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A B S T R A C T   

Soil salinization is a widespread environmental problem adversely impacting global food production. Increasing 
soil organic matter (SOM) could alleviate salt stress, but soil salinity and SOM have differing effects on microbial 
diversity and activities. We explored how the relationships between soil biodiversity and multifunctionality were 
altered by soil salinity and SOM. We collected soils from the wheat-maize cropping system in the North China 
Plain and categorized soils according to salinity and SOM. Soil functions related to carbon, nitrogen, phosphorus, 
and micronutrient processing were measured as metrics of soil multifunctionality (SMF) characterization. We 
found significant positive relationships between SMF and bacterial diversity but not fungal diversity in soils with 
high SOM (>15 mg/kg) and low EC (<4 ds/m). The diversity and abundance of sensitive bacteria were more 
strongly correlated with SMF than those of non-sensitive bacteria. SOM directly and indirectly impacted SMF 
through changes in sensitive bacterial abundance, while soil EC impacted SMF via altered sensitive bacterial 
diversity. With respective to individual soil function, carbon and micronutrient cycling were predominantly 
determined by bacterial diversity. Our findings suggest coupling decreased salinization with the increase of SOM 
could increase soil multifunctionality by increasing diversity and abundance of sensitive soil microbes. These 
findings highlight the importance of sensitive microbial taxa to sustaining soil ecosystem functioning in 
croplands.   

1. Introduction 

Soil microorganisms play a key role in maintaining multiple soil 
functions such as litter decomposition, pathogen control, pollutant 
degradation, and nutrient cycling, which is defined as soil multi
functionality (SMF) (Wagg et al., 2019). Soil microbial diversity is 
positively correlated with SMF in both natural and agricultural ecosys
tems (Jing et al. 2015; Mori et al., 2016; Delgado-Baquerizo et al., 2017; 
Chen et al., 2020a; Li et al., 2021a,b; Luo et al., 2018). However, the 
biodiversity-multifunctionality relationship might be vulnerable to 
changes in soil health. This is of particular concern in agroecosystems, 
where anthropogenic activities are more likely to alter soil conditions, 

for example increasing soil salinization (Yang et al., 2020), which could 
adversely affect soil microbial functions (Zhou et al., 2020; Hu et al., 
2021). Understanding how the soil biodiversity-multifunctionality 
relationship is modified by salinization is important for maintaining 
soil health in cultivated lands. 

Soil salinization is a global environmental problem effecting about 
one tenth of dry lands (Pan et al., 2022; Wan et al., 2021b; Zhang et al., 
2019). Soil salinity can increase ion toxicity and reduce water avail
ability by lowering osmotic potential. Lowered water availability and 
increased ion toxicity can negatively affect soil microbial diversity 
(Chen et al., 2021), metabolic activities (Yuan et al., 2007), and func
tioning (Rath and Rousk, 2015; Rath et al., 2019a,b). Increased soil 
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salinity is correlated with lowered soil organic matter (SOM), which 
could be a result of suppressed plant growth, which lowers organic 
matter inputs to soils (Setia et al. 2013; Wong et al. 2010). Improving 
SOM is an effective approach to alleviate stress caused by increased soil 
salinity (Wong et al., 2008). SOM can increase organic and inorganic 
substrates released to soil, diluting salt ions, such as Na+, Cl-, offsetting 
adverse effects from salt stress (Pathak and Rao 1998; Wong et al. 2010). 
SOM could also stimulate microbial production of organic compounds, 
such as amino acids and carbohydrates, which alleviate osmotic stress 
caused by salinity (Wong et al., 2009). Increased SOM can improve soil 
aggregate stability, provide a range of microhabitats in soils and in
crease microbial diversity and activity (Gupta and Germida, 2015). 
However, the positive effect of SOM on microbial diversity and activity 
in saline soils could be dependent on the degree of salinization of the 
soils (Dong et al. 2022). Addition of SOM improves microbial activities 
in soils with low electrical conductivity (EC < 2.05 ds/m), but has no 
effect when salinity is high (>2.05 ds/m). How the interaction between 
soil salinity and SOM affects the soil biodiversity and SMF relationship 
remains underexplored. 

Soil microbes have different responses to changes in soil salinity and 
SOM, resulting in the relationship between soil biodiversity and SMF is 
context-dependent (Chen et al., 2020b,a; Wan et al., 2021b). In saline 
soils, microbial communities shift towards bacterial dominance, a 
pattern perhaps resulting from high phylogenetic and taxonomic turn
over rates, which give bacteria the ability to quickly adapt to salt stress 
(Sardinha et al., 2003; Han et al., 2022). It is generally acknowledged 
that fungi tend to use recalcitrant organic matter, while bacteria are 
associated with the turnover of easily degradable substrates (Rousk 
et al., 2016). In agroecosystems, bacteria may be more sensitive to 
changes in salinity and SOM, because SOM in cultivated soils tends to 
contain more easily degradable rather than recalcitrant organic matter 
(Cheng et al., 2007), thus bacteria rather than fungi, may play a more 
important role in driving SMF (van Der Heijden et al., 2008; De Vries 
and Bardgett, 2012). Rare, rather than abundant taxa may be more 
sensitive to environmental changes, as rare taxa are thought to be less 
well adapted to disturbance (Chase et al., 2017; Liang et al., 2020), 
including changes in soil salinity and SOM (Jiao and Lu, 2020; Wan 
et al., 2021b). Exploring which groups of microbial taxa mediate the soil 
biodiversity-SMF relationships is critical for understanding how to best 
maintain soil health and improve agricultural ecosystem services. 

The North China Plain is one of the most important granaries in 
China with about 140,000 km2 of land in cultivation producing about 
50 % of national wheat and 33 % of maize (Zhang et al., 2021). This area 
is characterized by low SOM and is currently facing high rates of soil 
salination from poor irrigation planning and high evapotranspiration 
(Yang et al., 2016). Soil salinization and SOM can have opposing effects 
on soil microbial communities and SMF making it essential to under
stand how the relationship between the soil microbes and SMF changes 
under differing SOM and EC statuses; and the role microbial community 
composition plays in determining biodiversity-multifunctionality re
lationships. We collected soil samples with categorically high and low 
salinity and SOM levels from wheat-maize cropping system in the North 
China Plain. We sequenced the bacterial and fungal communities and 
determined SMF to evaluate the relationship between soil biodiversity 
and ecosystem functioning. We hypothesized that (1) the relationship 
between microbial diversity and multifunctionality could be positively 
improved by SOM but negatively decreased by soil salinity; (2) sensitive 
bacteria, and specifically rare species, play a more crucial role in driving 
these relationships. 

2. Materials and methods 

2.1. Study sites and sample collection 

We sampled soil in March of 2018 around Quzhou Experiment Sta
tion of China Agricultural University (114◦50′22.3′ ′-115◦13′27.4′ ′ E, 

36◦35′43′ ′-36◦57′ N) (Fig. 1). This area has a northern warm temperate 
zone continental monsoon climate, with an average annual temperature 
of 13.1 ℃ and a mean annual precipitation of 500 mm. Approximately 
60 % of precipitation occurs from July to September. The soils are 
calcareous with light loam, medium loam, sandy loam, and clay textures 
(Zhang et al., 2021). Historically in this region soils were saline. Though 
a large amount of the land was remediated, some soils are still saline due 
to the influence of shallow, salty groundwater (Ma et al., 2008). Wheat- 
maize rotation is the typical cropping system in this region. 

Fifty-five sites were selected for soil sampling after a region-wide 
survey was conducted (Fig. 1). Sites were selected if a wheat-maize 
cropping system was the dominant planting pattern over 1 km2 area 
and had been maintained for at least 5 years. At each sampling site, four 
3 × 3 m plots that were evenly distributed on the field were established 
within a field belonging to the same farming stakeholder. After 
removing any crop residues, five soil cores were collected to a depth of 
20 cm using an auger (5 cm diameter) from each plot. Soils were pooled 
generating one sample per site. Soil samples were transported on ice to 
the laboratory immediately after collection, passed through a 2.0-mm 
mesh sieve, and divided into two subsamples. One subsample was 
stored at 4 ◦C for determination of soil physicochemical properties, 
while the second subsample was stored at − 20 ◦C for DNA analysis. 

We then categorized soil samples into four groups based on the EC 
(range: 2.17–6.8 ds/m; mean: 4.04 ds/m) and SOM (range: 7.51–25.30 
g/kg; mean: 14.62 g/kg) contents. An EC of 4 dS/m is considered the 
critical threshold below which conditions are too stressful to sustain 
crops (Hassani et al., 2020). We classified samples with an EC greater 
than 4 dS/m as high EC (HEC) and lower than 4 as low EC (LEC). Soils 
were categorized by SOM from data obtained from the Second National 
Soil Survey of China (Soil Survey Office of China, 1992). Sites with SOM 
content greater than 15 g/kg were classified as high SOM (HS) and 
below that as low SOM (LS). The four groups (HS-HEC, HS-LEC, LS-HEC 
and LS-LEC) consisted of 12, 13, 12, and 18 sites, respectively. 

2.2. Soil parameter measurements and quantification of soil 
multifunctionality 

To quantify soil multifunctionality, we selected soil properties that 
represent key supporting and regulating roles in carbon, nitrogen, 
phosphorus, and micronutrient cycling (Delgado-Baquerizo et al., 2017; 
Maestre et al., 2012; Zechmeister-Boltenstern et al., 2015; Chen et al., 
2020; Zhang et al., 2021; Hu et al., 2021). To quantify carbon cycling, 
we measured soil organic carbon storage (SOC content × bulk density ×
sampling depth), dissolved organic carbon (DOC), recalcitrant organic 
carbon (ROC) content, β-1,4-Glucosidase (BG, starch degradation) ac
tivity, and soil respiration (SR) (see Table S1 for details on the meth
odology). We calculated SOC by dividing SOM content by a coefficient of 
1.724 (Post et al., 1982). Nitrogen cycling was quantified by measuring 
enzyme activities, β-1,4-N-acetyl-glucosaminidase (NAG, chitin degra
dation), and gaseous emissions of N2O (negative value of N2O emission). 
Phosphorus cycling was quantified by measuring acid and alkaline 
phosphatase activities (ACP, ALP). We determined micronutrient 
cycling by measuring the available Fe, Mn, Cu, and Zn concentration. 
We also measured soil pH, electric conductivity (EC), available phos
phorus (AP), available potassium (AK), bulk density, and soil texture. 

We adopted three distinct approaches (single functions, the aver
aging approach and single threshold approach) to quantify SMF (Byrnes 
et al., 2014; Delgado-Baquerizo et al., 2017). All soil measurements 
were standardized with Z-score transformations (Maestre et al., 2012). 
Standardized ecosystem functions were averaged to obtain an overall 
multifunctionality index and single-function index (i.e., carbon, nitro
gen, phosphorus and micronutrient cycling processes) (Byrnes et al., 
2014; Delgado-Baquerizo et al., 2017). This approach is broadly 
employed and provides a straightforward measure of the multi
functionality of differing microbial communities (Wagg et al., 2019). 
The single-threshold approach was conducted to assess if multiple soil 
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functions are concurrently performing at high levels and determined 
whether they exceed a specified threshold percentage of maximum 
functioning. Single-thresholds of 20 %, 40 %, 60 % and 80 % were 
defined and then a generalized linear model was fitted to estimate a 
linear relationship predicting the number of soil functions performing at 
or above their threshold as a function of soil microbial diversity (Byrnes 
et al., 2014). 

2.3. DNA extraction, high-throughput sequencing and bioinformatics 

Soil DNA was extracted from 0.5 g of soil using MoBio PowerSoil 
DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to 
the manufacturer’s instructions. The DNA concentrations were 
measured on a NanoDrop ND-2000c UV–vis spectrophotometer (Nano
Drop Technologies, Wilmington, DE, USA). The bacterial 16S rRNA gene 
and the fungal ITS1 gene were amplified for the V4-V5 hypervariable 
regions and ITS1 region using the primer pairs 515F/907R (Yusoff et al., 
2013) and ITS1F/ITS2R (Adams et al., 2013). Each barcode unique 
sequence (8 mer) was added to the forward primer of each sample. For 
both bacteria and fungi, we conducted PCR amplification with 10-ng 
template DNA, 0.8 μl of each forward and reverse primer (both at 5 
μM), 4 μl 5 × FastPfu Buffer, 2 μl 2.5-mM dNTPs, and 0.4 μl FastPfu 
polymerase (TransGen Biotech, Beijing, China), and adjusting the vol
ume to 20 μl with PCR-grade water. Each sample was amplified in three 
technical replicates with the 20 μl reaction under the following condi
tions. For bacteria: 95 ◦C for 5 min, 37 cycles of 95 ◦C for 30 s, 55 ◦C for 
30 s and 72 ◦C for 45 s of extension, followed by 72 ◦C for 10 min. For 
fungi, 94 ◦C for 4 min, 38 cycles of 94 ◦C for 45 s, 55 ◦C for 30 s and 72 ◦C 
for 45 s of extension, followed by 72 ◦C for 10 min. After amplification, 
the purified PCR products were mixed in equimolar ratios to obtain a 
quantitative sample DNA library for further sequencing. Sequencing was 
conducted using the Illumina MiSeq platform (Illumina, San Diego, CA, 
USA) at Major Biotechnology Co., ltd (Shanghai, China). 

Raw sequences were demultiplexed and quality-filtered using the 
Quantitative Insights Into Microbial Ecology (QIIME) toolkit (version 
1.8.0). Reads were end-trimmed to ensure the nucleotide quality score 
>30 before merging, and the maximum of expected error (ee) was set as 
0.5 for merged reads filtering. After quality control, a total of 2,612,388 
and 2,918,170 high-quality sequences were obtained for bacteria and 
fungi, respectively. These sequences were filtered for quality and split 
into operational taxonomic units (OTUs) at a 3 % dissimilarity level 
using the UPARSE pipeline (Edgar et al., 2011). The taxonomic assign
ment was performed using the SILVA (release 132) 16S rRNA database 

for bacteria and UNITE (release 7.2) fungal ITS database for fungi. 
Finally, A total of 6701 bacterial and 2320 fungal OTUs were obtained. 

2.4. Statistical analysis 

All statistical analyses were performed in R (version 4.0.1) unless 
otherwise noted. To determine the relationship between the soil mi
crobial community and soil properties, we performed a redundancy 
analysis (RDA) using the ‘Vegan’ package (Oksanen et al., 2017). Only 
environmental variables that were significantly (p < 0.05, 999 permu
tations) correlated with the RDA model were selected. To test for dif
ferences in soil physicochemical parameters and extracellular enzyme 
activities between the four EC and SOM groups we performed a one-way 
ANOVA, and the least significant difference (LSD) was used to compare 
the means for each variable (α = 0.05). 

To visualize the variation in bacterial and fungal community struc
tures with changing EC and SOM, we performed a principal co-ordinates 
analysis (PCoA) using Bray-Curtis dissimilarity. To determine the effect 
of EC and SOM on bacterial and fungal communities, a permutational 
multivariate analysis of variance (PERMANOVA) was conducted using 
the adonis in the ‘Vegan’ package (Oksanen et al., 2017). To determine 
the relationship between microbial biodiversity (Simpson’s Diversity 
Index) and SMF for each of the four EC-SOM groups, we ran an ordinary 
least squares (OLS) linear regression model. 

Two complementary approaches were employed to identify microbes 
that were sensitive to changes in EC and SOM (Hartman et al. 2018). 
First, a correlation-based indicator species analysis was performed in 
‘indicspecies’. This estimates the point-biserial correlation coefficient (r) 
of an OTU’s positive association to EC and SOM (De Cáceres et al., 
2010), with significance at p < 0.05 using 104 permutations. Second, we 
identified differential OTU abundance of both kingdoms in the soil mi
crobial community using likelihood ratio tests (LRT) for all EC-SOM 
groups with the package ‘edgeR’ (Robinson et al., 2010). OTUs whose 
abundances were identified as differing between groups were consid
ered responsive at a false discovery rate (FDR) corrected threshold of p 
< 0.05. We classified sensitive OTUs (sOTUs) as OTUs that showed 
significant relationships in both the indicator species selection analysis 
methods and in the LRT. The Simpson’s diversity index of sOTUs in each 
site was calculated with the ‘Vegan’ package. Spearman correlation was 
used to assess the relationship between soil functions and the sum of the 
abundances of sOTUs on the phylum level. We also identified abundant 
taxa and rare taxa among sOTUs. Abundant taxa were defined as OTUs 
with a relative abundance of at least 1 % in any site (i.e., relative 

Fig. 1. The distribution of 55 sampling sites across Quzhou experimental station in North China Plain.  
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abundance within a sample) and an overall relative abundance of at 
least 0.1 % (i.e., abundance across all 55 samples) (Xiong et al., 2020). 
Rare taxa were defined as OTUs having local relative abundance less 
than 0.01 % and regional relative abundance less than 0.001 % (Xiong 
et al., 2020). OTU taxa defined as neither rare nor abundant were 
classified as intermediate taxa (Xiong et al., 2020). 

To explore the effect of EC and SOM content on the microbial in
teractions, in particular between sOTUs in the soil bacterial and fungi 
community, we constructed co-occurrence networks. We normalized 
OTU sequence counts for each microbial kingdom separately using the 
“trimmed means of M” (TMM) method with the BioConductor package 
‘edgeR’ (Hobbs et al., 2008) and expressed the normalized counts as 
relative abundance counts per million (CPM) (Hartman et al., 2018). 
Next, we conducted Spearman rank correlations between OTUs and 
visualized the positive, significant correlations (R > 0.6 and p < 0.01). 
Co-occurrence networks were visualized with the Fruchterman- 
Reingold layout with 104 permutations. Topological network proper
ties were calculated with ‘igraph’, including the total number of network 
nodes (OTUs), total number of edges (connections between nodes), and 
degrees of co-occurrence (number of direct correlations to a node) 
(CsardI and Nepusz, 2016). Network modules were identified and 
implemented in ‘igraph’ utilizing the greedy optimization of modularity 
algorithm. To analyze differences in relative abundance of sOTUs be
tween the EC and SOM groups in the different network modules we 
performed a two-way ANOVA and visualized the data using ‘ggplot2’ 
(Wickham, 2009). And LDA Effect Size (LEfSe) analysis were conducted 
to identify taxonomic biomarkers between different treatments across 
each module in the network. 

To test the strength of the relationship between soil biodiversity and 
SMF accounting for multiple abiotic drivers simultaneously across all 
soil samples and in the HS-LEC group, we developed a structural equa
tion model (SEM) using AMOS 17.0 (SPSS, Chicago, IL, USA). In this 
study, we try to evaluate the direct link between diversity and relative 
abundance of sOTU and multifunctionality (averaging) after controlling 
for soil parameters (EC and SOM). Bacterial and fungal sOTU diversity, 
relative abundance of bacterial and fungal sOTUs were used to predict 
soil multifunctionality directly. As soil properties can have direct effects 
and indirect effects on SMF by affecting soil microbial communities 
(Jiao et al. 2022), the direct and indirect effects of EC and SOM on SMF 
were also explored. The conceptual model and framework of the priori 
SEM were provided in Fig. S1. Maximum likelihood estimation was used 
to fit the covariance matrix to the model. The a priori theoretical model 
was adjusted according to the principle of the low Chi-square (χ2), 
nonsignificant probability (p > 0.05), high goodness-of-fit-index (GFI >
0.90), and root mean square error of approximation (RMSEA < 0.05) to 
ensure that the final model was adequately fitted. 

3. Results 

3.1. Effects of EC and SOM on bacterial and fungi community 

There was no significant difference in microbial α-diversity (Simp
son’s diversity index) among four EC-SOM groups (Fig. S2). However, 
bacterial and fungal community structure differed significantly based on 
the PCoA (Fig. 2; Fig. S3). Both soil bacterial and fungal communities 
were distinctly grouped by EC and SOM, and the clustering of the bac
terial community was more distinct. This was further supported through 
permutational multivariate analysis of variance (PERMANOVA). SOM 
and EC were the major drivers of bacterial community composition and 
EC was the major driver of fungal community composition (Fig. S2). 

Among four groups, the most abundant bacterial phyla were Pro
teobacteria and Acidobacteriota, and the most abundant fungal phyla 
were Ascomycota and Mortierellomycota (Fig. S4). A total of 290 and 38 
bacterial and fungal sOTUs were identified, respectively (Fig. S5). 
Compared to fungal sOTUs, bacterial sOTUs were more sensitive to EC 
(F1,51 = 7.88, p < 0.01) and SOM (F1,51 = 17.87, p < 0.001) (Fig. S6; 

Table S2). The sOTUs were assigned to 22 bacterial phyla and 5 fungal 
phyla. For each group, the most abundant phyla of bacteria were Pro
teobacteria and Acidobacteriota and the most abundant fungal phylum 
was Ascomycota (Fig. S7; S8). Based on the relative abundance of sOTUs, 
223 and 67 bacterial sOTUs were identified as rare and intermediate 
taxa, respectively. All fungal sOTUs were intermediate taxa. However, 
there was no abundant taxa across all sOTUs (Table S3). 

3.2. Microbial co-occurrence networks 

The bacterial network comprised a higher number of significantly co- 
occurring OTUs than the fungal network (Fig. 3a; Fig. 3b). Network 
connectivity, the average number of connections per OTU, was also 
higher in the soil bacterial network (Table 1). We found 177 bacterial 
and 13 fungal sOTUs in the networks, accounting for 44.47 % and 14.61 
% of total 398 bacterial and 82 fungal network nodes (Table 1). Five 
modules contained sOTUs in the bacterial networks and three modules 
in the fungal network contained sOTUs (Fig. 3), and sOTU showed 
different responses to EC and SOM across modules (Fig. 3c; Fig. 3d; 
Table S4). For bacteria, M1 changed with EC (F1,51 = 8.98, p < 0.01), 
and in particular, species in genera of Chloroflexi, Steroidobacterale, 

Fig. 2. Principal coordinates analysis (PCoA) of soil bacterial (a) and fungal (b) 
community based on the Bray-Curtis dissimilarities across four groups: HS-HEC 
(light red), HS-LEC (light blue), LS-HEC (green), LS-LEC (dark red). “HS”, “LS”, 
“HEC”, “LEC” represent high and low organic matter, high and low electronic 
conductivity respectively. 
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Gammaproteobacteria, Acidobacteriota and Woeseia were significantly 
enriched in high salinity treatment (Table S5). M4 and M5 were 
dramatically responsive to SOM (F1,51 = 10.58, p < 0.01; F1,51 = 17.74, 
p < 0.01). M2 (F1,51 = 4.60, p = 0.03; F1,51 = 20.42, p < 0.001) and M3 
(F1,51 = 5.16, p = 0.02; F1,51 = 23.24, p < 0.001) were significantly 
influenced by both EC and SOM (Fig. 3c; Table S4). For species in M3 
and M4, the abundance of Rubrobacter, Microlunatus, Thermoleophilia, 
SBR1031, Latescibacteria, Myxococcota, Tepidisphaerales, Nitrosococcus 
and Nocardioidacea were enriched in high SOM treatment (Table S5). For 

Fig. 3. Co-occurrence patterns of sensitive OTUs. Co-occurrence networks visualizing significant correlations (R > 0.6, p < 0.01; indicated with gray lines) between 
OTUs in bacterial (a) and fungal (b) communities. Shaded areas represent the network modules containing sOTUs. Cumulative relative abundance (as counts per 
million, CPM; y-axis in ×1000) of all bacteria (c) and fungi (d) of the sensitive modules (M) in the bacterial and fungi networks. The cumulative relative abundance in 
samples of HS-HEC (light red), HS-LEC (light blue), LS-HEC (green), LS-LEC (dark red) groups indicates the overall response of sensitive modules to the change of EC 
content and SOM content. 

Table 1 
Properties of soil bacterial and fungal co-occurrence networks.   

Node Edge Network connectivity sOTU 

Bacteria 398 947  4.76 177 
Fungi 82 53  1.29 13  

Fig. 4. Relationships between the bacterial (a) and fungal (b) diversity and soil multifunctionality for all 55 farms. Four colored circles represent different groups: 
HS-HEC (light red), HS-LEC (light blue), LS-HEC (green), LS-LEC (dark red). Solid blue line represents the fitted ordinary least squares (OLS) linear regressions. The 
gray shaded area shows the 95% confidence interval of the fit. 
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fungi, M1 contained sOTUs that were sensitive to EC (F1,51 = 4.30, p =
0.04) and M2 was affected by SOM content (F1,51 = 13.83, p < 0.001), 
whereas the sOTUs in M3 were sensitive to neither EC (F1,51 = 1.75, p =
0.19) nor SOM content. (F1,51 = 0.57, p = 0.45) (Fig. 3d; Table S4). 
However, we didn’t find any taxonomic biomarkers of each module in 
the fungal network. 

3.3. Relationships between microbial diversity and soil multifunctionality 

We explored the relationship between soil microbial diversity and 
SMF using three metrics of multifunctionality: average, single function, 
and single-threshold approaches. For average approach, SMF was posi
tively and significantly correlated with bacterial diversity (R = 0.39, p <
0.01) (Fig. 4a), and this was mainly associated with sensitive bacteria (R 
= 0.40, p < 0.01; R = 0.33, p = 0.01) across all four groups (Fig. 5a; 
Fig. 5c). For signal soil function, the total and sensitive bacterial di
versity were positively correlated with carbon (R = 0.38, p < 0.01; R =
0.37, p < 0.01) and micronutrient cycling (R = 0.35, p = 0.01; R = 0.39, 
p < 0.01) (Table S6). A significantly positive relationship was observed 
between the relative abundance of sensitive bacteria and carbon cycling 
(R = 0.40, p < 0.01). However, no statistically significant relationships 
were found between fungal diversity (both total and sensitive commu
nity) and SMF (Fig. 4b; Fig. 5b; Fig. 5d) or any individual soil function 

(Table S6). For single-threshold approach, we also observed a positive 
relationship between bacterial diversity and soil multifunctionality at 
thresholds of 20 % (R = 0.39, p < 0.01) and 40 % (R = 0.30, p = 0.03) 
(Fig. S8). 

At the phylum level, specific taxa of sOTUs affected SMF and soil 
single functions (Fig. 6). Carbon cycling and SMF were positively 
correlated with the abundance of Armatimonadota, Entotheonellaeota and 
Myxococcota, but negatively correlated with the abundance of Methyl
omirabilota and MBNT15. Carbon cycling was negatively correlated with 
the abundance of Proteobacteria, Bdellovibrionoda, Firmicutes, Nitrospirota 
and positively with Planctomycetota and Verrucomicrobiota. Phosphorus 
cycling was positively correlated with the abundance of Bacteroidota. 
Nitrogen cycling was positively correlated with Firmicutes and nega
tively with Latescibacterota, Acidobacteriota and Cyanobacteria. There 
were significantly positive relationships between micronutrient cycling 
and the abundance of Cyanobacteria, Actinobacteriota, Myxococcota, 
Armatimonadota and Entotheonellaeota, while negative relationships 
were observed with MBN15 and Desulfobacterota. However, we didn’t 
observe any significant relationship between soil multifunctionality, 
individual soil function and abundance of fungal sOTUs. 

For individual group, we observed positive relationships only in the 
HS-LEC group, in particular between SMF and total bacterial diversity 
(R = 0.60, p = 0.03), and diversity (R = 0.66, p = 0.01) and relative 

Fig. 5. Relationships between soil multifunctionality and diversity and relative abundance of bacterial (a, c) and fungal (b, d) sensitive microbes (sOTU). Four 
colored circles represent different groups: HS-HEC (light red), HS-LEC (light blue), LS-HEC (green), LS-LEC (dark red). Solid blue line represents the fitted ordinary 
least squares (OLS) linear regressions. The gray shaded area shows the 95% confidence interval of the fit. 
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abundance of sOTUs (R = 0.60, p = 0.03) (Table 2). For single functions, 
we observed positive relationships in the HS-LEC group between carbon 
cycling and bacterial sOTUs biodiversity (R = 0.57, p = 0.04) and the 
relative abundance (R = 0.73, p < 0.01) (Table S6). When we explored 
the single threshold approach, significant correlations were observed 
between the bacterial as well as sOTU abundance and SMF at thresholds 
of 20 % (R = 0.69, p < 0.01; R = 0.57, p = 0.04) and 40 % (R = 0.66, p =
0.01; R = 0.6, p = 0.03) in HS-LEC group (Table 3). And bacterial sOTU 
diversity was positively correlated with SMF at thresholds of 20 % (R =
0.55, p = 0.05), 40 % (R = 0.60, p = 0.03) and 60 % (R = 0.60, p = 0.03). 
We also observed significantly negative relationships between the 
fungal diversity and SMF (R = -0.62, p = 0.02) at 80 % (Table 3). In 
addition, specific taxa of bacterial sOTUs showed positive relationships 
with SMF and carbon cycling. The abundance of Bdellovibrionoda and 
Myxococcota were positively correlated with SMF, and the abundance of 
Entotheonellaeota and Fibrobacterota were positively correlated with 
carbon cycling (Fig. S9). 

3.4. Direct and indirect effects of multiple drivers on soil 
multifunctionality 

The SEM model was constructed to test the positive relationship 
between soil multifunctionality and bacterial diversity. The model 
explained 51 % and 73.0 % of the variance in SMF across all soil samples 
and in HS-LEC group (Fig. 7a; Fig. S10). SOM, diversity, and relative 
abundance of bacterial sOTU showed significantly positive effects on 

SMF (Fig. 7; Fig. S10). EC showed an indirect effect on SMF by affecting 
bacterial sOTU diversity. Bacterial sOTU diversity was the most 
important biotic factor contributing to SMF. These results indicated that 
diversity and relative abundance of bacterial sOTU rather than fungal 
sOTU explained SMF (Fig. 7; Fig. S10). 

4. Discussion 

4.1. Combined effects of EC and SOM on the soil biodiversity- 
multifunctionality relationship 

The positive relationships between soil microbial diversity and SMF 
were affected by EC and SOM, and only occurred under HS-LEC condi
tion (Table 2), which supports predictions from our first hypothesis. 
Consistent with our results, SOM increases enzyme activities in soils 
with low EC (<2.05 ds/m) (Dong et al. 2022). The importance of SOM in 
contributing to SMF is well established (Luo et al. 2018; Chen et al. 
2020). As an indispensable energy and nutrient source for microorgan
isms, SOM availability is a key factor shaping microbial communities 
(Burns et al., 2016; Drenovsky et al., 2004). Soil organic matter tends to 
improve microbial diversity, and organic matter application in previ
ously cultivated lands can increases diversity of soil organisms and soil 
substrates, which may stimulate growth of indigenous organisms (Bas
tida et al., 2021). 

However, we observed low or no effects of high SOM on SMF under 
higher EC conditions, suggesting that the negative effect of soil salinity 

Fig. 6. Person correlations between soil functions and the abundance of sensitive microbes (sOTU) at phylum level. SMF: soil multifunctionality; CC: Carbon cycling; 
NC: Nitrogen cycling; PC: phosphorus cycling; MC: micronutrient cycling. “*”, “**” and “***” indicate p < 0.0, p < 0.01 and p < 0.001 respectively. 
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could diminish the positive effects of SOM (Table 2). It is likely that high 
salinity reduced microbial metabolism decreasing rates of organic 
matter degradation and nutrient release (Wichern et al., 2006; Dong 
et al., 2022). Consequently, the low fertility and buffering capacity of 
soils could exasperate the negative effects of salinity on SMF. The 
functional trade-offs could be another reason, as soil microorganisms 
allocate more energy to tolerate high salinity, resulting in the depletion 
of other soil functions (Kempf and Bremer, 1998; Oren, 2008). Lastly, 
low average SOM content (14 g/kg) observed in the study may constrain 
our ability to detect changes in SMF with the reduction of salt stress. In 
this study we added no external organic matter input, except for root 

residues. The addition of organic amendments (manures, vermicompost, 
compost) could alleviate the negative effect of soil salinity on soil mi
crobial activities and functions by improving soil fertility and SOM 
(Azadi and Raiesi, 2021; Srivastava et al., 2016; Tejada et al., 2006). 

4.2. Sensitive bacteria drive soil multifunctionality 

We found that bacterial, not fungal diversity was positively related to 
SMF in agroecosystems, which supported our second hypothesis. 
Consistent with our results, Han et al. (2022) found bacterial rather than 
fungal diversity drove SMF in a tea plantation. Agricultural soils suffer 
from frequent anthropogenic disturbances and disrupted microbial 
habitats, which impose more pressures that drive the turnover of soil 
community structure. Compared with fungi, bacterial community 
showed higher phylogenetic and taxonomic turnover under with 
frequent disturbance, resulting in higher niche complementarity in 
bacterial communities (Han et al., 2022). As a result, bacterial com
munities may have higher functional redundancy than fungal commu
nities, making them better suited to withstand changes in the soil 
environment while maintaining SMF (Li et al., 2021b). 

The positive correlation between bacterial diversity and SMF was 
mainly driven by sensitive microbes that were responsive to changes in 
EC and SOM (Fig. 5; Table 2). Among them, rare taxa accounted for a 
large proportion (80.3 %) of sensitive microbes (Table S3), which is 
further shown by the Chen et al. (2020) and Shu et al. (2021) as drivers 
of SMF. Rare taxa contain a broader range of metabolic functions 
compared to the abundant species (Chen et al. 2020; Shu et al. 2021). 
However, rare species have a limited ability to disperse and occupy 
relatively narrower ranging niches, which makes rare taxa more sus
ceptible to changes in edaphic conditions (Wu et al., 2017; Wan et al., 
2021a). The co-occurrence network supported this argument as we 
found sensitive OTUs formed different modules that were clustered 
together and were similarly responsive to SOM and/or EC conditions; 
which might reflect different functions. We observed the relative 
abundance of some sensitive bacteria in M3 and M4 of the network 
increased in the high SOM treatment and most microorganisms within 
have been found to play crucial roles in carbon cycling. Species from the 
genus of Microlunatus can produce glucosidase (Cui et al., 2007), while 
Myxococcota and Latescibacterota could be involved in the degradation of 

Table 2 
Relationships between soil multifunctionality and the bacterial and fungal di
versity and diversity as well as relative abundance of sensitive microbes (sOTU). 
Value in bold indicates a positive relationship. * indicate p < 0.05.  

Group Microbial diversity Soil multifunctionality 

R p 

HS-HEC Bacterial diversity  − 0.17  0.60 
Fungal diversity  0.00  0.99 
Bacterial sOTU diversity  0.02  0.95 
Bacterial sOTU relative abundance  − 0.22  0.49 
Fungal sOTU diversity  − 0.24  0.46 
Fungal sOTU relative abundance  − 0.54  0.07 

HS-LEC Bacteria diversity  0.60  0.03* 
Fungal diversity  − 0.073  0.812 
Bacterial sOTU diversity  0.66  0.01* 
Bacterial sOTU relative abundance  0.60  0.03* 
Fungal sOTU diversity  − 0.074  0.811 
Fungal sOTU relative abundance  − 0.353  0.237 

LS-LEC Bacterial diversity  0.22  0.49 
Fungal diversity  − 0.21  0.50 
Bacterial sOTU diversity  0.15  0.65 
Bacterial sOTU relative abundance  − 0.12  0.71 
Fungal sOTU diversity  − 0.27  0.39 
Fungal sOTU relative abundance  − 0.13  0.69 

LS-HEC Bacterial diversity  0.16  0.53 
Fungal diversity  − 0.39  0.11 
Bacterial sOTU diversity  0.12  0.65 
Bacterial sOTU relative abundance  0.23  0.36 
Fungal sOTU diversity  0.29  0.25 
Fungal sOTU relative abundance  0.43  0.08  

Table 3 
Relationships between soil multifunctionality and the bacterial and fungal diversity and diversity as well as relative abundance of sensitive microbes (sOTU) based on 
single threshold approaches. Value in bold indicates a positive relationship. * indicate p < 0.05; ** indicate p < 0.01.    

20 % 40 % 60 % 80 % 

Group Microbial diversity R p R p R p R p 

HS-HEC Bacterial diversity  − 0.35  0.26  − 0.22  0.48  − 0.21  0.52  − 0.14  0.66 
Fungal diversity  0.03  0.93  − 0.023  0.94  − 0.08  0.8  − 0.01  0.97 
Bacterial sOTU diversity  − 0.15  0.65  − 0.08  0.81  0.01  0.99  0.04  0.91 
Bacterial sOTU relative abundance  − 0.27  0.39  − 0.22  0.49  − 0.32  0.32  − 0.29  0.35 
Fungal sOTU diversity  − 0.12  0.72  − 0.28  0.37  − 0.31  0.33  − 0.33  0.29 
Fungal sOTU relative abundance  − 0.48  0.11  − 0.47  0.12  − 0.51  0.09  − 0.54  0.07 

HS-LEC Bacterial diversity  0.69  <0.01**  0.66  0.01*  0.53  0.06  0.47  0.11 
Fungal diversity  − 0.02  0.96  0.05  0.88  0.16  0.6  0.29  0.34 
Bacterial sOTU diversity  0.55  0.05*  0.60  0.03*  0.63  0.02*  0.52  0.07 
Bacterial sOTU relative abundance  0.57  0.04*  0.60  0.03*  0.53  0.06  0.47  0.11 
Fungal sOTU diversity  − 0.16  0.6  − 0.07  0.82  0.07  0.82  − 0.1  0.73 
Fungal sOTU relative abundance  − 0.27  0.37  − 0.35  0.24  − 0.54  0.06  ¡0.62  0.02* 

LS-HEC Bacterial diversity  0.15  0.65  0.17  0.59  0.23  0.47  0.28  0.38 
Fungal diversity  − 0.3  0.23  − 0.28  0.27  − 0.28  0.26  − 0.26  0.3 
Bacterial sOTU diversity  − 0.03  0.92  − 0.04  0.89  − 0.09  0.79  − 0.14  0.65 
Bacterial sOTU relative abundance  − 0.19  0.55  − 0.22  0.5  − 0.18  0.58  0.02  0.96 
Fungal sOTU diversity  − 0.11  0.74  − 0.03  0.94  0.09  0.77  0.14  0.66 
Fungal sOTU relative abundance  − 0.11  0.73  − 0.04  0.89  0.01  0.98  0.01  0.97 

LS-LEC Bacterial diversity  0.2  0.42  0.21  0.4  0.13  0.62  0.15  0.55 
Fungal diversity  − 0.02  0.96  0.05  0.88  0.16  0.6  0.29  0.34 
Bacterial sOTU diversity  0.18  0.47  0.2  0.44  0.08  0.76  0.08  0.76 
Bacterial sOTU relative abundance  0.25  0.33  0.27  0.28  0.25  0.32  0.2  0.43 
Fungal sOTU diversity  − 0.01  0.97  − 0.1  0.7  − 0.12  0.65  − 0.11  0.66 
Fungal sOTU relative abundance  0.29  0.25  0.16  0.54  0.1  0.69  0.07  0.78  
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methyl and aniline, respectively (Langwig et al., 2022; Liu et al., 2021). 
However, we did not find evidence that fungal communities are driving 
SMF. It is well known that fungi play important roles in regulating en
ergy and nutrient transport through their hypha structures (Cairney, 
2005; Dighton, 2007; Holden et al., 2013). However, intensive agri
cultural practices, such as tillage and fungicide application, have 
destroyed soil structure and fungal hyphal extension, which would 
consequently affect fungal community functioning (Sofo et al., 2021). 
Additionality, fungi normally grow slower than bacteria (Smithee et al., 
2014), and when measuring soil functioning in a short incubation period 
(e.g., soil respiration), bacteria may be as stronger drivers because they 
recover faster after soil perturbation (sampling, sieving, etc.), while the 
fungal communities take longer (Sun et al., 2017). 

4.3. The effects of responsive species on individual soil function 

In our study, sensitive species were significantly correlated with 
different soil functions, which suggests that the performance of multiple 
soil functions may be widely distributed across different functional 
groups within the community (Bender et al., 2016; Delgado-Baquerizo 
et al., 2016). We found that carbon cycling showed similar patterns to 
those observed for the overall SMF (Fig. 6; Table S6), indicating the 
crucial role carbon cycling plays in agroecosystems (Luo et al., 2018). 
Furthermore, sensitive taxa from the phylum of Armatimonadota, Ento
theonellaeota, Planctomycetota, Verrucomicrobiota and Myxococcota were 
the major contributors to carbon cycling (Fig. 6). In general, bacteria 
obtain energy from the decomposition of labile organic matter, while 

recalcitrant organic compounds usually act as primary energy source of 
fungi (Rousk et al., 2016). There is less recalcitrant organic materials 
and more labile substrates derived from straw decomposition in agri
cultural ecosystems (Li et al., 2022), which may stimulate bacterial 
rather than fungal growth, thus promoting carbon cycling. Species from 
Armatimonadota, Entotheonellaeota, Myxococcota, Acidobacteriota and 
Cyanobacteria promoted micronutrients cycling (Fig. 6). Micronutrient 
such as Fe, Cu, Mn, Zn are essential metabolites for both plants and 
microbes. Microbes have evolved various biosynthetic pathways to 
improve the bioavailability of metals, such as releasing chelating mol
ecules, exudation of organic anions, and the promotion of reductive 
processes that facilitate mobilization (Rakshit et al., 2009; Hider and 
Kong, 2010; Sánchez-Rodríguez et al., 2013; Boiteau et al., 2018;). In 
calcareous soil with low micronutrient availability, microorganisms 
likely play a critical role driving micronutrient transport within the 
plant-soil system. And indeed, microbially driven micronutrient cycling 
has been linked to improving the micro-element content of crops (de 
Santiago et al., 2019). 

Although some species like Firmicutes and Bacteroidota were involved 
in N and P cycling (Fig. 6), N and P functions were not predicted by 
overall microbial diversity. This was consistent with previous studies (Li 
et al., 2020; Chen et al., 2020) and likely largely due to a high input of 
chemical fertilizers in the fields managed by small farmers. Fertilization 
is one of the most common agricultural practices and has accelerated the 
degradation of soils resulting in both soil salinization and acidification 
(Guo et al. 2010). Salinization and acidification influence soil microbial 
community diversity and composition (Fig. S12), as well as a broad 

Fig. 7. Effects of abiotic and biotic factors on soil multi
functionality in HS-LEC group (a). * indicates p < 0.05; ** 
indicates p < 0.01, *** indicates p < 0.001, respectively. 
Continuous and dashed lines indicate significant and nonsig
nificant relationships, respectively. R2 denotes the proportion 
of variance explained. (b) Standardized total effects (direct and 
indirect effects combined) derived from the structural equation 
model depicted above. SBS: bacterial sOTU diversity; SFS: 
fungal sOTU diversity; RAB: relative abundance of bacterial 
sOTU; RAF: relative abundance of fungal sOTU.   
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range of critical ecosystem functions (Zhou et al., 2020). Furthermore, 
excessive nitrogen and phosphorus applications would alter ecosystem 
functions by causing nutrient imbalances (Huang et al. 2018). Microbial 
populations involved in soil nitrogen and phosphorus cycling change 
with altered soil C: N: P stoichiometry (Luo et al., 2020). Alternatively, 
the uncorrelated relationships between N and P cycling and microbial 
diversity suggest that a majority of microbes are involved in N and P 
turnover processes (Li et al., 2019), resulting in functional redundancy. 
Even loss of some species has negligible effect on overall functionality as 
other groups can replace the roles (Louca et al., 2018). These results 
indirectly emphasize the importance of organic matter in improving 
SMF and soil health in agriculture, by providing many functions like 
improvement of soil biodiversity and nutrient cycling, plant disease 
suppression, carbon sequestration enhancement, and the alleviation of 
soil salinization (Sall et al., 2015; Luo et al., 2018; Chen et al., 2020; Tao 
et al., 2020; Yang et al., 2021). Our results highlight the importance of 
improving SOM for improving SMF especially in previously cultivated 
lands. 

5. Conclusions 

In conclusion, our results demonstrate that soil salinity and organic 
matter have interactive effects on the positive relationship between soil 
biodiversity and multifunctionality in soils with low EC and high SOM. 
Additionally, we found soil multifunctionality responded positively to 
increased soil bacterial diversity but not fungal diversity, and sensitive 
bacteria were the main drivers. Soil multifunctionality was mainly 
derived from soil carbon and micronutrient cycling, but not by N and P 
cycling, suggesting negative effects of extensive chemical fertilizer 
application impair soil functions. These results highlight the importance 
of increasing both organic matter inputs and decreasing soil salinization 
to improve multifunctionality. 
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