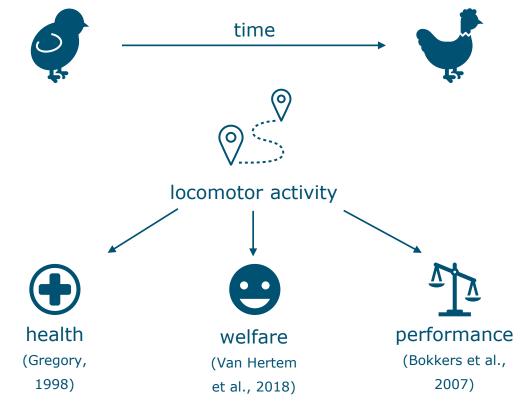
Activity tracking in broilers

Animal Welfare Group Nigeria Webinar

March 16th 2022, Malou van der Sluis



Acknowledgements

Background

Sensor technologies

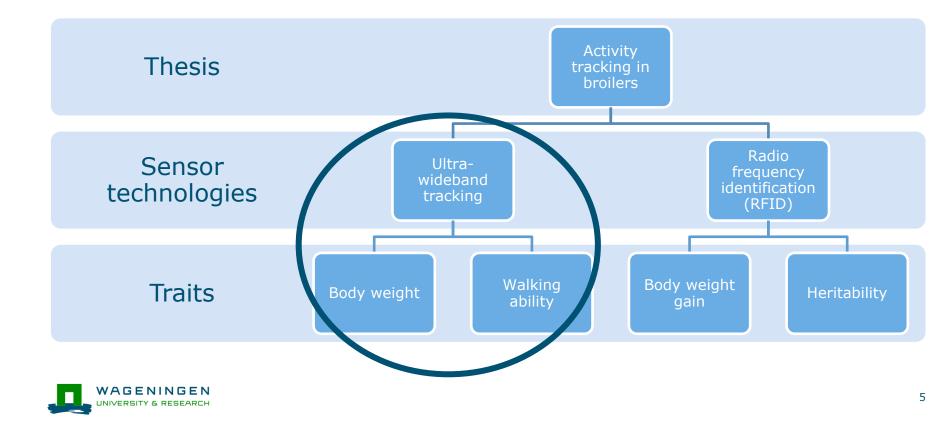
Ultra-wideband (UWB) tracking

a) Tag: 3.8 x 3.9 cm, ~ 25 g

b) From 2 weeks old

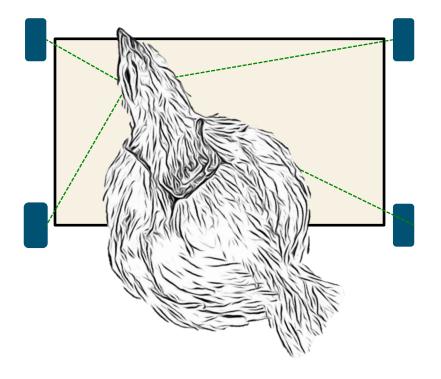
c) Coordinates

Radio frequency identification (RFID)


a) Tag: 15 x 3.7 mm, < 1 g

b) From 1 day old

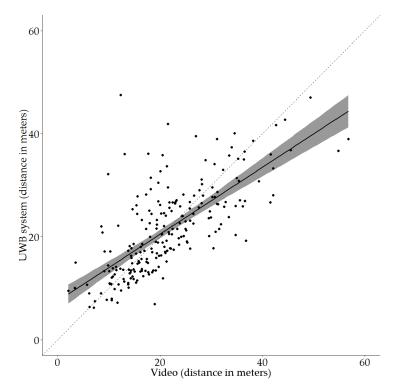
c) Absence / presence



Overview of the project

Ultra-wideband tracking

- Tag sends out signal every ~7 seconds
- Triangulation of signal
- Distance moved over time from TrackLab software



Validation of the UWB system

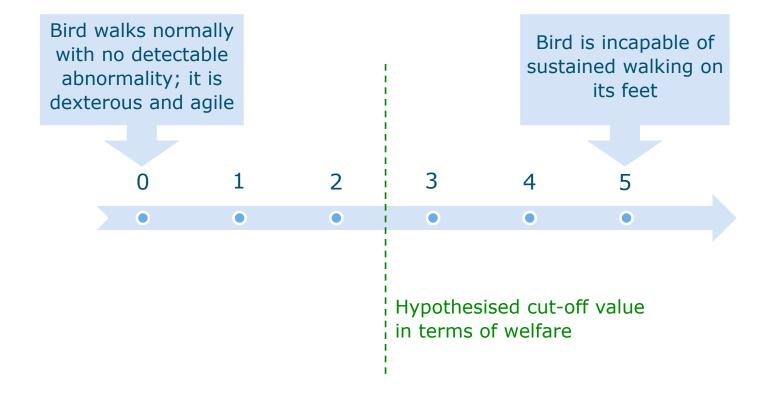
Correlation with video ~0.71

- Overestimation at low distances
 - Noise
- Underestimation at high distances
 - Part of track missed

van der Sluis et al. (2019) 7

Linking activity to gait

Broiler gait



- High body weight and fast growth \rightarrow leg health problems¹
- Negatively affects welfare: painful, reduction in several behaviours including activity²

9

Manual gait scoring

Activity as a proxy for gait

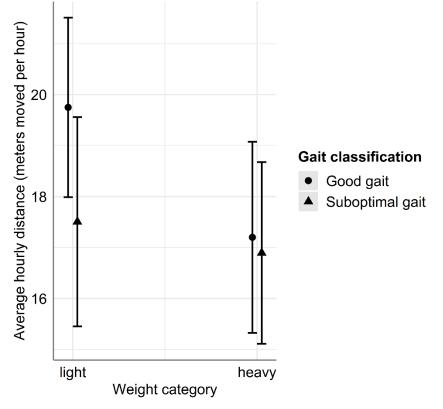
- Manual scoring: time-consuming and subjective
- Automated methods available but often at group-level¹
- Correlation between activity and leg health²
 - Worse gait \rightarrow lower activity

Automated recordings of individual activity as a proxy for individual gait?

¹ E.g., Aydin et al. (2010); Dawkins et al. (2012) ² Weeks et al. (2000); van Hertem et al. (2018) 11

Relationship with gait: methods

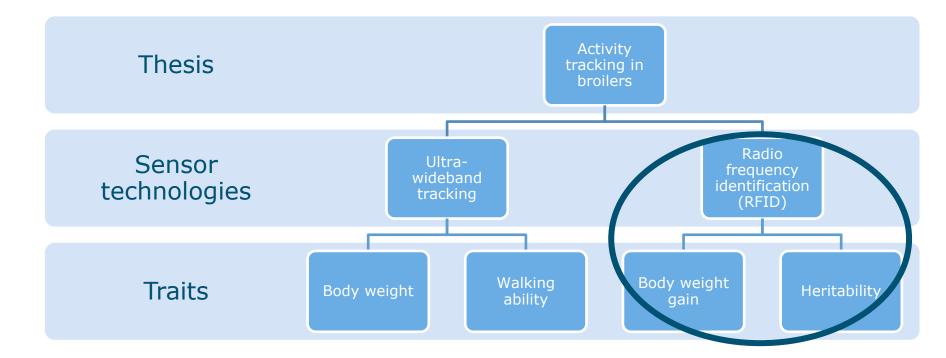
137 broilers


- 4 consecutive production rounds with 17 days of UWB location data (16-32 days old)
- Categorised as lightweight (L) or heavyweight (H) at ~2 weeks old
- Gait scored at 33-35 days old; categorised as good gait (GG; 0-2) or suboptimal gait (SG; 3-5)

	L	н	Total	
GG	46	33	79	
SG	20	38	58	

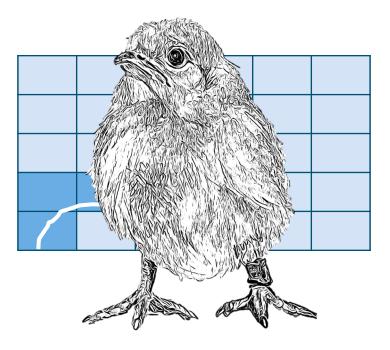
Results

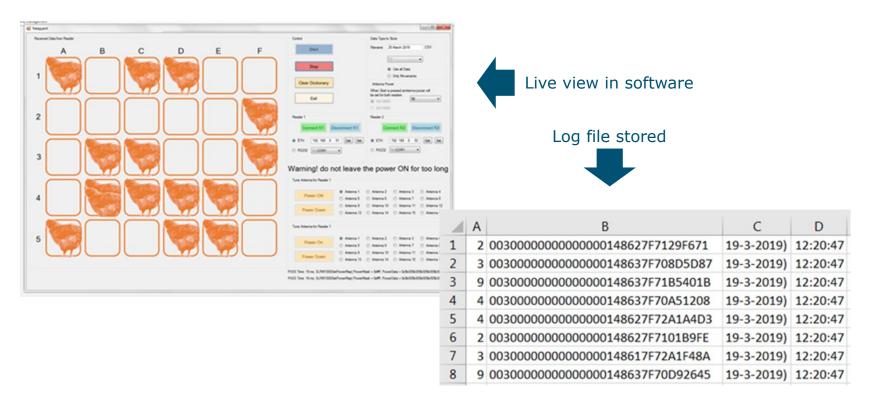
- Linear regression with only gait
 - GG birds higher average activity (estimate = 1.12 ± 0.41, p = 0.007)
 - No difference in slope
- Linear mixed effects model \rightarrow



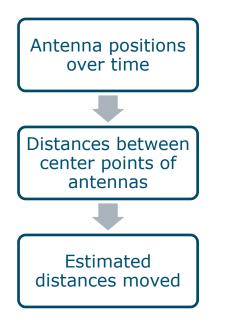
Discussion

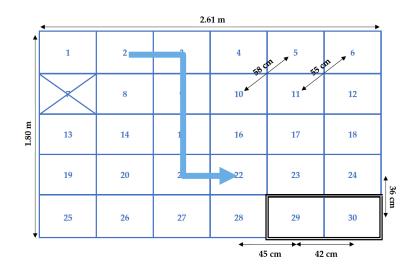
- Lower activity for SG matches with literature¹
 - Higher activity \rightarrow lower prevalence of gait problems²
 - Worse gait \rightarrow lower activity e.g. due to pain³
- Relationship with body weight
 - Possibly heavier birds already limit their activity
- Remains difficult to distinguish GS groups -measure earlier in life?

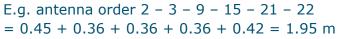

Overview of the project


RFID to track broilers

- Passive high frequency RFID
- RFID tags fitted to leg
 - 15 x 3.7 mm, < 1 gram
- Grid of 30 antennas
- Used 1 sample/second

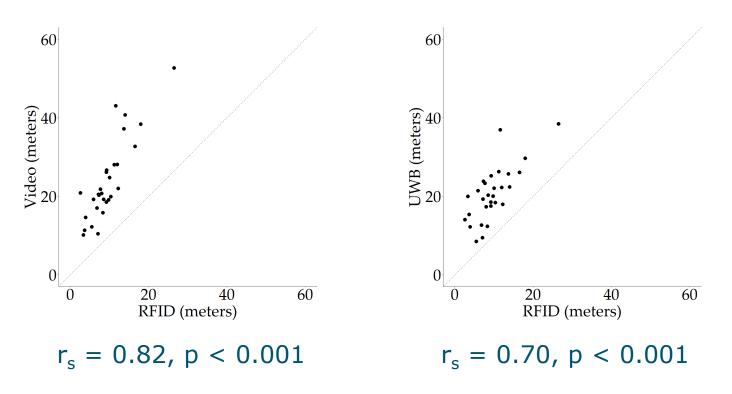

Raw RFID recordings





van der Sluis et al. (2020) 17

Extracting activity information



van der Sluis et al. (2020) 18

Validation of the RFID system

van der Sluis et al. (2020) ¹⁹

Is activity heritable?

Heritability of activity

- Activity as a proxy for other traits and in breeding programs → needs to be heritable
 - E.g., laying hens at 5 weeks old: 0.33-0.38¹
 - But not at a very young age or throughout life

Pen with ~80 broilers; 5 rounds of data

Body weight every week

Results

- Activity is heritable
- Lower heritability observed when the birds are older
- Strong genetic correlations between adjacent weeks

Dynamic descriptors of activity

Relationship activity and body weight

- Trade-off between increasing growth rates and reducing leg problems
 - Higher BW linked to lower activity (van der Sluis et al., 2019)
 - Hypothesised positive effects of increased activity on leg health (Reiter & Bessei, 2009; Bizeray et al., 2010; Kaukonen et al., 2017)

What is the relationship between activity early in life and body weight gain?

Relationship activity and body weight

- Behaviour is complex and multi-dimensional (Asher et al., 2009)
- Mean behaviour levels alone may provide insufficient insight to detect differences (e.g. Dawkins et al., 2012)
- Dynamic descriptors of activity may be informative

Same setup as earlier

Pen with ~80 broilers; 5 rounds of data

Body weight every week

Dynamic descriptors of activity

- Focussing on first 2 weeks
 - Mean distances moved
 - Skewness asymmetry of distribution
 - Root mean square error (RMSE) differences between model-predicted and observed values
 - Autocorrelation degree of correlation between time series and the same series set off by one time unit

• Entropy

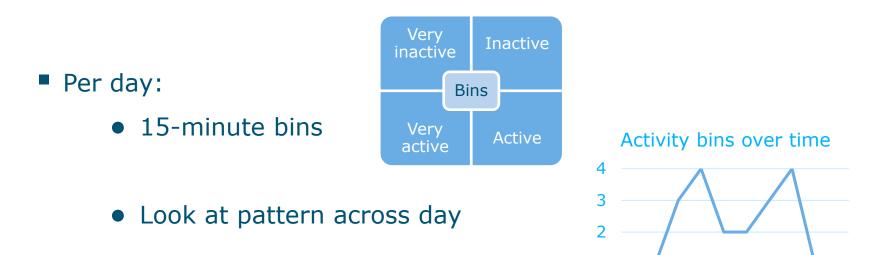
- Average daily gain

Entropy

Two time series

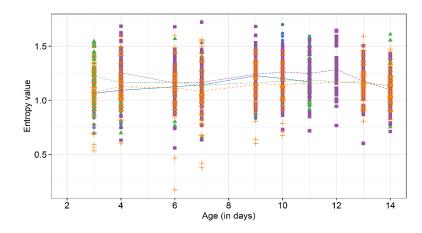
- A: 0101010101
- B: 0110100011
- Mean, variance et cetera are the same
- But series A is easy to continue or describe (5x "01"), while B is not

Sample entropy = a measure of the randomness or regularity of time series based on the existence of patterns



Interpretation of entropy values

- Lower values indicate regularity
- Higher values indicate randomness


Calculating entropy values

• Calculate entropy value for each day

Results

Round - 2 · 4 - 4 - 5

Activity descriptor	tau	95% CI	z value	p value
Mean distance	-0.065	-0.131 - 0.004	-1.724	0.085
Skewness	0.016	-0.069 - 0.097	0.426	0.670
Root mean square error	-0.105	-0.1760.034	-2.787	0.005
Autocorrelation	-0.018	-0.092 – 0.055	-0.486	0.627
Entropy	0.024	-0.064 - 0.117	0.564	0.573

Root mean square error

 More or larger deviations or fluctuations in activity are linked to a reduced weight gain

Few or small deviations

Many or large deviations

Discussion

- Also in model accounting for round and start weight → negative relationship between ADG and RMSE
 - Birds that were more variable in their activity levels → lower ADG
- Limitations
 - Descriptors explained only small part of variation in ADG
 - ADG now looked at as linear
- Suggests that increasing early activity does not necessarily negatively affect body weight gain

Take home messages

- Activity in broilers can be informative for many reasons
- Using sensors, activity can be recorded in a reliable and noninvasive manner
- In the future, activity may be implemented in breeding programs and as early warning systems for farmers

Thank you

B4F Individual tracking

Bas Rodenburg

Esther Ellen

Yvette de Haas

