‘open data sharing’ by distributing data
across multiple devices and locations [56]. However, privacy con-
cerns related to sharing sensitive or personal raw data can chal-
lenge this approach, as will be discussed in further detail in Section
3.

In contrast, federated learning is an emerging AI technology that
assures data privacy and enables model training on distributed
devices [56]. Instead of directly transmitting user data to a central
location for model training, federated learning allows users to
download a model that is updated based on the locally stored user
data and transmitted back for model fusion with the other updated
models [56]. In this process, sensitive user data can remain secured
on local devices (e.g., on the SbS) while only model updates are
collected and, if necessary, transmitted. Therefore, federated
learning appears promising for assuring data privacy in SbSs for
PoC testing and food safety, quality, and authenticity applications
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[56,116]. Furthermore, a key benefit of federated learning is that
user privacy can be better maintained by only sending partial re-
sults to the cloud and not requiring storing anything directly on the
device.

2.6. Online and offline data handling

After data collection, data processing can be handled online or
offline. Remote data transmission to a desktop computer or a server
can improve the user-friendliness of data interpretation but also
creates additional risks related to stability, security, data privacy,
and ownership. Herein, offline data handling is defined as the
conditionwhere data processing, interpretation, and storage can be
completed without the availability of an internet connection, in
contrast with online data handling, where an internet connection is
obligatory.

2.6.1. Offline data handling
Offline data handling is particularly beneficial for (i) in-field/on-

site measurements, (ii) for real-time detection, and (iii) when the
time to result is vital. Recently, an SbS was developed that utilized
an imaging App based on HSL for on-smartphone data handling,
allowing for the rapid in-field detection of Salmonella in vegetables
[99]. Such instantaneous result interpretation enables food pro-
ducers to make quick, data-driven decisions about possible food
safety issues. Researchers recently developed an offline, on-
smartphone algorithm for monitoring living algae by real-time
counting [108]. Likewise, in another example, an SbS was devel-
oped with rapid offline data handling for accelerated detection of
COVID-19; the SbS used an App to record the fluorescent signal in
real-time [57]. These offline approaches have the benefit of
handling data directly on the smartphone and do not require an
internet connection. Moreover, for offline data handling, it is
acceptable to complete the data handling by either automatically or
manually transmitting the data to a local server or desktop com-
puter, where an algorithm or trained analyst can process the data
before returning the processed result to the user.

2.6.2. Online data handling
In contrast, online data handling exchanges data with cloud

servers providing contextual information such as color calibration
models [51] and assay calibration curves [117] and enabling data
persistence. Online data handling can benefit SbSs by enabling
more advanced data analysis and management by accessing addi-
tional resources. One such progressive data management approach
enabled by online data handling is the transfer and storage of data
via blockchain. Blockchain has received increasing attention since
the publication of Bitcoin [118], a popular cryptocurrency and a
distributed and unchangeable ledger. Blockchain serves as an on-
line data structure for unified and permanent data consistency
among networks; it can prevent sensitive, private data from po-
tential malicious changes or tampering while simultaneously
ensuring interoperability across digital devices [118]. Blockchain
technology is suitable for persisting small data and has already
been successfully applied in fields such as cryptocurrency, agri-
culture, healthcare, and manufacturing [119e122]. However, before
SbSs can benefit from handling data using blockchain, some chal-
lenges remain to be addressed, such as (i) the persistence of
extensive data (e.g., multimedia e which is necessary for optical
SbSs), (ii) assuring privacy of data stored in the blockchain, (iii) the
development of standardized consensus mechanisms, and (iv) its
energy-intensive nature (which is not environmentally sustainable)
[123,124].

Despite its benefits, online data handling relies on the avail-
ability of an internet connection and can result in potential privacy
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issues (discussed in Section 3). Still, numerous regions in the world
lack an internet connection, including remote rural areas that could
benefit from healthcare and agricultural-related SbSs. Online data
transmission from these locations to cloud servers would be
infeasible, whereas offline approaches can support decentralized
analysis.

3. Privacy and security of data handling by smartphone-
based (Bio)sensors

Using SbSs for data acquisition raises potential legal and ethical
issues concerning privacy, data protection, and consumer rights.
The miniaturized electronics, sensors, computing power, and con-
nectivity that make smartphones attractive for biosensing also lead
to ‘always on’ privacy risks. Personal data on smartphones can
contain confidential, identifiable details of our lives, including our
whereabouts, contact details, social networks, preferences, and fi-
nances [125,126]. Our personal information is vulnerable to misuse
by third parties who can claim data ownership, especially when
transmitted over the internet or Bluetooth, via installed Apps, or by
cloud-storage providers [125]. Misuse of sensitive information
endangers consumers and can lead to discrimination, identity theft,
and changes in insurance policies. A deeper apprehension of the
complicated legal, ethical, and practical challenges associated with
using SbSs for data handling is needed to benefit from these con-
nected technologies while minimizing potential risks for the end-
user.

3.1. Privacy and personal data protection: an EU framework

Since the 1950 European Convention on Human Rights (ECHR),
privacy has been a protected right of European Union (EU) citizens
[127], but the ECHR was written before the digital revolution. In
1983, the first handheld mobile phone was released, ushering in a
new era of technological connectivity and unprecedented privacy
risks for consumers. To uphold this fundamental right in the wake
of these new technologies, the European Commission (EC) pub-
lished its first guidance on the processing of personal data (Direc-
tive/95/46/EC) [128] and privacy by the telecommunications
industry (Directive/97/66/EC) [129], defining personal data as “any
information that can directly or indirectly identify a data subject”
and processing as “any operation including recording, collecting,
organizing, storing, using, transmitting, or destroying of that data”.
Regulation (EC) No 45/2001 closely followed in 2001, giving in-
dividuals legal rights related to the movement and processing of
their data by EU institutions [130]. Soon after, the first smartphone
was commercialized, quickly followed by camera phones with
wireless internet connectivity [3]. In 2002, the ‘e-privacy directive’
was implemented (Directive 2002/58/EC) [131], outlining novel
risks related to these new technologies and preparing the EU for the
upcoming digital age. These regulations were enshrined into EU
law in 2009 under the Charter of Fundamental Rights of the EU
(CFR) [132]. Furthermore, the CHR reaffirmed the ‘right to privacy’
and ratified the ‘protection of personal data’, providing data sub-
jects with specific legal rights regarding their data [133].

In 2018, the EU implemented theworld’s firmest data protection
legislation, the General Data Protection Regulation (GDPR), a
globally influential law unifying EU directives and regulations
related to personal data handling. The GDPR’s jurisdiction extends
to all smartphone Apps that collect and process data of EU citizens
regardless of where the App is operated or what it is used for [134].
Moreover, the GDPRs underlying principles: consent, privacy, se-
curity, and fair data collection, provide firm guidance on how to
handle smartphone-acquired personal data correctly. Many coun-
tries have similar data protection reforms, including Australia,
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Brazil, Switzerland, China, Canada, and a multitude of state, federal,
and local frameworks in the United States of America (USA), such as
the 1996 Health Insurance Portability and Accountability Act
(HIPAA 1996) [135]. For example, HIPAA safeguards ‘electronically
protected health information’ to ensure confidentiality, integrity,
and availability of healthcare information. Still, HIPAA’s privacy rule
permits the disclosure of personal information to covered entities,
including healthcare providers, insurance companies, and business
associates, presenting unique ethical considerations for emerging
SbSs in the USA [136]. While the following sections are focused on
privacy related to SbSs, these issues exist for all devices that
generate, process, and transmit data digitally.
3.2. Data handling for smartphone-based (bio)sensors

When acquiring, processing, transferring, and storing data with
any digital device, including SbSs, there are many important
privacy-related considerations to reflect on, as summarized in
Table 4. These considerations include assessing at which stage(s)
consent should be obtained, how privacy will be protected, who
will be responsible for data security, where data will be stored or to
whom it will be transferred, and when metadata collection is
appropriate.
3.2.1. Consent
A major ethical challenge is making people aware of the

complicated privacy risks that emerging SbSs present so that users
can make informed decisions on whether to consent to use such
devices. Demonstrating consent is a crucial requirement for pro-
cessing personal data under the GDPR. In practice, consent requires
being transparent with users about how their datawill be collected,
used, stored, and whether it will be shared with other parties [175].
Article 7 of the GDPR states that consent must be given freely.
However, individuals can choose to place conditions or limits on
their consent. Apps must obtain user consent to access various
smartphone features through granted permissions. On Android
devices, permissions are classified as ‘dangerous’ if they threaten
privacy, particularly Apps that request access to body sensors,
cameras, calendars, contacts, geolocation, microphone, calling,
texting, and storage. Unsurprisingly, SbSs (especially optical SbSs)
typically require access permissions to at least one of these on-
device features.

According to the GDPR, consent requests for processing personal
data should be distinct from other agreement policies and based on
positive ‘opt-ins’ such as digital signatures or fingerprint scans
rather than default procedures (e.g., pre-ticked boxes). Moreover,
consent must be obtained for each type of processing, allowing
Table 4
Ethical data handling principles from GDPR.

Name Basic principles

Consent (section 3.2.1.) Consent must be demonstratable; consent in an intelligible
using clear language; data subject can withdraw consent at
given freely

Privacy (section 3.3.) Data protection through technology design; data minimiza
purpose limitation

Data security (section 3.4.) Ensure appropriate security measures to protect personal d
encryption of personal data; confidentiality, integrity, avail
processing systems; restoring access to data when access h

Data transfer & storage
(section 3.5. & 3.6.)

Data must not be kept longer than needed; policy stating r
periodically reviewed; data can only be kept longer for arch
research; strict restrictions for processing personal data ou

Fair (meta)data collection
(Principle A) (section
3.7.)

Must identify valid grounds (lawful basis) for collecting and
not breach data laws; data processing must be fair; must b
about how data will be processed
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users to ‘opt-out’ of processes or withdraw their data entirely if
they desire (i.e., partial consent) [137]. Currently, most consent-
based control access models are binary, and do not provide the
user with a third option of partially providing consent. Imple-
menting models for partial consent could uphold the GDPR by
improving user understanding of what processing they are con-
senting to and by ensuring that permissions are not granted by
default. Currently, many websites and Apps comply with the GDPR
by requesting consent for data processing via cookie banners with
granular opt-in/out options. However, one could argue that the
ubiquity of such cookie banners on every digital interface might
lead to consumers automatically accepting permissions without
thoroughly reading what they are consenting to. Therefore, for SbSs
handling sensitive healthcare data, consent should be explicitly re-
obtained before each stage of data collection, processing, storage,
and sharing of the data rather than using cookies as uniform (and
quickly forgotten) consent management upon installation of the
software.

Despite being a cornerstone of ethical data handling, only 7 out
of 886 articles mentioned obtaining user ‘consent’ before SbS-based
data collection/handling in their abstracts/keywords. For example,
in a survey focusing on the end-user perspectives of an electro-
chemical SbS for monitoring glucose and lactate levels, 86.1% of the
383 participants agreed that explicit consent must be obtained
before their data can be accessed [137]. Surveys such as this are
important as they reveal howmuch (or little) end-users understand
about data security and consent. Interestingly, a study evaluating
the usability of smartphone interfaces for diabetes monitoring re-
ported gaining consent from participants before conducting the
assessment questionnaire but did not mention how or at which
stage consent was obtained before using the SbS for processing the
data [141]. Another study reported receiving ‘informed written
consent’ from 10 study participants (age: 18þ) before using an SbS
as an optical pulse oximeter for measuring the oxygen saturation of
a user’s blood [140]. In this study, a trained technician in a
centralized laboratory performed the measurements on a stand-
alone smartphone; the App, which meets Food & Drug Adminis-
tration (FDA) and international standardization organization (ISO)
requirements, collected confidential medical data but otherwise
did not infringe on individual participant's privacy. Likewise, a
study using the SmartPhone Oxygenation Tool (SPOT) for remote
patient wound monitoring reported obtaining written consent
from all study participants. Still, this SbS was also used in a
controlled, clinical PoC setting, minimizing the personal privacy
risk for the participant [5].

Interestingly, these approaches did not incorporate smartphone
Apps to acquire digital consent, still opting for written permission,
GDPR SbS ref

and easily accessible form,
any time; consent must be

Article 7: Conditions for consent [5,137
e141]

tion, storage limitation, Article 25: Privacy by Design [137,142
e151]

ata; pseudonymization &
ability & resilience of
as expired

Principle (f): Integrity and confidentiality
(security); Article 32: Security of processing

[152
e156]

etention periods; data
iving, scientific or historical
tside of the EU

Principle (e): storage limitation; Article 44:
General principle for transfers

[150,157
e165]

using personal data; must
e transparent and honest

Principle (a): lawfulness, fairness, and
transparency

[153,166
e174]
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possibly because these studies were carried out using SbSs in
centralized facilities with pre-existing procedures for obtaining
clinical consent. A study reporting on an SbS for influenza self-
testing obtained user consent via the App before providing users
instructions on administering the test and recording and trans-
mitting the result [138]. Obtaining digital consent is preferable for
SbS-guided self-testing, whereas traditional consent procedures
may be more appropriate for clinical testing. Despite the above
examples focusing on consent, none addressed the potential pri-
vacy risks that might arise from using smartphones as data
collection devices.

3.3. Privacy

‘Privacy by design’ is a key requirement of the GDPR (Article 25)
that puts the responsibility of digital privacy protection on the data
processor. Privacy safeguards include data minimization, storage
limitation, and purpose limitation, meaning that only necessary
data can be collected and stored for the shortest time with access
limited only to authorized parties. Still, such privacy-preserving
approaches complicate matters for SbS-based data collection,
where long-term storage or the accumulation of long-term data
might be necessary to build up complex pictures. Likewise, these
privacy strategies could be problematic for AI approaches that
adhere to open data principles, as mentioned in Section 2.5.3.
However, as stated in principle (e) of the GDPR (see Table 4), longer-
term retention of personal data is acceptable for scientific, histor-
ical, or statistical research purposes so long as it is first adequately
anonymized.

3.3.1. Anonymization
Preservation of personal or commercial privacy is crucial, yet it

is only mentioned in 13 of the 886 articles when searching ‘privacy’
in their abstracts/keywords, indicating it is a neglected issue for
emerging SbSs. Of these 13 papers, 5 use data ‘anonymization’ as a
privacy-preserving technique. Data anonymization facilitates the
processing of personal data so that it cannot be attributed to a
specific data subject without the use of additional information.
Examples include k-anonymization and clustering techniques
which remove personal identifiers from data and partition anony-
mized data with similar attributes into categorical subsets, thereby
obscuring any identifying information about an individual and
protecting personal privacy [149]. Data anonymization protects
information by encrypting or erasing identifying features (identi-
fiers) that connect stored data to individuals/test results.
Commonly applied data anonymization techniques include
replacing private identifiers with pseudonyms (data pseudonym-
ization) [149], swapping attributes that contain identifiers (swap-
ping) [176], and hiding data with altered values (data masking)
[177]. Safeguards vary from basic such as swapping patient samples
with study IDs, to more advanced strategies [176]. Advanced
techniques can include tokenization and encryption, which trans-
form personal data into unreadable data that can only be re-
accessed using a unique token or key, allowing access to user-
generated data while maintaining privacy protection [139]. Yet,
data anonymization by itself may not provide adequate privacy
protection for SbSs handling sensitive healthcare-related data.
Privacy can be better protected by applying pseudonymization at
multiple points in the data processing cycle.

Another important consideration is the use of publicly available
information for data re-identification or de-anonymization [178].
Anonymized data prevents the data subjects from understanding
how their participation contributed to a scientific study, which in
turn could limit public trust in research and decrease the number of
willing participants. There is clearly a fine line between
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safeguarding privacy through anonymizing data and satisfying
participant curiosity by providing individual research results.

3.3.2. Encryption
As shown above, encryption can help to preserve personal pri-

vacy. Still, hackers can access even encrypted data by retracing the
anonymization process, leaving potential users of SbSs susceptible
to privacy violations. Moreover, not all smartphones have encryp-
tion built-in as a default; over 10% of Android devices are still
operating on Android version 6.0, which does not support data
encryption [179]. Ultimately, this leads to a digital security divide,
where older smartphones running on outdated operating systems
no longer receive security updates putting them at a greater privacy
risk. An alternative security approach, sign-cryption, can guarantee
confidentiality and data integrity by combining a digital signature
and encryption in a single step. Recently, researchers proposed the
certificate-less aggregate sign-cryption scheme (CLASC) as a robust
security framework for SbSs [177]. The CLASC approach provides
confidentiality, integrity, mutual authentication, and anonymity,
upholding personal privacy to a higher standard than anonymiza-
tion alone. In another example, a CLASC was developed to secure
sensitive location data from smartphone crowd-sensing partici-
pants, protecting them against data privacy attacks [180]. A com-
bination of pseudonymization and anonymization techniques can
provide additional protection, where data is first made anonymous
by removing any personal identifiers and then encrypted before
storage [108]. When data is anonymized adequately with all iden-
tifiers removed, it no longer falls under the scope of the GDPR,
leaving companies free to collect such data without consent and
store it indefinitely.

In addition to personal privacy, company/commercial data
contains sensitive information vulnerable to data theft. To protect
confidential company information from digital attacks, data on
employee smartphones/tablets should always be encrypted and
only transferred through encrypted channels [181]. The industry
encryption standards are S/MIME (digital correspondence) and
AES-256 (data encryption). S/MIME is the predominant method for
encrypting sensitive emails; it uses separate keys for encryption/
decryption (private) and digital signature (public) [150]. AES-256
uses the same 256-bit key to encrypt and decrypt data. In addi-
tion to these standards, companies often require end-to-end
encryption for digital correspondence, restricting access except
for the sender and recipient. The situation is more complex for
dynamic group-based (2þ participants) applications that commu-
nicate via secure channels to avoid disclosing confidential and
private information to unauthorized users. Group-based applica-
tions require lightweight key management frameworks capable of
switching, deleting, and, if necessary, reissuing access keys based
on group membership status [182].

3.4. Data security and authentication

Data security means safeguarding digital information from un-
authorized access, corruption, loss, or theft. Security is an essential
component of the GDPR; the regulation mandates that any
researcher or company wishing to process personal data, track
people’s locations, monitor publicly accessible spaces [183], or use
new technologies (such as smartphones) to process data, are
required first to submit a Data Protection Impact Assessment
(DPIA), or in the context of scientific research a Data Management
Plan (DMP) [154]. These assessments should demonstrate how and
why data will be processed and transparently outline the potential
risks and appropriate security mechanisms to protect against them.

Authentication is one of the core principles of data security that
keeps unauthorized users from accessing sensitive information.
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However, few articles about SbSs, report any ‘security’ measures
(18/886), let alone authentication measures. User authentication
mechanisms are broadly classified into three groups based on: (i)
something the user knows (knowledge-based), (ii) something the
user has (token-based), or (iii) something the user is (biometric-
based) [184].

3.4.1. Knowledge-based authentication
Knowledge-based authentication is the weakest form, requiring

only some ‘secret’ information such as a password (text, graphical
or pattern-based) or Personal Identification Number (PIN) to unlock
the device. When knowledge-based approaches are applied, pass-
word management systems that prevent the password from being
entered in readable text format can improve security by keeping
the password secure even if the passwordmanager is compromised
[185].

3.4.2. Token-based authentication
Conversely, token-based authentication relates to the tokeni-

zation and anonymization privacy-preserving techniques discussed
in Section 3.3. Approaches can include QR codes and two-step
authentication (first requiring a password and then using a one-
time passcode) or can use keys generated by an external device
or service provider to access the data. The authentication mecha-
nism can even be part of the data acquisition process, as demon-
strated for an SbS Biomedical microelectrochemical system
(BioMES)-based sensor for portable biomarker detection [153].
Here, the BioMES stored the encryption key that remained with the
user, and only authorized people could decrypt it using the
smartphone App. Still, storing the key on a physical system (e.g., the
BioMES-sensor) has some disadvantages, including potential
damage, loss, or theft of the platform. A similar method was used
for sensor-based analog signal encryption, where a smartphone
transmitted results to the cloud for analysis before being sent back
to the user for decryption with the key stored on their smartphone
[151]. Both approaches obfuscated the analog signals (impedance
measurements) before transferring the data and only authorized
access to users with authentication keys, providing a robust safe-
guard. Comparably, a privacy-preserving body sensor data collec-
tion and query scheme (SPQC) was reported for transforming body
sensor data into multidimensional data before converting each
dimension into ciphertext and uploading it to the cloud via a
smartphone. The SPQC further secures confidential data by
restricting access to only authorized users through cloud query
services [155]. As introduced in Section 2.6.2., blockchain can
promote enhanced data security bymaking data traceable. A recent
study reported a token-based authentication approach that uses
attribute-based encryption (ABE) to protect confidential health
data transferred via blockchain [186]. In this study a smart contract
was deployed on blockchain to control data access; encrypted data
was only accessible following authentication via the data access
App installed on authorized devices. This example demonstrates
the future potential of blockchain for data security of emerging SbS,
so long as the previously discussed limitations are overcome.

3.4.3. Biometric-based authentication
The third group of authentication mechanisms, biometric-based

authentication, involves using a person’s physiological or behav-
ioral attributes for authentication. Smartphones can authenticate a
user based on physiological features collected by connected body
area networks (BANs) [156]. For example, biometric-based
authentication can lock/unlock SbSs using fingerprint, facial or
voice recognition. Moreover, biometric-based authentication can
combine with wireless body area networks (WBANs), sensors that
attach to a person’s clothes or body to collect data that is
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transferred to an SbS within a limited range. WBANs can even
collect data from electrocardiogram (ECG) sensors and use repre-
sentative physiological features gathered from an individual’s ECG
records as specific biometric parameters during authentication
[187].

Moreover, additional privacy-preserving tools such as pseudo-
nymization and aggregation can strengthen biometric-based
authentication [188]. As always, authentication measures should
be fit-for-purpose for the intended SbS application. For example, if
an SbS is being used for analysis that requires the user to wear
protective gloves, a biometric-based authentication using finger-
print ID would not be appropriate and facial recognition might be
preferred. At the same time, biometric-based authentication as-
sumes the stability of the human body, when, in reality, bodily
features change substantially over time: faces age, fingerprints
become worn, and appearances can alter by injury (e.g., scarring),
disease, (cosmetic) surgery, and changes in weight [189]. As such,
any methods using biometrics should regularly reobtain biometric
measurements to ensure that authentication is not compromised.

3.5. Data transfer

A key advantage of SbSs is the possibility to wirelessly transmit
data via cellular data, Wi-Fi, Bluetooth, or, Near Field Communi-
cation (NFC); for a detailed technical description of wireless SbSs
readers should refer to Ref. [190]. However, there are risks associ-
ated with wireless data transfer; if a network is not secure, people
with wireless-enabled devices within the vicinity can ‘piggyback’
onto the connection and possibly intercept the data [191].

3.5.1. Online wireless data transfer
Data transfer to cloud servers via cellular data or ‘Wi-Fi’ is

convenient (26/886 publications) but requires a stable internet
connection for online processing (as discussed in Section 2.6.2).
The HyperText Transfer Protocol Secure (HTTPS) enables secure
communication over computer networks securing user data
through encryption. The protocol is a default in iOS (2016) and
Android (2018) native Apps, allowing secure data transfer from
connected smartphones to cloud drive servers [80]. However, when
transferring data online, third-party networks often record meta-
data or sell data for consumer analytics purposes [80]. Data sharing
is technically permissible, usually covered by fine-print privacy
policies and service agreements, but it violates user expectations of
fair data collection [192]. Data transmitted to cloud servers from
SbSs can be embedded with watermarks to improve security and
authentication [159,168] or use an aggregate sign-cryption-based
scheme to secure data in transit [158,159].

3.5.2. Offline wireless data transfer
Many SbSs do not need to be online for data transfer; ‘Bluetooth’

(32/886) and ‘near field communication (NFC)’ (10/886) technologies
do not require internet connections for data transfer. Still, both
approaches only have a limited range (Bluetooth ¼ 10e15 m,
NFC ¼ 0.1 m) requiring proximity [193,194]. Unlike battery-
draining Bluetooth-based devices, NFC-based sensors are battery-
free and affordable. Moreover, NFC sensors can offer protection
against piggybacking or data sniffing, as recently demonstrated by a
study using NFC-embedded clothing for continuous monitoring of
spinal posture, temperature, and gait during exercise [195].
Another study used a battery-free, card-sized NFC tag integrated
with an electrochemical SbS for diagnosing hepatitis B. The mea-
surement data was transmitted to a smartphone App in real-time
before being transferred to a computer for subsequent offline
analysis [162]. As discussed in Section 2.6.1., there are several ad-
vantages for SbSs operating without an internet connection, and
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those SbSs that use Bluetooth or NFC for data transfer are well
suited for offline approaches.

3.6. Data storage

Typically, built-in smartphone cameras directly store images or
videos in the on-device image gallery provided by the operating
system. Most third-party and custom-developed camera Apps also
record the collected data in the image gallery. Data stored in this
approach includes independent multimedia files with embedded
metadata such as image dimensions, resolution, and camera pa-
rameters that other Apps can access if the smartphone user grants
permissions. In addition, self-contained software libraries, such as
Android’s SQLite, can store data and provide database management
[196]. However, such data storage is usually without backup and is
prone to tampering or malicious changes [197]. In comparison,
system administrators manage data stored in the cloud. Advantages
of this approach include extendable computing resources and
availability of contextual information. Still, such storage leaves data
vulnerable to privacy attacks.

3.6.1. Data storage for corporations
Institutions and corporations transferring or storing sensitive or

private information on smartphones are vulnerable to corporate
espionage and should uphold data security through various access
controls such as the knowledge, token, and biometric-based ap-
proaches discussed in Section 3.4. Companies operating bring-
your-own-device policies require employees to only store confi-
dential company data in a secure compartment of their smartphone
to which the company IT department has unrestricted access
[198,199]. Still, on-device storage leaves data vulnerable to hacking,
theft, or physical damage [181]. Companies can opt to use external
smartcards/microSD cards, which are returned to the company
with digital certificates to protect confidential information and
prevent on-device retention of data [80]. However, these cards are
also at risk of being lost.

Instead of storing data on employee smartphones, companies
handling confidential data can use SbSs to unidirectionally transfer
data to secure servers. Unidirectional data transfer can be necessary
to provide additional security and prevent smartphone Apps from
accessing confidential data. For example, recently, an augmented
reality smartphone App was developed that transferred data
asynchronously to secure servers through specialized network in-
terfaces [163]. This asynchronous transfer limited the on-device
data storage to protect the user’s location during combat opera-
tions. Another study implemented off-device data storage with
App-based data acquisition and synchronization with a secure
cloud server to rapidly detect Azole-resistant moulds in clinical and
environmental samples [164]. Comparably, a medical SbS for
monitoring chronic bronchitis used a smartphone App for classi-
fying clinical data and transmitting the anonymized data to secure
cloud servers for further encryption and processing [200].

While undoubtedly making data transfer and storage more
secure, these additional authentications are burdensome from an
end-user perspective. In establishing policies concerning different
security levels, and the associated operational burden on the user,
there is a balance between the two. Depending on the target users
and whether they are private citizens or companies, data security
and usability without too many constraints will play essential roles
in technology acceptance by those various user groups.

3.7. Big data: fair (meta)data collection

Smartphones are constantly collecting data from us; the accu-
mulation of this information from billions of people worldwide is
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big data. Big data relates to the volume, variety, and velocity of data;
mass analysis of this data generates enhanced insights into specific
patterns or trends for decision-making and process automation
[201]. In recent years, the massive increase of data from connected
devices has accelerated the rise of a ‘data-driven’ era where met-
adata analytics facilitate data-driven decision-making across mul-
tiple fields, including health [166], food safety [167], environmental
safety [168], and forensics [169].

However, the fundamental right to personal data protection
fully applies in a big data context, with a vital cornerstone of the
GDPR being the lawfulness, fairness, and transparency principle
[170]. The principle specifies that there must be a valid reason for
collecting and processing personal data to prevent unlawful actions
from being applied to said data. Moreover, the regulation imposes
stricter conditions for processing special categories related to
health, race, politics, sex life, sexual orientation, genetics, or bio-
metric data. Notably, fair data collection means that data can only
be collected and processed as expected and protects data from
misuse in anymisleading or detrimental way. Therefore, it is vital to
have clear and honest communication about the intended use of
data so as not to coerce individuals into sharing unwanted infor-
mation [202]. Still, the situation becomes concerning when com-
mercial devices connected via smartphone Apps gather private
information, including location, user names, phone numbers, and
financial information, that is shared with third parties [172].
Therefore, SbSs that handle sensitive health-related data must be
transparent regarding how they will exploit any metadata.

Nevertheless, mining metadata could result in ethical issues
surrounding consent, for example, if a user consents to data
collection for one purpose but does not consent to reusing their
data for analytics purposes [173,202]. However, consent becomes
less clear for big data; it can be difficult to ‘opt out’ from a data
analytics set, especially when ‘opting out’ of a dataset could identify
a company or individual. Despite this, metadata can be used for big
data purposes so long as appropriate safeguards ensure compliance
with the GDPR [170]. The guiding principles of FAIR (Findability,
Accessibility, Interoperability, and Reuse) [203] provide a solid basis
for ethical metadata collection that could be useful for emerging
SbSs [204]. Moreover, the FAIR guidelines adhere to the principles
of Good Research Practice (GRP), as will be further discussed in Part
II of this review series. Finally, the security of big data is vital for
personal and organizational privacy, as individuals and companies
can be at risk from cyber criminals due to the information they
store. While tedious, proper data governance improves its useful-
ness, accessibility, and security. Still, one could argue that bureau-
cracies such as the GDPR are suppressing the field of big data. On
the other hand, without effective governance, SbS-acquired big
data can be and has been used for intensifying mass surveillance of
individuals and organizations, as discussed further in the Case
Study.

4. Case study: near real-time dynamic data handling for
mapping of infectious disease

Connected SbSs can improve accessibility to healthcare through
(i) guided self-testing and (ii) (near) real-time data transfer for
reporting results and mapping disease outbreaks. Moreover, SbSs
can facilitate surveillance of rapidly spreading infectious diseases
creating geospatial maps of emerging outbreaks by geotagging
positive self-test results from SbSs [9,205e207]. Studies have
demonstrated that smartphone-guided self-testing for HIV is safe,
accurate, and acceptable [208,209] and can be combined with
digital partner notifications (a.k.a., contact tracing) while still
maintaining complete security, privacy, confidentiality, and data
anonymity [157,209].
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Self-testing and disease surveillance are necessary for moni-
toring the spread of public health issues, as exemplified by the
COVID-19 pandemic. The pandemic has stimulated scientific and
technological innovation, emphasizing the need for accurate,
consumer-operable self-tests integrated with smartphone detec-
tion for data handling and result interpretation [210e215]. In one
COVID-19 SbS, the App controls the smartphone camera and flash
to capture images under fixed illumination and uses an in-App
artificial neural network (ANN) for result interpretation, guaran-
teeing complete privacy of results [214]. In a commercial, FDA-
approved COVID-19 SbS, the analyzer can be connected offline via
Bluetooth to integrate with an App on the user’s smartphone. In
addition, the App automatically reports encrypted, anonymized
data to health authorities when connected toWiFi through a secure
HIPAA-compliant cloud connection [216].

At the same time, the pandemic has accelerated the uptake of
digital surveillance technologies in the form of physical contact
tracing Apps which might pose a risk to privacy. Properly aggre-
gated (pseudo)anonymized smartphone data can enable mobility
and population estimates to assist epidemiologists and policy-
makers in better understanding the spread of infection [125,217].
Apps can collect proximity data about infected individuals and their
wider social networks using precise geo-location data or the
cellular module, Wi-Fi, or Bluetooth to communicate with phones
in the vicinity without tracking the user’s location [218,219]. This
information can help limit disease propagation and save lives, but
such surveillance also poses unique privacy risks. Justifiable con-
cerns over data security and loss of personal privacy have resulted
in low tracing App installation rates, undermining these tools' ef-
ficacy [217]. Privacy policies should transparently outline how data
will be collected and used to promote uptake of these Apps [200].
Transparency is jeopardized when end-users cannot comprehend
what they are consenting to. A recent assessment of seven COVID-
19 contact tracing Apps revealed that their privacy policies had
readability levels that were considerably more advanced thanwhat
the average individual could understand [220]. Critically, this leads
to unethical and unfair data handling practices because the user
cannot give informed consent for something they do not under-
stand. It could be argued that informed consent does not apply
when a lack of individual consent has the potential to negatively
affect society (as with the spread of COVID-19). While it is true that
countries that implemented quasi-mandatory digital contact
tracing have higher rates of app installation [221], it cannot be
overlooked that enforcing the use of such apps hinders users’ ca-
pacity to freely provide consent [222].

A key concern for many is that the digital surveillance tools
being legalized for the current emergency, without adequate
checks and balances, might still be used after the pandemic [126].
Therefore, to minimize privacy impact and ensure fair data collec-
tion, it is crucial to be transparent regarding the proposed and
actual data use, including future privacy [219,223]. In the end, there
are crucial trade-offs to consider between society-based digital
contact tracing and privacy protection [224,225].

Currently, these smartphone-based strategies run in parallel.
Still, it seems likely that we will soon see an integrated approach
that guides self-testing, records results, and interprets data within
an App linked with privacy-preserving contact tracing. The com-
bination of these approaches, smartphone-based biosensing with
GDPR-compliant digital contact tracing, would be a powerful tool in
the fight against infectious diseases and numerous other
applications.
14
5. Perspectives & proposed best practices for the
development of emerging smartphone based (bio)sensors

The field of (bio)sensing is increasingly digitalized, miniatur-
ized, and interconnected. In this past decade, smartphone-based
biosensing has emerged as an important trend for decentralizing
and democratizing science by increasing access to testing, inter-
pretation of results, and data storage for various uses. There are
already myriad proof-of-concept optical and electrochemical SbSs
for clinical, food safety, environmental monitoring, and forensics.
At a minimum, these SbSs utilize some built-in smartphone func-
tion to acquire, store, or transfer data; for optical SbSs, the most
used feature is the camera and flash, whereas for electrochemical
SbSs plug-in potentiostats that directly draw power from the
smartphone are most often used. During the R&D stage of any SbS,
developers should consider how the SbS will be used. For example,
if the SbS is intended for proof-of-concept or research-use-only
purposes, it could be appropriate to use the smartphone solely to
collect and transfer raw data to a computer for further processing
and (image) analysis.

Similarly, SbSs in the proof-of-concept stage could benefit from
using already available free and open-source software for data
handling, which could save time and resources compared to
designing a custom App for each (academic) purpose. On the other
hand, commercial companies marketing SbSs should develop
dedicated Apps capable of safely handling private data that use
appropriate GUIs to facilitate secure data collection and ease the
user experience. Commercial SbSs might still rely on online data
handling by transferring collected data to cloud servers for analysis
and interpretation before returning the result to the end-user.
However, this online handling should require minimal user
involvement and impose the least privacy risk. Otherwise, com-
mercial SbSs might incorporate algorithms so that data can be
handled on the smartphone while offline, anytime, anywhere by an
authenticated user. As discussed, perhaps conventional ML ap-
proaches are not the most appropriate for implementation in SbSs
when considering ML’s core principles of open data sharing.
Instead, software developers for emerging SbSs could consider
using federated learning approaches that better uphold data se-
curity by training algorithms across multiple decentralized devices
while keeping raw data acquired on the user’s SbS.

Another option for emerging SbSs in a PoC setting could be to
develop SbSs based on standalone smartphones with offline data
processing that is dedicated to the task. Not only would standalone
SbSs promote robust privacy-preserving techniques, but they
would also be easier to validate from an R&D perspective.
Considering how regularly consumers upgrade their smartphones,
it would be sensible for emerging SbSs to be tested on different
smartphone models, and where possible calibrated in a device-
independent fashion to minimize inter-phone variation. Yet, the
multitude of existing smartphone models makes it unrealistic to
tailor calibration to each individual consumer smartphone, making
the use of a standalone SbS attractive. On the other hand, stand-
alone SbSs would be of limited use to consumers who likely already
own a smartphone device and who might not want a different
device just for biosensing applications.

The most desirable approach for consumer-focused SbSs is to
transform a user’s smartphone into a biosensing device by
installing secure Apps and if necessary, attachable or plug-in
auxiliary equipment. Of course, the installation of Apps on the
same smartphones that consumers use for daily communication,
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photography, finances, and other essential tasks, requires strict
privacy-preserving techniques, as outlined in the GDPR. As has
been discussed, the core principles of the GDPR related to consent,
privacy, security, transfer, storage, and fair data collection are
fundamental for any smartphone Apps that collect and process data
from EU citizens. These principles can and should guide best
practices when developing Apps for emerging SbSs.

Still, while additional authentication measures required by the
GDPR principles increase the security of SbS-based data collection,
transport, and storage, they are also cumbersome for the end-user.
Therefore, developers of emerging SbSs must find a middle ground
concerning the authentications required based on different security
levels and the associated operational burden these measures pass
on to the end-user. To find a balance, SbSs must be fully transparent
in their intended uses of collected data, and should regularly re-
acquire consent from end-users to guarantee that they (still)
grant permission for said data handling. Of course, data security
and upholding the GDPR are of critical importance, but it is also
vital that end-users adopt and accept SbSs, which they may be less
inclined to do with too many (or too few) data security restrictions.

Part II of this review series will unravel the best practices for
emerging SbSs from an R&D and end-user perspective, focusing on
the sustainable design, development, and validation of these bio-
sensing devices. Likewise, Part II will consider the wider impact of
such SbSs on consumers allowing for a holistic reflection on their
implementation and acceptance in society.
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ABBREVIATIONS

ALS Ambient light sensor
API Application programming interface
App Application
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AI Artificial Intelligence
ANN Artificial neural network
ABE Attribute-based encryption
BioMES Biomedical microelectrochemical system
CLASC Certificate-less aggregate sign-cryption scheme
CFR Charter of Fundamental Rights of the EU
CFA Color filter array
CMOS Complementary Metal-Oxide-Semiconductor Transistor
CNN Convoluted neural network
CMY Cyan, magenta, yellow
CPU Center Processing Unit
CSV Comma Separated Value
DPIA Data protection impact assessment
EULA End User License Agreement
EC European Commission
ECHR European Convention on Human Rights
EU European Union
FNN Feedforward neural network
FAIR Findability, Accessibility, Interoperability and Reuse
FDA Food & Drug Aministration
FPS Frames per second
GDPR General Data Protection Regulation
GPL General public license
GPS Global positioning system
GHz Giga hertz
GUI Graphical User Interface
HIPAA Health Insurance Portability and Accountability Act

(HIPAA 1996)
HSV/L/B Hue, saturation, value/lightness/brightness
HTTPS Hypertext Transfer Protocol Secure
IoT Internet of Things
LFIA Lateral Flow Immuno Assay
LOD Limit of Detection
LAB Luminosity, xA, aB
MbPS Megabites per second
ML Machine Learning
NFC Near field communication
PIN Personal identifcation number
PA Physical activity
PoC Point of care
PoN Point of Need
PCR Polymerase chain reaction
PCA Principal component analysis
QR Quick response
RF Random forest
RGB Red, green, blue
ROI Region of Interest
R&D Research & Development
SbS Smartphone based sensors
SPOT SmartPhone Oxygenation Tool
SDK Software Development Kit
SD Storage Device
SVM Support vector machine
SPR Surface plasmon resonance
ISO The international organization for standardization
WBAN Wireless body area network
SSL Secure sockets layers
TLS Transport layer security
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