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Abstract
Our experimental work illustrates how microbial ecosystems can be shaped by selec-
tive pressures over long-term ecological time scales. Natural microbial ecosystems 
generally consist of various co-existing species, where community composition de-
scribes the frequency at which species or types are present. Overall functionality of 
the system is achieved by interacting species. Upon short-term selection, for instance 
by transfer to a novel environment, community composition and functionality may 
change in a process referred to as species sorting. Various factors, such as initial com-
munity composition and selective pressures from the environment, may influence this 
change. Mabisi is a traditional fermented food from Zambia that naturally contains a 
bacterial community of around twenty unique bacterial types. We used six compa-
rable but different natural bacterial Mabisi communities, each split into five identi-
cal replicates, for 16 propagation cycles in a novel, common laboratory environment. 
Composition of the bacterial communities changed upon propagation. The influence 
of four main factors on community composition, i.e. initial composition (history), im-
pact of the environment (adaptation), changes due to interaction between species and 
random processes (chance) in species dynamics, was tested using maximum likelihood 
ratios. Initial community composition seemed to determine the change in community 
composition, followed by random processes. Interestingly, we observed convergence 
at the level of ecosystem functionality, which was measured as profiles of metabolic 
output. This suggests different combinations of species or types can achieve similar 
eco-system functionality.

K E Y W O R D S
community composition, ecosystem functionality, experimental evolution, long-term ecology, 
mabisi, species sorting, traditional fermentation
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1  |  INTRODUC TION

In many ecosystems various species co-exist forming species com-
munities. Community composition is defined as the identity and 
relative abundances of all taxa in the community (Gill et al., 2020). 
Similar ecosystems have similar species diversities and community 
composition, for instance in the communities of Darwin's finches on 
similar islands and communities of cichlid fish in similar African lakes 
(Grant et al., 1976; Seehausen & Bouton, 1997), showing that simi-
lar eco-systems have similar community composition with regard to 
species present. Biotic and abiotic factors are thought to generate 
ecological niches that support multiple species to co-exist and stabi-
lise eco-systems (Hardin, 1960). Community composition can change 
due to selection pressures (Fiegna et al., 2015; Freilich et al., 2011; 
Gravel et al.,  2010; Zaret & Rand,  1971). Selection pressures may 
shift the balance among the co-existing species favouring the spe-
cies which are best adapted to the selection pressure (Lawrence 
et al., 2012), leading to a process of species sorting (Langenheder & 
Székely, 2011; Székely & Langenheder, 2014). Key questions include 
whether species sorting would lead to parallel or divergent change 
when species communities encounter the same change in environ-
ment, when similar species or types are present in ancestral commu-
nities, and to what level species sorting is repeatable. Functionality 
of the eco-system, which could be defined as the overall output of 
the system in terms of metabolites, is linked to community compo-
sition and may also change upon selection (Eisenhauer et al., 2019; 
Waldrop et al., 2000; Wolfe & Dutton, 2015).

Here we study how a change of environment can change the 
community composition of fermenting bacteria in a natural microbial 
eco-system derived from Mabisi. Mabisi is traditionally produced in 
Zambia through spontaneous fermentation of raw milk, resulting in 
a sour non-alcoholic product consumed by all age groups. The bac-
terial community consists of six to ten main species of lactic acid and 
acetic acid bacteria (Groenenboom et al., 2020; Moonga et al., 2020; 
Schoustra et al., 2013). Production methods of Mabisi differ per re-
gion (Moonga et al., 2019). In most cases, raw milk is filled in a con-
tainer, either a calabash, bucket or milk can, and left undisturbed for 
24–48 h after which it is stirred and consumed. The resulting com-
munity is re-used for the production of the next Mabisi by addition 
raw cow milk to the containers in which the community is present. 
These bacterial communities have been co-cultured up to tens of 
years or maybe even more. In a food technology context the serial 
transfer of material is referred to as backslopping (Nout et al., 2005). 
Mabisi, like other traditional fermented foods, is a means for many 
small scale processors and entrepreneurs to promote livelihoods and 
nutrition within a local context (Materia et al., 2021b).

In this experiment, six different original Mabisi samples were 
used, each split in five replicates and propagated over 16 serial 
transfers in a common environment. We characterized the samples 
in terms of the bacterial community composition, i.e. the identity 
and relative abundances of all operational taxonomic units (OTUs) 
or bacterial types and functionality (metabolic output) at the start 
of the experiment and after the repeated transfers. The central 

question we address is whether initially similar communities will ei-
ther become more alike (convergence) or less alike (divergence) with 
respect to the bacterial community composition. Final community 
composition could be affected by the initial composition (history—
OTUs present and their relative abundance) and the selective pres-
sures during the repeated transfers imposed by the environment 
(change; Travisano et al., 1995). If a new slightly different from the 
original environment is the main driver of change in community 
composition, we expect the communities to become more alike. 
However, should the slight differences in community composition 
between the six original Mabisi samples be the main driver, we ex-
pect community composition to diverge.

By using five replicates of each of the six original Mabisi sam-
ples for the repeated transfers, we will assess how repeatable the 
changes in bacterial community composition and functionality are 
when starting with communities with slight initial differences in bac-
terial community composition. This will show whether there would 
be an optimum community composition in a given environment. Two 
traits related to community dynamics, metabolic profile and com-
munity composition, are measured at the beginning and end of the 
experiment. We used a custom statistical model to test whether 
initial community composition and environment were significantly 
affecting community dynamics and if so, whether this happened 
according to an additive or interactive scenario. For this we used a 
log-likelihood ratio test with multinomial probabilities distributions.

2  |  MATERIAL S AND METHODS

2.1  |  Mabisi samples

For these experiments, fermented milk products from Zambia were 
collected under a collaborative project. This product, called Mabisi, 
was purchased on the market of Mumbwa, Kaoma and Nangoma in 
February 2015. In Mumbwa, Mabisi was bought from three produc-
ers, and one producer sold two types of Mabisi. This resulted in six 
Mabisi product samples: four from Mumbwa, one from Kaoma and 
one from Nangoma (see Appendix S1). (Moonga et al., 2019). This 
fermentation method involves placing raw milk in a fermentation 
vessel and allowing it to spontaneously ferment for 48 hours with-
out shaking. Mabisi is a traditional food, where processors use tra-
ditional knowledge to process perishable raw milk into a food with 
prolonged shelf life and improved microbial safety. It is produced 
in most rural areas in Zambia. Consumers are mostly found in rural 
towns, yet also consumers in larger cities have interest in this tradi-
tional food if available. In this way, mabisi plays an important role in 
the food system (Materia et al., 2021a; Moonga et al., 2019).

Another study found that neither sampling location nor pro-
cessor explained significant parts of variation among the bacte-
rial communities. Processing method did explain variation, yet all 
samples used in this study were produced using the same method 
(Tonga-type; Moonga et al.,  2020). We thus decided to treat all 
our bacterial communities uncorrelated and did not perform any 
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1768  |    GROENENBOOM et al.

analysis using the sampling location as explanatory variable (see 
Appendix S1).

2.2  |  Repeated propagation cycles

After arrival in the laboratory the bacterial communities were in-
cubated in 30 ml UHT milk (Milbona, Lidl) with 1 ml of Mabisi. The 
incubation period was 3.5 days at 27°C. The resulting communities 
(considered T0) were used to inoculate the experiments. Five lines 
(replicates) were incubated per original Mabisi sample, 750 μl Mabisi 
in 75 ml UHT milk, resulting in 30 lines. Also two blank UHT milk 
lines were transferred, but not initially inoculated. Every 3.5 days, 
750 μl of the fermented milk was transferred to 75 ml UHT milk, pH 
was measured and samples (1 ml) were taken for DNA extraction 
to allow full community profiling. In total 16 transfers were made, 
resulting in an average of 106 generations, assuming the bacterial 
diversity could increase a hundred fold after the dilution step dur-
ing transfer (log(100)/log(2)  =  6.64 generations per propagation 
cycle, gives 6.64 × 16 = 106 generations in total).

2.3  |  DNA extraction

The DNA extraction method was adapted from Ercolini et al. (2001) 
and Schoustra et al.  (2013). All chemicals were obtained from 
Sigma, unless stated otherwise. For DNA extraction, 1 ml of fer-
mented milk was spun down (2 min, 12,000 RPM), after which the 
supernatant was removed. The cells were re-suspended in a mix 
of 64 μl EDTA (0.5 M), 160 μl Nucleic Lysis Solution (QIAGEN), 5 μl 
RNAse, 120 μl lysozyme and 40 μl pronase E. After an incubation 
time of 60 min at 37°C and agitation of 350 RPM, 400 μl ice-cold 
ammonium acetate (5 M) was added and the mixture was cooled 
on ice for 15 min. The mixture was spun down and 750 μl of su-
pernatant was transferred to a tube containing 750 μl phenol. This 
tube was vortexed and its content spun down (2 min, 12,000 RPM) 
and 500 μl of supernatant was transferred to a tube containing 
500 μl chloroform. This tube was vortexed and its content spun 
down (2 min, 12,000 RPM) and 400 μl of supernatant was trans-
ferred to a tube containing 1 ml 100% ethanol and 40 μl sodium 
acetate (3 M). This DNA containing tube was left to precipitate at 
−20°C overnight. The next day, the tube was spun for 20 min at 
12000 RPM at 4°C. The supernatant was carefully aspirated, and 
the DNA pellet was washed by adding 1 ml 70% ethanol. The tube 
was spun for 10 min at 12,000 RPM at 4°C, after which the super-
natant was aspirated again. The DNA pellet was left to dry at room 
temperature and dissolved in 20 μl 10 mM Tris pH 7.5.

2.4  |  Bacterial community profiling: Bacterial 
community composition at the level of OTUs

The 36 extracts (6 original Mabisi and 6 × 5 of samples at time 
point 16) containing DNA from all organisms in the community 

were sent for bacterial 16S rRNA gene amplicon paired-end se-
quencing of the V4 hypervariable region (341F-785R) on the 
MiSeq Illumina platform by LGC genomics. Primer sequences are 
CCTACGGGNGGCWGCAG and GACTACHVGGGTATCTAAKCC 
(Schoustra et al., 2013).

For further data processing and statistics, the QIIME pipeline 
(Caporaso et al., 2010), modified from Bik et al (Bik et al., 2016), 
was used. Paired-end reads were joined using join_paired_ends.
py (with minimum overlap 10 basepairs) after which sequences 
were trimmed and filtered using cutadapt (v1.11 -q 20, -m 400) 
using the known primer sequences. These trimmed sequences 
were then checked for chimera's, using uchime (v4.2.20, gold da-
tabase; Edgar et al., 2011), with sequences with a lower chimera 
score than 0.28 were retained. After these trimming and filtering 
steps sequences were clustered into operational taxonomic units 
(OTUs) at 95% similarity threshold after quality check using pick_
open_reference_otus.py (-s 0.1, -enable_rev_strand_match TRUE, 
-align_seqs_min_length 75, -pick_OTU_similarity 0.95). Taxonomy 
of the resulting OTUs was assigned to representative sequences 
using the Greengenes (v13.5) rRNA database. This algorithm gives 
a representative sequence for an OTU, which were used to per-
form a local blast using the gold database from uchime. The taxon-
omy from the top BLAST hit was used for further data processing. 
Shannon index (H) accounts for both number and evenness of 
OTUs present and is calculated using:

in which pi is the proportion of reads belonging to category i, and s is 
the total number of categories which can be OTUs, species, or genera 
depending on the level of clustering of the reads. The Shannon index 
can lie between 0 and ln s (Hutcheson, 1970), depending on the distri-
bution of the categories (evenness).

2.5  |  Bacterial community profiling: metabolic  
profile

Frozen samples from time points 0 and 16 were defrosted for 
volatile metabolites profile analyses using GC-MS using a Trace 
1300 Gas Chromatograph with a TriPlus RSH autosampler and an 
ISQ QD mass spectrometer (all Thermo Fisher). After an incuba-
tion of 20 min at 60°C, volatiles were extracted using a SPME fibre 
(Car/DVB/PDMS, Suppelco) for 20 min at 60°C. Volatiles were de-
sorbed from the fibre for 2 min on a Stabilwax- DA-Crossbond-
Carbowax-polyethylene-glycol column (30 m length, 0.25 mmID, 
0.5 μm df ), PTV Split-less mode (5 min) at 250°C, helium as carrier 
gas at 1.5 ml/min, GC over temperature at 40°C, 2 min, raised to 
240°C (10°C/min) and kept at 240°C for 5 min. Mass spectral data 
was collected over a range of m/z 33–250 in full scan mode with 
3.0030 scans/s. Results were analysed with Chromeleon 7.2 CDS 
Software (ThermoFisher) where 32 signal peaks were identified 
as volatile metabolites according to their elution time and mass 
spectral data.

(1)H = −

∑s

i=1

(

pi ln pi
)
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    |  1769GROENENBOOM et al.

2.6  |  Statistical modelling

To test whether and how the initial community composition impacts 
the change in community composition upon propagation, we em-
ployed a statistical modelling approach using R (R Core Team, 2022). 
In this model, we related the initial (T0) and end diversity (T16) by 
a vector of transformation values that link these two communities. 
The transformation values link T0 and T16 diversity as follows,

where OTUi,j,k,T16 is the frequency of ith OTU from original Mabisi 
sample j at timepoint T16, measured for the kth replicate. The trans-
formation values wi,j,k determine whether an OTU will increase or 
decrease. Note that the total sum of the frequencies was scaled by 
factor W such that the total frequency of OTUs becomes 1. We mod-
eled five scenarios (S1–5); the transformation values were dependent 
on initial community composition (S1), time (S2), initial community 
composition + time (S3), the interaction between initial community 
composition and time (S4), and the effect of the interaction of initial 
community composition and time + stochasticity (S5). We compare 
these scenarios to a null hypothesis, where there are no differences 
between any samples (S0).

We determined the probability of each scenario by calculating 
the likelihood of sampling an OTU table (Si,j,k,T16 and Si,j,T0) from the 
OTU table frequencies (OTUi,j,k,T16 and OTUi,j,T0). To render it possi-
ble to calculate the likelihoods of the distributions, we used a rar-
efaction in qiime to obtain S (rarefaction.py, -m 100). The probability 
of finding S from a distribution of OTU frequencies is determined 
using the multinomial distribution function dmultinom() in R (R base) 
for each of the 36 samples. From all possible OTU models we have 
taken the one with the highest likelihood, given the modeled sce-
nario. The likelihood would be highly dependent on T16 samples as 
for each original Mabisi sample there are five times more propagated 
samples compared to non-propagated (T0) samples. Therefore, we 
weighted the log-likelihood of each of these samples by dividing it 
by 5. We let P(S;OTU) be the probability that we sample S out of 
frequency distribution OTU. Then the log-likelihood summed over 
all samples of a scenario is given by

The frequency distribution with highest likelihood could be de-
termined in all but one scenario, by averaging the frequencies found; 
i.e. the most likely scenario for frequency is the average frequency. 
For instance, for S0, where the scenario is that of no difference in 
distribution between any samples, the most likely OTU distribution 
is the average over all the OTU frequencies, i.e.,

In the second scenario we model the potential effect of initial 
community composition, without an effect of propagation (S1). The 
most likely OTU frequency distribution is the average over the OTU 
tables within a sample coming from one original Mabisi sample.

Third, we model only the effect of time point (S2), where the 
most likely distribution is that of the mean over all OTU frequencies 
within a timepoint. Therefore, this is

where t stands for different timepoints, which can be T0 and T16. Then 
we modelled the effect of both initial community composition and 
time, but with similar changes in time for each original Mabisi sample 
(S3), i.e, wi,1,k = wi,2,k = …. wi,6,k.

In this scenario, an evolutionary algorithm was used to find the 
most likely frequency distribution, as a similar analysis of averaging 
(Equations 3–6) could not lead to the most likely distribution. The 
aim of this algorithm is to find the most likely values for w allow-
ing for interactive effects of time and mabisi samples. For the initial 
state of w, we used the mean values of OTU at T16 divided by T0, 
scaled in a similar way as in Equation [1]. Subsequently, all the values 
for OTU at T0 and w were mutated by multiplying these by a random 
number taken from a normal distribution with mean 1 and standard 
deviation of a uniform distribution that varied between 0 and 0.05. 
Therefore, neither the steps, nor the step size was equal in every 
generation. For the obtained values of most likely OTU distribution 
Equation 2 was calculated and when this likelihood was higher than 
before, the values obtained in the current run became the newly 
inherited parameter values for OTU T0, OTU T16 and all values for 
w. This simulation was run for 10,000,000 generations, within which 
the most likely OTU values showed asymptotic behavior.

Then we modelled the scenario in which initial community com-
position affected how OTU frequencies changed during propagation 
(i.e., interaction, S4), which was again estimated by taking the mean 
of the OTU tables, but now per time point per original Mabisi sam-
ple. This was calculated using

Lastly, when we also allowed for stochastic variation (S5), each 
most likely OTU table is the sampled table.

Once we had obtained the likelihoods of the most likely distribu-
tions, we tested whether initial community composition significantly 
affected OTU tables by performing a log likely ratio test between S1 
and S0. Similarly, we performed such tests between the likelihoods 
for S0 and S2 (for propagation effect), the interaction between ini-
tial community composition and propagation (S3 vs. S4) and lastly 
whether stochasticity significantly affected the OTU tables by 

(2)OTUi,j,k,T16 = OTUi,j,T0wi,j,k ∕W

(3)L =

6
∑

j=1

ln
[

P
(

Sj,T0; OTUj,T0

)]

+

1

5

5
∑

k=1

6
∑

j=1

ln
[

P
(

Sj,k,T16;OTUj,k,T16

)]

(4)OTUML,S0 =

1

12

[

6
∑

j=1

OTUj,T0 +
1

5

5
∑

k=1

6
∑

j=1

OTUj,T16

]

(5)OTUML,S1,j =
1

2

[

OTUj,T0 +
1

5

5
∑

k=1

OTUj,k,T16

]

(6)OTUML,S2,t = OTUt

(7)OTUML,S4,j,t = OTUj,t
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comparing S4 and S5. The value obtained was tested against χ2 dis-
tribution with difference in parameters as degrees of freedom.

Then we also quantified the relative explaining power for 
the different factors by calculating McFaddens Pseudo R2 
(McFadden, 1973). We first calculated these values by

The maximum R2 is obtained from R2
S5

. However, this value is still 
below 1. To calculate the relative contribution of explanatory power 
we divided all values of R2 by the highest R2, R2

S5
, thereby getting rR2, 

the relative McFaddens pseudo R2. Lastly, to obtain the added rR2 of 
single factors, such as stochasticity, we had to subtract the value of 
rR2

S4
. We thereby got the relative contribution for each factor.

2.7  |  PERMANOVA

To verify of our main results are consistent when including multiple 
time-points from the series, a second sequencing run was performed 
including intermediate time points. However, since only Mabisi 4 and 
Mabisi 6 were additionally sequenced for timepoints 1, 3 and 8 and 
most but not all mabisi samples at timepoint 8, we performed sepa-
rate PERMANOVAs on subsets of data, and used a separate likeli-
hood modelling approach only on timepoint 0 and 16 (see below). 
We tested whether time point and mabisi sample had significant 
main effects and interactions for all mabisi samples at time point 0 
and 16, Mabisi 4 and Mabisi 6 for timepoints 0, 1, 3, 8 and 16 and 

lastly for all mabisi samples at time points 0, 8 and 16. In all these 
tests, both main effects and interactions were significant support-
ing the main finding found in the statistical model. These additional 
analyses are shown in Appendix S6.

3  |  RESULTS

3.1  |  Bacterial community composition

The experiment was initiated using six initial Mabisi samples. Upon 
analyses of the microbial communities of these Mabisi samples, a 
total of 461 different bacterial OTUs were identified based on 16S 
amplicon sequencing, which blasted as most similar to 47 differ-
ent species in two main genera, Lactobacillus and Acetobacter. In 
two samples, Mabisi 1 and Mabisi 6, 61%–64% of the reads blast 
as Acetobacter species and 30%–35% as Lactobacillus species. In 
the other four samples, which originate from Mumbwa, the mi-
crobial communities consisted of about 60%–70% of Lactobacillus 
and 30%–40% Acetobacter species. The main species present were 
Lactobacillus helveticus, Lactobacillus delbrueckii, Acetobacter pas-
teurianus and Acetobacter orientalis. Lactobacillus fermentum and 
Lactobacillus kefiri are present in lower amounts and not in all sam-
ples (Figure 1). Shannon's diversity index of the samples ranged from 
1.75 (Mabisi 4) to 2.11 (Mabisi 3; Appendix S2).

The six Mabisi samples were split in five replicates and inoculated 
in a new milk environment. After 3.5 days of growth, we transferred 
1% of the culture consisting of the mixed bacterial community to fresh 

(8)R2
Si
= 1 − log

(

LSi
)

∕ log
(

LS0
)

F I G U R E  1  Bacterial community composition of Mabisi samples at time point 0 and the average community composition of the five 
samples initiated from each Mabisi sample after 16 repeated propagation cycles (time point 16). Results of DNA sequencing in the 16S 
region, each colour representing an OTU and a legend showing the best match of each OTU to a species. Results are shown as the average 
for the samples after 16 repeated propagation cycles over five replicates that were propagated independently. Bacterial community 
structure of all five replicates can be found in Appendix S2.
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milk and repeated the procedure for 16 repeated transfers. After 16 
transfers the bacterial community composition was analysed again. 
The propagated Mabisi communities show differences from the orig-
inal propagated samples in their bacterial community composition 
(Appendix S2). On average the relative abundance of OTUs blasted 
as Lactobacillus delbrueckii and Lactobacillus helveticus increased 
while OTUs blasted as Acetobacter pasteurianus and Acetobacter ori-
entalis decreased in relative abundance. There is variation between 
groups of propagated lines. In propagated communities originating 
from Mabisi 4, for example, the abundance of Lactobacillus delbruec-
kii decreases instead of increases. Across all 5 propagated replicates 
that originated from this Mabisi sample (Appendix S2: Figure S2a), 
this is a parallel change. Also, for the other replicates originating from 
one original community a parallel change can be seen. In most cases, 
except among propagated communities originating from Mabisi 5, 
the Shannon index was lower after propagation (T16) than before 
propagation (T0; Appendix S2: Table S2).

We used a principle component analysis (PCA) to visualize shifts 
in bacterial community composition after repeated propagation cycles 
(Figure 2). This analysis shows that bacterial community composition 
in the five replicates originating from the same original Mabisi sample 
changed in a similar way. While replicates originating from the same 
Mabisi sample still show many similarities, the bacterial community 
composition over all the propagated microbial communities became 
less similar. Overall, community composition among the propagated 
communities shows a higher variability than overall community com-
position among the six starting communities (PERMANOVA, See 
Appendix S3). Two clusters are formed, representing two ecological 
states. One with communities originating from Mabisi 1 and 5 (cluster 

A) and one with communities originating from Mabisi 2, 3, 4 and 6 
(cluster B). Compared to cluster B, cluster A is characterized by a de-
crease in relative abundance of OTUs blasted as Lactobacillus helveti-
cus and higher relative abundance of Lactobacillus delbrueckii.

3.2  |  Metabolic profiles

For overall metabolic activity, 32 volatiles were analysed as proxy for 
full metabolic output. Even though non-volatile metabolites are not 
analysed, this provides the possibility to compare metabolic activity 
between the different communities. Most volatiles belonged to the 
groups of esters, carbolic acids, ketones, and alcohols (Appendix S4). 
We used a principle component analysis (PCA) to visualize changes 
in metabolite profiles of communities before and after repeated 
transfers. In this case, the PCA analysis of the results did not show 
a clear distinction in clusters (Figure  3). Most samples, except for 
communities derived from Mabisi 6 show very similar volatile com-
position which is not, or only slightly, different from the volatile com-
position at T0. Other community characteristics such as pH, phase 
separation, and product thickness also did not show a directional 
change (see Appendix S5 for pH trajectories).

3.3  |  Mechanisms that drive changes in bacterial 
community composition

Changes in bacterial community composition after repeated prop-
agation cycles can be due to four main factors: initial community 

F I G U R E  2  Principle component analyses (PCA) of bacterial community composition of all samples at T0 (orange) and T16 (blue). Shapes 
represent samples originating from the same original Mabisi sample. Oval orange shades show clustering of T0 samples, blue shades show 
clustering of T16 samples that had originated from the same T0 sample. Oval shades do not represent results of analysis and are for visual 
interpretation purposes. Full results of community composition on which this PCA plot is based are in Appendix S2. Two ecological clusters 
were observed among the T16 samples: Cluster a characterized by a higher relative abundance of Lactobacillus delbrueckii, and cluster B 
characterized by a higher relative abundance of Lactobacillus helveticus. PCA analyses were based on OTU tables.
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composition, selection imposed by the environment, change caused 
by interaction between species (OTUs) and random processes in 
species dynamics. To statistically test which factor has the biggest 
influence on the community structure, we developed a maximum 
likelihood approach where we add levels of complexity to a commu-
nity composition model. Using the community composition of the 36 
samples we modelled six different scenarios and calculated the log 
likelihood (Table 1). Visual representation of this step-wise model is 
in Appendix S6.

Every step increases the log likelihood (Table 2). Allowing differ-
ences between the six initial samples (S1, Initial community composi-
tion) explains most of the variation (46.5%) and significantly affected 
community composition (χ2

df = 60 = 396.03, p < 0.001, Table 2). While 
time also significantly affected community composition (12.0% of 
the variation explained, χ2

df  =  12  =  101.87, p < 0.001), allowing for 
interactions between Mabisi sample and time points (Initial com-
munity composition × Time) explains 18.6% more of the variation 
in comparison to without interaction (Initial community composi-
tion + Time, χ2

df = 6 = 158.20, p < 0.001). The addition of stochastic-
ity (Initial community composition × Time + Stochasticity) resulted in 
explaining 100% of the variation, as all possible sources of variation 
are incorporated, however due to the many parameters included in 
this model (df = 288, Table 2), the addition of stochasticity did not 
significantly explain more of the OTU table variation (p = 1.0).

4  |  DISCUSSION

We used natural microbial communities from six Mabisi samples 
from Zambia as starting points for 16 propagation cycles into a novel 
environment, splitting each original sample into five replicates. At 
the start and end of the propagations, we measured bacterial com-
munity composition and metabolic profiles, asking whether the com-
position of these microbial communities would diverge or converge 
upon propagation in a common environment.

At the genus level, the six original microbial communities show 
much similarity, however, when comparing the communities at 
the level of OTUs and corresponding species as which then are 
blasted, differences between the communities can be observed 
(Appendix S2: Figure S2b). The level of similarity at the genus level, 
in combination with a variation in OTUs, made the different bacte-
rial communities a suitable starting point to study potential change 
in bacterial community composition upon repeated propagation cy-
cles. The original communities harboured similar species (although 
each species could be present at a different frequency) and thus 

F I G U R E  3  Principle component analyses of volatile compounds 
of all samples at T0 (orange) and T16 (blue). Similar shapes 
represent samples originating from the same original Mabisi 
sample. Oval orange shades show clustering of T0 samples, blue 
shades show clustering of T16 samples that had originated from the 
same T0 sample. Oval shades do not represent results of analysis 
and are for visual interpretation purposes. PCA analyses was based 
on the 32 volatile compounds detected in the GC-MS analyses (also 
see Appendix S4).

TA B L E  1  Log likelihood of scenarios what factors affect bacterial community composition

Scenario Description Log likelihood

S0
All equal

No initial differences,
No diversity changes over time

−562.18

S1
Initial community composition

Initial differences,
No diversity changes over time

−364.16

S2
Time

No initial differences,
Equal diversity changes over time

−511.24

S3
Initial community composition + time

Initial differences,
Equal diversity changes over time

−310.83

S4
Initial community composition × time

Initial differences,
Different diversity changes over time

−231.73

S5
In. comm comp. × time + stochasticity

All samples at T16 a different distribution −134.35

Note: The description of the scenarios and log likelihood are listed. OTU cutoff 0.02, likelihood of time point 16 samples averaged. 
Input = rarefaction_100_1.Biom. 100,000 iterations for estimating S3.
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contained the potential for community composition to converge. 
The environment used for the repeated propagation cycles—full 
fat milk in the laboratory—is simpler than the Mabisi environment 
the bacterial communities originated from. The new environment 
might have been favorable for only those bacteria that were most 
fit for this specific environment. This potentially caused a loss in the 
number of species/OTUs towards retaining only a few OTUs in the 
microbial community. This is, however, not what we observed. The 
laboratory milk environment appeared to provide enough niches to 
the bacterial species to maintain diversity in OTUs.

Our results show that upon propagation in the new environment, 
the bacterial community composition changed. After 16 repeated 
propagation cycles two clusters emerged among our propagated 
communities (Figure 2). The two ecological clusters were character-
ized by the fact that OTUs classified as either Lactobacillus delbruec-
kii or Lactobacillus helveticus was the most abundant species. This 
implies these two types share the same ecological niche and seem to 
be interchanging their functionality. What functional properties un-
derlie this interchanging of functionality is subject of further study, 
which could be implemented using metagenomic sequencing. The 
present study used 16S amplicon sequencing of the V3–V4 region to 
characterize the bacterial communities at the level of differences in 
OTUs. While we blasted these to a database to show to what species 
these OTUs could belong, our analysis does not allow to fully nor 
reliably identify at species level. As subspecies are substantially dif-
ferent in their biology and functionality, grouping bacteria by their 
species level is not detailed enough to determine their function in a 
certain environment, let alone to detect variations that exist within 
the same species with respect to their functional properties (Salvetti 
et al., 2018; Wittouck et al., 2019). Therefore, based on this study, 
we are unable to elaborate on what functional differences between 
Lactobacillus delbruecki and Lactobacillus helveticus may drive the 
ecological clustering. Further, the natural community used in this 
experiment very likely contained taxa from other domains (Moonga 
et al., 2019). The possible interactions between taxa, such as with 
yeasts, fungi, or bacteriophages, can also give more insight in the mi-
croorganisms present to a subspecies or perhaps even lineage level.

Our results suggest that the change in bacterial community com-
position towards one of the two ecological states is dependent on 

the original Mabisi bacterial community. Predicting which cluster 
the community would belong to after repeated propagation cycles 
does not seem straightforward. For example, original Mabisi 4 and 
original Mabisi 5 show clear similarities (Figure 2 and Appendix S2: 
Figure  S2a), while the bacterial communities after 16 propagation 
cycles belong to different clusters.

This dependence on the composition of the original bacterial 
community was apparent from our maximum likelihood based tests 
on what factors shape the community composition of propagated 
communities. The environment was found to have the least influence 
on the change in community composition of the four tested mech-
anisms. It is interesting to see that allowing interactions between 
initial community composition and time explained an extra 18.6% of 
the variation, compared to the additive effect of initial community 
composition and time. This indicates that in one propagated lineage 
a certain OTU increased, while in another the same OTU decreased. 
We therefore hypothesise that biotic interactions within the com-
munity have a bigger influence on the fitness of a certain OTU than 
the selection of the abiotic environment (Dunson & Travis, 1991).

We had expected that the increased differences in the bac-
terial community composition would translate into increased dif-
ferences in metabolic activity (Lawrence et al.,  2012; Waldrop 
& Firestone,  2006). However, in contrast to community compo-
sition, the metabolic profiles of the propagated communities did 
not show two clusters representing the two ecological states. The 
metabolites produced in a microbial community might thus be 
more dependent on the environment than on initial and current 
community composition. The metabolic pathways resulting in the 
formation of the volatiles measured might be either present in spe-
cies/OTUs which are represented in both ecological states or be 
carried by different species but expressed in a similar way. Also, 
in pH, phase separation and product thickness no directed change 
during the repeated propagation cycles were found (Appendix S5). 
We conclude that despite clear differences between the commu-
nity composition after repeated propagation cycles, the metabolic 
functionality, and potentially the transcriptomic profile, of the 
communities as a whole remained similar. This makes that commu-
nity metabolism and community composition at the level of species 
are not directly linked. New environments can cause communities 
to change in composition and function. These changes are influ-
enced by adaptation, chance, and evolutionary history (Travisano 
et al., 1995). Trait that are strongly related to fitness (such as bac-
terial growth rate) are more influenced by history, while traits that 
are weakly related to fitness (such as cell size) are more influenced 
by environment and chance (Travisano et al.,  1995). Community 
composition was more influenced by the initial community com-
position (evolutionary history), while for metabolic profile this was 
not the case.

This experiment can also be seen as an analogy to an experi-
mental evolution with one species starting with standing variation 
(Prezeworski et al., 2005; Teotónio et al., 2009). In our case, how-
ever, we study the sorting of species rather than the sorting of gen-
otypes. Due to selection pressures, one or a few individuals with 

TA B L E  2  Statistics of maximum likelihood approach using 
likelihood ratio tests

Scenarios 
tested

LR test 
statistic Δdf p

Rel. McF 
pseudo R2

S1 vs. S0 396.03 60 0 46.5%

S2 vs. S0 101.87 12 6.7e-16 12.0%

S4 vs. S3 158.20 6 9.8e-10 18.6%

S5 vs. S4 194.75 288 1.000 22.9%

Note: The log likelihood ratio test statistic (2*ΔLL), number of degrees 
of freedom and p value (from chi square distribution) and relative 
McFadden pseudo R2 are listed. OTU cutoff 0.02, likelihood of time 
point 16 samples averaged. Input = rarefaction_100_1.Biom. 100,000 
iterations for estimating S3.
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the highest fitness can be selected in an experiment with standing 
genetic variation. In case of communities, we cannot speak about 
fitness of the individual, as the community does not reproduce as 
one organism, but rather consists of multiple organisms which all 
reproduce on their own and therefore have their own fitness (de 
Vos et al., 2018). However, although we cannot use fitness as de-
fined for individual genotypes within a species, we can study how 
whole communities may adapt to a new environment. Although 
species are often studied in isolation, in nature they interact with 
many other organisms. Therefore, this study is focussed on the dy-
namics of whole communities to complement findings of studies 
focussing on individuals.

The propagation of bacterial communities into fresh medium was 
repeated 16 times, amounting to around 100 cell divisions or gen-
erations. While novel mutations could arise during our experiment, 
these are not expected to be frequent nor to have a large impact on 
community composition due to the limited number of generations. 
A much longer selection experiment may combine factors of spe-
cies sorting, which occurs at an ecological time-scale, with effects 
of novel mutations that may lead to increase in abundance of some 
species (Kato & Watanabe, 2010).

5  |  CONCLUSION

When placed in a new (laboratory) environment, different natural 
bacterial communities from Mabisi maintain their diversity and did 
not show simple convergent change towards an eroded microbial 
community with only a few species. Even though the bacterial com-
munity composition from the original Mabisi communities seem very 
similar, small differences made that the final community composi-
tion differed between samples from different origin. These changes 
were parallel in all 5 replicates of the same original Mabisi commu-
nity. Initial diversity and interactions were determining factors in 
community composition. However, final composition could not be 
predicted by initial composition. Despite the changes in community 
composition, a directed change in function was not found. This sug-
gests that different groups of bacteria might have the same function 
in this system.

We observed that upon repeated cycles of propagation bacterial 
community composition was highly dependent on initial composi-
tion and to a lesser extent depended on changes caused by the new 
environment—clean bottles in the laboratory rather than a calabash 
used by traditional processors. The reproducibility in the way the 
composition of these communities changed in their new environ-
ment opens a door for further research towards finding specific 
causes within the initial community for the specific compositional 
dynamics we observed. This would be an important step towards 
predicting community structure and function in novel environments. 
Finally, our work illustrates that (traditional) fermented foods are 
very suitable as tractable systems to study general ecological princi-
ples (Alekseeva et al., 2021; Wolfe & Dutton, 2015).
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