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Abstract

Expression quantitative trait locus mapping has been widely used to study the genetic regulation of gene expression in Arabidopsis
thaliana. As a result, a large amount of expression quantitative trait locus data has been generated for this model plant; however, only a
few causal expression quantitative trait locus genes have been identified, and experimental validation is costly and laborious. A prioritiza-
tion method could help speed up the identification of causal expression quantitative trait locus genes. This study extends the machine-
learning-based QTG-Finder2 method for prioritizing candidate causal genes in phenotype quantitative trait loci to be used for expression
quantitative trait loci by adding gene structure, protein interaction, and gene expression. Independent validation shows that the new
algorithm can prioritize 16 out of 25 potential expression quantitative trait locus causal genes within the top 20% rank. Several new features
are important in prioritizing causal expression quantitative trait locus genes, including the number of protein–protein interactions, unique
domains, and introns. Overall, this study provides a foundation for developing computational methods to prioritize candidate expression
quantitative trait locus causal genes. The prediction of all genes is available in the AraQTL workbench (https://www.bioinformatics.nl/
AraQTL/) to support the identification of gene expression regulators in Arabidopsis.
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Introduction
One of the main objectives of genetic research is to link traits to
genotypic variation. However, the path from genetics to observ-
able traits is not straightforward; instead, it goes through a net-
work of interconnecting intermediate phenotypes, such as gene
expression, protein levels, and metabolite levels (Civelek and
Lusis 2013). Studying the effect of genetic perturbation on these
intermediate phenotypes could improve our understanding of
how a trait is regulated. Following recent advances in omics tech-
nology, the effect of multiple genetic perturbations can now be
studied in a single experiment using linkage mapping or associa-
tion studies. One example is genetical genomics, where variation
in transcript levels is statistically associated with genetic varia-
tion in a population (Jansen and Nap 2001) to find so-called ex-
pression quantitative trait loci (eQTLs).

A mapped eQTL can be categorized as cis or trans based on its
location relative to the affected gene. Cis-eQTLs are mapped close
to the gene and are assumed to arise due to sequence polymor-
phisms in or near the gene itself, for instance, in cis-regulatory
elements (e.g. the promoter). In contrast, trans-eQTLs are mapped
far away from the target gene and emerge due to polymorphisms
in trans-acting factors (e.g. transcription factors) called expres-
sion quantitative trait genes or eQTGs (Brem et al. 2002; Rockman
and Kruglyak 2006). However, a trans-eQTL typically spans a large
genomic region with hundreds of candidate eQTGs. Experimental

fine mapping to narrow down the region (e.g. in Eshed and
Zamir 1995) is costly and laborious. As a result, only a few causal
genes have been identified in the thousands of eQTLs that have
been mapped for Arabidopsis thaliana, using different populations
and experimental conditions (Keurentjes et al. 2007; West et al.
2007; Cubillos et al. 2012; Snoek et al. 2012; Lowry et al. 2013;
Hartanto et al. 2020). As an in silico alternative, a prioritization
method can help to limit the number of candidate eQTGs for fur-
ther validation.

Several network-based methods have been used to find eQTGs
(e.g. in Keurentjes et al. 2007; Jimenez-Gomez et al. 2010; Hartanto
et al. 2020). These methods primarily aim to find master regula-
tor(s) at loci where trans-eQTLs for many genes are collocated,
known as eQTL hotspots (Breitling et al. 2008). In general, these
methods utilize a coexpression network built using genes having
an eQTL on the hotspot (called targets) and genes located in the
hotspot (called candidate eQTGs). Candidates are then usually pri-
oritized based on a network centrality measure, such as degree
centrality (i.e. the number of genes interacting with a candidate)
or closeness centrality (i.e. the average path length between a
candidate and all other genes) (Serin et al. 2016; Hartanto et al.
2020). Several candidate eQTGs have been identified in this way,
for example, GIGANTEA (Keurentjes et al. 2007), ELF3 (Jimenez-
Gomez et al. 2010), ICE1, and DEWAX (Hartanto et al. 2020). This
approach, unfortunately, only works for eQTL hotspots, not for
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regions that only have a small number of eQTLs. Another limita-
tion is the sole reliance on coexpression data: given the complex-
ity of gene expression regulation, the expression of the regulator
is not necessarily correlated to that of its targets, particularly in
eukaryotes (Lelli et al. 2012; Marbach et al. 2012). Therefore, addi-
tional data sources should be considered to capture possible
interactions between the regulator and its target.

Previously, a machine-learning-based method, QTG-Finder,
was developed to prioritize candidate genes for phenotype QTLs
in Arabidopsis (Lin et al. 2019). This method used features derived
from various gene properties, such as paralog copy number, gene
ontology (GO), and the number of SNPs, to rank the candidate
genes in the QTL interval. The model could recall 64% of
Arabidopsis QTGs when the top 20% ranked genes were consid-
ered. Further development of this method led to QTG-Finder2,
which used orthology information and allowed for gene prioriti-
zation in species with no or few known QTGs (Lin et al. 2020). We
were curious about the capability of this algorithm to prioritize
eQTGs, given that some QTGs are involved in gene expression
regulation, for example, ELF3 (Jimenez-Gomez et al. 2010), ERECTA
(Terpstra et al. 2010), FRI (Lowry et al. 2013), MAM1 (Jansen et al.
2009), and AOP2 (Jansen et al. 2009).

We propose eQTG-Finder, an extended version of QTG-Finder2
for eQTG prioritization, and apply the new algorithm to prioritize
eQTGs in Arabidopsis. eQTG-Finder contains 12 new features
based on protein–protein interaction (PPI), gene structure, and ex-
pression variation. Three of these features significantly improve
model performance, which is underscored by a feature impor-
tance analysis. We demonstrate the efficacy of this algorithm in
prioritizing eQTGs using an independent test set. Finally, we use
the new model to predict all Arabidopsis genes and make these
available in our Arabidopsis eQTL analysis platform AraQTL
(https://www.bioinformatics.nl/AraQTL/)(Nijveen et al. 2017) to
help identify gene expression regulators.

Materials and methods
QTG-Finder2 was developed for prioritizing causal phenotype
QTL genes (QTGs) in Arabidopsis (Lin et al. 2020). This algorithm
consists of 5,000 Random Forest classifiers (Ho 1998) trained us-
ing known QTGs and Arabidopsis orthologs of QTGs from other
species as positives and other genes as negatives. QTG-Finder2
prioritizes candidate genes based on features generated from
polymorphism data, functional annotation, cofunction networks,
and paralog copy numbers. Our method extends QTG-Finder2
with new features, and we train the resulting model using the
same sets of positive and negative genes. We evaluate the perfor-
mance in prioritizing candidate causal eQTL genes (eQTGs) in
Arabidopsis.

New features
We generate and include 12 new features in addition to the ones
already used by QTG-Finder2. These new features are based on
PPI, gene expression, and gene/protein structure.

PPI feature
Genes can be associated with other genes, for instance, because
the encoded proteins participate in the same pathway or are
mentioned in the same publication. The number of such interac-
tions a gene has could measure its propensity to be an eQTL
causal gene. We generate a network-based feature using
Arabidopsis PPI data from STRING-DB (Szklarczyk et al. 2019). The
data were downloaded from the download page of STRING-DB

version 11 (https://string-db.org/cgi/download). We only keep
high-confident interactions by removing those with STRING
scores below 700. We count the number of interactions of each
Arabidopsis gene as a feature.

Gene expression features
We previously showed that different stages of seed germination
each have a unique eQTL landscape pointing to stage-specific
regulators (Hartanto et al. 2020). This indicates that variation
in gene expression may help distinguish eQTL causal genes
from other (noncausal) genes. We, therefore, generate 7 features
based on the average and standard deviation of gene expression
across different tissues, accessions, and conditions (control vs.
treatments):

Tissues

We downloaded RNA-seq data for 9 different tissues (flower, root,
male organ, seeds, female organ, stem, leaf, apical meristem, and
root meristem) from CoNekT (http://www.evorepro.plant.tools/)
(Julca et al. 2020). For each gene, the standard deviation is calcu-
lated and used as a feature (“SD exp. Across tissues”).

Accessions

We used RNA-seq data measured in seedlings of 19 different
Arabidopsis accessions (Zu-0, Wu-0, Ws-0, Wil-2, Tsu-0, Sf-2,
Rsch-4, Po-0, Oy-0, No-0, Mt-0, Ler-0, Kn-0, Hi-0, Edi-0, Ct-1, Col-0,
Can-0, and Bur-0). These data are obtained from the Arabidopsis
RNA-seq Database (http://ipf.sustech.edu.cn/pub/athrna/)
(Zhang et al. 2020). The average and standard deviation were cal-
culated and used as features (“avg exp. across accessions” and
“SD exp. across accessions”).

Conditions

From the same database, we collected whole tissue RNA-seq data
of the wild-type Col-0 accession. We divided these data into
experiments with and without treatments to generate 4 features
for average and standard deviation of treatment and control con-
ditions (“avg exp across treatments,” “avg exp. across controls,”
“SD exp. across treatments,” and “SD exp. across controls”).

We removed datasets from the Arabidopsis RNA-seq Database
with a very low total read count and/or many unmapped reads.
The list of samples used to generate gene expression features can
be found in Supplementary Table 6.

Structural features
The structure of causal genes and encoded proteins might differ
from the other genes. Therefore, we generate 4 structural fea-
tures: the numbers of introns, total protein domains, unique pro-
tein domains, and splice variants per gene. Data were retrieved
from https://www.arabidopsis.org/ (accessed May 2021). The
number of introns and splice variants are counted in TAIR10’s
BLAST datasets. The other 2 features are generated from all.do-
mains.txt by counting each Arabidopsis gene’s total number of
domains and the number of unique domains.

Hyperparameter tuning
Model evaluation is based on QTG-Finder (Lin et al. 2019) and
QTG-Finder2 (Lin et al. 2020). Given the low number of known
eQTGs, we use known QTGs and Arabidopsis orthologs of QTGs
found in other species as positives and other genes as negatives,
similar to QTG-Finder2. We use hyperparameter tuning to deter-
mine the best parameter combination (the number of trees, mini-
mal samples split, and maximum number of features) using grid
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search and assess the area under the curve (AUC) of the receiver-

operating characteristic (ROC) curve in an extended version of

the 5-fold cross-validation framework. In this framework, the

positives are randomly re-split into a training and validation set

in a 4:1 ratio iteratively. Next, each set is combined with ran-

domly selected negatives. The ratio of positives and negatives is

an optimized hyperparameter. This splitting of positives is done

50 times, and for each positive set random selection of the nega-

tives was conducted 50 times. This extensive procedure (2,500

evaluations) makes that positive cooccurs with all negative at

least once with high probability. All machine-learning model

training and testing in this study is performed using Python’s

scikit-learn library version 1.0.2.

Selection of candidate eQTL genes and
independent validation of model performance
A list of candidate eQTGs in Arabidopsis is manually selected

from the literature. These genes are categorized as confirmed/

strong-candidate, hypothetical, or hypothetical-ortholog. Genes

that have been through experimental validation or have strong

evidence as eQTG are categorized into the confirmed/strong-

candidate group, for example, GIGANTEA (Keurentjes et al. 2007;

Snoek et al. 2012). Some confirmed/strong-candidate eQTGs are

used as positive in QTG-Finder2, and we remove these from the

positive instances to be used as validation genes. Meanwhile,

genes that were not experimentally validated but are predicted to

play a role as eQTG through in silico analysis (e.g. network analy-

sis) are categorized as hypothetical, for example, ICE1 and

DEWAX (Hartanto et al. 2020). If a gene’s ortholog is considered

an eQTG in another species, it is categorized as hypothetical-

ortholog; for example, NF-YC4 is found as an eQTG in potatoes

(van Muijen et al. 2016). In total, this yields 25 candidate eQTGs

in Arabidopsis: 6 confirmed/strong-candidate, 4 hypothetical,

and 15 hypothetical-ortholog genes (Supplementary Table 1). We

ensure that these candidates are not used for hyperparameter

tuning or cross-validation.
Independent validation is performed using the best combina-

tion of parameters (Supplementary Table 5). We train 5,000

Random Forest classifiers using all positives but different sets of

negatives, with a positive: negative ratio of 1:200 to approximate

the ratio of causal and noncausal genes in real eQTLs. The mod-

els are then applied to each candidate eQTG and other genes lo-

cated within 2 Mbp around it (1-Mbp upstream and 1-Mbp

downstream). For these genes, the average probability of being

causal is calculated over 5,000 models. These average probabili-

ties are then ranked for prioritization, and the rank is calculated

as a performance measure. For example, a rank of 10% indicates

that 10% of genes in the eQTL region rank higher than the candi-

date.

Feature importance analysis
Feature importance is determined using a leave-one-out analysis.

Iteratively, each feature is removed from the dataset, and a

model is trained using the reduced dataset. The AUC difference

between the full model (with all features) and the reduced model

is then calculated and used to indicate the feature importance. In

addition, we calculate feature importance for clusters of corre-

lated features. Features are clustered if they have a pairwise

Pearson correlation equal to or larger than 0.6. We use the previ-

ous cross-validation framework and the best parameters to mea-

sure the model performance in this analysis.

Data analyses
Pairwise Pearson correlation coefficients between features are
calculated using the Pandas (version 1.3.5) DataFrame.corr
method in Python. Pearson Wilcoxon rank sum test analyzes dif-
ferences in the median between positive and negative genes for
the 12 new features. The test is conducted in R using the base
“wilcox.test” function. GO enrichment analysis for the top and
bottom 5% predicted causal genes is performed using TopGO in R
(Alexa et al. 2006) using the algorithm’s default “weight01” pa-
rameter, which is the mixture of “elim” and “weight” methods.
The Python version used for the analyses is 3.8.12, and the R ver-
sion is 4.0.2.

Results
The QTG-Finder2 algorithm could rank phenotype QTL causal
genes higher than other genes in a cross-validation setting
(AUC¼ 0.81) and recall 80% independent curated causal genes
when the top 20% of genes in the QTL are considered (Lin et al.
2020). In this study, we extend QTG-Finder2 with a set of new fea-
tures and evaluate its performance in prioritizing expression
QTGs.

New features improve causal gene prediction
performance
To improve model performance and better tailor it fit for eQTG
prioritization, we added 12 new features based on gene expres-
sion, structure, and PPI in the QTG-Finder2 algorithm. Most new
features only show a low to moderate correlation with the exist-
ing ones (Supplementary Fig. 1), indicating that we add new in-
formation to the model. Figure 1 shows feature distributions for
the causal genes as the positive class (55 known QTGs and
145 Arabidopsis ortholog of QTGs from other species) and the
other genes in the genome as the negative class (n¼ 26,970). For
most features, the causal genes’ median value is significantly
different from that of the other genes in the genome (see
Supplementary Table 2). The expression of causal genes is more
variable than that of other genes. Moreover, causal genes tend to
have more and varied protein domains. Causal genes also have
slightly more introns than other genes. These differences be-
tween the causal genes and the other genes in the genome pro-
vide a first indication of potential discriminating features for the
machine-learning model. We assess the performance of the
model with and without new features using a cross-validation
framework.

To assess the contribution of new features to the model per-
formance, we compare the AUC of the ROC between the original
QTG-Finder2 and the extended model that we labeled eQTG-
Finder, and for the extended model with the class labels permu-
tated, as a control (Fig. 2a). The AUC was measured in an ex-
tended cross-validation setting over 2,500 different combinations
of positive and negative gene sets. The results show that eQTG-
Finder (AUC¼ 0.859 6 0.008) performs better than QTG-Finder2
(AUC¼ 0.801 6 0.01) and the control model (AUC¼ 0.502 6 0.014).
Adding new features thus allows the model to rank causal genes
higher than the other genes. The next section analyzed model
performance in prioritizing eQTG using selected candidate
eQTGs.

To determine how the new features contribute to causal gene
prediction, we calculate feature importance using a leave-one-
out approach (Fig. 2b). Each feature is iteratively removed from
the dataset, and the reduced model’s performance is compared
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to that of the model containing all features. The drop in AUC
indicates a feature’s importance. A positive AUC drop means re-
moving that feature decreases the model’s predictive capability.
The result shows that 4 of the most important features in the
model are the new ones: the number of unique domains, the PPI
count, the intron count, and the domain count. However, the
large standard deviation for the domain count AUC drop indi-
cates that the contribution of this feature is not consistent over
different samples of positive and negative sets.

Some features in the model are highly correlated
(Supplementary Fig. 1). When one of these features is removed to
calculate feature importance, the reduced model will resort to
using these correlated features. As a result, the removed feature
might be assigned lower importance than it should have in the
model (Gregorutti et al. 2017). To avoid this, we calculated feature
importance for clusters of features. The result (Supplementary
Fig. 3) shows a slight change in the importance of some features,
for example, “network weight” is now among the top important
features since it is correlated with “ppi count.”

eQTG-Finder ranks most strong eQTG candidates
better than QTG-Finder2
To evaluate eQTG prioritization performance, we again train the
original QTG-Finder2 and the extended eQTG-Finder model
and use them to rank selected potential eQTGs (Supplementary
Table 1). Models are trained using all positives (known QTGs and
Arabidopsis ortholog QTGs from other species). We repeated the
training 5,000 times with different negative samples to select
each negative gene at least once in training with high probability.
These models rank each of the 25 potential eQTGs with their

surrounding genes within a 2-Mbp window as a hypothetical
eQTL region. These potential eQTGs are selected manually from
the literature and grouped based on the evidence of being causal
eQTL genes (see Materials and Methods for detail). Gene ranking is
based on the average probability of a gene being causal, as pre-
dicted by the 5,000 models. We use the rank to indicate the per-
centage of genes on the eQTL with higher ranks than the gene of
interest (i.e. a rank of 10% indicates that 10% of genes in the
eQTL region rank higher than the gene of interest). We predefine
cutoffs of 5%, 10%, and 20%, in each of which we compare recall
between QTG-Finder2 and eQTG-Finder. These recalls for differ-
ent cutoffs can be used by researchers to decide the proportion of
top prioritized genes for further experimental validation.

The QTG-Finder2 model recalls 16%, 28%, and 52% of eQTG
candidates if the top 5%, 10%, and 20% ranked genes are consid-
ered (Fig. 3). With added features, eQTG-Finder ranks eQTGs
slightly better with percentages of 36%, 52%, and 64% respec-
tively. The eQTGs vary in their evidence of being causal genes
(see Materials and Methods). Four out of 6 strong eQTG candidates
(AOP2, ERECTA, GIGANTEA, and MAM1) rank within the top 5% by
eQTG-Finder compared to only one (ERECTA) by QTG-Finder2.
The other 2 strong candidates, FRI and ELF3, were ranked at
10.2% and 61.2% by eQTG-Finder. The ranks of 16 genes are im-
proved by eQTG-Finder, 8 are worse, and 1 stays the same
(Supplementary Table 3). The rank of 4 out of 6 strong eQTG can-
didates improves, with GIGANTEA one of the most drastic
improvements, moving from 53.7% to 4.2%. On the other hand,
the rank of ERECTA drops (0.4–2.8%) but remains in the top 5%.
Both models rank another strong eQTG candidate ELF3 poorly (at
44% by QTG-Finder2 and 61.2% by eQTG-Finder). As the number

Fig. 1. Distribution of 12 new features for known causal genes as the positive class (n¼ 200; 55 known QTGs and 145 orthologs of QTGs from other
species) and the remaining genes in the genome as the negative class (n¼ 26,970). Significance of differences in medians was assessed using the
Wilcoxon rank sum test (*P � 0.05; ****P � 0.0001). Red dots indicate means. SD, standard deviation; Exp., gene expression.
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of strong eQTG candidates is limited, we also show the prioritiza-
tion of hypothetical and hypothetical orthologs eQTGs. Even
though the improvement was not as large as for the strong eQTG
candidates, eQTG-Finder still ranks most of the hypothetical and
hypothetical-ortholog eQTGs in the top 10%.

Despite the decent overall performance in candidate eQTGs
prioritization, we notice that eQTG-Finder performance in priori-
tizing phenotype QTGs is still inconsistent. Using the initial inde-
pendent validation set, only 7 out of 11 QTGs are ranked within
the top 20% by eQTG-Finder, compared to 9 by QTG-Finder2
(Supplementary Fig. 2).

To get an overview of eQTG-Finder predictions, we inspect the
distribution of the average predicted probability of being causal
for all Arabidopsis genes (Fig. 4). This skewed toward a low value,
with a median value of 0.007 (note that the x-axis of Fig. 4 is on a
log10 scale). Twenty-one of the 25 genes in the validation set have
a predicted probability higher than the median. ELF3 (proba-
bility¼ 0.0045) is the only strong eQTG candidate with a predicted
probability lower than the median.

A GO enrichment analysis shows that the top 5% genes in the
distribution are significantly enriched (false discovery rate P-
value <0.05) for 67 GO terms (Supplementary Table 4), most of
which are related to response to abiotic and biotic stresses, such
as “defense response to bacterium,” “defense response to fungus,”
and “response to wounding.” The term “regulation of tran-
scription” is also enriched, suggesting that transcription factors
are likely to be causal, consistent with the feature importance

analysis result where “is_TF” is among the most important fea-
tures. Meanwhile, the bottom 5% are not enriched for any term.

eQTG-Finder is available in AraQTL to support
new hypotheses on the gene expression
regulation
To make eQTG-Finder results easily accessible for researchers,
we include predicted probabilities of causality (herewith referred
to as eQTG-Finder score) for all Arabidopsis genes in AraQTL, our
Arabidopsis eQTL data workbench (Nijveen et al. 2017). Prioritizing
genes using QTG-Finder2 is not straightforward as it requires
users to prepare a list of candidate genes and command-line us-
age skills. Integrating the eQTG-Finder score in AraQTL facilitates
users to interactively identify gene expression regulators. For ex-
ample, we here discuss a case on predicting a new potential regu-
lator for GLK2 using the eQTG-Finder score and other interaction
evidence in AraQTL. GLK2 is a GARP nuclear transcription factor
involved in light-controlled signaling (Waters et al. 2009). Liu et al.
(2022) recently found that HY5 is the regulator of GLK2 based on
the fact that HY5 is a well-known regulatory switch for light sig-
naling in literature. The same conclusion can also be derived us-
ing the Serin et al. (manuscript in preparation) eQTL experiment
and prior knowledge data in AraQTL. Another approach to find-
ing potential regulators of GLK2 can be made in AraQTL using the
eQTG-Finder score. In a Kas � Tsu eQTL experiment on leaf tis-
sue (Lowry et al. 2013), GLK2 has an eQTL on the beginning of
chromosome 1, indicating the location of the potential

Fig. 2. a) AUC of the ROC of the original QTG-Finder2 model (blue) and extended eQTG-Finder model (green), and eQTG-Finder trained with randomized
class labels (red) as a control. Transparent areas indicate standard deviations over 2,500 repetitions. b) Feature importance is measured using leave-
one-out analysis. A positive AUC drop indicates that the removal of the feature reduces the model’s predictive capability. Feature names in bold and
with dark blue bars indicate new features. Error bars indicate standard deviations over 2,500 repetitions.
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Fig. 3. Rank comparison of 16 candidate eQTGs using the model with new features (eQTG-Finder) and the original model (QTG-Finder2).

Fig. 4. The density plot of probabilities of being causal predicted by eQTG-Finder for all Arabidopsis genes. Text labels point to the probability of the gene
in the plot. The x-axis is on a log10 scale.
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regulator(s) (Fig. 5, top). As many as 257 candidate regulatory
genes are present in the eQTL (Fig. 5, bottom). We can filter out
weak candidates by constructing a network of GLK2 connected to
its potential regulators on the eQTL based on prior knowledge,
such as PPI and gene annotation (Hartanto et al., manuscript in
preparation). Here, we threshold the eQTG-Finder score to re-
move weak candidates. Moreover, eQTG-Finder can prioritize the
remaining 14 genes by selecting the “Bipartite by eQTG-Finder
score” network layout and ordering genes by their score. The re-
sult suggests some promising GLK2 regulator candidates ranked
at the top, for example, a transcription factor LHY in second
place. Until now, LHY has not been reported to regulate GLK2.
However, this gene is a promising GLK2 regulator candidate as
the network shows that it has a transcription factor binding
site(s) on the GLK2 promoter (O’Malley et al. 2016). Moreover, LHY
is involved in light signaling (Kim et al. 2003; Joo et al. 2017). This
example suggests that integrating the eQTG-Finder score in
AraQTL can help infer new regulatory interactions.

Discussion
The concept of genetical genomics was first coined 2 decades ago
(Jansen and Nap 2001), and numerous Arabidopsis eQTL data sets
have been published since then (Nijveen et al. 2017). The aim of
genetical genomics is to pinpoint genomic regions associated
with gene expression variation (eQTL) and ultimately unravel
genes involved in expression regulation. However, identifying
causal genes (eQTGs) is difficult because of the often large geno-
mic regions they span, regularly harboring dozens or even hun-
dreds of candidates. The regions can be narrowed down by
experimental fine-mapping (Eshed and Zamir 1995), and the
remaining candidate genes can then be validated using func-
tional genomics methods (e.g. using CRISPR-Cas9-mediated dele-
tions as in Evans and Andersen 2020). However, performing these
experiments for thousands of eQTLs is very costly. Using geno-
mics and annotation data, a computational prioritization method
can help identify candidate eQTGs. This study extends an exist-
ing machine-learning algorithm, QTG-Finder2, to address this is-
sue and evaluates its performance in prioritizing eQTG. eQTG-
Finder outperforms QTG-Finder2 in distinguishing positive causal
genes from the other genes in the genome based on a cross-
validation setting (Fig. 2a). Moreover, eQTG-Finder prioritizes
most eQTGs in eQTLs better than QTG-Finder2 in an independent
validation test (Fig. 3). We make eQTG-Finder scores available in
AraQTL to help researchers interactively identify key regulators.

The key improvement of eQTG-Finder lies in the inclusion of
12 new features based on gene expression, structure, and interac-
tions. Given the complexity of the resulting model, it is not
straightforward to assess how these features improve eQTG-
Finder in gene prioritization (Petch et al. 2022). We calculated the
contribution of each feature in the model using a leave-one-out
feature importance analysis (see Materials and Methods). This
showed that the number of unique protein domains, the number
of PPI and the number of introns are in the top 5 most contribut-
ing features in the model. We showed that known causal genes
tend to have more domains, PPI partners, and introns than other
genes (Fig. 1). These new features may provide insight into what
distinguishes causal and noncausal genes. For instance, since
protein domains determine protein functions (Enright and
Ouzounis 2001; Vogel et al. 2004), the presence of multiple

domains in a causal gene could indicate involvement in a wide
range of biological functions. The diverse functions of causal
genes could also be reflected in their larger number of PPI part-
ners than noncausal as genes perform their function in concert
with other genes (Ito et al. 2001). The number of introns reflects
the number of exons in a gene. Several studies demonstrated
that exons play a role in the evolution of domain architectures
through exon-shuffling, leading to new combinations of domains
with new functions.

Variation in phenotype can be traced back to variation in gene
expression (Skelly et al. 2009; Albert and Kruglyak 2015). For this
reason, we included features based on the standard deviation
(SD) of gene expression across different Arabidopsis accessions,
tissues, and conditions. Even though the medians between causal

Fig. 5. Prioritization of GLK2 regulator using the eQTG-Finder score in
AraQTL. (Top) eQTL profile of GLK2 from the Lowry et al. (2013)
experiment. The eQTL region on chromosome 1 (shaded in pink)
pinpoints the location of potential GLK2 regulator(s). (Bottom) Prior
knowledge network connecting GLK2 (blue node) with candidate
regulators (yellow nodes) based on prior knowledge data. Here, the
eQTG-Finder score is used to order candidates based on their probability
of being causal.
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and other genes are significantly different (Fig. 1), features based
on SD of expression have low importance in the model (Fig. 2a). A
possible explanation for this could be that features based on ex-
pression are correlated (Supplementary Fig. 1) and, therefore,
their importance is underestimated (Gregorutti et al. 2017). We,
therefore, removed all of these correlated features and re-
calculated the feature importance. The feature importance, how-
ever, remains the same. Nevertheless, we do not have evidence
that these features negatively affect the prediction performance;
hence, we kept them in the model.eQTG-Finder uses known
QTGs (i.e. causal genes for a phenotype QTL) as positive instances
for model training because of the limited number of known
eQTGs. A recent finding in humans showed that cis-eQTLs and
GWAS genes are different due to the detection bias of the assays
(Mostafavi et al. 2022). This detection bias could also hold for
trans-eQTL and phenotype QTL genes in Arabidopsis. However,
we argue that QTGs are still relevant for prioritizing eQTG since
variation at the molecular level (e.g. in gene expression, metabo-
lite, or protein level) can be propagated and cause variation at
higher phenotypic levels (Fu et al. 2009; Civelek and Lusis 2014).
For example, genetic variations in AOP2 and MAM1 cause cis-
eQTLs for gene expression and metabolite QTLs for aliphatic glu-
cosinolate biosynthesis, which confer insect resistance in
Arabidopsis (Wentzell et al. 2007; Jansen et al. 2009). Both genes
were prioritized in the top 5% by eQTG-Finder. This result sug-
gests that eQTG-Finder can identify QTLs for other molecular
phenotypes, including metabolite and protein.

A lack of model interpretability may hamper a user’s compre-
hensive evaluation and assessment of the prioritization results.
Regardless of the good performance, it is difficult to precisely un-
derstand how eQTG-Finder classifies certain genes as causal and
others as noncausal, a typical issue for a complex model like
Random Forest (Petch et al. 2022). Instead, in AraQTL, we provide
additional sources of evidence to support the eQTG-Finder priori-
tization results (Hartanto et al., unpublished). For example,
eQTG-Finder prioritizes transcription factor LHY as the regulator
of GLK2 (Fig. 5). The network visualization in AraQTL showed that
LHY is connected to GLK2 by transcription factor binding site evi-
dence, indicating that LHY may bind to the GLK2 promoter and
modulate its expression. Incorporating eQTG-Finder in the
AraQTL web interface facilitates researchers to identify key regu-
lators for genes of interest without the need for computational
skills.

In the independent validation, some eQTG candidates were
ranked poorly by eQTL-Finder (Fig. 3). Low-ranked assumed
eQTG genes from the hypothetical and hypothetical-orthologs
groups might not be actual eQTGs; however, the strong eQTG
candidate ELF3 was also ranked poorly by both eQTG-Finder
(61.2%) and QTG-Finder (44%). ELF3 encodes a nuclear protein
and was demonstrated to regulate gene expression leading to
shade-avoidance response (Jimenez-Gomez et al. 2010). The com-
plexity of the eQTG-Finder algorithm makes it difficult to dissect
the prediction for ELF3. We investigated 2 of the most important
features and noticed that this gene only has 1 identified protein
domain and 1 paralog copy number, which is lower than the me-
dian values of causal genes (4 and 17, respectively).

We observed that eQTG-Finder prioritization of candidate
QTGs in independent validation was slightly worse compared to
QTG-Finder2 (Supplementary Fig. 2), despite its better perfor-
mance in cross-validation (Fig. 2b). The new expression-based
features might bias eQTG-Finder toward prioritizing eQTGs com-
pared to QTGs, but the complexity of the model makes it difficult
to learn exactly how these features affect prioritization.

Moreover, the number of 11 candidates we used for validation is

too low to allow a very precise assessment of the general perfor-

mance of eQTG-Finder in prioritizing QTGs.
Likely, some features associated with eQTG are still missing in

our model or underrepresented in our set of positive instances.

Since the regulator-target relationship is specific, we expect that

features representing gene–gene/PPI [e.g. STRING scores

(Szklarczyk et al. 2019), transcription factor binding sites (Tian

et al. 2020), and GO semantic similarity (Yu 2020)] are relevant for

prioritizing eQTG. Including these would shift the prioritization

of generic eQTGs based on gene properties to the prioritization of

eQTGs for a specific target using features based on gene-pair rela-

tionships. This is similar to the approaches of Wong et al. (2004)

and Pandey et al. (2010), who predicted genetic interaction using

gene pair relationships in yeast. The number of positive examples

(i.e. confirmed eQTG-target pairs) is currently too small to prop-

erly train such a model for Arabidopsis. However, as data regard-

ing genetic regulation is steadily increasing, we are optimistic

that this strategy will be possible in the future.

Data availability
The code and data for the analysis and visualization are available

at the Wageningen University GitLab repository (https://git.wur.

nl/harta003/eqtg-finder). eQTG-Finder prioritization is available

at AraQTL (https://www.bioinformatics.nl/AraQTL/; Nijveen et al.

2017).
Supplemental material is available at G3 online.
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Hackenberg D, Steinbachová L, Michaelidis C, Pereira SG, Misra

CS, et al. Comparative transcriptomic analysis reveals conserved

transcriptional programs underpinning organogenesis and repro-

duction in land plants. bioRxiv. 2020.

Keurentjes JJB, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G,

Snoek LB, Peeters AJM, Vreugdenhil D, Koornneef M, Jansen RC, et

al. Regulatory network construction in Arabidopsis by using

genome-wide gene expression quantitative trait loci. Proc Natl

Acad Sci U S A. 2007;104(5):1708–1713.

Kim JY, Song HR, Taylor BL, Carre IA. Light-regulated translation

mediates gated induction of the Arabidopsis clock protein LHY.

EMBO J. 2003;22(4):935–944.

Lelli KM, Slattery M, Mann RS. Disentangling the many layers of eu-

karyotic transcriptional regulation. Annu Rev Genet. 2012;46:

43–68.

Lin F, Fan J, Rhee SY. QTG-Finder: a machine-learning based algo-

rithm to prioritize causal genes of quantitative trait loci in

Arabidopsis and rice. G3 (Bethesda). 2019;9(10):3129–3138.

Lin F, Lazarus EZ, Rhee SY. QTG-Finder2: a generalized machine-

learning algorithm for prioritizing QTL causal genes in plants. G3

(Bethesda). 2020;10(7):2411–2421.

Liu D, Zhao D, Li X, Zeng Y. AtGLK2, an Arabidopsis GOLDEN2-LIKE

transcription factor, positively regulates anthocyanin biosynthe-

sis via AtHY5-mediated light signaling. Plant Growth Regul. 2022;

96(1):79–90.

Lowry DB, Logan TL, Santuari L, Hardtke CS, Richards JH, DeRose-

Wilson LJ, McKay JK, Sen S, Juenger TE. Expression quantitative

trait locus mapping across water availability environments

reveals contrasting associations with genomic features in

Arabidopsis. Plant Cell. 2013;25(9):3266–3279.
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