I

MOLECULAR
METABOLISM

Check for
updates

Effects of SGLT2 inhibitor dapaglifiozin in
patients with type 2 diabetes on skeletal muscle
cellular metabolism

Yvo J.M. op den Kamp ', Anne Gemmink ', Marlies de Ligt ', Bas Dautzenberg ', Esther Kornips ',

Johanna A. Jorgensen ', Gert Schaart ', Russell Esterline “, Diego A. Pava ', Joris Hoeks ',

Vera B. Schrauwen-Hinderling >, Sander Kersten °, Bas Havekes °, Timothy R. Koves °, Deborah M. Muoio >,
Matthijs K.C. Hesselink ', Jan Oscarsson’, Esther Phielix ', Patrick Schrauwen "

ABSTRACT

Objective: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying
mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of
dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients.

Methods: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out.
Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic
resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry.
Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of
acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were
investigated.

Results: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle
were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %,
p = 0.019). Myocellular lipid droplets increased in size (0.03 um2 (0.01—0.06), p < 0.05) and number (0.003 um‘2 (—0.001—0.007), p = 0.09)
upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acyl-
carnitine species and C4—O0H carnitine levels (0.4704 (0.1246, 0.8162) pmoles*mg tissue ™", p < 0.001) in skeletal muscle were higher after
dapaglifiozin treatment, while acetylcarnitine levels were lower (—40.0774 (—64.4766, —15.6782) pmoles*mg tissue™", p < 0.001). Fasting
levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment.
Conclusion: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty
acid and ketone bodies and reduced glycolytic flux.

The trial is registered with ClinicalTrials.gov, number NCT03338855.

© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION [1,2]. The primary action of SGLT2i on glucose reabsorption has

several metabolic consequences that may help to explain the effects on

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) reduce renal
glucose reabsorption in the proximal tubules and increase urinary
glucose excretion. The treatment was initially developed to improve
glycemic control in patients with type 2 diabetes, but has been shown
to have organ protective effects including reduced risk for cardiovas-
cular (CV) events, especially reduced risk for hospitalization for heart
failure, and reduced risk for progression of chronic kidney disease

CV and renal outcome [3]. Such metabolic effects may be the
consequence of the adaptive response to the loss of about 50—100 g
glucose per day in the urine, which can be regarded as a form of mild
calorie restriction. Since SGLT2 is almost exclusively expressed in the
kidney [4], the metabolic effects of SGLT2 inhibitors on skeletal muscle
and other tissues are indirect effects and most likely explained by the
urinary glucose loss induced by these inhibitors. Moreover, in vitro
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Abbreviations

o-Kg a-ketoglutarate

ACAC Acetyl-CoA carboxylase

cv Cardiovascular

CrAT Carnitine acetyltransferase
CPT Carnitine palmitoyltransferase
DGAT Diglyceride acyltranferase
FASN Fatty acid synthase

FFA Free fatty acids

IHL Intrahepatic lipid

IMCL Intramyocellular lipid

IMF Intermyofibrillar

LD Lipid droplet

MFI Mitochondrial fragmentation index
MLYCD Malonyl-CoA decarboxylase

MRS Magnetic resonance spectroscopy
MRUM Metabolic Research Unit Maastricht

PCr Phosphocreatine

SCD Stearoyl-CoaA desaturase

SGLT2i Sodium-glucose cotransporter 2 inhibitors
SS Subsarcolemmal

TCA cycle Tricarboxylic acid cycle

studies using cells that do not express SGLT2 and using therapeutic
doses of dapagliflozin did not show any effects on cellular metabolism
[5]. Such urinary glucose loss is also a direct loss of calories, resulting
in fasting-like/calorie restriction-like effects [6], such as an increased
plasma free fatty acids and fat oxidation, effects that are not observed
with other glucose lowering, antidiabetic drugs. Indeed we recently
showed that 5 weeks of SGLT2i treatment in type 2 diabetes patients
resulted in ~90 g of glucose excretion via urine, reduced 24 h glucose
levels and increased circulating free fatty acids (FFA) and beta-
hydroxybutyrate levels, accompanied by marked adjustments of 24 h
energy metabolism that (in part) mimic the effects of calorie restriction,
such as increased 24 h fat oxidation, improved metabolic flexibility,
and hepatic and adipose tissue insulin sensitivity, while whole-body,
and peripheral insulin sensitivity was not affected [6]. These findings
were in line with and extended previous reports of increased fat
oxidation [7], decreased intrahepatic lipid content [8], decreased total
body fat mass [3,9], and decreased visceral adipose tissue [9] after
SGLT2i treatment of type 2 diabetes patients.

Calorie restriction in humans is accompanied by adaptations in
skeletal muscle metabolism, which can help to explain the underlying
metabolic health effects of such interventions. Thus, calorie restric-
tion has been shown to improve skeletal muscle fat oxidative and
mitochondrial capacity [10]. Such adaptations are important, as we
have previously shown that high whole-body and mitochondrial fatty
acid oxidation capacity attenuates lipotoxicity [11]. Furthermore, lipid-
induced insulin resistance in skeletal muscle is associated with
reduced mitochondrial function [12,13] and increased mitochondrial
network fragmentation [14]. Indeed, under diabetogenic conditions,
lipid supply to skeletal muscle may exceed mitochondrial oxidative
capacity, resulting in the accumulation of intramyocellular lipids
(IMCL) and accompanying insulin resistance. It has been suggested
that carnitine acetyltransferase (CrAT) can function as a defense
mechanism against such mitochondrial substrate oversupply. Thus,
excessive mitochondrial acetyl-CoA can be converted by CrAT to
acetylcarnitine [15] and thereby reduce the allosteric inhibition on the
pyruvate dehydrogenase complex and subsequently increase mito-
chondrial glucose oxidation [16]. Alleviating substrate competition at
the level of mitochondria [17], could improve metabolic flexibility in
patients with type 2 diabetes. Indeed, the capacity to form ace-
tylcarnitine in skeletal muscle has been suggested to be a deter-
minant of insulin sensitivity [18,19]. Another putative defense
mechanism against mitochondrial substrate oversupply and thereby
the prevention of insulin resistance is lipid droplet (LD) remodeling
[20]. Under diabetic conditions, high IMCL content is a consequence
of large LDs. These LDs are mainly found in the subsarcolemmal
region [21]. We [22] and others [23] have shown that the ability to
remodel the LD pool, i.e. the ability to change LD morphology and

protein coating of LDs upon a high fatty acid influx, is associated with
maintained insulin sensitivity.

Preclinical studies have shown that SGLT2i restored [24] or improved
[25] mitochondrial function in heart failure. Therefore, to further test
the hypothesis that SGLT2 inhibition induces calorie restriction-like
effects, we here examined if SGLT2 inhibition exerts calorie
restriction-like effects on skeletal muscle metabolism, such as
improved mitochondrial function and fatty acid metabolism at the
skeletal muscle level as observed with calorie restriction [10]. This is
also relevant as improvements in myocellular fatty acid metabolism
may be early adaptations underlying other secondary effects, such as
improved peripheral insulin sensitivity observed by others upon SGLT2i
treatment [26,27]. To this end, we investigated the indirect effect of 5
weeks of SGLT2i treatment on skeletal muscle substrate handling and
aimed to explore the effect of dapagliflozin treatment on mitochondrial
function, mitochondrial network integrity, mitochondrial substrate
competition, LD remodeling, and the capacity to form acetylcarnitine.

2. MATERIALS AND METHODS

2.1. Study design and participants

A double-blind, randomized, placebo-controlled, cross-over Phase IV
trial study, was conducted at the Metabolic Research Unit Maastricht
(MRUM) of Maastricht University as previously reported [6]. The study
took place between 5 March 2018 and 4 November 2019. The study
protocol was approved by the Ethics Committee of Maastricht Uni-
versity Medical Center and was conducted conform to the declaration
of Helsinki [28]. Patients were randomized to a double-blind, placebo-
controlled intervention study with 2 treatment periods, each of 5 weeks
or a maximum duration of 40 days, separated by a wash-out period of
6—8 weeks. Endpoints were assessed at the end of each 5-week
period. In brief, the target population consisted of patients with type
2 diabetes diagnosed for at least 6 months who had been stable on a
dose of metformin and/or a DPPIV inhibitor for the previous 3 months or
more or were drug naive. Patients were to have HbA1c levels between
6% and 9% (42 and 75 mmol/mol). A table with all inclusion and
exclusion criteria was previously published [6]. Written informed
consent was obtained from all participants before inclusion. Detailed
descriptions of the procedures, not described below, can be found in
the supplemental materials.

2.2. Magnetic resonance spectroscopy measurements

On the first day of Visit 4 and 7, at 3:00 P.M., in vivo IMCL content in
tibialis anterior muscle was assessed by "H-MRS on a 3.0 T whole-
body magnetic resonance system (Achieva 3Tx; Philips Healthcare)
as described previously [29]. Subsequently, in vivo mitochondrial
oxidative capacity was determined by 3'P-MRS at 4:00 P.M., as
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previously described [30]. On a separate day, at the last day of the end-
of-treatment visits (to prevent effects of exercise testing on the other
outcome parameters), acetylcarnitine concentrations were acquired by
"H-MRS in skeletal muscle before and after exercise. Participants were
fasted from 12:00 A.M. and were asked to refrain from strenuous
physical activity 72 h before the measurement. Detailed descriptions of
the different MRS measurement procedures can be found in the
supplemental materials.

2.3. Muscle biopsy

On day 3 of the end-of-treatment visit, a percutaneous muscle biopsy
was obtained from the vastus lateralis muscle in the fasted state
before the start of a hyperinsulinemic euglycemic clamp and as
described previously [31], under local anaesthesia (1% lidocaine), as
described by Bergstrom et al. [32]. A small portion of tissue was
immediately placed in preservation medium (BIOPS; Oroboros In-
struments, Innsbruck, Austria). Muscle fibers were separated with
small needles and the muscle membrane was permeabilized with a
Saponin stock solution (5 mg/mL BIOPS), as previously described
[31]. Saponin was removed and ~3—4 mg wet weight fiber was
transferred into the oxygraph. The remainder of the biopsy was
immediately snap frozen and stored at —80 °C, for assessment of
carnitine acetyltransferase (CrAT) and citrate synthase (CS) activity,
and levels of acylcarnitines, amino acids, TCA cycle intermediates,
and mRNA measurements. Additional skeletal muscle tissue was
placed in isopentane, and then frozen in liquid nitrogen and stored
at —80 °C for further microscopy and biochemical analyses. Two
participants did not complete the clinical trial [6], and from one
participant there was no muscle biopsy available from the first
period. This resulted in a total of 23 participants from who we had a
muscle biopsy available from both periods.

2.4. High-resolution respirometry

Muscle fibers were permeabilized as previously described [31]. High
resolution respirometry was used to measure ex vivo mitochondrial
respiration, under hyperoxic conditions at 37 °C in a two-chamber
oxygraphy (Oroboros, Innsbruck, Austria) and expressed as pmol *
mg’1 muscle fiber wet weight * s~'. Oxidative phosphorylation was
measured by adding 4.0 mmol/L malate, 10.0 mmol/L glutamate,
2.0 mmol/L ADP and 10.0 mmol/L succinate, with or without the
presence of 40 umol/L octanoylcarnitine. Leak respiration or maximal
respiratory capacity was determined by adding respectively 2.0 pg/mL
oligomycin or 0.5 pmol/L titrations of uncoupler fluoro-carbonyl cya-
nide phenylhydrazone. Cytochrome C (10.0 mmol/L) was added to
check the integrity of mitochondrial outer membrane, and revealed
good quality of all permeabilized mitochondrial analysis.

2.5. Biochemical analysis

Acylcarnitines, amino acids and TCA cycle intermediates were
analyzed in skeletal muscle tissue obtained from the muscle biopsy
taken visit 4 and 7 by flow injection tandem mass spectrometry, using
sample preparation methods described previously [33,34]. Skeletal
muscle TCA cycle intermediates were measured using gas
chromatography-mass spectrometry as previously described [35].
Data for the analysis of acylcarnitines and amino acids were acquired
using a Waters AcquityTM UPLC system with a TQ (triple quadrupole)
detector. The data system was controlled by MassLynx 4.1 operating
system (Waters, Milford, MA). Plasma levels of lactate (Roche, Basel,
Switzerland) was analyzed enzymatically in EDTA samples using a
Pentra 400 (Horiba).
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2.6. Confocal microscopy analyses

2.6.1. Subject selection

The confocal microscopy analyses of lipid droplet morphology were
performed in a subset of 10 participants that had an increased IMCL
content upon dapagliflozin treatment, based on Bodipy 493/503
(D3922, Molecular Probes, Leiden, The Netherlands) stained muscle
biopsy sections using widefield microscopy analyses of IMCL
(Supplemental Fig. 1).

2.6.2. Staining procedures, confocal microscopy imaging and
image analysis

A detailed description of the staining procedures and the confocal
microscopy image analyses can be found in the supplemental mate-
rials. For all analyses, i.e. LD morphology and location, mitochondrial
network integrity and LD-mitochondrial interaction, 12-bit z-stacks
were acquired on a Leica TCS SP8 confocal microscope as previously
described [36,37]. Complete z-stacks with a 0.10 um z-step for LD-
mitochondrial interaction were acquired with a 100 x 1.4 N A. oil
immersion objective combined with a 5x optical zoom resulting in a
23 by 23 by 100 nm voxel size. All images were deconvolved using
Huygens Professional Software (Scientific Volume Imaging B.V., Hil-
versum, the Netherlands). All images were analyzed in Imaged [38]
with in-home written scripts.

2.7. Gene expression for genes related to fatty acid metabolism

To determine expression of genes related to fatty acid metabolism, we
used data obtained from RNAseq analysis which was performed for a
separate study (manuscript in preparation). In brief, total RNA from all
samples (n = 44) was extracted using TRIzol reagent (Thermo Fisher
Scientific, the Netherlands) and purified using the Qiagen RNeasy Mini
kit (Qiagen, the Netherlands) according to manufacturer’s instructions.
Library construction and RNA sequencing runs on the BGISEQ-500
platform [39] were conducted at Beijing Genomics Institute (BGI,
Denmark). All the generated raw sequencing reads were filtered, by
removing reads with adaptors, reads with more than 10% of unknown
bases, and low-quality reads. Clean reads were then obtained and
stored as FASTQ format. A detailed description of the RNA sequencing
and processing these RNA sequencing reads can be found in the
supplemental information.

2.8. Statistics

The evaluable analysis set, consisting of patients with at least one dose
of the investigational product (per protocol) and no important protocol
deviations, was used for the statistical analyses, using SPSS version
27 (IBM Corp., Armonk, NY, USA). The expected difference between
treatment groups was estimated using a linear mixed effects model.
This model had treatment group, treatment sequence and period as
fixed effects, as well as random intercept for each subject. This model
assumes independent conditional residuals with equal variations in
each period and treatment group. Residual plots and tests for normal
distribution of model residuals were used to check model assumptions.
If deviations from normality were detected, a non-parametric test of
treatment difference against zero was performed (Wilcoxon paired
signed-rank test) using all the data and ignoring the sequence. The
least-squares (LS) means for treatment effect in the respective treat-
ment groups and the corresponding 95% Cls are presented. The dif-
ference in LS means between the two treatments was generated, with
corresponding 95% Cl and p-value tabulated. Pearson correlations
were performed using a linear regression model. If deviations from
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normality was detected, a spearman correlation was performed. A
two-sided 0.05 level is considered as statistically significant.

3. RESULTS

3.1. Participant characteristics

In our previous publication, we have reported the participants char-
acteristics [6]. These characteristics are shown in Table 1. In addition,
the effects of 5 weeks of dapagliflozin on glycaemic control have been
published before [6] and are shown in Supplemental Table 1.

3.2. Unaltered mitochondrial function and mitochondrial network
integrity after dapagliflozin treatment

We have previously reported that dapagliflozin treatment for 5 weeks
increased 24 h whole-body fat oxidation in type 2 diabetes patients [6].
To investigate if these effects were associated with altered mito-
chondrial function in skeletal muscle, we determined in vivo mito-
chondrial function measured as half-time PCr recovery rate with 'P-
MRS. /n vivo mitochondrial function remained unchanged upon
dapagliflozin treatment (0.008 (—1.745—1.760) s, p = 0.88
Figure 1A). Consistently, ex vivo mitochondrial respiratory capacity of
permeabilized skeletal muscle fibers obtained after an overnight fast
also remained unchanged by dapagliflozin treatment (Figure 1B). Cit-
rate synthase activity, which reflects mitochondrial content, was not
significantly affected by dapagliflozin treatment (—0.37 (—1.22, 0.48)
pmol*min~"*gr~", Figure 1C, p = 0.37). Mitochondrial network
integrity, as determined by the mitochondrial fragmentation index (MFI)
[40], was unaffected upon dapagliflozin treatment irrespective of
muscle fiber type (All fibers: 0.13 (—0.12—0.38), p = 0.44; Type I:
0.12(—0.13—0.37), p = 0.44; Type II: 0.13 (—0.12—0.39), p = 0.44,
Suppl. Figure 2A).

3.3. Unaltered skeletal muscle acetylcarnitine levels after
dapagliflozin treatment

We previously reported that 5 weeks of dapaglifiozin treatment
increased 24 h FFA levels and ketone bodies, and reduced 24 h
glucose levels, but did not alter whole-body or peripheral insulin
sensitivity [6]. The capacity of skeletal muscle to interconvert acetyl-
CoA and acetylcarnitine reflects a carbon buffering mechanism that
is thought to protect mitochondria against substrate overload [18].
Therefore, we determined in vivo acetylcarnitine levels in the post-
prandial state in the afternoon using H-MRS before and after 30 min
of exercise. Acetylcarnitine levels both prior (0.034 (—0.204—0.272)
mmol/kg ww, p = 0.69; Figure 1D) to and immediately after exercise
as well as the maximum acetylcarnitine concentration after exercise
(0.196 (—0.421—0.813) mmol/kg ww, p = 0.48 and 0.082 (—0.460—
0.625) mmol/kg ww, p = 0.66; Figure 1C) remained unchanged with
dapagliflozin treatment. During the 30 min of exercise, the increase in
plasma lactate levels was lower after dapagliflozin treatment (—0.604

Table 1 — Participant characteristics.
Characteristic Total (n = 24)

Age, years (mean + SD) 62.4 + 4.6
Sex, n (male/female) 19/5

(—1.204, —0.004) mmol/L, p < 0.05, Figure 1E) suggesting reduced
glycolysis and glucose flux in skeletal muscle during exercise.

3.4. Increased intramyocellular lipid content after dapagliflozin
treatment

We previously reported that dapagliflozin decreased trunk fat mass and
hepatic lipid content [6] and hypothesized that IMCL content may be
reduced as well. Interestingly, IMCL content as measured by "H-MRS
in the tibialis anterior muscle was significantly increased after dapa-
gliflozin treatment (0.060 (0.011, 0.110) %, p = 0.019, Figure 2A).
From 20 examined participants, 13 displayed an increase in IMCL, 2
had similar and 5 had reduced IMCL content, after dapagliflozin
treatment as compared to placebo. Although dapagliflozin did not
significantly change peripheral insulin sensitivity on a group level [6],
the difference in peripheral insulin sensitivity between the treatment
periods (placebo vs. dapaglifiozin) tended to correlate positively with
the difference in IMCL between the treatment periods (r = 0.407,
p = 0.08; Figure 2B) suggesting that the increase in IMCL following
dapagliflozin treatment was associated with an improvement in pe-
ripheral insulin sensitivity.

3.5. Intramyocellular lipid droplet morphology is affected by
dapagliflozin treatment, while mitochondrial contact sites are
unaffected

To further examine whether the dapagliflozin-induced increase in IMCL
content was due to LD remodeling, i.e. changes in LD number and size
and/or fiber type specific effects, we first analyzed lipid fraction area in
sections from the vastus lateralis muscle biopsy and then applied
confocal microscopy in 10 out of 15 volunteers that showed an in-
crease in lipid area fraction by dapagliflozin as compared to placebo
(suppl. Figure 1). By design, the lipid area fraction significantly
increased 1.4-fold (0.135 (0.027—0.244) %, p < 0.05, Figure 3A,B)
upon dapagliflozin treatment. This increase in IMCL content was
observed in both fiber types (Type | (1.4-fold): 0.209 (0.022—0.396)
%, p < 0.05; Type Il (1.5-fold): 0.14 (—0.032—0.312) %, p < 0.05,
Figure 3A,B). Dapagliflozin treatment significantly increased LD size by
1.1-fold (0.03 (0.01—0.06) umz, p < 0.05, Figure 3A,C) and non-
significantly increased LD number (1.4-fold, 0.003 (—0.001—0.007)
umfz, p = 0.09, Figure 3AD). Dapagliflozin treatment non-
significantly increased LD number in type Il fibers (1.4-fold, 0.003
(—0.001—0.007) um’z, p = 0.11, Figure 3A,D). A complete overview
of all data and description on subcellular specific changes in LD
morphology can be found in the supplemental materials
(Suppl. Figure 3).

Since we observed an increased IMCL content in combination with
increased 24 h fat oxidation, we hypothesized that the interaction
between LDs and mitochondria increase after dapagliflozin treatment
[41]. However, the confocal microscopy analysis did not reveal an
increased interaction between LDs and mitochondria (All fibers: —0.94
(—2.62—0.74) %, p = 0.20; Type I —1.76 (—4.01—0.48) %, p
= 0.06; Type II: —0.59 (—2.79—1.62) %, p = 0.51, Suppl. Figure 2B).

3.6. Altered acylcarnitine levels in muscle after dapagliflozin
treatment

To further investigate if the increase in IMCL following dapagliflozin
treatment parallels the effects observed with exercise training and/or

BMI, kg/m? . 5 : . - . s C

HoAT cgmmé':/’;i'l‘ (f;eiz)i T M, 523?; i gg 6.0  oalorie restriction, we nextinvestigated acylcaritine species in muscle

eGFR, m/min (mean = SD) 141.0 + 13.0 biopsies as a marker of muscle-specific fatty acid metabolism. In

Duration of diabetes, years (median (range)) 8.0 (1—15) contrast to the determination of acetylcarnitine by MRS in the afternoon

Metformin use, % (yes/total) 71 (17/24) in the postprandial state, when muscle relies less on fatty acid oxidation,

Any diabetes complications, n (ves/no) 123 acetylcarnitine (C2) levels, measured in muscle biopsies taken after an
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Figure 1: Effects of dapagliflozin on mitochondrial function and acetylcarnitine levels. (A) Phosphocreatine (PCr) recovery rate (n = 22), (B) ex vivo mitochondrial
respiration from vastus lasteralis muscle biopsies taken after an overnight fast (n = 22), (C) Citrate synthase activity (n = 21), (D) average acetylcarnitine levels at rest (n = 21),
maximal acetylcarnitine levels after exercise (n = 21), and average acetylcarnitine levels after exercise (n = 21), and (E) plasma lactate levels during exercise (n = 20) after
placebo (P) and dapaglifiozin (D) treatment. Placebo condition = white bars, dapagliflozin condition = grey bars. Results are given as least squares mean (LSM) and 95%
confidence interval (Cl), obtained through a linear mixed model. *P < 0.05 vs. placebo by Wilcoxon paired signed-rank test.

overnight fast, were decreased after dapagliflozin treatment (—40.0774
(—64.4766, —15.6782) pmoles*mg tissue’1, p < 0.001, Figure 4A).
The decrease in acetylcarnitine levels by dapagliflozin correlated with
the increase in 24 h fat oxidation (r = —0.668, p < 0.01; Figure 2C).
Carnitine acetyltransferase (CrAT) activity was non-significantly
reduced after dapagliflozin treatment (—0.381 (—0.796, 0.033),
p = 0.069, Figure 4B). However, all other acylcarnitines metabolites
were generally higher after dapagliflozin treatment, which together with
elevated IMCL levels is suggestive of an increased supply and flux of
fatty acids in skeletal muscle. Thus, levels of C4—0H (0.4704 (0.1246,
0.8162) pmoles*mg tissueq, p < 0.001, Figure 4A) were significantly
higher after dapagliflozin compared to placebo. Similarly, several long-
chain acylcarnitines were also significantly higher after dapagliflozin
treatment (Figure 4A). A complete overview of all acylcarnitines in
skeletal muscle can be found in Figure 4A.

3.7. Expression of fatty acid metabolism related genes in skeletal
muscle are altered upon dapagliflozin treatment

The results from the whole-body calorimetry and increased FFA
plasma levels [6] and muscle levels of acylcarnitines indicate an in-
crease in skeletal muscle fatty acid oxidation, while total IMCL levels
were increased after dapagliflozin treatment. Expression of genes
involved in fatty acid metabolism was therefore investigated to get a
better understanding of metabolic adjustments that could help to

explain these results. Genes regulating fatty acid mitochondrial import,
such as CPT1A (1.33-fold), CPT1B (1.12-fold) and MLYCD (1.19-fold)
were significantly upregulated by dapagliflozin treatment. In addition,
SCD (—3.24 fold) was significantly decreased after dapagliflozin
treatment. An overview of measured genes related to lipid metabolism
can be found in Figure 5.

3.8. Lower amino acids and TCA cycle intermediates in skeletal
muscle after dapagliflozin treatment

To further investigate if dapagliflozin affected skeletal muscle sub-
strate metabolism, we also measured levels of amino acids and TCA
cycle intermediates in the muscle biopsies. We found that levels of
alanine (—150.16 (—245.32, —55.0091) pmoles*mg tissue‘1,
p = 0.013), proline (—46.0350 (—78.7122, —13.3578) pmoles*mg
tissue ™', p = 0.0094), valine (—14.6018 (—26.1708, —3.0327)
pmoles*mg tissue‘1, p = 0.0094), and glutamic acid (—166.71
(—299.82, —33.6025) pmoles*mg tissueq, p = 0.015) were lower
after dapagliflozin treatment compared to placebo (Figure GA).
Furthermore, and consistent with the lower plasma lactate levels
during exercise, skeletal muscle lactate levels were lower after
dapagliflozin ~ treatment in the fasted state (—464.01
(—840.41, —87.6004) pmoles*mg tissue‘1, p = 0.033, Figure 6B).
Furthermore, the TCA cycle intermediates succinate (—15.26
(—27.37, —3.15) pmoles*mg tissue ™", p = 0.007, Figure 6B) and
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alpha-ketoglutarate (—5.51 (—11.45, —0.42) pmoles*mg tissue™",

p = 0.013, Figure 6B) was significantly lower after dapagliflozin
treatment, while citrate (—14.4604 (—28.4890, —0.4317) pmo-
les*mg tissue ™", p = 0.060, Figure 6B) showed a trend towards lower
levels after dapagliflozin treatment. Together, these findings indicate a
reduced glycolysis and glucose oxidation in skeletal muscle. In addi-
tion, the reduced amino acid levels may be explained by mobilization of
muscle-derived amino acids for hepatic gluconeogenesis. An overview
of all amino acids and TCA cycle intermediates can be found in
Figure 6.

4. DISCUSSION

We previously reported that 5-weeks of dapagliflozin treatment in
patients with type 2 diabetes increased whole-body 24 h fat oxidation,
reduced hepatic lipid content, trunk fat mass, weight (—1.26 kg) and
lean mass (—0.67 kg), while total energy expenditure did not change
[6]. In addition, we did not observe a change in whole-body or pe-
ripheral insulin sensitivity despite an increase in plasma FFA levels and
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whole-body fatty acid oxidation [6]. Since the dapagliflozin-induced
loss of glucose in the urine can be regarded as a form of mild calo-
rie restriction, we here investigated the hypothesis that SGLT2 inhi-
bition induces calorie restriction-like effects at the cellular level of the
skeletal muscle, including changes in skeletal muscle fatty acid
metabolism. We show that dapagliflozin had pronounced effects on
skeletal muscle cellular metabolism including alterations in the
expression of fatty acid handling genes, levels of amino acids and TCA
cycle intermediates, acylcarnitines and increased size and number of
lipid droplets, but dapagliflozin did not affect skeletal muscle mito-
chondrial function and mitochondrial network integrity.

SGLT2 is mainly present in the kidney and with a very lowly expression
in the intestines [4]. SGLT2 inhibition induces glucose lowering effects
due to a direct drain of glucose — and therefore calories — into the
urine; therefore, any effects observed on skeletal muscle metabolism
is a secondary effect of either the lowering of plasma glucose or the
loss of calories. Although we cannot exclude that the effects observed
are due to the lowering of plasma glucose, it should be noted that
SGTL2 inhibitors are the only glucose-lowering antidiabetic drugs that
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are accompanied by increases in plasma FFA levels and elevated fat
oxidation. Given that these effects are also markers of calorie re-
striction, the latter is a more logical explanation for the effects
observed on skeletal muscle.

Dapagliflozin treatment had marked effects on skeletal muscle acyl-
carnitine species, including elevated long-chain acylcarnitines and lower
acetylcarnitine levels in the overnight, fasted state. It has been shown
that 12 h fasting in obese participants decreased acetylcarnitine levels
[42]. Together with higher long-chain acylcarnitines levels, this may
reflect diminished glucose uptake and oxidation by skeletal muscle
coupled with increased influx and oxidation of fatty acids. Consistently,
we found that the change in acetylcarnitine levels between treatments
correlated negatively with the change in whole-body fat oxidation. In
addition to the elevated acylcarnitine levels in muscle, skeletal muscle
C4—O0H was also increased. C4—0H has been linked to both fasting and
ketosis, and can be derived from the ketone body D-(—)-3-
hydroxybutyrate (D-3HB) [43] as well as from long chain fatty acids,
and may reflect enhanced utilization of both ketone bodies and fatty
acids. In addition, expression of CPT1a and CPT1b involved in mito-
chondrial transport of fatty acids were increased, while the genes related
to triglyceride synthesis were unaffected. Together, our results suggest
that dapagliflozin reduces glucose use while increasing ketone and fatty
acid utilization in muscle cells, effects similar to those observed after
calorie restriction [44] and/or prolonged exercise training [45].

We next investigated if the increased plasma FFA [6] levels also
affected intramyocellular lipid stores. Interestingly, IMCL increased
after dapagliflozin treatment, which seems paradoxical when
considering the changes indicating increased skeletal muscle fatty
acid oxidation and no change in peripheral insulin sensitivity [6].
However, we and others have previously shown that interventions
that raise circulating FFA levels leading to increased skeletal muscle
fatty acid oxidation, such as exercise training, resveratrol treatment
and prolonged fasting, also increase the level of IMCL [12,46,47].
Under such conditions, increased IMCL is not necessarily associated
with deteriorated insulin sensitivity, but merely reflects an enhanced
storage capacity accompanying the enhanced reliance of fatty acids
for oxidation. We have recently shown that IMCL storage under
healthy trained conditions mainly involved the storage of lipids in
small LDs in type | muscle fibers, whereas in diabetes patients,
skeletal muscle lipids are mainly stored as large LDs in type Il
muscle fibers [21]. Here, we show that the increased IMCL after
dapagliflozin was due to both an increase in LD number as well as
larger LDs. We have observed previously that an increase in IMCL
content due to both LD number and size occurs with interventions
increasing muscle fatty acid oxidation such as prolonged fasting [22]
and resveratrol [48]. The increased IMCL storage capacity and LD
size may therefore be reflective of altered LD dynamics similar to
what is seen with fasting. Thus, the small increase in LD size
without an alteration in insulin sensitivity suggests that upon
dapagliflozin treatment LDs grow in size by incorporating free fatty
acids into triglycerides that are not needed for oxidation, and
thereby matches free fatty acid flux to mitochondrial oxidation rates.
In such a model, lipotoxicity is prevented, and may ultimately even
improve insulin sensitivity, as has been reported for SGTL2i treat-
ment by others [26,27].

In addition to increased fatty acid oxidation, we here report lower levels
of TCA cycle intermediates and lactate in skeletal muscle. Such changes
in TCA cycle intermediates may be reflective of a lower glycolytic flux
[42] and the shuttling of glucogenic skeletal muscle amino acids (valine,
proline, alanine and glutamic acid) to the liver for gluconeogenesis and
urea production [49]. Indeed, valine, proline, alanine and glutamic acid
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decreased after dapagliflozin treatment and urea levels were previously
reported to increase by dapagliflozin [6]. Specifically glucogenic amino
acids in skeletal muscle are reported to decrease after fasting or star-
vation, and are thought to indicate an increased efflux to plasma in order
to act as a substrate for hepatic gluconeogenesis [50]. We [6] and others
[27] have shown that SGLT2i increases endogenous glucose production
in the fasting state. The current findings therefore may suggest
enhanced flux of amino acids from skeletal muscle for gluconeogenesis.
In addition, transamination of amino acids in liver can be used for the
biosynthesis of urea, which may help to maintain the osmotic pressure
in kidney medulla to prevent excessive water loss following SGTL2 in-
hibition [49]. Of note, a switch in skeletal muscle energy use away from
glycolytic substrate towards energy generation from fatty acids, also
reduces the need for muscle protein breakdown. Consistently, no sign of
muscle protein breakdown or elevated urine nitrogen excretion was
observed [6]. We have suggested that the increase in EGP upon
dapagliflozin in our study may be driven by increased delivery of both
fatty acids and glycerol, in which the latter also provides a carbon
precursor for hepatic gluconeogenesis thereby limiting the use of amino
acids for gluconeogenesis [6]. Consistently, also after prolonged fasting
or starvation there is a consistent contribution of glycerol to gluconeo-
genesis [51].

Maximal mitochondrial respiratory capacity was unaltered after SGLT2
inhibition. In order to maintain properly functioning mitochondria, the
mitochondrial network undergoes a continuous cycling of fission and
fusion [52]. In line with the unaltered mitochondrial function, mito-
chondrial network integrity was unaltered upon dapagliflozin treat-
ment. Consistently, calorie restriction in overweight to obese
participants did not alter mitochondrial function or density [53].
Moreover, we previously showed that prolonged fasting for 60 h in
healthy lean participants — if anything — slightly reduced mitochon-
drial function [54]. These finding suggest that shifts in mitochondrial
fatty acid oxidation and/or fatty acid flux are not necessarily caused by
changes in (maximal) mitochondrial respiration. Increased interaction
between LDs and mitochondria could also help to explain a more
metabolically healthy skeletal muscle phenotype [21]. However, the
number of mitochondrial contact sites at the lipid droplet surface was
not changed by dapaglifiozin.

5. CONCLUSIONS
To summarize, dapagliflozin treatment for 5 weeks resulted in changes

in skeletal muscle cellular metabolism resembling more the state of
fasting than alterations induced by exercise training and favoring the
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