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TbasCO: trait-based comparative ‘omics identifies
ecosystem-level and niche-differentiating adaptations
of an engineered microbiome
E. A. McDaniel 1,2,8✉, J. J. M. van Steenbrugge3,4,5,8✉, D. R. Noguera6, K. D. McMahon1,6, J. M. Raaijmakers4,7, M. H. Medema3,7 and
B. O. Oyserman 3,4✉
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A grand challenge in microbial ecology is disentangling the traits of individual populations within complex communities. Various
cultivation-independent approaches have been used to infer traits based on the presence of marker genes. However, marker genes
are not linked to traits with complete fidelity, nor do they capture important attributes, such as the timing of gene expression or
coordination among traits. To address this, we present an approach for assessing the trait landscape of microbial communities by
statistically defining a trait attribute as a shared transcriptional pattern across multiple organisms. Leveraging the KEGG pathway
database as a trait library and the Enhanced Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate
that a majority (65%) of traits present in 10 or more genomes have niche-differentiating expression attributes. For example, while
many genomes containing high-affinity phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under
phosphorus starvation), we identified another attribute shared by many genomes where transcription was highest under high
phosphorus conditions. Taken together, we provide a novel framework for unravelling the functional dynamics of uncultivated
microorganisms by assigning trait-attributes through genome-resolved time-series metatranscriptomics.

ISME Communications; https://doi.org/10.1038/s43705-022-00189-2

INTRODUCTION
A longstanding cornerstone of deterministic ecological theory is
that the environment selects for traits. Traits may be defined as
any physiological, morphological, or genomic signature that
affects the fitness or function of an individual [1]. Trait-based
approaches have become indispensable in macroecological
systems to describe fitness trade-offs and the effects of
biodiversity on ecosystem functioning [2–5]. Recently, trait-based
frameworks have been proposed as an alternative to taxonomy-
based methods for describing microbial ecosystem processes
[6, 7]. Connecting microbial traits and their phylogenetic distribu-
tions to ecosystem-level functions can provide powerful insights
into the ecological and evolutionary dynamics underpinning
community assembly, microbial biogeography, and organismal
responses to changes in the environment [8–10]. Additionally,
pinpointing the organismal distribution of traits and the ecological
selective pressures that enrich them may be leveraged to
reproducibly and rationally engineer stable, functionally redun-
dant ecosystems [11–15]. However, applying trait-based
approaches to microbial communities is challenging due to the
difficulty in identifying and measuring relevant ecological traits for
a given ecosystem [16].

High-throughput sequencing technologies and multi-omics
techniques are now routinely used to describe the diversity,
activity, and functional potential of uncultivated microbial
lineages [17–21]. Improvements in bioinformatics algorithms,
and in particular metagenomic binning methods, have allowed
for genome-resolved investigations of microbial communities
rather than gene-based analyses of assembled contigs [22]. These
(meta) genomes are subsequently leveraged to detect the
presence of key genes or pathways and predict specific traits of
the whole community [19, 23]. Integrating metatranscriptomics
data addresses a key limitation, as expression patterns better
reflect the actual functional dynamics of a trait compared to gene
presence alone. Here, we present TbasCO, a software package and
statistical framework for Trait-based Comparative ‘Omics to
identify expression attributes. We adopt the terminology attribute
as a hierarchically structured feature of a trait and assert that
statistically similar transcriptional patterns of traits across multiple
organisms be treated as attributes (Fig. 1). This new terminology
addresses two key semantic challenges. First, by extending upon
the current usage of the term “trait” for the presence and absence
of pathways to the corresponding transcriptional patterns.
Second, it addresses a limitation of the terminology of “co-
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expression”, which becomes biologically inaccurate when compar-
ing across independent populations of organisms within a
community. In this manner, the identification of expression-
based attributes provides a high-throughput and intuitive frame-
work for extending trait-based methods to time-series expression
patterns in microbial communities. We implement this trait-based
approach to classify transcriptional attributes in a microbial
community performing Enhanced Biological Phosphorus Removal
(EBPR), a globally important biotechnological process implemen-
ted in numerous wastewater treatment plants (WWTPs).
The fundamental feature of the engineered EBPR ecosystem is

the decoupled and cyclic availability of an external carbon source
and terminal electron acceptor. This cycling is often referred to as
“feast-famine” conditions and provides a strong selective pressure
for traits such as polymer cycling. Accumulation of intracellular
polyphosphate through cyclic anaerobic-aerobic conditions ulti-
mately results in net phosphorus removal and accomplishes the
EBPR process [24, 25]. One of the most well-studied polypho-
sphate accumulating organisms (PAOs) belongs to the unculti-
vated bacterial lineage ‘Candidatus Accumulibacter phosphatis’
(hereby referred to as Accumulibacter) [24, 26]. Numerous
genome-resolved ‘omics methods have been used to investigate
the physiology and regulation of this model PAO enriched in
engineered lab-scale enrichment bioreactor systems [27–35].
However, novel and putative PAOs have been discovered that
remove phosphorus without exhibiting the hallmark traits of
Accumulibacter [36–41]. Additionally, although these lab-scale
systems are designed to specifically enrich for Accumulibacter, a

diverse bacterial community persists in these environments [27],
and their ecological roles have largely remained unexplored. As a
result, the general adaptations of microbial lineages inhabiting the
EBPR community are not well understood. Using genome-resolved
metagenomics and metatranscriptomics, we assembled 66
species-representative genomes spanning several significant EBPR
lineages and identified the distribution of expression-based
attributes. We show that while some expression attributes are
distributed in few genomes, many are redundant and shared
across many lineages. Furthermore, we find that a majority of core
traits (as defined by the presence of marker genes) have multiple
attributes, suggesting that identifying niche-differentiating
expression attributes may be used to reveal a large hidden
metabolic versatility when investigating genomic data alone.

MATERIALS AND METHODS
Metagenomic assembly, annotation, and metatranscriptomic
mapping
Three metagenomes sampled from an EBPR bioreactor in May of 2013 with
linked time-series metatranscriptomics data were sequenced [42]. Samples
were collected and DNA extracted according to the Supplemental
Methods. Metagenomic samples were processed and assembled into 66
species-representative bins as described in detail in the Supplemental
Methods. All bins are greater than 75% complete and contain less than
10% contamination, with a large majority (44/66) >95% complete and <5%
redundant as calculated by CheckM [43] and are all described in Table 1.
Each bin was functionally annotated using the KEGG database through

an HMM-based approach under KEGG release 93.0 using the command-

Fig. 1 Overview of trait-based comparative transcriptomics approach In genome-resolved metagenomics approaches, representative MAGs
are assembled from a microbial community of interest, and the presence and/or absence of key metabolic pathways are used to make
inferences of metabolic potential and ecosystem processes. However, metagenomic data alone can only assess the metabolic potential of a
given pathway, and do not provide other biologically relevant information such as the timing or induction of these traits. Using time-series
metatranscriptomics, we developed a trait-based comparative ‘omics (TbasCO) pipeline that statistically assesses the inter-organismal
differences in gene expression pattern of a given trait to cluster into trait attributes. As expression patterns are determined by the time-points
assessed in an experiment, it is important to design the sampling regime to capture relevant ecophysiological changes within the ecosystem.
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line KofamKOALA pipeline [44, 45], selecting annotations that were
significant hits above the specific HMM threshold. This resulted in 117,657
total annotations with 5,228 unique annotations. We used a metatran-
scriptomic dataset of six timepoints collected over a single EBPR cycle from
Oyserman et al. 2016 [42], with three timepoints from the anaerobic phase
and three from the aerobic phase. Raw reads were quality filtered using
BBtools suite v38.07 [46] and ribosomal rRNA was removed from each
sample using SortMeRNA [47]. Reads from each sample were mapped
against the concatenated set of open reading frames from all 66 bins using
kallisto v0.44.0 and parsed using the R package tximport [48, 49].

TbasCO method implementation
The TbasCO package identifies expression-based attributes of predefined
traits using time-series (meta)transcriptomics data (Fig. 1). As expression
patterns are determined by the time-points assessed in an experiment, it is
important to design the sampling regime to capture relevant ecophysio-
logical changes within the ecosystem. In general, traits are defined by the
presence of a pathway or other collection of genes from an externally
provided database. A weighted distance metric between expression
patterns for all genes that define a trait is calculated, and statistically
significant similarity is determined based on the background distribution
of a trait of equal size. Thereby, two or more organisms with a statistically
similar expression pattern for a trait share an attribute. As the expression
profiles of genes within a trait are compared across genomes indepen-
dently, co-expression of genes within a genome is not a pre-requisite for
identifying an attribute.

Input and preprocessing. The input that is accepted by TbasCO is a table
of RNAseq counts in csv format. Each row is treated as gene that has
columns for the gene/locus name, counts per sample, the genome the
gene belongs to, and the KEGG Orthology (KO) identifier. The RNAseq
counts table may be provided pre-normalized or can be normalized by the
program. The default normalization method is designed to minimize
compositional bias in the differential abundance and activity of constituent
populations in metatranscriptomics studies. RNA expression counts are
therefore normalized relative to each genomic bin separately for each
sample [42]. After normalization, a pruning step is introduced to filter
genes that have zero counts or a mean absolute deviation of less than one
across all time points. To make inter-organismal comparisons of the
relative contribution of a gene to total measured organismal RNA, an
additional statistic is calculated ranking the expression counts from each
sample from highest to lowest. The ranks for each sample are then
normalized by dividing them by the maximum rank value in that sample.
This normalization is applied to make ranks comparable between
organisms with different genome sizes.
To assess the statistical significance of the calculated distances between

the expression patterns of all genes within a trait, random background
distributions are created for (1) individual genes and (2) traits of N genes.
For individual genes, three different distributions were calculated, based
on the distances between randomly sampled open reading frames,
randomly sampled genes with an annotation (but not necessarily the same
annotation), and randomly sampled genes with the same annotation. The
background distribution for a trait of N genes is based on the distances
between randomly composed sets of genes. For each gene pair, two
distances metrics are calculated, the Pearson Correlation (PC) and the
Normalized Rank Euclidean Distance (NRED). In practice, it is often found
that a certain annotation is assigned to multiple genes in the same
genome. If this occurs, there is an option to use either a random selection,
or the highest scoring pair. In the latter case, a correction for multiple
testing is implemented. This process is repeated N-times, where N equals
the number of genes in any given trait. The background distribution for
traits is determined by first randomly sampling two genomes, identifying
the overlap in annotations, and finally artificially defining a trait containing
N annotations. For each annotation in the trait, the distances are calculated
between genome A and genome B, as described in the previous section.
As modules vary in size, this process is repeated for traits of different sizes.

Identifying attributes. TbasCO provides both a cluster-based and pair-wise
approach to identify attributes. In both methods, the distance between
expression patterns of a trait between two genomes is first calculated
based on a composite Z score of the PC and NRED for each gene
composing the trait. In the cluster-based analysis, the distances are
subsequently clustered using the Louvain clustering algorithm to identify
trait attributes. To determine if an attribute is significantly similar or not, a

one-sided T-test between the attribute and the random background
distribution of traits is conducted. This is done for both cluster-based and
model-based comparisons. Many traits are complex and represented in
databases such as KEGG by numerous alternative routes. To deal with this
complexity, each pathway is expanded into all possible alternative routes.
Due to the extremely high number of alternative routes for some traits,
attributes are pruned based on a strict requirement of 100% completion.

Distance calculations. To determine the similarity in expression patterns
between genes, two dissimilarity metrics are calculated: the PC between
RNAseq counts across samples, and the NRED, where ranks are a measure
of relative abundance of RNA in each sample, normalized the abundance
of RNA in the corresponding genome. These distance scores are converted
to Z scores using a background distribution of distances between
randomly sampled genes as previously described. To determine statisti-
cally significant similarities in expression patterns of a trait, a composite
score is calculated. For each of these genes the PC and NRED are calculated
and transformed to Z scores and combined as (−1*PC+ NRED). The
distance of the trait between two genomes is defined as the average of
these composite distance scores. If traits being compared do not have
100% overlap in gene content, then the dissimilarity score is normalized by
the Jaccard distance between gene content of the trait.

�PC þ NREDð Þ � 1� dJð Þ

Statistical assessment of trait attributes. In both model-based and pair-
wise approaches, the distance is first calculated between expression
patterns of a trait between two genomes based on the composite Z score
of the PC and NRED for each gene composing the trait. In the clustering-
based analysis, the distances are subsequently clustered using the Louvain
clustering algorithm to identify trait-attributes. To determine if attributes
are significantly similar, a one-sided T-test is conducted between the
attribute and a background distribution of randomly sampled traits with
the same number of genes. To derive the random background
distributions, multiple distributions are calculated ranging in gene
numbers from the smallest trait to the largest trait in the dataset as
described previously. For each background distribution, N (default: 10,000)
traits are randomly composed. The distances between these artificial traits
are calculated in the same way as for the actual traits. In addition to a
statistical pruning step, the attributes are pruned based on a strict
requirement of 100% completion of each module. A benchmarking
analysis to examine the effects of different parameters, including the
presence of zero counts, was conducted to determine their influence on
the number of attributes identified and may be found in the
supplementary materials (Supplementary Table 1, Supplementary
Figs. 2–4).

RESULTS AND DISCUSSION
Reconstructing a diverse EBPR SBR community
To explore trait-based transcriptional dynamics of a semi-complex
microbial community, we applied genome-resolved metage-
nomics and metatranscriptomics to an EBPR sequencing-batch
reactor (SBR) ecosystem (Fig. 2). We previously performed a
metatranscriptomics time-series experiment over the course of a
normally operating EBPR cycle to investigate the regulatory
controls of Accumulibacter gene expression [42]. In this experi-
ment, six samples were collected for RNA sequencing: three from
the anaerobic phase and three from the aerobic phase (Fig. 2A).
Additionally, three metagenomes were collected from the same
month of the metatranscriptomic experiment, including a sample
from the same date of the experiment. We reassembled
contemporary Accumulibacter clade IIA and IA genomes that
were previously assembled from the same bioreactor system
[27, 28]. The genomes of Accumulibacter clades IA and IIA are
similar by approximately 85% average-nucleotide identity [28, 31],
which is well below the common species-resolved cutoff of 95%,
and these groups have recently been designated as separate
species (Candidatus Accumulibacter regalis and Candidatus
Accumulibacter phosphatis, respectively) [35]. However, we
maintain references to the Accumulibacter clade nomenclature
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based on polyphosphate kinase (ppk1) sequence identity through-
out the manuscript (CAPIA and CAPIIA) [31, 50, 51]. During the
experiment, the bioreactor was highly enriched in Accumulibacter
clade IIA, accounting for approximately 50% of the mapped
metagenomic reads and the highest transcriptional counts (Fig. 2B,
C) [42]. Whereas Accumulibacter clade IA exhibited low abun-
dance patterns but was within the top 10 genomes with the
highest total transcriptional counts (Fig. 2C).
Although this bioreactor system was highly enriched in

Accumulibacter, a diverse bacterial community persisted and
was active in this ecosystem (Fig. 2B, C). We reconstructed
representative population genomes of the microbial community
of the SBR system, resulting in 64 metagenome-assembled
genomes (MAGs) of the (non-Accumulibacter) bacterial commu-
nity. Interestingly, we recovered genomes of experimentally
verified and putative PAOs previously not detected in these
bioreactors, including two Tetrasphaera spp. (TET1 and TET2)
‘Candidatus Obscuribacter phosphatis’ (OBS1), and Gemmatimona-
detes (GEMMA1). Pure cultures of Tetrasphaera have been
experimentally shown to cycle polyphosphate without incorpor-
ating PHA [37], deviating from the hallmark Accumulibacter PAO

model. The first cultured representative of the Gemmatimonadetes
phylum Gemmatimonas aurantiaca was isolated from an SBR
simulating EBPR and was shown to accumulate polyphosphate
through Neisser and DAPI staining [52]. Additionally, Ca.
Obscuribacter phosphatis has been hypothesized to cycle phos-
phorus based on the presence of genes for phosphorus transport,
polyphosphate incorporation, and potential for both anaerobic
and aerobic respiration [38], and was enriched in a photobior-
eactor EBPR system [53]. Both Tetrasphaera spp. TET1 and TET2,
OBS1, and GEMMA1 groups exhibit higher relative abundance
patterns than CAPIA but have similar relative transcriptional levels
(Fig. 2B, C, Table 1).
Numerous SBR MAGs among the Actinobacteria and Proteobac-

teria contain the high-affinity phosphorus transporter pstABCS
system, polyphosphate kinase ppk1, and the low-affinity pit
phosphorus transporter (Supplementary Fig. 5). Additionally,
select MAGs within the Alphaproteobacteria, Betaproteobacteria,
and Gammaproteobacteria contain all required subunits for
polyhydroxyalkanoate synthesis (Supplementary Fig. 5). Other
abundant and transcriptionally active groups in the SBR ecosys-
tem that are not predicted to be PAOs are members of the

Fig. 2 Genome-resolved metatranscriptomics approach of an EBPR system. Application of a genome-resolved metatranscriptomics
approach to a lab-scale sequencing batch reactor (SBR) designed to enrich for Accumulibacter. A Schematic of the main cycle parameters and
analyte dynamics of an SBR simulating EBPR. Six samples were taken for RNA sequencing within the cycle at time-points denoted by arrows.
B Phylogenetic identity and abundance patterns of 66 assembled MAGs from the EBPR system. The phylogenetic tree was constructed from
concatenated markers contained in the GTDB-tk with muscle, calculated with RAxML, and visualized in iTOL. A phylogenetic tree of all 66
MAGs with reference genomes and high-quality genomes from Singleton et al. constructed with concatenated markers from GTDB-tk are
provided in Supplementary Fig. 1. Sizes of circles represent relative abundance patterns calculated from metagenomic reads obtained from a
sample collected the same day as the metatranscriptomic experiment was performed, and are not to scale. C Transcriptional patterns of each
MAG in the anaerobic and aerobic phases of the EBPR cycle. RNA-seq reads from each time-point were competitively mapped to all 66
assembled MAGs and counts normalized by transcripts per million (TPM). Total counts in the anaerobic and aerobic phases for each genome
were averaged separately and plotted on a log scale. Order of MAGs from left to right mirrors the order of MAGs in the phylogenetic tree in
B from the top of the circle going clockwise.
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Bacteroidetes such as CHIT1 within the Chitinophagaceae, and
Cytophagales members Runella sp. RUN1 and Leadbetterella sp.
LEAD1 (Fig. 2B, C, Table 1). Interestingly, an uncharacterized group
within the Bacteroidetes, represented by BAC1, contributed the
third most to the pool of transcripts (Fig. 2C), and did not show
phylogenetic similarity to MAGs assembled from Danish full-scale
wastewater treatment systems [40] (Supplementary Fig. 1). Other
groups from which we assembled MAGs for that do not exhibit
clear roles in EBPR systems were Chloroflexi ANAER1 and HERP1
MAGs, Armatimonadetes FIMBRI1, Firmicutes FUSI1, and Patesci-
bacteria SACCH1. Members of the Chloroflexi are filamentous
bacteria that have been associated with bulking and foaming
events in full-scale WWTPs [54–56], but also aid in forming the
scaffolding around floc aggregates and degrade complex poly-
mers [56–58]. The Patescibacteria (formerly TM7) are widespread
but low abundant members of natural and engineered ecosys-
tems, have reduced genome sizes, and may contribute to
filamentous bulking in activated sludge [22, 59]. To summarize,
lab-scale SBRs designed to enrich for Accumulibacter contain
diverse bacterial microorganisms [27, 32], but their ecological
functions and putative interactions remain to be fully understood
in the context of the EBPR ecosystem.

Identifying expression-based trait attributes among the EBPR
SBR community with TbasCO
Current metatranscriptomics analyses often employ either a gene-
centric [31, 60–62] or genome-centric approach [42, 63–65]. In
both approaches, highly, differentially, or co-expressed genes are
identified and tested for enrichment of specific functions.
Enrichment- or annotation-based approaches are employed in
numerous metatranscriptomics tools such as MG-RAST, MetaTrans,
SAMSA2, COMAN, IMP, and Anvi’o [66–71]. Here, we expand on
the use of molecular markers as traits by defining expression
attributes by leveraging a priori knowledge from predefined trait
libraries, such as the KEGG database [72], to statistically assess
inter-species expression patterns of genes that together form a
trait (Fig. 1). First, our results showed that there is statistically
significant transcriptional conservation of genes at the community
level; genes that share an annotation were significantly more
similar than expected using two different distance metrics (NRED:
p value <2.2e–16, PC: p value <2.2e–16). Extending this statistical
analysis to the trait level, we identified 1674 attributes distributed
across the 66 genomes. On average, we identified 9.12 genomes
per attribute (SD -5.22), with a minimum of 3 genomes and a
maximum of 35 (Fig. 3B). Based on these statistics, we defined
redundant attributes as those two standard deviations above the
mean (19 genomes). With this cutoff applied, we identified 79
redundant trait attributes mostly belonging to pathways among
carbohydrate metabolism, purine metabolism, and fatty acid
metabolism categories (Table 2). Of 290 traits, we identified 97
traits with two or more attributes identified (33%). Of these, traits
in 10 or more genomes were twice as likely to have two or more
attributes (65%), suggesting that divergent expression patterns for
a trait are common, and may represent a niche-differentiating
feature (Fig. 3A). Henceforth, when multiple attributes are
identified for a trait, we refer to these as niche-differentiating
attributes.
From the ecosystem perspective, a clear phylogenetic signal is

observed in the distribution of attributes, as genomes cluster
together by shared trait attributes by phylum with some
exceptions, such as genomes belonging to the Bacteroidetes,
Actinobacteria, and Proteobacteria clustering together, respectively
(Fig. 3C). For simplicity, we filtered the network to only include
nodes with more than 5 connections. Highly redundant trait
attributes belonged to modules in the lipid metabolism, energy
metabolism, and nucleotide metabolism KEGG functional cate-
gories. In contrast, more specialized trait attributes on the
periphery of the network or amongst group-specific clusters such

as within the Actinobacteria or subsets of the Proteobacteria
belonged to amino acid metabolism, biosynthesis of terpenoids
and polyketides, metabolism of cofactors and vitamins, and
carbohydrate metabolism KEGG modules. Pathways of note that
showed a high level of redundancy include the TCA cycle,
isoleucine biosynthesis, acyl-CoA synthesis, threonine biosynth-
esis, and cytochrome c oxidase activity (Table 2). Large pathways
with hundreds of possible routes such as glycolysis, the TCA cycle,
gluconeogenesis, and the pentose phosphate pathway are not
included in the main network and are displayed as individual
networks (Supplementary Fig. 6).
We next explored the distribution of non-redundant attributes

(e.g. 3–18 genomes) (Fig. 3B). A total of 796 trait attributes with
low redundancy were identified belonging to pathways involved
in carbohydrate cofactor and vitamin metabolism including
glycolysis, gluconeogenesis, parts of the TCA cycle, tetrahydrofo-
late biosynthesis, tryptophan biosynthesis, and the pentose
phosphate pathway (Table 3). Different sets of low redundancy
trait attributes were identified within respective phyla (Supple-
mentary Fig. 7). Between genomes belonging to the Actinobac-
teria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, and
Gammaproteobacteria, low redundancy attributes (belonging to
less than half of the total genomes within the phylum) include
carbohydrate metabolism, amino acid metabolism and metabo-
lism of cofactors and vitamins (Supplementary Fig. 7). Redundant
trait attributes within individual phyla belong to core energy
metabolism pathways, fatty acid biosynthesis, and carbohydrate
metabolism. However, even within individual phyla, non-
redundant attributes include different amino acids and cofactors
(Extended Table 1 - available on Figshare https://figshare.com/
articles/dataset/Lineage-Specific_Core_and_Niche_Differentiating
_Traits/15001200).
As noted previously, one of the most striking findings is that a

majority, 65% of traits present in 10 or more genomes have multiple
expression attributes. Thus, it seems that while the presence of
marker genes suggests many organisms share a particular trait, the
presence of niche-differentiating expression profiles suggest an
alternative story, that there is a level of hidden metabolic diversity.
For example, central carbon metabolism and energy pathways such
as the TCA cycle, glycolysis, gluconeogenesis, and the pentose
phosphate pathway are oftentimes considered core traits when
only analyzing the presence and/or absence of individual markers
belonging to these pathways. Among over 1000 high-quality MAGs
assembled from full-scale Danish WWTPs, the TCA cycle and
pentose phosphate pathway are highly represented among the
abundant microorganisms, with glycolysis less so [40]. Whereas the
TCA cycle and pentose phosphate pathway are present among a
high number of genomes in the EBPR SBR community, different
routes or parts of these pathways have niche-differentiating
distributions (Supplementary Fig. 6, Tables 2 and 3). These finer-
scale differences in expression of “core” traits may explain the
persistence of a diverse community when solely fed acetate, as
different lineages could employ similar carbon utilization pathways
differently or in more versatile ways. Another salient aspect of this
analysis is the astonishingly high number of possible routes within
individual pathways here represented by their Disjunctive Normal
Forms. For example, accounting for all alternative routes and
enzymes, the glycolysis pathway has 100 s of possible routes.
Layering upon this many expression attributes reveals a large
hidden metabolic versatility.

Dimensionality of the high-affinity phosphorus transporter
system PstABCS
The EBPR ecosystem is characterized by its highly dynamic
phosphorus cycles. To explore how different lineages respond to
fluctuating phosphorus concentrations, we examined the
expression-based attributes for the KEGG module of the high-
affinity phosphorus transporter pstABCS (Fig. 4). The pstABCS
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system is an ABC-type transporter that strongly binds phosphate
with high affinity under phosphorus-limiting conditions, and
therefore we expected that the highest expression levels would be
at the end of the aerobic cycle [73]. In contrast, we found that
pstABCS expression was characterized by two different trait
attributes. In the first attribute shared by 14 community members,
all pstABCS components displayed the highest activity towards the
end of the aerobic cycle, when phosphorus concentrations were
depleted (Fig. 4, Attribute 1). Conversely, 11 community members
displayed an alternate attribute where the highest activity of
pstABCS was at the transition from anaerobic to aerobic phases
when phosphorus concentrations are highest (Fig. 4, Attribute 2).
Interestingly, the two Accumulibacter clades IA and IIA are split

amongst these separate pstABCS attributes. These results are in

agreement with previous results showing that Accumulibacter
clade IIC has a canonical pstABCS expression pattern (as in Fig. 4,
Attribute 1), whereas the Accumulibacter clade IA has a non-
canonical expression (as in Fig. 4, Attribute 2) [31]. By assigning
trait attributes, we can extend these findings beyond Accumuli-
bacter to other community members in the SBR ecosystem
suggesting that there are conserved ecological pressures driving
niche differentiating expression patterns in pstABCS within the
EBPR community.

Distribution and expression of truncated denitrification steps
among EPBR community members
Denitrification gene induction is an important ecosystem property
linked to the redox status of an environment. In EBPR

Fig. 3 Clustering and distribution of trait attributes across EBPR SBR community members. Using the TbasCO method, we identified
expression-based trait attributes from predefined trait modules in the KEGG library and explored the distribution of these trait attributes
across community members. A Distribution of trait-attributes among sets of genomes. Bars represent the number of trait-attributes present in
a set number of genomes and colored by KEGG module category. Among a total of 35 genomes, trait attributes present between 3 and 18
genomes are designated as niche differentiating, whereas trait attributes present in 19 or greater genomes are designated as core trait
attributes. Inset figure demonstrates the maximum number of attributes for the maximum number of genomes. B Cytoscape network
showing the connectedness of genomes to trait attributes. The network was filtered to only include nodes with more than 5 connections,
therefore filtering out both genomes with few trait attributes and trait attributes connected to less than 5 genomes. Genomes are represented
as squares colored by phylum, and trait attributes are represented as circles colored by KEGG category. The size of both the squares and circles
represents the number of connections to that genome or trait attribute, respectively.
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Table 2. KEGG pathways for core trait-attributes present in greater than 19 genomes.

Module description Number of attributes

Citrate cycle, second carbon oxidation, 2-oxoglutarate=> oxaloacetate [PATH:map00020 map01200
map01100]

13

Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100] 10

Shikimate pathway, phosphoenolpyruvate + erythrose-4P= > chorismate [PATH:map00400 map01230
map01100 map01110]

8

Fatty acid biosynthesis, initiation [PATH:map00061 map01212 map01100] 7

Glycolysis, core module involving three-carbon compounds [PATH:map00010 map01200 map01230
map01100]

7

Adenine ribonucleotide biosynthesis, IMP= > ADP,ATP [PATH:map00230 map01100] 4

Guanine ribonucleotide biosynthesis IMP= > GDP,GTP [PATH:map00230 map01100] 4

Inosine monophosphate biosynthesis, PRPP + glutamine=> IMP [PATH:map00230 map01100] 4

Isoleucine biosynthesis, threonine=> 2-oxobutanoate=> isoleucine [PATH:map00290 map01230
map01100]

3

NADH:quinone oxidoreductase, prokaryotes [PATH:map00190] 3

beta-Oxidation, acyl-CoA synthesis [PATH:map00061 map00071 map01212 map01100] 2

F-type ATPase, prokaryotes and chloroplasts [PATH:map00190 map00195] 2

Valine/isoleucine biosynthesis, pyruvate=> valine / 2-oxobutanoate=> isoleucine [PATH:map00290
map00770 map01210 map01230 map01100 map01110]

2

CAM (Crassulacean acid metabolism), dark [PATH:map00620 map00710 map01200 map01100
map01120]

1

Cytochrome c oxidase, cbb3-type [PATH:map00190] 1

Cytochrome c oxidase, prokaryotes [PATH:map00190] 1

dTDP-L-rhamnose biosynthesis [PATH:map00521 map00523 map01100 map01130] 1

Leucine biosynthesis, 2-oxoisovalerate=> 2-oxoisocaproate [PATH:map00290 map01210 map01230
map01100 map01110]

1

Phosphatidylethanolamine (PE) biosynthesis, PA= > PS= > PE [PATH:map00564 map01100] 1

PRPP biosynthesis, ribose 5 P= > PRPP [PATH:map00030 map00230 map01200 map01230 map01100] 1

Pyruvate oxidation, pyruvate=> acetyl-CoA [PATH:map00010 map00020 map00620 map01200
map01100]

1

Semi-phosphorylative Entner-Doudoroff pathway, gluconate=> glycerate-3P [PATH:map00030
map01200 map01100 map01120]

1

Threonine biosynthesis, aspartate=> homoserine=> threonine [PATH:map00260 map01230
map01100 map01110]

1

Table 3. KEGG Pathways for differentiating trait-attributes present between 3 and 18 genomes.

Module_description Number of attributes

Glycolysis (Embden-Meyerhof pathway), glucose=> pyruvate [PATH:map00010 map01200
map01100]

279

Citrate cycle (TCA cycle, Krebs cycle) [PATH:map00020 map01200 map01100] 208

Gluconeogenesis, oxaloacetate=> fructose-6P [PATH:map00010 map00020 map01100] 76

Inosine monophosphate biosynthesis, PRPP + glutamine=> IMP [PATH:map00230 map01100] 45

Citrate cycle, second carbon oxidation, 2-oxoglutarate=> oxaloacetate [PATH:map00020
map01200 map01100]

31

Heme biosynthesis, plants and bacteria, glutamate=> heme [PATH:map00860 map01100
map01110]

27

Tetrahydrofolate biosynthesis, GTP= > THF [PATH:map00790 map00670 map01100] 25

Tryptophan biosynthesis, chorismate=> tryptophan [PATH:map00400 map01230 map01100
map01110]

25

Ornithine biosynthesis, glutamate=> ornithine [PATH:map00220 map01210 map01230 map01100] 24

Histidine biosynthesis, PRPP= > histidine [PATH:map00340 map01230 map01100 map01110] 17

Pentose phosphate pathway (Pentose phosphate cycle) [PATH:map00030 map01200 map01100
map01120]

16

Lysine biosynthesis, succinyl-DAP pathway, aspartate=> lysine [PATH:map00300 map01230
map01100]

12

Uridine monophosphate biosynthesis, glutamine (+ PRPP)= > UMP [PATH:map00240 map01100] 11
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communities, we find many genomes with diverse and incom-
plete denitrification pathways, distributed across many lineages
denitrification steps expected in denitrifying systems (Fig. 5).
Among all 66 MAGs, we did not identify any single MAG with a
complete denitrification pathway consisting of the genetic
repertoire necessary to fully reduce nitrate to nitrogen gas
(Supplementary Fig. 5). Instead, we identified multiple groups of
organisms with truncated denitrification pathways, with steps
distributed among cohorts of community members (Fig. 5).
For the first steps of reducing nitrate to nitrite, we examined

expression attributes of the napAB and narGH pathways (Fig. 5B,
C). For the narGH pathway, two attributes were identified (Fig. 5B).
The first narGH attribute was characterized by high expression in
the anaerobic phase, with decreasing transcript levels by the
second time point of the anaerobic phase. Genomes containing
this attribute included the experimentally verified and putative
PAOs Tetrasphaera (TET1 and TET2) and Ca. Obscuribacter (OBS1),
respectively. The second attribute was exhibited among members
of the Actinobacteria (PROP2, PHYC2, PROP3, and NANO1),
Proteobacteria (BEIJ4), and Bacteroidetes (BAC1). The attribute

identified for napAB was also more highly expressed anaerobically
and included CAPIA, CAPIIA, ALIC1, REYR2, RUBRI1, and BEIJ3.
Interestingly, this napAB attribute had expression patterns that
quickly decreased in the first aerobic time point, suggesting a
tighter regulation than Attribute 1 for narGH. Together, this
suggests that the regulation of denitrification within the EBPR
ecosystem is a niche-differentiating feature whereby the induction
of denitrification pathways occurs either anaerobically or only
after anaerobic carbon contact.
A smaller cohort contained the genetic repertoire to reduce

nitrite to nitrogen gas and exhibited hallmark anaerobic-aerobic
expression patterns (Fig. 5E) These members within the Proteo-
bacteria (OTTO2, BEIJ3, VITREO1, and ZOO1) contained the nirS
nitrite reductase, the norBC nitric oxide reductase, and nosZ, and
showed highest expression of these subunits towards the
beginning of the anaerobic cycle, slowly decreasing over the
aerobic period to their lowest in the end of the aerobic cycle.
Although BEIJ2 was lacking the norBC system, it contained the nirS
nitrite reductase and nosZ subunit, and exhibited similar expres-
sion patterns to others in this cohort. Other Proteobacteria

Fig. 4 Trait attributes of the high-affinity phosphorus transporter system pstABCS. Using the TbasCO method, two trait attributes of the
high-affinity phosphorus transporter system pstABCS were identified. The pstABCS system consists of a phosphate-binding protein and ABC-
type transporter, and the corresponding KEGG orthologs for each subunit are shown. Timepoints 1–3 refer to the three anaerobic phase
timepoints, and timepoints 4–6 refer to the three anaerobic phase timepoints (Fig. 1). Expression values are log-transformed based on setting
the lowest expression value within each genome across the time-series to 0 for each subunit. Specific subunits for some genomes in both
attributes are missing to the high cutoff thresholds for annotations. However we kept genomes with 2/4 subunits to show similarities in
expression profiles. The first pstABCS trait-attribute includes microbial lineages that exhibited the highest expression of all subunits towards
the end of the aerobic cycle, when phosphate concentrations are expected to be lowest. This includes microbial lineages within the
Actinobacteria, Proteobacteria, Gemmatimonadetes, and Chloroflexi. The second pstABCS trait-attribute includes lineages that exhibited highest
expression of all subunits upon the switch from anaerobic to aerobic phases, or when phosphate concentrations are expected to be the
highest. This includes lineages within the Actinobacteria and Proteobacteria.
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Fig. 5 Expression dynamics of distributed denitrification routes. Expression of denitrification traits distributed among community members
in the EBPR SBR ecosystem. Timepoints 1–3 correspond to the anaerobic phase and timepoints 4–6 correspond to the aerobic phase as
referenced in Fig. 1. A Complete denitrification pathway and associated genetic repertoire with each sequential step. B Trait attributes of
expression dynamics for community members with the narGH nitrate reductase system. This trait was the only denitrification trait identified
with more than one attribute. C Expression dynamics of the napAB nitrate reductase system. D Expression dynamics of the norBC nitrous oxide
reductase system. E Expression of all steps of denitrification starting at nitrite reduction. F Expression of the most complete denitrification
route among three community members, with the norC subunit for nitrous oxide reduction missing. Note that OTTO1 only contains nirS but is
included in this trait attribute because the expression dynamics are similar to that of the other three genomes for this subunit.
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lineages only contained the norBC subunits but were expressed in
similar fashions (RHODO2, FLAVO1, RHIZO1, and LEAD1) (Fig. 5D).
Accumulibacter clades IA and IIA as well as ALIC1 were the only
lineages with near-complete denitrification pathways. These
lineages contained the napAB nitrate reductase system as
mentioned above, the nirS nitrite reductase, norB (missing a
confident hit for the norC subunit), and nosZ. These three lineages
also exhibited hallmark upregulation of all steps in the anaerobic
phase, with decreased activity after aerobic contact (Fig. 5F).
Interestingly, Accumulibacter clade IA exhibited a higher level

of transcripts associated denitrification steps when expression
levels were normalized relative to clade IIA, supporting the

hypothesis that denitrification is a niche-differentiating feature
among clades [28, 31, 74], and possibly a strain-specific trait since
denitrification traits cannot be predicted based on ppk1 clade
designations [32]. For example, independent observations in
differences among denitrification activities among strains within
Accumulibacter clade IC are inconsistent [34, 75]. Within the same
bioreactor environment, coexisting Accumulibacter clades differ
between denitrification abilities and expression profiles [31–33].
Truncated denitrification pathways have also been previously
shown to be distributed among community members, with the
complete denitrification genetic repertoire only present in few
members [32, 33], which could be due to extensive horizontal

Fig. 6 Biosynthetic potential compared to expression of amino acid and vitamin synthesis pathways for top 15 expressed MAGs.
Biosynthetic potential and expression patterns of amino acid and vitamin pathways were analyzed for the top 15 genomes with the highest
transcriptional counts (Table 1). A For a pathway to be considered present for downstream analysis in the TbasCO pipeline, 80% of the
pathway had to be present in a genome. Thus, we used this cutoff criterion to discern whether a specific pathway was present or absent in a
genome (with the expectation of methionine, as all genomes did not contain at least 80% of the subunits in the KEGG methionine synthase
pathway, we inferred the presence of the methionine synthase as presence of this pathway). Orange colored boxes for cofactor biosynthesis
pathways represents the presence of that pathway, whereas grey infers absence. For amino acid biosynthetic pathways, amino acids are listed
by their side chain groups – charged, polar, hydrophobic, and other. Blue colored boxes for amino acid biosynthesis pathways represents the
presence of that pathway, whereas grey infers absence. B Mini-networks of vitamin co-factors. Squares are genomes with the colors matching
the color bar in A. Nodes are attributes, where the colored nodes for the tetrahydrofolate attributes represent the different routes. C Mini-
networks of amino acid biosynthesis pathways split by type. Colors of nodes for each amino acid represent the different routes for that
pathway. Squares represent genomes with colors matching the color bar in A.
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gene transfer of genes comprising denitrification steps [32, 76].
Although this experiment was not conducted under denitrifying
conditions, our approach could be applied to denitrifying EBPR
systems to further understand the distribution of denitrification
traits among community members and how to selectively enrich
for diverse DPAOs.

Biosynthetic potential and expression dynamics of amino acid
and vitamin synthesis pathways
Although SBRs are designed to enrich for Accumulibacter by
providing acetate as the sole carbon source, a diverse bacterial
community persists in these setups [27, 32]. One hypothesis for
the persistence of these bacterial community members may be
cooperative interactions due to underlying auxotrophies of amino
acid and vitamin biosynthetic pathways in Accumulibacter. Amino
acids and vitamin cofactors are metabolically expensive to
synthesize, and widespread auxotrophies have been widely
documented among microbial communities [77, 78]. Specifically,
auxotrophies of vitamin cofactors have been shown to fuel
bacterial and cross-kingdom interactions with de novo synthesi-
zers [79, 80]. To explore this hypothesis in the EPBR SBR
community, we analyzed the presence of amino acid and vitamin
biosynthetic pathways and their expression patterns among the
top 15 genomes based on transcript abundance (Fig. 6).
Within Accumulibacter, there are a few key vitamin cofactor and

amino acid auxotrophies that could fuel potential interactions
with other community members. Both Accumulibacter clade
genomes are missing the riboflavin pathway for FAD cofactor
synthesis, as well as known pathways for serine and aspartic acid
(Fig. 6A). The biosynthetic pathway for aspartic acid is distributed
among members of the Bacteroidetes and Proteobacteria, whereas
only TET2 contains the pathway for serine synthesis (Fig. 5A). The
lack of serine biosynthesis pathways in Accumulibacter and other
genomes seems striking given that serine is one of the least
metabolically costly amino acids to synthesize [81]. Interestingly,
Accumulibacter clade IIA (strain CAPIIA) does not contain the
biosynthetic machinery for thiamine and pantothenate synthesis,
whereas clade IA (strain CAPIA) does (Fig. 6A). Only the CAULO1,
HYPHO1, and PSEUDO1 genomes within the Proteobacteria can
synthesize thiamine, whereas several other members can synthe-
size pantothenate (Fig. 6A). The absence of the pantothenate
biosynthetic pathway in Accumulibacter CAP IIA is particularly
interesting given that coenzyme A is essential for polyhydroxyalk-
anote biosynthesis, which fuels the rapid and extensive polymer
cycling PAO phenotype of Accumulibacter [24].
In addition to other community members potentially support-

ing the growth of Accumulibacter due to underlying auxotrophies,
the reciprocal logic may be possible as well. Both Accumulibacter
clades contain the pathways for synthesizing tyrosine and
phenylalanine, which are missing in a majority of the top 15
active non-Accumulibacter bacterial genomes (Fig. 6A). Only two
other members within the Proteobacteria can synthesize tyrosine
and phenylalanine, where RAM1 can synthesize both and
PSEUDO1 only phenylalanine. Interestingly, phenylalanine and
tyrosine are the second and third most metabolically expensive
amino acids to synthesize, respectively, with tryptophan being the
most costly [81]. Additionally, a few highly active non-
Accumulibacter bacterial community members lack the biosyn-
thetic machinery for several vitamin cofactors and amino acids,
such as FLAVO1 and BAC3 within the Bacteroidetes and the
putative PAO Ca. Obscuribacter phosphatis OBS1 (Fig. 6A).
Particularly, RAM1 within the Proteobacteria is missing the
biosynthetic machinery for all vitamin cofactors but can synthesize
most amino acids including the most metabolically expensive as
mentioned above.
We next analyzed the distribution of trait-attributes of vitamin

and amino acid pathways among these genomes to understand
how these biosynthetic pathways are expressed similarly or

differently in the EBPR SBR ecosystem (Fig. 6B, C). Members of
the Proteobacteria containing thiamine and cobalamin biosyn-
thetic pathways all express these traits similarly (Fig. 6B). However,
the pantothenate synthesis pathway contains two trait-attributes
and is expressed differently among two cohorts. In the first
attribute, RUN1, TET1, CAULO1, CAPIA, and PSEUDO1 express the
pantothenate pathway similarly. However, OBS1 and TET2 express
the pantothenate pathway differently (Fig. 6B). Because tetrahy-
drofolate can be synthesized through different metabolic routes,
we analyzed the differences in trait attribute expression for all
routes in genomes that contained sufficient coverage of this trait.
Bacteroidetes and Proteobacteria members mostly cluster together
among tetrahydrofolate attributes, whereas the TET1 and TET2
genomes are differentiated (Fig. 6B).
Expression of various groups of amino acids show more

differentiated expression patterns for genomes with these path-
ways. Several amino acids also contain different metabolic routes
for biosynthesis, and we analyzed all trait attributes for each
amino acid for all routes grouped by type (Fig. 6C). For the
charged amino acids arginine, histidine, and lysine, Proteobacteria
and Bacteroidetes members cluster within their phylogenetic
groups, respectively, with lysine and histidine expressed differ-
ently among these groups (Fig. 6C). In contrast, arginine is
expressed similarly among all Proteobacteria genomes. Among the
polar charged amino acids, TET2 is the only genome among the
top 15 genomes that contains the pathway to synthesize serine
(Fig. 6A). Several groups contain the pathway for threonine
synthesis, and expression of different threonine routes are
differentiated among the Proteobacteria, Bacteroidetes, and Tetra-
sphaera spp., though they mostly cluster phylogenetically (Fig. 6C).
Notably, the expression patterns for the cysteine and proline
biosynthetic pathways do not cluster phylogenetically, such as
both Tetrasphaera genomes expressing the proline pathway more
similarly to other Proteobacteria and Bacteroidetes (Fig. 6C). The
few lineages that can synthesize tyrosine and phenylalanine
(CAPIA, CAPIIA, RAM1, PSEUDO1) show different expression
patterns. These results show that beyond the presence or absence
of key vitamin cofactor and amino acid biosynthetic pathways,
EBPR SBR organisms also display coherent and differentiated
expression patterns for these traits, of which the functional
consequences remain to be further understood.

CONCLUSIONS AND FUTURE PERSPECTIVES
In this work, we applied a novel trait-based ‘omics pipeline to a
semi-complex, engineered bioreactor microbial community to
explore ecosystem-level and niche-differentiating traits. Through
recovering 66 MAGs from the EBPR SBR community and using a
time-series metatranscriptomics experiment, we were able to extend
functional predictions such as identifying multiple attributes of high-
affinity phosphate transporters beyond hypotheses made from traits
alone. We extended this framework to other significant traits that
are distributed among community members such as denitrification
and amino acid metabolism. Specifically, we demonstrate that traits
with similar expression profiles may be clustered into attributes
providing a new layer to trait-based approaches.
We believe that identifying expression-based attributes will be a

powerful tool to explore microbial traits in natural, engineered, and
host-associated microbiomes. Outside of activated sludge systems,
trait-based approaches could illuminate how similar secondary
metabolite clusters are expressed among different species in a
community [82, 83], how auxotrophies for amino acid and vitamin
cofactors govern interactions [84], how rhizosphere microorganisms
respond to day-night cycles, and identify putative traits that
universally exhibit ecosystem-level or niche-differentiating patterns
across ecosystems [19, 23]. Importantly, our trait-based approach
can be used to screen for expected expression patterns of a key trait
compared to a model organism, and then prioritize specific
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microbial lineages for downstream experimental verification with
techniques such as Raman-FISH [85, 86].

DATA AVAILABILITY
All supplementary files including functional annotations and transcriptome count files
are available at https://figshare.com/projects/EBPR_Trait-Based_Comparative_Omics/
90437. All 64 genomes have been deposited in NCBI at Bioproject PRJNA714686. The
remaining two reassembled Accumulibacter genomes have not been deposited in NCBI
to not confuse between the original CAPIA and CAPIIA assemblies [27, 28]. These
contemporary assemblies are available at the Figshare repository. The three
metagenomes and six metatranscriptomes used in this study are available on the
JGI/IMG at accession codes 3300026302, 3300026286, 3300009517, and 3300002341-46,
respectively. All code for performing metagenomic assembly, binning, and annotation
can be found at https://github.com/elizabethmcd/EBPR-MAGs. The TbasCO method has
been implemented as a reproducible R package and can be accessed at https://
github.com/Jorisvansteenbrugge/TbasCO.
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