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Abstract. Adjustable robust minimization problems where the objective or constraints
depend in a convex way on the adjustable variables are generally difficult to solve. In this
paper, we reformulate the original adjustable robust nonlinear problem with a polyhedral
uncertainty set into an equivalent adjustable robust linear problem, for which all existing
approaches for adjustable robust linear problems can be used. The reformulation is obtained
by first dualizing over the adjustable variables and then over the uncertain parameters. The
polyhedral structure of theuncertainty set then appears in the linear constraints of the dualized
problem, and the nonlinear functions of the adjustable variables in the original problemappear
in the uncertainty set of the dualized problem. We show how to recover linear decision rules
to the original primal problemandhow to generate bounds on its optimal objective value.
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1. Introduction
1.1. Problem Formulation
We consider the following general two-stage robust
nonlinear minimization problem:
inf
x∈X sup

ζ∈U
inf
y
{ f0(x) + g0(y) | ζ�Fi·(x) + fi(x) + gi(y)

≤ 0, i � 1, : : : ,m1, A(x)ζ + By � b(x)}: (1)

Here, X ⊆ R
nx , the functions fi : Rnx → R, gi : Rny → R

are convex for all i � 0, : : : ,m1, Fi·(x) � (Fi1(x),
: : : ,Finζ(x)), and Fij : Rnx → R are real-valued functions
for all i � 1, : : : ,m1 and j � 1, : : : ,nζ. The matrices
A(x) ∈ R

m2×nζ and the vector b(x) ∈ R
m2 depend on x ∈

R
nx in an affine way:

A(x) � A0 +∑nx
l�1

Alxl, b(x) � b0 +∑nx
l�1

blxl, (2)

with Al ∈ R
m2×nζ and bl ∈ R

m2 for all l � 0, : : : ,nζ. Note
that Problem (1) has fixed recourse because the functions
gi, i � 0, : : : ,m1, and the matrix B do not depend on ζ.
Therefore, there are no direct interaction terms between
ζ and y, such as products ζ�y. Throughout this paper,
we focus on nonempty polyhedral uncertainty sets:

U � {ζ ≥ 0 :Dζ � d}, (3)

where D ∈ R
p×nζ and d ∈ R

p.

1.2. Literature Review
Problem (1) is generally intractable even if all the objec-
tive and constraint functions are linear. Adjustable
robust optimization techniques in the literature, such as
nonlinear decision rules, Benders decomposition, the
column and constraint generation method (Zeng and
Zhao 2013), the copositive approach (Hanasusanto and
Kuhn 2018, Xu and Burer 2018), and Fourier–Motzkin
elimination (Zhen et al. 2017), are developed for linear
adjustable problems and are not applicable for (1). Fur-
thermore, even if we impose linear decision rules

y(ζ) � y0 +
∑nζ
j�1

yjζj, (4)

where y0, : : : ,ynζ ∈ R
ny , to the wait and see decision var-

iables, the resulting conservative approximation of (1),

inf
x∈X
y0,yj

sup
ζ0∈U

{
f0(x) + g0(y(ζ0))

∣∣∣∣∣ ∀ζ ∈ U :

ζ�Fi·(x) + fi(x) + gi(y(ζ)) ≤ 0, i � 1, : : : ,m1

A(x)ζ+By(ζ) � b(x)

}
, (5)

is still difficult to solve. This difficulty is because of
the fact that the objective and constraint functions
contain terms gi(y0 +∑nζ

j�1 yjζj), i � 0, : : : ,m1, which are
convex in the uncertain parameters if gi is nonlinear

1
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and convex. The inner maximization problem in (5)
tries to maximize a convex function over a polyhe-
dron, which is in general NP hard.

There are only a few papers on adjustable robust non-
linear optimization known to the authors. Pinar and
Tütüncü (2005) study a two-period adjustable robust
portfolio problem to identify robust arbitrage opportuni-
ties when the uncertainty is ellipsoidal. They derive opti-
mal decision rules from exploiting the explicit structure of
their formulation, but it is unclear how this can be gener-
alized to problems with more constraints, other uncer-
tainty sets, or other model formulations. Takeda et al.
(2008) consider an adjustable robust nonlinear model
with a polyhedral uncertainty set, similar to the models
considered in this paper. They solve a sampled model
while enumerating all vertices of the polytope uncertainty
set. This quickly becomes unviable for even medium-
sized problems as the number of extreme points of the
uncertainty set is exponential in the dimension of the
uncertain parameter. Boni and Ben-Tal (2008) consider
adjustable robust optimization models with conic quad-
ratic constraints with ellipsoidal uncertainty sets. They
approximate the model with linear decision rules and
finally endupwith a semidefinite optimizationmodel.

Our paper significantly extends the approach of Bert-
simas and de Ruiter (2016), where only linear problems
are considered. Note that in the linear case, the original
adjustable robust optimization models could already be
solved with techniques, such as Fourier–Motzkin elimi-
nation, linear and nonlinear decision rules, Benders
decomposition, and the column and constraint genera-
tion method of Zeng and Zhao (2013). This is not the
case (at least not directly) for the nonlinear problems,
where the original formulation cannot be solved with
these techniques. However, in this paper, we show that
the dual of the nonlinear problem is linear in the adjust-
able variables. For this dual problem, the mentioned
well-known adjustable linear robust optimization tech-
niques can be used.

1.3. Contributions
This paper uses the consecutive dualization scheme in
Bertsimas and de Ruiter (2016) for linear problems
and extends it to two-stage robust nonlinear problems
that have a polyhedral uncertainty set. The major con-
tributions of this paper are follows.

1. We extend the consecutive dualization approach of
Bertsimas and de Ruiter (2016) to reformulate two-stage
robust nonlinear problems that have fixed recourse and
a polyhedral uncertainty set. The reformulation can
again be interpreted as a two-stage robust problem but
with adjustable variables that appear linearly.We show
that this linear reformulation is equivalent to the origi-
nal one (i.e., the optimal objective value and the feasible
region of the here and now decisions of both formula-
tions coincide).

2. We apply a new relaxation technique to establish a
close relation between linear decision rules for the orig-
inal nonlinear problem and its equivalent dual (linear)
reformulation.

3. We provide lower bounds on the optimal objective
value. Furthermore, we show how binding scenarios
from the original uncertainty set can be obtained from
binding scenarios in the dual formulation. This new tech-
nique also considerably improves the lower bounds pro-
posed in Bertsimas anddeRuiter (2016) for the linear case.

We show that we can use our method to efficiently
solve two numerical problems. First, we solve a distri-
bution problem on a network with nonlinear commit-
ments. Second, we find the equilibrium of a system
with several springs.

1.4. Paper Organization and Notation
The rest of this paper is organized as follows. In Sec-
tion 2, we present our framework and derive our
dualized formulation and linear decision rule model.
We recover the linear decision rule for the original pri-
mal problem in Section 3. In Section 4, we explain
how we obtain lower bounds on the optimal objective
value to assess the quality of our solutions. Our
numerical examples are presented in Sections 3 and 4,
respectively, of the e-companion.

The function g∗ is the convex conjugate of the func-
tion g : Rnν → R and is defined by

g∗(z) � sup
ν∈dom(g)

{ν�z− g(ν)},

where dom(g) is the domain of the function g. The per-
spective h : Rnν × R+ → R of a real-valued convex func-
tion f : Rnν → R is defined for all ν ∈ R

nν and t ∈ R+ as
h(ν, t) � tf (ν=t) if t > 0, and h(ν, 0) � liminf(ν′,t′)→(ν,0)
t′f (ν′=t′) (Rockafellar 1970, p. 67). For ease of exposi-
tion, we use tf (ν=t) to denote the perspective function
h(ν, t) in the rest of this paper.

2. The Dual Formulation
We first use the consecutive dualization approach of
Bertsimas and de Ruiter (2016) to derive an equivalent
linear reformulation of (1). Linear decision rules are
then applied to the linear reformulation to obtain a
conservative approximation. This constitutes a convex
program that can be efficiently solved using off-the-
shelf solvers. To this end, we first assume that (1) has
a relatively complete recourse.

Assumption 1 (Relatively Complete Recourse). For all
x ∈ X and all ζ ∈ U, there exists a y ∈ R

ny , such that

ζ�Fi·(x) + fi(x) + gi(y) ≤ 0 i � 1, : : : ,m1
A(x)ζ+By � b(x),

{

and for all i � 1, : : : ,m1 for which gi is nonlinear, we have
ζ�Fi·(x) + fi(x) + gi(y) < 0:

de Ruiter, Zhen, and den Hertog: Dual Approach for Two-Stage Robust Nonlinear Optimization
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This assumption implies that each here and now
decision is strictly feasible for all nonlinear constraints
that contain the wait and see decision variables. It
seems to be restrictive from a modeling perspective at
first. However, in practice, models can be cast in such
a way that undesirable here and now decisions x will
result in very high second-stage costs g0(y). Also, the
slightly weaker condition of relatively complete
recourse (that does not require strict feasibility) is
common in two-stage stochastic and robust linear
optimization; see Birge and Louveaux (2011). In the
following theorem, we introduce a two-stage robust
linear reformulation of (1).

Theorem 1 (Dual Formulation). Let U be a polyhedral set
as in (3) and assume that Assumption 1 holds. The here
and now decision x is feasible for (1) if and only if x is feasi-
ble for the following dualized model:

inf
x∈X sup

(u,v,w, z)∈V
inf
λ

{∑m1

i�0
vifi(x) + d�λ−w�b(x) −∑m1

i�0
zi

∣∣∣∣∣
∑p
k�1

Dkjλk ≥ w�A·j(x)

+∑m1

i�1
viFij(x), j � 1, : : : ,nζ

}
, (6)

where u � (u0, : : : ,um1) ∈ R
(m1+1)ny , ui ∈ R

ny for i �
0, : : : ,m1 and

V �
{
(u,v,w,z) : v ≥ 0, v0 � 1, vi(gi)∗ uivi

( )
≤ zi,

i � 0, : : : ,m1,
∑m1

i�0
ui � −B�w

}
:

Moreover, the infimum of (1) coincides with that of (6).

Proof. See Section 1 of the e-companion. w

Note that the linear structure of the uncertainty set
appears in the constraints of the dual formulation (6)
and that the convex structure of the adjustable varia-
bles is in the new uncertainty set V. When Fi·(x), fi(x),
and gi(y) are affine functions, Theorem 1 coincides
with the result in theorem 1 of Bertsimas and de
Ruiter (2016).

The obtained two-stage robust linear reformulation
(6) can be conservatively approximated via linear
decision rules. We impose the following linear deci-
sion rules to the wait and see variable λ,

λ(u, v,w, z) � ∑m1

i�0
Ψ�

i ui +
∑m1

i�0
tivi + Φ�w +∑m1

i�0
ηizi,

where Ψi ∈ R
ny×p, ti,ηi ∈ R

p for all i � 0, : : : ,m1 and
Φ ∈ R

m2×p. The resulting conservative approximation
of (6) constitutes a robust optimization problem:

inf
x∈X , ti
Ψi,Φ,ηi

sup
(u,v,w, z)∈V

v�F0(x) + d�λ(u,v,w, z)

−w�b(x) −∑m1

i�0
zi

s:t:∀(u,v,w, z) ∈ V :D�·j λ(u,v,w,z) ≥ w�A·j(x)
+∑m1

i�1
viFij(x) j � 1, : : : ,nζ,

(7)

where F0(x)�( f0(x),: : : ,fm1(x))�∈ R
m1+1, F·j(x) ∈ R

m1 and
D·j ∈ R

p are the jth column vectors of F(x) and D,
respectively. It follows from Theorem 1 that (7) consti-
tutes a conservative approximation of (1). Because the
uncertain parameters appear linearly in (7) and V is
convex, one can use standard robust optimization
techniques to obtain the following tractable reformu-
lation:

inf
x∈X

y0,yj,Ψi
γ ≥ 0, t,η,Φ

f0(x) + γ00g0
y0 +Ψ0d

γ00

( )
+ d�t0

s:t: γ0jg0
yj −Ψ0D·j

γ0j

( )
≤D�·j t0 j � 1, : : : ,nζ

fi(x) + γi0gi
y0 +Ψid

γi0

( )
+ d�ti ≤ 0 i � 1, : : : ,m1

Fij(x) + γijgi
yj −ΨiD·j

γij

( )
≤D�·j ti i � 1, : : : ,m1

j � 1, : : : ,nζ
γi0 + d�ηi � 1 i � 0, : : : ,m1
γij �D�·j ηi i � 0, : : : ,m1

j � 1, : : : ,nζ
By0 +Φd � b(x)
A·j(x) +Byj � ΦD·j j � 1, : : : ,nζ,

(8)

where yj ∈ R
ny for all j � 0, : : : ,nζ, Ψi ∈ R

ny×p, ti,ηi ∈ R
p

for all i � 0, : : : ,m1, γ ∈ R
(m1+1)×(nζ+1) and Φ ∈ R

m2×p.
Because of the introduction of the additional optimi-

zation variables (i.e., yj ∈ R
ny for all j � 1, : : : ,nζ, Ψi ∈

R
ny×p, ti,ηi ∈ R

p for all i � 0, : : : ,m1, γ ∈ R
(m1+1)×(nζ+1)

and Φ ∈ R
m2×p), there are significantly more optimiza-

tion variables in (8) than in the original Problem (1).
The original problem has only (nx + ny) variables but is
intractable because of its nature. The tractability of (8)
relies on the functions f0, g0, fi, Fij, and gi for all i � 1, … ,
m1 and j � 1, : : : ,nζ. For example, if all these functions
are conic quadratic functions, then (8) simply consti-
tutes a conic quadratic program. More generally, the
perspective function of a conically representable func-
tion can be represented in the same cone (Roos et al.
2018, theorem 8). Therefore, the perspective functions
do not lift Model (8) to a higher complexity class if the
original functions admit a conic representation.

de Ruiter, Zhen, and den Hertog: Dual Approach for Two-Stage Robust Nonlinear Optimization
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Finally, we remark that if the uncertainty set U in
(1) is nonpolyhedral, one can outer approximate U by
a polyhedral set before applying the approach devel-
oped in this section. For instance, if U is a conic repre-
sentable set, one can use the developed scheme in
Ben-Tal and Nemirovski (2001) to outer approximate
U efficiently via a bounded polyhedron.

3. Recover a Primal Linear Decision Rule
We show that we can obtain a feasible linear decision
rule for the primal Model (1) from the linear decision
rule model used to solve the dual Model (8). For the
proof, we need a novel perspective relaxation, which can
be seen as an extended version of Jensen’s inequality.

Lemma 1 (Perspective Relaxation). If the function f :
R

nx → R is convex, then for any x1, : : : ,xN ∈ R
nx , α ∈ R

N
+

and γ ∈ R
N
+ such that

∑N
i�1 αiγi � 1, we have

f
∑N
i�1

αixi

( )
≤∑N

i�1
αiγi f

xi
γi

( )
: (9)

Proof. For any x1, : : : ,xN ∈ R
nx and α ∈ R

N
+ , let γ ∈ R

N
+

satisfy
∑N

i�1 αiγi � 1. Then, we have

f
∑N
i�1

αixi

( )
� f

∑N
i�1

αiγi

γi
xi

( )
≤∑N

i�1
αiγi f

xi
γi

( )
,

where the inequality follows from Jensen’s inequality,
which applies because f is convex, and

∑N
i�1 αiγi � 1,

where αiγi ∈ [0, 1], for all i � 1, : : : ,N. w

We now show that a feasible primal linear decision
rule is directly obtained from variables that constitute
a solution to (8).

Theorem 2 (Primal Linear Decision Rule). If x, yj, j �
0, : : : ,nζ are feasible for (8), then x, y(ζ) � y0 +∑nζ

j�1 yjζj is
feasible for the primal linear decision rule Model (1), and its
objective value is at most the objective value of (8).

Proof. Suppose x, yj, j � 0, : : : ,nζ are feasible for (8).
We first show that x, together with linear decision rule
y(ζ) � y0 +∑nζ

j�1 yjζj, results in an objective value that is
at most as high as the solution for (8). Let
ζ ∈ U, Ψ0 ∈ R

ny×p, and let γ0j ≥ 0, j � 0, : : : ,nζ such that
γ00 +∑nζ

j�1 γ0jζj � 1. Then, we have

f0(x) + g0(y(ζ)) � f0(x) + g0 y0 +
∑nζ
j�1

yjζj

( )

� f0(x) + g0 y0 +Ψ0d+
∑nζ
j�1

(yj −Ψ0D·j)ζj
( )

≤ f0(x) + γ00g0
y0 +Ψ0d

γ00

( )

+∑nζ
j�1

γ0jζ0jg0
yj −Ψ0D·j

γ0j

( )
:

For the second equality, we used the fact that for any
Ψ0 ∈ R

ny×p, we haveΨ0d−∑nζ
j�1Ψ0D·jζj � 0 because for

any ζ ∈ U, we have Dζ � d. The last inequality follows
from Lemma 1. Using this relation, we can further
derive that

sup
ζ∈U

{
f0(x) + g0 y(ζ)( )}

≤ sup
ζ∈U

inf
γ0≥0

{
f0(x) + γ00g0

y0 +Ψ0d
γ00

( )

+∑nζ
j�1

γ0jζjg0
yj −Ψ0D·j

γ0j

( ) ∣∣∣∣∣ γ00 +
∑nζ
j�1

γ0jζj � 1

}

≤ inf
γ0≥0

sup
ζ∈U

{
f0(x) + γ00g0

y0 +Ψ0d
γ00

( )

+∑nζ
j�1

γ0jζjg0
yj −Ψ0D·j

γ0j

( ) ∣∣∣∣∣γ00 +
∑nζ
j�1

γ0jζj � 1

}
,

where in the second inequality, we used weak duality.
The obtained minimax problem is still intractable.
However, it can be conservatively approximated by
the following robust optimization problem:

inf
γ0≥0

sup
ζ0∈U

{
f0(x) + γ00g0

y0 +Ψ0d
γ00

( )

+∑nζ
j�1

γ0jζ0jg0
yj −Ψ0D·j

γ0j

( ) ∣∣∣∣∣ ∀ζ ∈ U : γ00 +
∑nζ
j�1

γ0jζj � 1

}

� inf
γ0≥0, t0,η0

{
f0(x) + γ00g0

y0 +Ψ0d
γ00

( )

+ d�t0

∣∣∣∣∣γ0jg0
yj −Ψ0D·j

γ0j

( )
≤D�·j t0, j � 1, : : : ,nζ

γ00 +
∑p
k�1

η0kdk � 1, γ0j �D�·j η0, j � 1, : : : ,nζ

}
:

The resulting objective function and constraint are
contained in (8). One can apply the same approxima-
tion steps to show feasibility of the constraints. That
is, analogously, it can be derived that for i � 1, : : : ,m1,
the ith constraint

ζ�Fi·(x) + fi(x) + gi(y(ζ)) ≤ 0

is satisfied because the following set of constraints is
satisfied in (8) for someΨi ∈ R

ny×p and ηi ∈ R
nζ :

fi(x) + γi0gi
y0 +Ψid

γi0

( )
+ d�ti ≤ 0

Fij(x) + γijgi
yj −ΨiD·j

γij

( )
≤D�·j ti j � 1, : : : ,nζ

γi0 + d�ηi � 1
γij �D�·j ηi j � 1, : : : ,nζ:

Finally, using standard techniques in robust optimiza-
tion, without perspective relaxation, one can show that
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A(x)ζ+By(ζ) � b(x) is satisfied whenever there exists
Φ ∈ R

m2×p that satisfies the remaining constraints of (8):

By0 +Φd � b(x)
A·j(x) +Byj �ΦD·j j � 1, : : : ,nζ: w

To relate the objective value of the primal linear deci-
sion rule Model (1) to the dual linear decision rule Model
(8), we use several conservative approximations in the
proof of Theorem 2. Hence, the true objective value of
the primal linear decision rule model could be lower
than the value obtained of (8); see Remark 1 in Section 3
of the e-companion for a numerical demonstration.

4. Lower Bounds on the Optimal Value
A model with a finite sample of scenarios can provide
a lower bound on the optimal value of (1). The
sampled version of the dualized model is

inf
τ, x∈X

λ1, : : : ,λS≥0
τ

s:t: f0(x) +
∑m1

i�1
vsi fi(x) + d�λs − (ws)�b(x)

−∑m1

i�0
zsi ≤ τ ∀s � 1, : : : ,S

∑p
s�1

Dkjλ
s
k ≥ (ws)�A·j(x)

+∑m1

i�1
(vsi )Fi,l(x) ∀j � 1, : : : ,nζ, s � 1, : : : ,S,

(10)

where {(u1,w1,v1,z1), : : : , (uS,wS,vS, zS)} is a finite sub-
set V with a single optimization variable λs for each sce-
nario s � 1, : : : ,S. Note that this is a standard convex
optimization model but only guarantees feasibility of
the here and now decisions for a small set of scenarios.
The question is of course how to choose scenarios to get
strong lower bounds. One way to obtain an effective
finite set is described by Hadjiyiannis et al. (2011).

If we have a set of scenarios {(u1,w1,v1,z1),
: : : , (uS,wS,vS, zS)} for the sampled version of the dual-
ized model, we can link and recover primal scenarios
{ζ1, : : : ,ζS} to obtain stronger lower bounds. To estab-
lish the link, we first dualize over λ1, : : : ,λK in (10),
which yields

inf
x∈X supζ∈U

sup
1≤s≤S

{
f0(x) +

∑m1

i�1
vsi (ζ�Fi·(x) + fi(x))

+ (A(x)ζ− b(x))�ws −∑m1

i�0
zsi

}
: (11)

For a fixed x, we can now obtain primal scenarios ζs

for each s as the maximizers of model (11):

ζs ∈ arg max
ζ∈U

∑m1

i�1
vsi ζ

�Fi·(x)( ) + (ws)� A(x)ζ − b(x)( )
{ }

:

(12)

The resulting set of scenarios {ζ1, : : : ,ζs} can then be
used in a sampled model of (1).

A special case arises for right-hand-side uncertainty,
where primal scenarios obtained by (12) provide
stronger bounds than the dual scenarios. We say that
there is only right-hand-side uncertainty if there is no
direct interaction between the here and now decisions
x and ζ. The more formal definition is given.

Definition 1 (Right-Hand-Side Uncertainty). Model (1)
has right-hand-side uncertainty if there exist F̄i· ∈ R

nζ

and Ā ∈ R
m2×nζ such that A(x) � Ā and Fi·(x) � F̄i· for

all x ∈ X , i � 1, : : : ,m1.
Using this definition, we can now formally prove

that primal scenarios obtained from dual scenarios
yield stronger lower bounds for right-hand-side
uncertainty.

Theorem 3 (Primal-Dual Scenarios). Let {(u1,w1,v1,
z1), : : : , (uS,wS,vS, zS)} be a finite set of dual scenarios and
{ζ1, : : : ,ζS} be a set of primal scenarios obtained from (12).
If there is only right-hand-side uncertainty in Model (1),
then the objective value of

inf
τ,x∈X
y1, : : : ,yS

τ

s:t: f0(x) + g0(ys) ≤ τ ∀s � 1, : : : ,S
(ζs)�F̄i· + fi(x) + gi(ys) ≤ 0

∀i � 1, : : : ,m1, s � 1, : : : ,S
Āζs +Bys � b(x) ∀s � 1, : : : ,S (13)

is at least as high as the objective value of (10).

Proof. By duality for linear programming, (10) is
equivalent to (11). The latter formulation can be writ-
ten as

inf
x∈X sup

s∈{1, : : : , S}

{
f0(x) +

∑m1

i�1
vsi (ζs)�F̄i· + fi(x)( )

+ (ws)�(Āζs − b(x)) −∑m1

i�0
zsi

}
, (14)

where ζs are the primal scenarios obtained by (12).
Because (us,ws,vs,zs) are in V for all s � 1, : : : ,S, the
value of (14) must be smaller than or equal to

inf
x∈X sups

sup
(us,ws,vs, zs)∈V

{
f0(x) +

∑m1

i�1
vsi ((ζs)�F̄i· + fi(x))

+ (ws)�(Āζs − b(x)) −∑m1

i�0
zsi

}
,

because we maximize over (us,ws,vs,zs) in the full V
instead of a subset. The value of this optimization
problem is, by dualizing over (us,ws,vs,zs), equivalent
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to (13). Hence, the optimal objective value is at least as
high as the optimal objective value of (10). w

The intuition behind the strength of the primal sce-
narios for right-hand-side uncertainty can be found in
the fact that primal scenarios have no direct interac-
tion with here and now decisions. That is, for right-
hand-side uncertainty only, there are no terms in
which both x and ζ appear. The dual model always
includes the interaction terms with here and now
decisions via the terms

∑m1
i�1 vsi fi(x) and (ws)�b(x), even

with right-hand-side uncertainty in the primal
sampled model. Therefore, dual scenarios could be
strong for some here and now decision x but very
weak for other here and now decisions. In that case,
the feasible region of the dual sampled model is larger
and therefore, results in a lower objective value and
thus, a weaker lower bound.

For linear adjustable robust optimization models,
Theorem 3 can also significantly improve lower
bounds. In Section 5 of the e-companion, we evaluate
the performance of the lower-bounding scheme pro-
posed in this subsection using the same numerical
experiment considered in Bertsimas and de Ruiter
(2016). Original optimality gaps reported for the
larger instances were more than halved when primal
scenarios were obtained using (12). For the largest
instance the linked primal scenarios reduced the gap
from 10.7% to 5.2%. We do note that the numerical
examples all satisfied the assumption of right-hand-
side uncertainty. If there is no right-hand-side uncer-
tainty, then a dual sampled model can yield tighter
lower bounds than its primal sampled counterpart. A
very small example showing this is given in Section 2
of the e-companion. Therefore, the assumption of
right-hand-side uncertainty is crucial in Theorem 3.
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