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Chapter 1.  

General Introduction 
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1.1. Background 

1.1.1. Global challenges and policy responses 

Society is facing a variety of complex social and environmental challenges, including rapidly 
declining levels of biodiversity, climate change and land degradation (Wiedmann et al., 
2020). Many of these challenges have emerged as a consequence of the unsustainable use of 
natural resources by society (Kremen and Merenlender, 2018), with much of the value of 
nature for human well-being ignored in policy-making (Guerry et al., 2015). For example, as 
well as providing food and water to support peoples’ livelihoods, biogeochemical processes 
such as carbon sequestration work to regulate the climate (Raupach, 2013). Natural 
ecosystems also generate a number of important cultural benefits with positive effects on 
peoples’ sense of identity, connection to nature and mental and physical health (Hausmann 
et al., 2016; Sandifer et al., 2015). The significant cultural value of nature is often the main 
motivator behind conservation policies aimed at restricting extractive activities such as 
mining and other unstainable practices (Ladle et al., 2016). This value, however, is not easily 
captured within standard reporting frameworks that track socioeconomic development 
(Hein et al., 2015; TEEB, 2010a). As a result, natural ecosystems are often overlooked in land 
use planning, accelerating a global “extinction of experience” of nature as peoples’ contact 
with nature becomes increasingly limited (Miller, 2005; Soga and Gaston, 2016). 

The increasing impact of issues such as land degradation and biodiversity decline 
has highlighted the need to properly measure and conserve the value generated by nature 
(Carpenter et al., 2009). These complex challenges and monitoring requirements have led 
to an emphasis on integrated policy responses which can account for both the ecological 
and societal processes involved in addressing these challenges (Farrell et al., 2021). This 
requires both values compatible with current socioeconomic reporting frameworks and a 
broadening of many of the indicators used by policy-makers in relation to these frameworks 
(Díaz et al., 2015; Obst et al., 2016). Ultimately, public and private decision-makers need 
regular and standardised information in relation to the value of nature (Boyd et al., 2018). 
Because of the spatial nature of natural systems in relation to people, this information must 
also be spatially-explicit (Hein et al., 2006). This is especially challenging considering the 
more intangible, cultural contributions of nature to human well-being such as peoples’ 
aesthetic enjoyment of the landscape or their appreciation of individual species 
(Hernández-Morcillo et al., 2013). However, accounting for this cultural value has been 
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identified as crucial in developing effective policy responses to the complex issues faced by 
society (Daniel et al., 2012; Díaz et al., 2018). 

1.1.2. Ecosystem service assessments  

In this context, the ecosystem service concept has emerged as a science-policy interface 
through which the contributions of nature to human well-being can be measured to achieve 
sustainable policy goals (Gómez-Baggethun et al., 2010). Generally, ecosystem services can 
be defined as  the contributions of ecosystems to the benefits that are used in economic and 
other human activity (United Nations et al., 2021). With roots going back as far as the late 19th 
century (Missemer, 2018), the concept has rapidly evolved to become a standard feature 
within global science and policy arenas (Reyers et al., 2013). Its prominence was first 
established with the Millennium ecosystem Assessment (MA). This structured, global 
assessment provided an overall framework through which to measure the value generated 
by ecosystems (MA, 2005). The concept was then further formalised in The Economics of 
Ecosystem services and Biodiversity (TEEB) report, where the economic and social values 
of nature were further explored in an ecosystem service context to better inform decision-
making and planning (TEEB, 2010a). 

Building on these structured formulations, two recent international efforts have 
sought to further integrate the ecosystems services concept into decision-making: the 
System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA) and the 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 
(IPBES, 2019; United Nations et al., 2021). The SEEA EA is an internationally agreed 
statistical framework that accounts for ecosystems and the services they provide to people 
in a way consistent with the System of National Accounts (SNA) which tracks countries’ 
economic activity (Edens et al., 2022). The framework allows for various indicators, both 
monetary and non-monetary, to track the contributions of ecosystems to the economy and 
well-being with a strong spatial underpinning (Hein et al., 2020a). Similarly, the IPBES also 
provides a framework through which to value the contributions of nature to peoples’ well-
being, including alternative valuation approaches based on indigenous and local knowledge 
(IPBES, 2022). In doing so, it seeks to further complement the information available to 
decision-makers at both local, regional and global levels in a broad ecosystem service 
context (Díaz et al., 2018). 
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1.1.3. Cultural ecosystem services 

The IPBES and SEEA EA frameworks build upon the conceptual basis established by the 
MA and TEEB reports. These earlier conceptual framings put forward the idea of “cultural 
ecosystem services” (CES) to measure the cultural contributions of ecosystems to human 
well-being as a distinct category alongside other contributions such as the provisioning or 
regulating services of nature. The MA first defined CES as “the nonmaterial benefits people 
obtain from ecosystems through spiritual enrichment, cognitive development, reflection, 
recreation, and aesthetic experiences” (MA, 2005, p. 40). Nevertheless, such definitions have 
been the subject of continued debate, not least because these benefits are difficult to 
measure using either biophysical and monetary indicators but also due to the difficulty of 
conceptualising CES in quantitative terms (Daniel et al., 2012; Gould et al., 2020a). This 
debate has only intensified with the introduction of the IPBES framework which introduced 
the concept of “nature’s contributions to people” (NCP) alongside ecosystem services. This 
removes the CES category entirely and instead makes it a feature of all ecosystem 
contributions to human well-being, although it retains a set of more culture-specific NCP 
categories for large-scale assessments (Díaz et al., 2018; Kadykalo et al., 2019). This is in 
contrast to the SEEA EA which has so far kept CES as a distinct, universal category through 
which ecosystems generate cultural value (United Nations et al., 2021). 

 The conceptual debates surrounding CES have largely been driven by the 
difficulties in measuring CES. These services are generally intangible, context-specific and 
spatially ambiguous (Milcu et al., 2013; Satz et al., 2013). For example, two individuals 
walking through the same landscape may benefit in different ways from the nature around 
them and through the presence of multiple natural elements (Hernández-Morcillo et al., 
2013). Identifying these benefits based on individual preferences and then spatially assigning 
these to biophysical features is a key challenge in CES assessment (Gould et al., 2019a). Many 
studies have focused on the use of surveys to measure CES, asking participants to recall their 
interactions with nature (La Rosa et al., 2016). Some survey-based studies have then spatially 
assigned CES but rarely go beyond broad land cover categories or general points of interest 
(Eigenbrod et al., 2010; Plieninger et al., 2013). Survey-based approaches are also costly and 
labour-intensive which mainly restrict their use to local scales (Norton et al., 2012; Peña et 
al., 2015). As a consequence, there is a much more limited amount of spatial information on 
CES for use in large-scale ecosystem service assessments versus other types of ecosystem 
services (Daniel et al., 2012; Russell et al., 2013). 
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1.1.4. Crowdsourced data 

The widespread adoption of smartphones coupled with the rapid rise of global internet 
connectivity now provides a new opportunity to spatially measure CES. The total number 
of people now using the internet has risen to at least 3.4 billion people or roughly 50% of the 
world’s population (Roser et al., 2015). Mobile phone use has also seen huge increases over 
the last 20 years, with 90% of the world’s population now living within range of a high-
quality mobile internet connection (International Telecommunication Union, 2018). As part 
of this rise in connectivity, social media platform have seen a rapid expansion in the number 
of users, with one in three people in the world now using some form of social media (Roser 
et al., 2015). Platforms such as Flickr, Twitter, Facebook, Instagram and Weibo provide 
opportunities for people to share their interactions with nature in real-time using their 
smartphones (Ghermandi and Sinclair, 2019). At the same time, dedicated platforms such as 
iNaturalist and eBird have enabled millions of people to share their interactions with 
individual species through large-scale citizen science efforts, with the number of species 
observations on iNaturalist now totalling over 56 million (Di Cecco et al., 2021). Broadly 
defined as “crowdsourced data” (Calcagni et al., 2019; Ghermandi and Sinclair, 2019), these 
new digital records of human-nature interactions have generated a wealth of geo-
referenced, content-rich data for use in CES assessments (Ilieva and McPhearson, 2018; 
Ladle et al., 2016; Willemen et al., 2015). 

 Nevertheless, the use of crowdsourced data has not yet been fully explored and its 
integration in CES assessments faces a number of challenges. One potential issue is the 
demographic and geographic representativeness of the data as well as the quality of the geo-
located data but validation exercises in the context of ecosystem service assessments are rare 
(Englund et al., 2017; Oteros-Rozas et al., 2018). As a novel source of data, the nature of the 
CES captured through platforms such as Flickr or iNaturalist has also not yet been fully 
explored (Ghermandi et al., 2020b). For example, biodiversity has a great cultural value but 
it is not clear the extent to which this would be represented through CES indicators based 
on crowdsourced data (Dallimer et al., 2012; Schröter et al., 2017). However, one of the most 
pressing challenges has been the sheer size of the datasets involved. The digital records of 
millions of individuals sharing their interactions with their environments has created new 
sources of “big data” that are difficult to process and interpret in large quantities (Miller and 
Goodchild, 2015). This includes images, text, community structure and interactions. 
Currently, most studies employing crowdsourced data have used only the number of 
interactions as a generic indicator for CES (van Zanten et al., 2016; Wood et al., 2013). 
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However, each interaction represents a unique contribution of nature to an individual’s 
experience made apparent through different media such as images and text and this is often 
not addressed in studies employing crowdsourced data to generate CES indicators (Fox et 
al., 2021a; Richards and Tunçer, 2018).  

1.1.5. Machine learning 

In response to these challenges, machine learning has been identified as a powerful new 
technique to measure the CES of nature using crowdsourced data (Egarter Vigl et al., 2021). 
Machine learning is a methodological framework that leverages data to construct models 
and generate predictions across a set of tasks (Jordan and Mitchell, 2015). These models learn 
data-responsive relationships from observations without a pre-defined set of rules related 
to the phenomena being modelled. Machine learning is especially effective on large 
datasets, including “big data”, using efficient learning techniques and large computational 
resources (L. Zhou et al., 2017). This has produced a number of breakthroughs in a wide 
variety of commercial, technical and scientific fields including natural language processing 
(NLP) (Hirschberg and Manning, 2015), social science (Hu et al., 2020), ecology (Tuia et al., 
2022) and earth system science (Lary et al., 2016). 

A great amount of this progress has been driven by deep learning, a particularly 
successful class of machine learning techniques which uses artificial neural networks to 
generate predictions (LeCun et al., 2015). Deep learning models automatically learn highly 
complex representations of the input data through ensembles of filters applied to the data. 
This enables tasks using multi-dimensional data inputs, such as the RGB layers of an image, 
to generate predictions of advanced concepts, such as scene classification, object detection 
or even landscape attractiveness ratings based on crowdsourced perceptions (Cordts et al., 
2016; Seresinhe et al., 2017b). Deep learning has also seen significant success in the NLP field. 
NLP is broadly concerned with processing and analysing large amounts of human language 
data. Through the application of deep learning techniques, a greater understanding of 
language has been demonstrated including sarcasm and cultural contexts. This has enabled 
superior results on common tasks such as translation (Otter et al., 2021). 

 As a consequence, the application of machine learning to large crowdsourced 
datasets such as social media data has seen considerable growth in recent years (Balaji et al., 
2021). However, its application in a CES context has so far been limited (Egarter Vigl et al., 
2021; Richards and Tunçer, 2018). When applied to social media, machine learning has a 
great amount of potential for CES assessments because models can be trained to generate 
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predictions of peoples’ cultural enjoyment as specific semantic concepts such as landscape 
attractiveness (Lothian, 1999; Marcos, 2020). These predictions can be spatially mapped 
using the geo-located records available and, in doing so, enable measurements of peoples’ 
revealed preferences for the environment based on actual human-nature interactions. This 
important methodological aspect is currently lacking in most spatial CES models which 
usually rely on proxies such as land cover or landscape features to represent CES supply (de 
Groot et al., 2010; Hernández-Morcillo et al., 2013). Especially relevant are landscape 
aesthetics as a key feature of outdoor recreation (Daniel et al., 2012) and peoples’ 
appreciation of biodiversity in terms of their direct interactions with individual species 
(Hevia et al., 2017). Moreover, machine learning advances in NLP enable an examination of 
the sentiment generated by human-nature interactions via the text shared by people online. 
This means a clearer connection can be established between CES and the resulting benefits 
in terms of peoples’ positive experiences, another feature of CES indicators that is generally 
lacking (Fox et al., 2021a). 

1.2. Knowledge gaps 

Ecosystems generate a large amount of cultural value for human well-being and this value 
is a key motivation for sustainable ecosystem management (Plieninger et al., 2013). However, 
CES are the most difficult to measure and therefore receive insufficient consideration in 
policy-making (Milcu et al., 2013). For large-scale assessments, spatial data on CES is 
particularly important to allow a level of generalisation (Norton et al., 2012). Such data is rare 
and existing methods rarely incorporate the revealed preferences of individuals, an 
important methodological factor in CES assessment (de Groot et al., 2010). Now, 
crowdsourced data offers a new opportunity to develop explicit spatial measures of CES for 
use in large-scale ecosystem service assessments (Ghermandi and Sinclair, 2019). 
Nevertheless, the conceptual debate surrounding CES leaves a considerable amount of 
conceptual uncertainty in the spatial quantification of CES and a definition of CES in the 
context of crowdsourced data is needed (KG 1). 

The use of crowdsourced data in developing indicators for CES assessments is also 
rarely validated using other data sources such as survey data. A lack of validation means 
CES indicators based on crowdsourced data such as social media may not reflect the 
preferences of the wider population or the heterogeneity of different landscapes (Oteros-
Rozas et al., 2018). For example, Flickr has been found to mostly consist of 40 to 60 year old 
males (Lenormand et al., 2018). At the same time, indicators developed in one geographic 
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context may not be relevant to another. In the case of landscape aesthetics, this might mean 
the importance of some landscape features may change such as the uniqueness of natural 
features in urban versus rural contexts (Jessel, 2006; Uuemaa et al., 2013). More research is 
therefore needed to determine whether the preferences reflected in crowdsourced data 
sources such as Flickr match those reflected in large-scale surveys (KG 2).  

Assessing individual preferences in relation to the natural environment is a central 
aspect to CES assessment (Milcu et al., 2013). As most platforms are likely to have different 
sets of active users, a greater understanding of the types of preferences reflected in each 
source of crowdsourced data is also needed. For example, citizen science is a key source of 
data on peoples’ cultural interactions with biodiversity because it reflects peoples’ naturalist 
interest in biodiversity (Di Cecco et al., 2021). However, a large number of interactions are 
also shared on social media platforms such as Flickr. For example, many people share 
wildlife photography on Flickr (Hausmann et al., 2018) or during casual recreation in local 
green spaces (Lopez et al., 2020). Because of these differences, more work is needed on 
comparing the preferences available through different platforms and, ultimately, enable 
their integration in CES assessments (Fox et al., 2021b; Scowen et al., 2021). A better 
understanding of the differences in user activity between platforms can therefore 
support a greater diversity of preferences in CES assessments (KG 3). 

Another unexplored area of research in CES assessment is determining which 
ecosystem features contribute to cultural benefits (Gould et al., 2020b). Understanding the 
specific contributions of ecosystems to human well-being at large-scales can provide more 
relevant data to land use planning or other policy processes (Mandle et al., 2021). For 
example, biodiversity can be considered a cultural service but it is not clear how peoples’ 
direct interactions with biodiversity compare with actual measures of biodiversity (Dallimer 
et al., 2012). Similarly, the quality of the natural environment in terms of an ecosystem’s 
condition will affect the supply of ecosystem services (Grizzetti et al., 2019). However, CES 
indicators generally lack this level of detail versus other ecosystem service measures due to 
the use of proxies and coarse indicators such as land cover (Hernández-Morcillo et al., 2013). 
This means that the full effects of land use planning decisions on CES cannot be fully 
understood (Daniel et al., 2012). Therefore, more research is needed to identify which 
ecosystem features generate CES (KG 4). 

Currently, the application of machine learning, especially deep learning, to produce 
CES indicators is also limited (Scowen et al., 2021). Most present applications of deep 
learning in a CES context have used objects or scene classifications of images on social 
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media as proxies for CES (Lee et al., 2019; Richards and Tunçer, 2018). Applications also rely 
on a limited groups of experts or researchers to categorise CES according to the objects or 
scenes found in the images (Gosal et al., 2019; Winder et al., 2022). On the other hand, despite 
their availability, models trained to predict complete semantic representations of CES are 
lacking. Exploring these more advanced applications therefore constitutes an important 
knowledge gap when considering the subjectiveness of cultural concepts such as landscape 
aesthetics (Daniel, 2001). For these purposes, large, crowdsourced datasets, such as those 
related to aesthetics, can be utilised using machine learning to generate predictions. This 
would mean a wider set of revealed preferences would be included in CES measures versus 
only expert judgement (Seresinhe et al., 2017a). Consequently, more machine learning 
applications using large, crowdsourced datasets are needed in the context of CES to fully 
understand its potential (KG 5). 

Finally, CES indicators that do utilise crowdsourced data such as social media do not 
usually explicitly consider the link to human well-being through peoples’ positive 
experiences of nature (Fox et al., 2021a). For example, CES assessments using social media 
generally rely on generic indicators such as the number of images with an implied uniform 
value (Wood et al., 2013). However, one interaction with nature may hold more weight than 
another or some images may not even relate to a cultural interaction with nature (Gould et 
al., 2019a). Nevertheless, users of social media share a large amount of data on how they are 
potentially benefiting from their cultural interactions with nature. For example, the titles, 
tags and descriptions associated with images on Flickr can reveal how and to what degree 
people gained a positive experience of nature (Ghermandi et al., 2020a). Now, NLP 
approaches including machine learning-based sentiment analysis offer a promising set of 
techniques to estimate the affective states in this text (Gandomi and Haider, 2015). Thus, 
more research is needed to explore the potential of NLP in connecting CES indicators to 
peoples’ positive experiences of nature (KG 6).  
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1.3. Research questions and outline of the thesis 

The full potential of machine learning and crowdsourced data in the development of CES 
measures has not been fully realised. As outlined in this chapter, many knowledge gaps still 
exist and demonstrating the use of these novel techniques can help better integrate the ES 
concept into decision-making, especially at large-scales. Therefore, this thesis aims to 
explore the potential of crowdsourced data and machine learning to measure CES. This 
overall objective is addressed through the following research questions: 

RQ1. How can CES be defined and spatially modelled in the context of crowdsourced 
data? 

RQ2. How can social media and deep learning capture the aesthetic quality of the 
landscape in support of aesthetic ecosystem service models? 

RQ3. What do social media and deep learning-based indicators of biodiversity-related 
CES capture in comparison to citizen science and ecological measures? 

RQ4. How can social media and NLP capture the positive experiences associated with 
different CES measures? 

These research questions are addressed in this thesis through a series of chapters compiled 
as independent research papers. The first research question seeks to cover KG 1 and is 
addressed in Chapter 2 of this thesis, where the current conceptual thinking on CES is 
considered alongside sources of crowdsourced data to propose a definition to spatially 
model CES. The second research question is addressed in Chapter 3 and seeks to cover KG2, 
KG4, KG5 and KG6, with a focus on landscape aesthetics as a key source of cultural value. 
To do this, deep learning-based predictions of landscape aesthetic quality are generated at 
national scale using Flickr data and a crowdsourced, geographically-representative survey 
of Great Britain.  

In Chapter 4, research question three is addressed. Deep learning models are trained 
and applied to predict human-species interactions in Flickr images and these predictions 
are then used to map biodiversity-related CES in Great Britain. These human-species 
distributions are then compared with those generated through citizen science as well as 
ecological measures of bird biodiversity. In doing so, this chapter seeks to address KG3, KG4 
and KG5. Following this, Chapter 5 addresses research question 4 with a focus on KG2 and 
KG 6. Here, a number of sentiment analysis models using NLP are applied to the textual data 
associated with Flickr images to estimate the positive experiences associated with different 
CES measures. In particular, the aesthetic and biodiversity-related interactions predicted 
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using deep learning in the previous two chapters are considered. Sentiment levels are also 
compared with a national well-being survey on outdoor recreation in Great Britain. Finally, 
in Chapter 6, the methods and results are discussed in relation to the research questions 
with a synthesis of the key research findings. 
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Chapter 2.  

Defining and spatially modelling cultural ecosystem 
services using crowdsourced data 
 

 

 

 

 

 

Abstract. Cultural ecosystem services (CES) are some of the most valuable contributions of 
ecosystems to human well-being. Nevertheless, these services are often underrepresented 
in ecosystem service assessments. Defining CES for the purposes of spatial quantification 
has been challenging because it has been difficult to spatially model CES. However, rapid 
increases in mobile network connectivity and the use of social media have generated huge 
amounts of crowdsourced data. This offers an opportunity to define and spatially quantify 
CES. We inventoried established CES conceptualisations and sources of crowdsourced data 
to propose a CES definition and typology for spatial quantification. Furthermore, we 
present the results of three spatial models employing crowdsourced data to measure CES 
on Texel, a coastal island in the Netherlands. Defining CES as information-flows best 
enables service quantification. A general typology of eight services is proposed. The spatial 
models produced distributions consistent with known areas of cultural importance on 
Texel. However, user representativeness and measurement uncertainties affect our results. 
Ethical considerations must also be taken into account. Still, crowdsourced data is a 
valuable source of information to define and model CES due to the level of detail available. 
This can encourage the representation of CES in ecosystem service assessments. 

 

Published as:  

Havinga, I., Bogaart, P.W., Hein, L. and Tuia, D., 2020. Defining and spatially modelling 
cultural ecosystem services using crowdsourced data. Ecosystem Services, 43,  101091.
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2.1. Introduction 

Ecosystem services (ES) have emerged as a concept to help us better understand, value and 
manage the contributions of ecosystems to human well-being (Gómez-Baggethun et al., 
2010). Cultural ecosystem services (CES) generate a large amount of value for society (Milcu 
et al., 2013). Culture plays a pervasive role in all human-nature interactions (Díaz et al., 2018) 
and ecosystems contribute to many intellectual and recreational benefits for human well-
being (de Groot et al., 2010). CES are largely without substitutes and, once destroyed, many 
are irreplaceable (Plieninger et al., 2013). In industrialised societies, CES are often valued 
over ES that contribute to commodity production (Hernández-Morcillo et al., 2013) while in 
many indigenous communities CES are essential to cultural identity (Milcu et al., 2013).  

Despite the value of CES to human well-being, these services remain some of the 
most underrepresented in ES assessments (Hernández-Morcillo et al., 2013). CES are 
generated through combinations of individual activities, preferences and worldviews (Milcu 
et al., 2013). The subjective nature of CES has meant that operational definitions for the 
purposes of spatial quantification are rare (Daniel et al., 2012). In this respect, established ES 
assessment frameworks have been criticised for providing overly generic definitions that 
can make practical measurement difficult (Boyd and Banzhaf, 2007). Most established 
assessment frameworks are based on or are influenced by the cascade framework proposed 
by Haines-Young and Potschin (2010). This tracks the contributions of ecosystems to human 
well-being in a linear fashion from biological structures and processes to benefits of 
different value. ES are the contributing factor between the ecosystem and the resulting 
benefits. The distinction between services and benefits is important because it avoids 
double counting the contributions of ecosystems to human well-being. However, in 
providing generic definitions for CES, ES assessment frameworks have tended to conflate 
CES with both cultural benefits and values (Milcu et al., 2013; Satz et al., 2013). 

In part, the ambiguity of CES definitions in established ES assessment frameworks 
exists because it has been difficult to spatially model the cultural interactions between 
people and ecosystems (Daniel et al., 2012). Spatially attributing CES remains a key 
challenge (Hernández-Morcillo et al., 2013; Norton et al., 2012; Schröter et al., 2015) and 
spatial models have tended to rely on proxies such as land cover (Chan et al., 2011; Eigenbrod 
et al., 2010; J. Maes et al., 2013). As a result, many studies have focused on qualitative methods 
such as surveys, interviews and focus groups within small study areas (Plieninger et al., 2013). 
This has also led to the argument that CES generally defy quantitative measurement as 



 

 15   

individual services (Chan et al., 2012b; Fish et al., 2016). Nevertheless, spatial quantification 
methods applicable to large scales are necessary if the ES concept is to effectively inform 
land-use and marine policies (Barbier, 2011; Hein et al., 2006; J. Maes et al., 2013). In these 
cases, the cascade framework proposed by Haines-Young and Potschin (2010) has generally 
proven to be a useful concept for the spatial quantification of ES (de Groot et al., 2010; Maes 
et al., 2012; Potschin-Young et al., 2018). 

Now, the global rise of mobile internet connectivity and online social media provide 
new opportunities to spatially model CES. Some 90 percent of the global population now 
live within range of a high-quality mobile internet connection (International 
Telecommunication Union, 2018). In developing countries, rapid increases in internet 
connectivity have been driven by the widespread adoption of smartphones. This 
widespread adoption is leisure-oriented, providing greater opportunities to socialise and 
engage with the wider world (Arora, 2012). As a result, social media platforms such as 
Facebook, Instagram, Twitter, and Weibo have amassed hundreds of millions to billions of 
active users (Kemp, 2019). On these platforms, users provide a wealth of geo-referenced 
information about their feelings, preferences and physical interactions with the natural 
environment (Di Minin et al., 2015; Ilieva and McPhearson, 2018). Internet connectivity has 
also generated new forms of citizen engagement with biodiversity through citizen science 
portals such as eBird and iNaturalist (Barve, 2014). 

A range of terms have emerged to describe these new data sources. These include 
‘volunteered geographic information’, the ‘geoweb’, ‘user-generated content’ and ‘big data’ 
(Crampton et al., 2013; Elwood et al., 2012; Elwood and Leszczynski, 2011). In line with the 
terminology used in recent studies (Calcagni et al., 2019; Ghermandi and Sinclair, 2019; 
Gliozzo et al., 2016; See et al., 2016; Sinclair et al., 2018; Tenerelli et al., 2016), we refer to these 
new data sources as crowdsourced data. In this paper, we define this as geo-referenced 
records of in situ human-environment interactions, both voluntarily and passively collected. 
Compared to the general use of the term ‘crowdsourcing’, this is a narrower utilisation, 
excluding ex situ crowdsourcing projects such as OpenStreetMap, but broader in also 
considering passive contributions (See et al., 2016). It also does not limit itself to online 
sources of data such as with the terms ‘geoweb and ‘user-generated content’ (Elwood and 
Leszczynski, 2011). 

Researchers are beginning to harness the potential of crowdsourced data to examine 
human-nature interactions and measure CES. Specific services have been assessed using 
the location and content of images on Flickr, a photo-sharing site (Martínez Pastur et al., 
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2016; Richards and Friess, 2015; Willemen et al., 2015). In one case, landscape preferences 
across the whole of Europe were measured using location data from social media (van 
Zanten et al., 2016). InVEST, a popular ES modelling tool, integrates Flickr photos in its 
recreation model (InVEST, 2017). At the same time, Twitter, a micro-blogging platform, has 
been used to gauge sentiments towards the environment (Wilson et al., 2019) and mobile 
exercise apps such as Strava have been drawn upon to examine cycling preferences in the 
urban environment (Griffin and Jiao, 2015; Sun et al., 2017). Mobile signal data has also been 
used to examine peoples’ interactions with natural areas (Pei et al., 2014; Xiao et al., 2019).  

Despite the increasing use of crowdsourced data to measure CES, these remain 
isolated efforts and a structured conceptualisation of CES in this context is still missing. This 
can partly be attributed to the lack of operational definitions for spatial CES modelling in 
established ES frameworks. These definitions, in turn, have historically been constrained 
by a lack of spatial data on the cultural interactions between people and ecosystems. The 
considerable spatial insights now being generated in the form of crowdsourced data offers 
a lens through which to examine the CES concept not previously applied in the established 
conceptual thinking on CES. In doing so, this conceptual thinking can be refined to support 
the spatial quantification of CES using crowdsourced data, a rich and expansive new source 
of information which enables CES assessments outside the scope of traditional survey 
methods.   

The objective of this study is to define CES in the context of crowdsourced data and 
demonstrate the use of this definition in the spatial quantification of CES. We follow an 
iterative process, developing a definition and typology which considers established 
conceptual thinking, sources of crowdsourced data, and our own experiences in developing 
spatial CES models using crowdsourced data (Figure 1). In Section 2.2, CES concepts and 
sources of crowdsourced data are considered in an inventory of ES assessment frameworks 
and utilisations of crowdsourced data. In Section 2.3 and 2.4, we outline our CES definition 
and suggest a general typology of eight services. In Section 2.5, we show the use of the 
definition and typology in practice with three spatial CES models measuring activity, 
aesthetic and naturalist services using crowdsourced data on Texel, an island in the 
Northwest of the Netherlands. In Section 2.6, we discuss our conceptualisation of CES, 
taking into account the representativeness of the data, measurement uncertainties and 
ethical considerations. Section 2.7 summarises the main conclusions of the chapter. 
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Figure 1. Conceptual process followed to develop the CES definition and typology. The proposed 
definition and typology were developed following an iterative process which considered 
crowdsourced data and utilisations, the authors’ experience developing CES models using these 
sources as well as established CES concepts, represented by five influential ecosystem service 
assessment frameworks. In turn, the CES definition and typology seeks to inform the current 
conceptual thinking reflected in these assessment frameworks. 

2.2. Inventories of established CES concepts and crowdsourced data 

2.2.1. Methods 

2.2.1.1. CES concepts in ES assessment frameworks 

In order to include the most established conceptual thinking on CES in our conceptual 
process, an inventory was compiled of CES conceptualisations in five leading ecosystem 
assessment frameworks. The frameworks selected include the Millennium Ecosystem 
Assessment (MA), The Economics of Ecosystems and Biodiversity (TEEB), the System of 
Environmental Economic Accounting – Experimental Ecosystem Accounting (SEEA EEA), 
the Common International Classification of Ecosystem Services (CICES) and the Inter-
governmental Panel on Biodiversity and Ecosystem Services (IPBES). These were identified 
as the most established and influential international ES assessment frameworks which are 
based on a process of consensus building between a large number of public, private and 
scientific institutions (Díaz et al., 2018; Gómez-Baggethun et al., 2010; Hein et al., 2020a; La 
Notte et al., 2017). In addition, the Global Ecological Model (GEM) developed by the Dutch 
Regional and Spatial Planning Office (van der Maarel and Dauvellier, 1978) was included as 
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an early interpretation of the ES concept which had an influence in its subsequent 
development (Braat and de Groot, 2012). 

2.2.1.2. Crowdsourced data 

To further inform the conceptual process, an inventory of crowdsourced data utilisations 
was compiled to better understand the information and forms of data available on human-
nature interaction. To do this, we conducted a literature search limited to articles and 
reviews in the citation database Scopus. A systematic review was then undertaken of the 
studies returned by this literature search.  

A broad range of terms are used to describe crowdsourced data and it is difficult to 
capture all relevant studies. Thus, a number of search terms were employed to capture as 
many studies as possible. A search of the CES literature using the term “cultural ecosystem 
services” was first performed as an initial review found it to return a large number of 
relevant studies. In addition, the search terms “crowdsourced data”, “volunteered 
geographic information” and “mobile phone data” were entered. We used ‘volunteered 
geographic information’ as well as ‘crowdsourced data’ because it captures a large amount 
of related studies. In its broadest interpretation, Volunteered Geographic Information (VGI) 
refers to geo-referenced data from social media and citizen science portals, both voluntarily 
and passively collected (Connors et al., 2012; Goodchild, 2007). “mobile phone data” was 
used to broaden the search to include studies using passively-produced mobile signal data. 

Following this, the title and abstract of each search result were reviewed and studies 
(and respective sources) were included based on four criteria: (i) a focus on human-nature 
interactions, (ii) the use of geo-located records, (iii) the source was still operational, and (iv) 
the source was of international relevance. In order to check sources against criteria (iii) and 
(iv), an internet search was performed to evaluate data access, user statistics and the 
information available. This also helped determine the type of data available. 42 studies were 
included in the inventory following this process. Article reference lists were again consulted 
to include studies (and sources) that may have been missed in the initial searches. This 
added 16 studies to the inventory. A more detailed overview of the literature selection 
process can be found in Supplementary Figure S1. 
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2.2.2. Results 

2.2.2.1. CES concepts in ES assessment frameworks 

For the five ES assessment frameworks reviewed, the CES conceptualisations and related 
categories are given in Table 1. There are some key differences and similarities between the 
assessment frameworks. The GEM is unique in its definition of CES as the use and 
availability of information. On the other hand, the MA and TEEB both define CES in terms 
of the non-material benefits people gain through nature-related experiences. The SEEA 
EEA and CICES define CES in terms of physical settings, locations or situations that give 
rise to intellectual benefits. The definition of CICES also emphasises the physical effects of 
CES. IPBES has taken a different approach and the CES category has been removed. 
Instead, cultural benefits arise through regulating, material and non-material ecosystem 
contributions, termed Nature’s Contributions to People (NCP), rather than in terms of 
services (Díaz et al., 2018). 

Still, the IPBES assessment framework retains three culture-specific reporting 
categories for large-scale assessments: learning and inspiration, physical and psychological 
experiences, and supporting identities. These are in line with the categories proposed by the 
four other assessment frameworks which, among others, share categories related to 
recreation, aesthetics, artistic inspiration, appreciation of biodiversity, cultural heritage, 
education and spiritual contributions. The GEM is the most unique with its wording 
regarding some of these categories. In the GEM, orientation functions relate to our sense of 
identity while signal functions to the health indications ecosystems transmit. The wording 
also varies further between assessment frameworks. The MA and CICES refer to value in 
some categories, the TEEB defines categories broadly in terms of benefits, while the SEEA 
EEA refers to these in terms of experiences and activities. 

The variation in the wording of CES categories highlight some differences in the 
fundamental qualities of the concepts in each of the frameworks. The MA does not make a 
distinction between services, benefits and values while TEEB considers these as separate 
concepts. This distinction helps account for the existence of intermediate services, their 
spatial delineation and economic valuation (TEEB, 2010b). However, it does not make this 
distinction explicit in its conceptualisation of CES. The SEEA EEA also makes a distinction 
between services and benefits in its conceptualisation of ES. This distinction is reflected in 
the SEEA EEA and CICES definitions. Services are contributions to benefits used in 
economic activity and other human activity. This recognises the joint-production of goods  
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Table 1. Conceptualisations of CES. 

Assessment framework Acronym Conceptualisation Categories 

Global Ecological Model 
(van der Maarel and 
Dauvellier, 1978, p. 155) 

GEM “the use and availability of information" Orientation function; 
research function; 
education function; 
signal function 

Millennium Ecosystem 
Assessment (MA, 2005, p. 
40) 

MA “the non-material benefits people obtain 
from ecosystems through spiritual 
enrichment, cognitive development, 
reflection, recreation, and aesthetic 
experiences” 

Cultural diversity; 
spiritual and religious 
values; knowledge 
systems; educational 
values; inspiration; 
aesthetic values; social 
relations; sense of 
place; cultural heritage 
values; recreation and 
ecotourism 

The Economics of 
Ecosystems and 
Biodiversity (TEEB, 
2010a, p. 40) 

TEEB “the non-material benefits people obtain 
from contact with ecosystems” 

Recreation and mental 
and physical health; 
tourism; aesthetic 
appreciation and 
inspiration for culture, 
art and design; spiritual 
experience and sense of 
place 

System of Environmental 
Economic Accounting – 
Experimental Ecosystem 
Accounting (UN, 2017; 
UN et al., 2014, p. 42) 

SEEA 
EEA 

“the physical settings, locations or 
situations that give rise to intellectual and 
symbolic benefits obtained by people from 
ecosystems through recreation, knowledge 
development, relaxation and spiritual 
reflection” 

Tourism; recreation; 
education and learning; 
religious and spiritual 
experiences; artistic 
and other human 
activities 

Common International 
Classification of 
Ecosystem Services 
(Haines-Young and 
Potschin, 2018, p. 10) 

CICES “the environmental settings, locations or 
situations that give rise to changes in the 
physical or mental states of people” 

Active or immersive 
interactions; passive or 
observational 
interactions; scientific 
investigation or the 
creation of traditional 
ecological knowledge; 
education and training; 
culture or heritage; 
aesthetic experiences; 
symbolic meaning; 
sacred 
or religious meaning; 
entertainment or 
representation; 
existence value; 
bequest value; other 

Inter-governmental 
Panel on Biodiversity 
and Ecosystem Services 
(Díaz et al., 2018) 

IPBES “culture mediates the relationship between 
people and all NCP” 

Learning and 
inspiration; physical 
and psychological 
experiences; 
supporting identities  
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and services which makes the ES concept compatible with national economic accounting 
principles (UN et al., 2014). The NCPs proposed by IPBES generally follows the MA’s 
conceptualisation of services as benefits (Díaz et al., 2018). 

2.2.2.2. Crowdsourced data 

The search of the literature highlighted four types of crowdsourced data which enable an 
examination of human-nature interactions: 

i. Social media platforms including Flickr, Foursquare, Instagram, Tencent QQ, 
Twitter and Weibo.  

ii. Outdoor activity-sharing platforms including Condoon, Geocaching, GPSies, 
MapMyFitness, Strava and Wikiloc.  

iii. Citizen science portals including eBird and iNaturalist. 
iv. Mobile signal data from telecommunications companies. 

The different types and sources of crowdsourced data are shown in Table 2 along with the 
studies utilising these sources. 

(i) Social media platforms. Flickr is the most popular source of social media data. It has been 
extensively used in the literature to examine the provision of CES. Flickr is a photo-sharing 
platform for amateur and professional photographers. It has been estimated to have over 71 
million users who have uploaded approximately 197 million geo-tagged photographs (Wood 
et al., 2013). Its API provides access to the metadata of all publicly-posted photos including 
their title, tags, image url, associated user profile and location, accurate up to street level. 
Among other applications, researchers have established measures of CES provision using 
the locations of photographs (Kim et al., 2019; Tenerelli et al., 2016; van Zanten et al., 2016; 
Yoshimura and Hiura, 2017) and the content of the images (Richards and Friess, 2015; 
Richards and Tunçer, 2018; Thiagarajah et al., 2015), measured preferences for biodiversity 
(Mancini et al., 2019) and used user activity as a proxy to infer visitation rates to parks and 
protected areas (Ghermandi, 2016; Levin et al., 2017). 

Researchers have also used Foursquare, Instagram, Tencent QQ, Twitter and Weibo. 
Weibo, Twitter and Foursquare provide access to user activity through an API including 
location data, tags, image urls, user profiles and user interactions such as ‘favourites’ or 
‘likes’ associated with the posts (Foursquare, 2019; Twitter, 2019; Weibo, 2019). Instagram has 
limited its public API access to hashtag searches. These platforms have been used for 
classifying urban land use based on user activity (Liu et al., 2017) and in developing 
indicators for CES provision (Guerrero et al., 2016; van Zanten et al., 2016). Similarly, 
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Foursquare, where users share information and opinions about locations (Glueck, 2018), has 
been used to spatially characterise cities based on the types of locations users visit (Zhou 
and Zhang, 2016). The posts on Twitter, known as ‘tweets’, have been used to track the effects 
of natural disasters (Chen et al., 2016; de Albuquerque et al., 2015; Middleton et al., 2014), 
measure user sentiments towards nature (Becken et al., 2017; Wilson et al., 2019) and 
determine the spatial distributions of outdoor recreation at small scales such as in urban 
park areas (Roberts et al., 2017; Zhou and Zhang, 2016).  

(ii) Outdoor activity-sharing platforms. The Condoon, Geocaching, GPSies, MapMyFitness, 
Strava and Wikiloc activity-sharing platforms have also been utilised to measure human-
nature interactions. Location data is collected on these platforms from mobile phones and 
other GPS devices. Strava is the largest of these platforms, with tens of millions of users 
(Riordan, 2016). The other platforms are smaller but still have a global dataset. Public 
activities on Strava are visualised in a global heatmap (Strava, 2018). Individual user activity 
is available through the Strava Metro product. Condoon offers a similar service through an 
API (Condoon, 2019). The GPSies, MapMyFitness and Wikiloc websites allow access to 
individual routes and imagery through interactive interfaces (GPSies, 2019; MapMyFitness, 
2019; Wikiloc, 2019). Geocaching also offers an API service with data available on the 
location of caches, find counts, points-of-interest and user profiles (Geocaching, 2019). The 
data available has been used to directly measure recreational services (Dai et al., 2019), as 
well as preferences for natural areas (Cord et al., 2015; Rosário et al., 2019), cycling routes 
(Griffin and Jiao, 2015; Sultan et al., 2017; Sun et al., 2017) and protected areas (Jurado Rota et 
al., 2019; Norman et al., 2019; Norman and Pickering, 2017). 

(iii) Citizen science portals. Citizen science portals also present evidence of human-nature 
interactions. The eBird and iNaturalist platforms host several million geo-located 
observational records, including imagery, available through the eBird website and 
iNaturalist API (eBird, 2019; iNaturalist, 2019). These are also made available through the 
Global Biodiversity Information Facility (GBIF) which hosts a global dataset of observations 
from citizen science platforms and scientific institutions (GBIF, 2019). eBird and iNaturalist 
were used by Jacobs and Zipf (2017) to examine civic measures of biodiversity.  

(iv) Mobile signal data. Mobile signal data can also reveal spatial interactions with the 
environment. The data consists of call detail records (CDRs) from cell phone towers which 
are generated each time a device sends a text or makes a call. Researchers are able to 
triangulate the location of the user by measuring signal strengths and the coverage area of 
each cell phone tower (Pei et al., 2014; Toole et al., 2012). In these studies, the data was 
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privately made available by mobile phone network operators. Mobility patterns over time 
have been used to classify behaviour related to outdoor recreational zones (Pei et al., 2014; 
Toole et al., 2012; Tu et al., 2017) and determine the accessibility of urban green space (Wu et 
al., 2018; Xiao et al., 2019).  

Table 2. Sources of crowdsourced data in analysing human-nature interactions. 

Source Source description Data utilisation Studies 

Social media platforms 

Flickr Photo-sharing social 
media platform 

Visitation rates to natural areas 
based on user activity 

Wood et al., 2013; Keeler et 
al., 2015; Levin et al., 2015, 
2017; Ghermandi, 2016; 
Sessions et al., 2016; Sonter 
et al., 2016; Spalding et al., 
2017; Tenkanen et al., 2017; 
Donahue et al., 2018; 
Mancini et al., 2019 

  Indicators of CES provision 
using photos 

Casalegno et al., 2013; 
Thiagarajah et al., 2015; 
Richards and Friess, 2015; 
Tenerelli et al., 2016, 2017; 
van Zanten et al., 2016; 
Martínez Pastur et al., 2016; 
Seresinhe et al., 2017; 
Yoshimura and Hiura, 2017; 
Figueroa-Alfaro and Tang, 
2017; Walden-Schreiner et 
al., 2018; Langemeyer et al., 
2018; Oteros-Rozas et al., 
2018; Richards and Tunçer, 
2018; Schirpke et al., 2018; 
Clemente et al., 2019; 
Sinclair et al., 2019; Kim et 
al., 2019  

  Spatial density of users to infer 
cultural attachment to the 
landscape 

Gliozzo et al., 2016 

  Preferences for biodiversity 
using photos 

Hausmann et al., 2018; 
Mancini et al., 2019 

Foursquare Social place 
recommendation 
mobile app 

Urban activities Zhou and Zhang, 2016 

Instagram Photo-sharing social 
media platform 

Indicators of CES provision 
using photos 

Guerrero et al., 2016; van 
Zanten et al., 2016  

  Visitation rates to natural areas 
based on user activity 

Tenkanen et al., 2017 

  Preferences for biodiversity 
using photos 

Hausmann et al., 2018 

Tencent QQ Micro-blogging site User density for urban land use 
classification 

Liu et al., 2017 
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Table 2. Sources of crowdsourced data in analysing human-nature interactions. 
Twitter Micro-blogging site Natural disaster management Middleton et al., 2014; de 

Albuquerque et al., 2015; 
Chen et al., 2016 

  Spatial distributions of outdoor 
recreation  

Zhou and Zhang, 2016; 
Roberts et al., 2017 

  Sentiment analysis of people 
towards nature 

Becken et al., 2017; Wilson et 
al., 2019 

  Visitation rates to natural areas 
based on user activity 

Tenkanen et al., 2017 

  Urban park visitation Roberts, 2017 

Weibo Micro-blogging site Urban park visitation Zhang and Zhou, 2018 

Outdoor activity-sharing platforms 

Codoon Route-sharing fitness 
app 

Indicator for recreational CES 
in urban parks 

Dai et al., 2019 

Geocaching Hide-and-seek treasure 
hunting site (caches) 

Preferences for natural areas 
based on user cache choices 

Cord et al., 2015; Rosário et 
al., 2019 

GPSies Route-sharing outdoor 
activity site 

Park visitation and use Norman and Pickering, 2017 

  Cycling preferences in the 
urban environment 

Sultan et al., 2017 

MapMyFitness Route-sharing fitness 
mobile app 

Protected area visitation and 
use 

Norman and Pickering, 
2017; Norman et al., 2019 

Strava Route-sharing fitness 
mobile app 

Cycling preferences in the 
urban environment 

Griffin and Jiao, 2015; Sun et 
al., 2017; McArthur and 
Hong, 2019 

Wikiloc Route-sharing outdoor 
activity site 

Protected area visitation and 
use 

Norman and Pickering, 
2017; Jurado Rota et al., 2019 

Citizen science portals 

eBird Citizen science portal Citizen science measures of 
biodiversity 

Jacobs and Zipf, 2017 

iNaturalist Citizen science portal Citizen science measures of 
biodiversity 

Jacobs and Zipf, 2017 

Mobile signal data 

Telecommunications 
companies 

Location data from cell 
phone towers 

Urban land use classification Toole et al., 2012; Pei et al., 
2014; Tu et al., 2017 

  Accessibility of urban green 
space 

Wu et al., 2018; Xiao et al., 
2019 
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2.3. Defining CES as information-flows 

Considering crowdsourced data as evidence for the quantification of CES, the CES 
definition in the GEM as information functions becomes especially relevant. In our review of 
the literature, we find that the crowdsourced data being utilised are collections of spatial 
records that reveal peoples’ interactions with their physical environments. At its most basic, 
the mobility patterns from mobile signal data reflect patterns of behaviour related to the 
information available in a user’s environment. At its most comprehensive, the posts, 
imagery, tags and titles available through social media are a detailed record of the 
information people have retained and promoted as something important to them. This 
information has subsequently been used to gauge the types of cultural interactions 
occurring. From a CES-perspective, the ecosystems which make up the natural 
environment are therefore conveying information to people, who retain, process and report 
this information, depending on the type of interaction. 

Conceptualising CES as conveyed information is consistent with the CES definitions 
in the SEEA EEA and CICES as physical settings, locations or situations contributing to 
cultural benefits. However, CES become distinct from being opportunities or enabling 
environments. This type of wording is more evocative of the capacity or potential supply of 
ES; opportunities do not necessarily mean use (Schröter et al., 2014). Conceptualising CES 
as opportunities or enabling environments also encourages CES measurement using coarse 
indicators such as land cover classes. For example, a land cover based proxy for recreation 
was found to be an unreliable estimate as compared to primary data (Eigenbrod et al., 2010). 
In the absence of more detailed spatial data, this can be a valuable approach to CES 
measurement. Nonetheless, crowdsourced data provides a new level of spatial detail which 
allows us to move beyond measurement by land cover class. 

In conceptualising CES as the information conveyed by an ecosystem, the service 
also becomes distinct from the benefit. The lack of distinction between services and benefits 
in the MA has been criticised because it makes it difficult to consistently measure ES (Boyd 
and Banzhaf, 2007; Satz et al., 2013). Making this distinction avoids double counting (TEEB, 
2010b), and is particularly important from a national economic accounting perspective as it 
recognises the joint-production of final economic goods and services, representing the 
benefits to human well-being (UN et al., 2014). In the case of CES, the cultural benefit is 
generated using the contribution of the ecosystem in addition to an investment of human 
energy and or conventional goods and services. For example, the utility generated by a bike 
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ride in a national park is in part enabled by the natural surroundings, in combination with 
the bike and a person’s physical efforts (Remme et al., 2014). 

Thus, an alternative way of defining CES is as information-flows generated by 
ecosystems that contribute to cultural experiences. Hence, CES are conceptualised as the flow of 
information conveyed by the ecosystem to people. The cultural experiences are the cultural 
benefit or ‘cultural good’ enjoyed by the individual, thereby distinguishing ES and benefits. 
This definition reflects the thinking of Braat and de Groot (2012), who argue that CES are 
generated through the processing of ecosystem information by the human sensory organs 
and brain; an investment of human energy is required for a benefit to materialise. It also 
follows Schröter et al. (2014) and La Notte et al. (2017), who have also referred to CES as a 
flow of information transferred from ecosystems to people. In defining CES in such a way, 
we establish a definition which accounts for crowdsourced data as a major new source of 
information for measuring CES and build upon the thinking already present in the 
literature. 

2.4. A typology for CES as information-flows 

To clarify our definition of CES as information-flows and illustrate the use of crowdsourced 
data, we suggest a typology of eight service categories shaped by the information available 
through crowdsourced data. In addition, we draw upon the CES conceptualisations 
summarised in Table 3 to guide the development of the typology. We propose eight general 
service categories: activity, aesthetic, amenity, artistic, naturalist, heritage, knowledge, and 
religious and spiritual. These categories emphasise CES as contributions to benefits. Table 
3 summarises the proposed typology, including example indicators. Spatial models of 
activity, aesthetic and naturalist services are presented in Section 2.5. 

(i) Activity services. Route-sharing activity platforms such as MapMyFitness and Strava 
show us the physical interaction of people with their natural environment (Dai et al., 
2019). Similarly, mobile network data can be employed to analyse the movements of 
people in recreational areas (Tu et al., 2017). This reveals a specific service-category that 
captures the contribution of ecosystems to physical activities in providing an attractive 
physical environment (Díaz et al., 2018; Haines-Young and Potschin, 2018; UN, 2017). This 
contribution is generated as an information flow to the individual as the brain and 
sensory organs interpret the immediate, physical configuration of the ecosystem while 
performing the physical activity. For example, the terrain on which a person is cycling 
or running constitutes the ecosystem contribution to the outdoor cycling or running 
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activity; the cultural benefit. Activity services are thus not related to the aesthetics of an 
ecosystem, which are generated separately as aesthetic services. 

(ii) Aesthetic services. People use photo-sharing platforms such as Flickr and Instagram to 
show their appreciation for the aesthetic beauty of the landscape (van Zanten et al., 2016). 
In particular, Flickr has been used in a number of studies to measure aesthetic services 
(Figueroa-Alfaro and Tang, 2017; Tenerelli et al., 2017; Yoshimura and Hiura, 2017). 
Capturing positive sentiments towards the environment in the textual data on platforms 
such as Twitter presents additional opportunities to quantify the supply of aesthetic-
related services (Becken et al., 2017; Wilson et al., 2019). Aesthetic services are generated 
when ecosystems communicate a sensory configuration of beauty (MA, 2005). This flow 
of information is registered and shared on social media sites such as Flickr, Instagram 
and Twitter. The information contributes to the cultural benefit of a scenic view for the 
individual, the benefit only manifesting itself through human cognitive action and 
choice.  

(iii) Amenity services. No studies employing crowdsourced data to measure amenity services 
were identified through our literature review. Nevertheless, the existence of such a 
category is important in the context of online travel and property websites such as 
booking.com and funda.nl1 in the Netherlands. The property values available through 
these websites include the contributing factor of nature to the desirability of a place or 
building (UN et al., 2014). The information flow in this case is the knowledge that a 
natural area such as a park or forest is visible, accessible and or unique to the location. 
This heightens its desirability and the utility a person derives it: the cultural benefit. 
Amenity services are all-encompassing in terms of the possible cultural uses of an 
ecosystem but are specific to creating a pleasant living environment for a person. The 
service contribution can be quantified in monetary terms using the hedonic pricing 
method which isolates the value of nature-related variables in the overall price of a 
property (TEEB, 2010b).  

(iv) Artistic services. Ecosystems play a significant role in the realisation of art (TEEB, 2010b), 
including on photo-sharing platforms such as Flickr (Richards and Friess, 2015). Many 
users pursue photography in an artistic sense and share their camera specifications in 
the photo meta-data; a high-spec camera and any sort of framing, composition, lighting, 

 
1 https://www.funda.nl/en/ 
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exposure or post-processing beyond a neutral registration of the natural environment 
could suggest an artistic representation of nature. Keywords such as hashtags related to 
events could also capture these creative interactions (Roberts, 2017). In these cases, 
creative information from the physical settings of the landscape is transmitted, 
interpreted and portrayed as art, the cultural benefit. These artistic services facilitate the 
representation of any number of cultural interactions with ecosystems in addition to 
ecosystems in a purely aesthetic sense. 

(v) Heritage services. Social media sites such as Flickr and Twitter can highlight historical 
associations with the environment through the imagery and associated meta-data 
available (Richards and Friess, 2015; Thiagarajah et al., 2015; Wilson et al., 2019). 
Historical features in the landscape shape the cultural identity of people in the present 
while drawing others in to experience the cultural distinctiveness of an area (Haines-
Young and Potschin, 2018; MA, 2005; TEEB, 2010b). These ecosystem characteristics are 
associated with cultural traditions, stories and skills (Díaz et al., 2018). For example, 
European heathlands, originally created as a function of prolonged, intensive sheep 
grazing, are now highly valued by people for their colourful appearance in summer, and 
their connection with a more pastoral society. In this way, ecosystem features 
communicate a sense of historical significance. This information is processed by the 
individual and contributes to their identity and sense of place in relation to the nature 
around them; the cultural benefit.   

(vi) Knowledge services. The huge number of species records made available by scientific 
institutions such as universities and museums on GBIF are good evidence for 
contribution of ecosystems to the development of knowledge. Flickr photos also contain 
content related to scientific investigations of the natural environment (Richards and 
Friess, 2015). Acquiring and applying knowledge about our natural environment 
constitutes an important cultural aspect of human existence (Díaz et al., 2018; UN, 2017; 
van der Maarel and Dauvellier, 1978). Education is highly valued in society (MA, 2005). 
This ranges from traditional knowledge systems to modern science (Díaz et al., 2018; 
Haines-Young and Potschin, 2018). Ecosystems contribute information to the 
development of this knowledge. The cultural utility derived from its pursuit and 
application is the immediate benefit which can manifest itself in the additional 
knowledge generated or the resulting number of educated students.  

(vii) Naturalist services. Citizen science platforms such as iNaturalist and eBird reveal an 
active cultural interest in the existence and conservation of living species (Jacobs and 
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Zipf, 2017). People hold strong bonds with nature and gain a sense of place and fulfilment 
knowing an ecosystem is functioning and in good health (Díaz et al., 2018; TEEB, 2010b). 
This can be through an interaction with a single animal, species or entire ecosystem (van 
der Maarel and Dauvellier, 1978). These interactions constitute an information flow in 
the sense that the ecosystem conveys a notion of ecological meaning. Hence, naturalist 
services are related to the human enjoyment of ecosystems rather than the development 
of knowledge. The physical existence of a species recorded on a citizen science platform 
is an indicator for this information flow because records are produced when individuals 
volunteer their leisure time. This contributes to the benefit of a species record, evidence 
of a functioning ecosystem and thus a sense of fulfilment for the individual, in 
combination with the effort expended in identifying and storing the record.  

(viii) Religious and spiritual services. Social religious practices reveal themselves on social media 
platforms such as Flickr and Twitter (Roberts, 2017; Thiagarajah et al., 2015). Data from 
activity-sharing platforms such as Strava could also be analysed for routes along 
pilgrimage trails such as the Camino de Santiago in Spain. Ecosystems confer a strong 
sense of spiritual importance to humanity (Díaz et al., 2018; MA, 2005; TEEB, 2010b). 
Sacred sites can vary in scale, from pilgrimage routes and mountain ranges to small 
spaces of vegetation (Haines-Young and Potschin, 2018; MA, 2005). In each instance, an 
arrangement of ecosystem characteristics generates an information flow which is given 
a symbolic meaning by a person. Combined, this produces a spiritual experience for the 
individual, which represents the cultural benefit.  
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Table 3. CES, information-flows, data sources and benefits. 

Type of service Information-flow Key sources Benefits 

Activity Providing an attractive 
environment for recreation 

Condoon, Foursquare, 
GPSies, MapMyFitness, 
Strava, Wikiloc, mobile 
signal data 

Recreation, 
tourism 

Aesthetic Generating a sensory 
configuration of beauty 

Flickr, Instagram, Tencent 
QQ, Twitter, Weibo 

Scenic view, 
tourism 

Amenity Contributing to the desirability of 
a place or building 

Property and travel websites Pleasant living 
environment 

Artistic Role in the realisation of art Flickr, Twitter Artistic 
expression, 
inspiration 

Heritage Generating a sense of historical 
significance   

Flickr, Instagram, Tencent 
QQ, Twitter, Weibo 

Sense of place, 
cultural identity 

Knowledge Contributing to the development 
of knowledge 

Flickr, Instagram, Tencent 
QQ, Twitter, Weibo, GBIF 

Scientific 
knowledge, 
educated 
students 

Naturalist Conveying a notion of ecological 
meaning 

iNaturalist, eBird, Flickr Sense of place, 
connection to 
nature  

Religious and 
spiritual 

Conferring a sense of spiritual 
importance 

Flickr, Instagram, Tencent 
QQ, Twitter, Weibo, Strava 

Spiritual 
experience 

 

2.5. Spatial CES models 

2.5.1. Methods 

To support the conceptual process, three CES models were developed to spatially quantify 
activity, aesthetic and naturalist services on the island of Texel. Each of these models drew 
upon a different source of crowdsourced data and are modelled for one year (2017).  The ES 
were modelled and presented using R 3.6.0, GRASS 7.4. and ArcGIS 10.5. Spatial data in R 
was handled using the raster, sf and sp packages. 

2.5.1.1. Study area 

Texel is an island of 160 km2 located in the Northwest of the Netherlands. It is the first in a 
chain of barrier islands in the Wadden Sea, a shallow, intertidal area that stretches across the 
North of the Netherlands. The island is currently home to around 13,500 inhabitants (CBS, 
2018). Its main urban centres are Den Burg in the centre of the island, Oosterend to the 
Northeast and De Koog in the West (Figure 2). In addition to these urban areas, the island is 
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home to a mix of ecosystems ranging from popular beach and coastal dune areas on its West 
coast, to agricultural land in its middle, and wetland areas which draw birdwatchers on 
opposite ends of the island. The dune areas in its West are protected as part of the Duinen 
van Texel National Park. The nature and wildlife available on the island make it a popular 
tourist destination and Texel hosts close to 1 million visitors every year (van Loenen, 2016). 

 
Figure 2. Topographic map of Texel. 

2.5.1.2. Activity services – hiking environment 

To spatially quantify the ecosystem contribution to peoples’ recreational activity on the 
island, we drew upon activity data sourced from Strava in combination with national 
statistics on hiking activities. We utilised the running activity data reported in the Strava 
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global heatmap, a visualisation of all public user activity over the last two years (Strava, 
2018). This data was used to distribute hiking activities reported in a national recreation 
survey along the island road network and then used to establish a measure of the ecosystem 
contribution based on the immediate physical environment. This method therefore 
assumes that hikers follow the road network and that running activities reported on Strava 
are a good indication of hiking activity on the island. 

To extract the activity data from the global heatmap, the mean ‘heat’ intensity was 
extracted from an 18 m circular area surrounding the mid-point of each road. Heat intensity 
was measured using the alpha (opacity) channel of map tiles in png format, accessible 
through a url constructed from the location of the mid-point. The heat intensity was then 
adjusted to compensate for a mechanism by which intensities are adjusted at each zoom 
level relative to the surrounding area (Robb, 2017). Thus, the intensity was adjusted to be 
relevant at a scale incorporating the whole of Texel. Finally, the intensities for each road 
segment were normalised relative to the total intensities of all road segments.  

Hiking activity statistics were sourced from the 2015 ‘ContinuVrijeTijdsOnderzoek’ 
(CVTO) survey of The Netherlands (NBTC-NIPO, 2015). This survey examines the 
recreational activities undertaken by Dutch citizens in their leisure time. It reports 440.5 
million hiking activities in 2015 with an average hiking distance of 7 km. For this study, the 
number of hikes for Texel was approximated at 4.4 million based on Texel covering 0.1% of 
The Netherlands in area. Using this information, the number of hikers on each road 
segment was first calculated to create a hiking intensity per road segment: 

 

where  is the hiking intensity of the individual road segment per year,  the number of 
hiking activities for Texel in one year and  is the average hiking distance of each activity in 
metres (7 km in this case).  is the length of the road segment in metres. The first part of this 
equation thus calculates a maximum hiking potential for the road segment. This is then 
multiplied by a factor taking into account the length and normalised Strava intensity, , of 
the road. This second part of the equation incorporates the interplay of Strava activity and 
length in determining the number of hikers on the road per year. Once the hiking intensity 
was calculated for each road segment, the hiking environment as an ES was quantified for 
the surrounding 50m area: 
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where  is the hiking environment as an ES, measured in metres hiked/m2/yr,  is the 
hiking intensity,  is the length of the road in metres and  is the total area within 50m 
along the length of the road in m2. Fifty metres was chosen because in our conceptualisation 
of activity services, it is the immediate physical surroundings of the ecosystems that are 
contributing to the cultural interaction with nature. We acknowledge that this distance 
depends upon the landscape and our conceptual and modelling approach can easily be 
adjusted to different distances. 

2.5.1.3. Aesthetic services – landscape presence 

To spatially quantify the ecosystem contribution to peoples’ aesthetic enjoyment of the 
landscape, landscape presence was measured as an aesthetic service using the locations of 
photographs shared on Flickr. The Flickr API was used to download all geo-located photos 
on the island accurate to the street level using a moving 500 m search box. All photos were 
used after a visual check of the photos confirmed that most had an aesthetic element 
although we acknowledge that some photos will be unrelated. We return to this in the 
discussion. 

The location of each photograph was used to simulate the visible area from each 
photo location, or ‘viewshed’, using a Digital Surface Model (DSM) for the Netherlands at 5 
m resolution (AHN, 2014). The DSM takes into account the height of objects on land such as 
buildings and vegetation as well as the height of the terrain. A spatial distribution function 
was then applied to individual viewsheds to distribute the contribution of the ecosystems to 
the person’s aesthetic enjoyment. This incorporates the idea that people enjoy the 
landscape differently at different distances (Schirpke et al., 2013; Tenerelli et al., 2017). In this 
initial, experimental case, an exponential decline function was applied, reflecting a greater 
enjoyment of immediate surroundings and no predefined maximum distance apart from 
the horizon. 

In order to limit a user’s photos dominating the results, the viewshed from one user’s 
photographs on one day was only counted once to create a Photo-User-Day-Viewshed 
(PUDV). This PUDV was then divided by its total area, subject to the distribution function, 
to produce an ES supply of PUDV/ha/yr. The PUDV/ha/yr of all users through the year were 
then aggregated to produce the final spatial distribution of ES supply. 
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2.5.1.4. Naturalist services – species observations 

Ecosystems contribute to human well-being by conferring a notion of ecological meaning. 
To capture this service flow on Texel, we drew upon the citizen science records available 
through the website waarneming.nl and used the species observations as an indicator for 
the ecosystem contribution to peoples’ sense of connection with the biodiversity present on 
the island. waarneming.nl is the largest platform for volunteers to record and share their 
animal or plant sightings in the Netherlands. The data was downloaded through the 
Nationale Databank Flora en Fauna (NDFF) Ecogrid portal.  

The observation records are available as mainly circular polygons whose size and 
centre depend on how accurately the observations have been geo-referenced. The size of 
the polygons range between 11 m2 and 283 ha with a mean of 1.3 ha. We took the polygon 
centres and converted these into points. To model the contribution of the surrounding 
ecosystem, we generated a 100 m2 grid and counted the point density per grid cell to generate 
a ES flow in records/ha/yr to represent the supply of naturalist services. 

2.5.2. Results 

2.5.2.1. Activity services – hiking environment 

Figure 3 shows the distribution of hiking environment as an activity service using the Strava 
heatmap. Ecosystems surrounding the road network generated an attractive physical 
environment for spatially distributed distances between 1 m hiked/m2/yr and 3080 m 
hiked/m2/yr. The Strava activity concentrated ES flow in the dense network of footpaths in 
the western dune areas, on the northern end of the island and along the coastal roads and 
towns on the island. The agricultural areas in the middle of the island are clearly less 
popular and there is a noticeable decrease in ES supply as the roads go further inland. Other 
areas of interest include the concentrations of supply at the roundabouts and along the road 
leading up to the dunes from the main town of Den Burg in the centre of the island. 
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Figure 3. Hiking environment (Metres hiked/m2/yr). 

2.5.2.2. Aesthetic services – landscape presence 

Figure 4 shows the distribution of landscape presence as an aesthetic service in PUDV/ha/yr 
using the location of geo-tagged Flickr photos. The Flickr activity concentrated ES flow in 
the popular dune and beaches areas on the western side of the island. The landscape is also 
conveying a concentrated amount of aesthetic information at the northern end of the island 
and around wetland areas to the Northeast and in the South. In the town of Den Burg, at the 
centre of the island, the urban environment has captured and concentrated ES flow in its 
centre. Line-of-sight effects can also be observed further south where the landscape 
generates a large ES flow through the fragmented viewshed of a number of highly 
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concentrated photos. The agricultural landscape that makes up most of the island produces 
a low and largely uniform service flow with no concentrated hotspots. 

 
Figure 4. Landscape presence (PUDV/ha/yr). 

2.5.2.3. Naturalist services – species observations 

The distribution of naturalist services measured using species observations on Texel is 
shown in Figure 5. ES flow ranged between 0.01 and 44 records/ha/yr. The contributing 
areas are mainly distributed around the coast and road network of the island. Based on the 
species records on waarneming.nl, ecosystems are generating particularly concentrated ES 
flows at the northern tip of the island, the wetland areas in the Northeast and in the South. 
The dunes on the west side of the island also register some large contributions. ES flow is 
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much more sparsely scattered through the agricultural areas of the island where small 
contributions are restricted to the areas around the road network. The marine ecosystems 
surrounding the island are also generating naturalist services with a trail of observations 
leading up to the main island port in the South and a second trail encircling the island from 
South to West. 

 
Figure 5. Species observations (Records/ha/yr). 

2.6. Discussion 

2.6.1. Defining CES 

Employing crowdsourced data encourages a CES conceptualisation shaped by the data. In 
our investigations of these data sources, we discovered records of information conveyed by 
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ecosystems to people. The data available through Strava, Flickr and waarneming.nl enabled 
us to develop service indicators for some of these information-flows on Texel. In turn, these 
information-flows contribute to peoples’ cultural experiences of nature such as recreation; 
the benefits to human well-being. This linear process aligns itself with the cascade model 
proposed in TEEB (2010b): the value of these benefits can be then determined through 
different valuation methods.  

Others have argued that CES are inherent to all human-nature interactions and CES 
value should be conceptualised as non-material components of ecosystem-related benefits 
(Chan et al., 2012b; Fish et al., 2016), a conceptualisation reflected in the IPBES framework 
(Díaz et al., 2018). Partly, this thinking is driven by the argument that CES are intangible and 
pluralistic by nature which makes these services difficult to quantify (Chan et al., 2012b). The 
pluralistic nature of CES has also raised the issue of double counting the contributions of 
ecosystems to cultural benefits. For example, a sacred site may be used as a proxy indicator 
for services related to touristic activities as well as spiritual services (Hernández-Morcillo et 
al., 2013). 

However, we would argue that the spatial models in this study show that CES as 
information-flows can be spatially quantified using crowdsourced data. We would also 
argue that CES are in fact benefit-specific because the information available through 
crowdsourced data, in the form of imagery, location and textual data, can be very specific 
about how the individual is appreciating their environment. This enables a detailed 
identification of service flows in assessments up to national and inter-national scales. Large-
scale assessments are further supported by the information definition due to the strict 
distinction between services and benefits. For national accounting purposes, this recognises 
the joint-production of goods and services (Boyd and Banzhaf, 2007). Thus, some notable 
exclusions from the proposed typology are “recreation”, “tourism”, “inspiration”, “cultural 
diversity”, “sense of place”, “social relations”, or “symbolic meaning”. These represent 
cultural experiences requiring human input and therefore constitute cultural benefits 
rather than information service flows.  

2.6.2. Categorising CES 

In order to summarise the broad array of data utilisations identified in the review, the 
typology consists of a general set of categories. Further examination of crowdsourced data 
sets in local contexts may uncover more specific service categories. In indigenous and local 
knowledge contexts, getting specific about CES and even moving beyond the ES paradigm 
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helps to identify ecosystem contributions that are relevant and important to the community 
(P. Pascual et al., 2017). Here the IPBES framework’s context-specific assessment guidelines 
constitute an important tool in capturing these CES (Díaz et al., 2018). However, in the 
context of large-scale assessments, a level of generalisation is important to allow comparison 
between assessments and the aggregation of results. For example, in accomplishing the 
European Biodiversity Strategy (J. Maes et al., 2013). In these cases, we believe our typology 
provides a comprehensive-enough starting point to quantify CES using crowdsourced data 
based on our review of data utilisations, leading ES assessment frameworks and the 
distinction between services and benefits. 

The service categories in our proposed typology were shaped by the information 
available through the identified sources. However, the data almost always represents a 
particular subset of the population. The demographics of the populations using different 
platforms and technologies is never entirely clear and is both variable between platforms 
and in time (boyd and Crawford, 2012; Liu et al., 2016). Flickr has been found to mostly 
consist of 40 to 60 year old males (Lenormand et al., 2018) while social media in general is 
understood to be biased towards younger generations (Liu et al., 2016). Mobile connectivity 
plays a major role (Li et al., 2016). Additional biases exist within platforms and user 
contributions are usually skewed towards small, highly active groups (Li et al., 2013). 
Consequently, there must be a careful consideration of the types of services and preferences 
available. Some CES may not be captured at all while some biases in user preferences can 
be addressed. For example, our Flickr-based model incorporated the PUD concept. 
Inferring demographics from user profile and socio-economic data can also reduce this bias 
(Li et al., 2013; Longley et al., 2015).  

Categorising the data that is available through these sources presents another key 
challenge. For example, classifying scenic images as exclusive input into our Flickr-based 
model remains an unresolved issue. Similarly, uncertainty remains as to whether all the 
Strava data used in our activity services model is related to nature-focused physical 
activities. However, the advantage of using many sources of crowdsourced data is that 
tangible, quantifiable elements exist which can be more definitively categorised based on 
further investigation, debate and consensus (Oteros-Rozas et al., 2018). For example, the 
scenic compositions or objects present in Flickr images can determine the flow of aesthetic 
services. Machine learning methods then present promising approaches to automate this 
analysis over large amounts of data (Richards and Tunçer, 2018). Nonetheless, the models in 
this study still managed to capture known areas of corresponding cultural importance. 
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Popular hiking routes, scenic locations and biodiversity hotspots are captured by each of the 
respective models (Roos and van der Wel, 2013). This suggests some of the principle uses of 
these platforms are sufficient to identify three distinct service-types generated on the island. 

2.6.3. Modelling CES 

A key consequence of modelling CES using crowdsourced data is a shift towards user-driven 
CES models. This is in contrast to many existing models which spatially model CES using 
ecosystem features such as the number of sacred sites (Hernández-Morcillo et al., 2013). 
These measures are more in line with the capacity rather than use of ES supply as it does 
not capture the location where these features contribute to an individual’s economic utility 
or wellbeing (Schröter et al., 2014). In this way, crowdsourced data-based models are more 
representative of the actual use of CES. The global reach of some crowdsourced data also 
enable researchers to include beneficiaries who would have been difficult to include using 
traditional survey techniques; an important aspect to CES research (Daniel et al., 2012). 
However, the prevailing user biases seriously affect the estimated spatial quantities. In order 
to gain a more representative spatial service flow of activity services in our study, hiking 
activities estimated using national survey data were distributed using Strava user 
preferences. This combination of empirical and crowdsourced data is one promising 
solution to address these user biases. 

Nevertheless, the preferences captured in crowdsourced data-based models still 
contain bias. Self-selecting users also share self-selected content, resulting in a distorted 
representation of peoples’ lives (Miller and Goodchild, 2015). Geographical concentrations 
also exist. For example, more accessible places draw greater numbers of observations on 
citizen science portals (Jacobs and Zipf, 2017). This was evident in our study with the species 
observations concentrated along the road network. However, in projecting a usually positive 
self-image in the content they share, users share what is of value to them, an important 
consideration for the purposes of measuring CES. Exploring what geographical 
concentrations mean is also important. For example, although observation concentrations 
on citizen science portals may reflect a biodiversity sampling bias, in a cultural sense these 
can be taken as good evidence for large CES supply. 

Uncertainties in the location accuracy of crowdsourced data must also be taken into 
account. The location accuracy of the data used in our models was not considered. It is 
difficult to establish a definitive measure using social media data without manually 
checking the content of posts. In a global analysis, Zielstra and Hochmair (2013) found that 
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11 to 18 percent of Flickr photos had a positional error. Twitter posts have been found to be 
accurate to 20 m in urban areas (Longley et al., 2015). Even though accuracy measures were 
provided with the waarneming.nl data, the measures largely depend on the skill of the 
observer. In the case of mobile network data, the location accuracy of CDRs rely on the 
density and signal strength of cell phone towers (Liu et al., 2016). That being said, the 
location data that is available is a significant step forward in CES research where most 
studies do not spatially measure CES (Hernández-Morcillo et al., 2013). Spatially measuring 
CES using survey techniques also comes with its own uncertainties, relying on participant 
re-call (Adamowicz et al., 1997) and often measured within broad land cover categories 
(Eigenbrod et al., 2010). 

Finally, the continued availability of crowdsourced data is a key source of 
uncertainty which affects the reproducibility of CES model results. In the case of social 
media, API access can change regularly. For example, Twitter and Instagram have both 
changed levels of access in recent years (Ghermandi and Sinclair, 2019). This threatens the 
feasibility of regular ES assessments such as the annual assessments required to maintain 
up-to-date ecosystem accounts (UN et al., 2014). Users may also edit, remove or alter access 
to their data themselves, with further consequences for reproducibility. However, data can 
still be stored independently for reproducible results. For example, the InVEST model 
provides a global database of Flickr photos to maintain a consistent recreation model 
(InVEST, 2017). Nevertheless, in these cases, important ethical considerations must be taken 
into account. 

2.6.4. Ethical considerations 

Employing crowdsourced data presents unique ethical challenges centred around privacy 
and consent. It is unclear in our study whether users fully appreciate the extent to which 
their data can be used and whether they would give permission for it to be used in further 
applications. Then again, it may be unreasonable to ask every user for their permission 
(boyd and Crawford, 2012). Social media platforms give users different options regarding the 
privacy of their data, including ‘opt-in’ choices for geo-tagging. The public nature of social 
media data signals a shift in the responsibilities of individuals and institutions (Elwood and 
Leszczynski, 2011). Legislative developments in the US, Canada and Japan have asserted the 
idea that civil actors are responsible for their privacy in using such services (Elwood and 
Leszczynski, 2011). Users are also becoming more conscious of how their personal data is 
being used through recently enacted laws such as the EU’s GDPR (De Hert et al., 2018). 
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Nonetheless, researchers must consider whether technology providers have given users 
sufficient awareness and control over their data (boyd and Crawford, 2012). 

In employing these new types of data, researchers must also consider their 
accountability to their field of research and their research subjects (boyd and Crawford, 
2012). In the context of national statistics, statistical disclosure controls must be followed so 
that no individual can be identified from the results (Hundepool and de Wolf, 2012). Spatial 
quantification of CES benefits from a level of generalisation and abstraction which makes it 
very difficult to identify specific individuals. This was demonstrated by the results in this 
paper; the spatial metrics contain no personally identifiable information. Nevertheless, at 
the same time, is it important to ensure individuals’ data is anonymised and secure when 
working with the data (King, 2011). Comprehensive data management practices should 
therefore be in place. Good data management practices include anonymising data fields so 
that information cannot be linked to an individual and restricting access to the data so that 
it is only accessible to a limited group of users (Wu et al., 2014). 

2.7. Conclusion 

Defining CES for the purposes of spatial quantification has been challenging due to the 
difficulties in spatially modelling CES. Now, the rapid increases in mobile connectivity and 
its use for leisure-oriented activities such as social media has generated a wealth of geo-
referenced information to spatially model cultural interactions with nature. This study has 
analysed the information available through crowdsourced data sources to suggest a 
definition and typology which can help clarify CES quantification. To show how these can 
work in practice we presented the results of three spatial CES models employing 
crowdsourced data. The definition and typology are especially suited to measure CES in 
high-resolution, large-scale studies such as national or inter-national assessments. In these 
cases, employing crowdsourced data to model CES brings significant benefits in terms of 
the scale and detail in which studies can be carried out. However, in utilising crowdsourced 
data, the representativeness of the data, measurement uncertainties, and ethical 
considerations must be taken into account. Nonetheless, with these challenges considered, 
crowdsourced data enables new ways of spatially modelling CES and, in doing so, helps to 
clarify the CES concept for the purposes of spatial quantification. Ultimately, this can 
facilitate a better representation of these services in ES assessments.  
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Chapter 3.  

Social media and deep learning capture the aesthetic 
quality of the landscape 
 

 

 

 

 

 

Abstract. Peoples’ recreation and well-being are closely related to their aesthetic enjoyment 
of the landscape. Ecosystem service (ES) assessments record the aesthetic contributions of 
landscapes to peoples’ well-being in support of sustainable policy goals. However, the 
survey methods available to measure these contributions restrict modelling at large scales. 
As a result, most studies rely on environmental indicator models but these do not 
incorporate peoples’ actual use of the landscape. Now, social media has emerged as a rich 
new source of information to understand human-nature interactions while advances in 
deep learning have enabled large-scale analysis of the imagery uploaded to these platforms. 
In this study, we test the accuracy of Flickr and deep learning-based models of landscape 
quality using a crowdsourced survey in Great Britain. We find that this novel modelling 
approach generates a strong and comparable level of accuracy versus an indicator model 
and, in combination, captures additional aesthetic information. At the same time, social 
media provides a direct measure of individuals’ aesthetic enjoyment, a point of view 
inaccessible to indicator models, as well as a greater independence of the scale of 
measurement and insights into how peoples’ appreciation of the landscape changes over 
time. Our results show how social media and deep learning can support significant advances 
in modelling the aesthetic contributions of ecosystems for ES assessments. 

 

Published as: 

Havinga, I., Marcos, D., Bogaart, P.W., Hein, L. and Tuia, D., 2021. Social media and deep 
learning capture the aesthetic quality of the landscape. Scientific reports, 11, 2000. 
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3.1. Introduction 

Landscape aesthetics generate a large amount of cultural value for human well-being. The 
aesthetic quality of a landscape plays an important role in determining where people choose 
to recreate (Daniel et al., 2012). For example, recreational activities such as hiking are 
performed by people seeking aesthetic experiences related to the naturalness and perceived 
wilderness of a landscape (Gobster et al., 2007). As a consequence, the aesthetic 
contributions of ecosystems generated during peoples’ outdoor recreation are an important 
contributing factor to peoples’ mental and physical health (Abraham et al., 2010). The recent 
Covid-19 pandemic has especially highlighted the importance of outdoor recreation for 
peoples’ well-being (Rice et al., 2020; Venter et al., 2020). Recreation is thus a key feature of 
environmental policy in Europe (Joachim Maes et al., 2013). To capture this value and 
integrate it into land-use planning, ecosystem service (ES) models of recreation that 
consider the aesthetics of the landscape are being developed for use in European ES 
assessments (Paracchini et al., 2014). ES assessments provide a science-policy interface 
through which the contributions of ecosystems to human well-being can be measured to 
achieve sustainable policy goals (Díaz et al., 2018; Hein et al., 2020a). 

 Large-scale surveys can provide statistical measures of ES contributions based on 
peoples’ spatial interactions with the environment (Martínez-Harms and Balvanera, 2012; 
Raymond et al., 2014). In the U.K., a recreational model was developed for the National 
Ecosystem Assessment using survey data on peoples’ outdoor recreation, the Monitor of 
Engagement with the Natural Environment (MENE). The model included land cover-based 
variables related to the aesthetic quality of the landscape (Bateman et al., 2013). However, 
due to their high cost and complexity, such large-scale surveys are rare. In this respect, the 
MENE survey in the U.K. is exceptional. Nevertheless, it only captures respondents’ spatial 
interactions based on a single gazetteer look-up, thereby missing finer-grained interactions 
that can tell us more about how and where people are benefiting from the landscape. 

Due to these constraints, quantitative studies of aesthetic landscape quality are mostly 
based on spatially-explicit environmental indicators (Hermes et al., 2018; Hernández-
Morcillo et al., 2013). Common indicators include the presence of natural ecosystems, water, 
elevation, as well as spatial indices of landscape complexity such as the Patch Diversity 
Index (PDI) and the Shannon Diversity Index (SDI) (Hermes et al., 2018; Schirpke et al., 2013; 
Uuemaa et al., 2009). The application of these indicators are based on visual concepts and 
theories developed in the landscape aesthetics literature (Ode et al., 2008; Tveit et al., 2006). 
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However, crucially, these models do not incorporate peoples’ individual interactions with 
the environment, an important methodological factor from an ES modelling perspective (de 
Groot et al., 2010; Schröter et al., 2015; Tenerelli et al., 2017). Any measurements over time 
are also limited by updates to the underlying datasets which can take several years, an 
inflexible timeframe when considering the annual accounting requirements of some ES 
assessments (Hein et al., 2020a). 

Recently, social media has emerged as a rich new source of information on human–
nature interactions. The image-sharing platform Flickr has proven to be a particularly 
useful source of information. The locations of images and associated metadata, including 
tags and descriptions, have now been widely employed across the ES (Richards and Tunçer, 
2018; Sinclair et al., 2020; Tenerelli et al., 2016; van Zanten et al., 2016; Wood et al., 2013), land 
use (Antoniou et al., 2016; Mancini et al., 2019) and landscape research literature (Donahue 
et al., 2018; Hollenstein and Purves, 2010; Schirpke et al., 2013). Still, the data by themselves 
are difficult to interpret, mostly due to their volume and velocity. To respond to these 
challenges, researchers have turned to machine learning. In particular, deep learning, 
which uses artificial neural networks to generate predictions (LeCun et al., 2015). Supported 
by the increasing availability of training data and high-performance computer hardware, 
deep learning has made automatic image classification and object detection tasks possible 
over large datasets, including social media (Naik et al., 2017; Srivastava et al., 2020; Toivonen 
et al., 2019; Zhang et al., 2020). As a result, deep learning has been identified as an important 
new tool in the development of rapid, flexible and transferable cultural ES indicators 
(Egarter Vigl et al., 2021). 

In the case of landscape aesthetics, an especially relevant training dataset exists: the 
Scenic-Or-Not (SoN) database. Through a web-based portal, the database has collected 1.5 
million ‘scenicness’ ratings between 1 and 10 of 217,000 landscape images of Great Britain 
(ScenicOrNot, 2015). The images are sourced from Geograph, an online project to collect a 
geographically representative image of every square kilometre of the U.K. and Ireland. 
Studies have drawn on the SoN database to independently demonstrate both the potential 
of social media and machine learning in understanding peoples’ aesthetic preferences. 
Flickr metadata has been used to generate spatial predictions of scenic beauty (Seresinhe et 
al., 2017a). Geograph tags have also been used to predict scenicness with random forests, a 
tree-based ensemble learning method for regression (Chesnokova et al., 2017). More recent 
studies have considered the image content directly using deep learning: image attributes 
related to the scenes and objects in SoN images have been used to generate scenicness 
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predictions (Seresinhe et al., 2017b; Workman et al., 2017). Subsequent research has focused 
on the detection of attribute groups co-influencing the perception of scenicness (Marcos et 
al., 2020), the discovery of new attributes using ancillary text corpora (Arendsen et al., 2020), 
and the relationship between scenicness and land cover as observed by remote sensing 
satellites (Levering et al., 2021). 

These studies demonstrate the potential of modelling landscape aesthetics using social 
media and deep learning. At the same time, from an ES modelling perspective, social media 
provides the possibility of integrating peoples’ revealed preferences through their spatial 
interactions with the environment, and to observe the aesthetic contributions of landscapes 
with high spatial and temporal granularity (Havinga et al., 2020). This is in contrast to 
indicator-based models, which only take into account a general set of stated preferences, are 
limited by their spatial resolution and rely on updates to the underlying datasets to track 
temporal changes. Still, user activity on social media may not reflect common aesthetic 
preferences and could fail to detect significant changes over time. This is because studies 
validating the use of social media for cultural ES indicators are lacking (Oteros-Rozas et al., 
2018), a common problem in cultural ES studies (Englund et al., 2017). Examining the 
accuracy of social media and deep learning in modelling landscape aesthetics versus an 
indicator-based approach will thus generate much-needed evidence confirming the 
potential benefits of using these novel techniques. 

In this study, we compare models of landscape quality using Flickr and deep learning 
with an environmental indicator model, and explore their synergistic use. We generate 
spatial predictions for Great Britain using random forests and draw on the SoN database 
and its concept of scenicness to train and test our models. Flickr-based variables are 
generated using the predictions of two deep learning models at the image-level. The first, a 
pre-trained Places365-ResNet-50 model (B. Zhou et al., 2017), predicts scene classes and 
image attributes using the SUN database (Patterson et al., 2014). A scene class can be defined 
as the overall semantic description of an image while an image attribute is a specific 
characteristic within it (e.g. a collection of objects or human activity). The second model, a 
SoN ResNet, generates scenicness predictions in individual images. Environmental 
indicator variables are linked to visual concepts in the literature and are calculated using 
ecosystem type maps of Europe and other open-source data. We also analyse the effect of 
limiting Flickr user activity and examine aesthetic enjoyment over time in national park 
areas. Our findings illustrate how these innovative methods can advance ES modelling to 
achieve sustainable policy goals. 
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3.2. Methods 

3.2.1. Study design 

The research focused on comparing Flickr and deep learning-based models with an 
environmental indicator-based model, as well as different combinations of the two (Figure 
6). Conceptually, we considered the aesthetic quality of the landscape equivalent to the 
concept of scenicness, and that scenicness constituted an integral factor determining the 
overall flow of aesthetic ES (Daniel, 2001). We made our comparisons using a 5×5 km grid 
covering the entire terrestrial area of Great Britain and at 500 m resolution in Greater 
London and the Lake District. As a ground truth, we calculated a mean scenicness rating per 
grid cell using the image scenicness ratings of intersecting SoN images. Each image has a 
collection of volunteer ratings between 1 (not scenic) and 10 (very scenic). We used the 
average of these ratings. For training, we used the 5×5 km grid. To reduce spatial 
autocorrelation, a larger 50×50 km grid was then overlaid onto this grid to create sample 
groups of which 70% was randomly allocated for training, 10% for validation and 20% for 
testing (Supplementary Figure S2). Random forests was used to model scenicness at the 5 
km and 500 m grid level using both the environmental indicator and Flickr-based variables. 
All spatial analyses were done using the R 3.6.3 programming language including the raster 
3.0–12, sf 1.0-1, caret 6.0–86 and tidyverse 1.3.1 packages. caret was used to automatically select 
the random forest hyperparameter settings mtry, min node size, and xtratrees. 

3.2.2. Datasets 

 In addition to the SoN database, a Flickr image dataset was compiled to generate the deep 
learning-based variables. To do this, image metadata for geo-located images taken in Great 
Britain between 2004 and 2020 were downloaded using Flickr’s API and accessed using the 
Python programming language. A script was developed which iterated over a 1×1 km grid, 
requesting the metadata of the 4000 most recent, geo-located images per grid cell. Geo-
location accuracy was set to “street level”, the highest possible accuracy available through 
the API. The Places365-ResNet-50 model48 was then used to filter the dataset for outdoor 
images using its binary indoor/outdoor scene predictions. This resulted in a final dataset of 
9.8 million outdoor images, resized to 250×250 pixel dimensions. The environmental 
indicator variables were also calculated using a number of geospatial datasets 
(Supplementary Table S1). These included the European Environment Agency (EEA) 
ecosystem type map, the EU DEM and OpenStreetMap. The EU GDPR on data protection 
and privacy were followed in the carrying out of the research. 
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Figure 6. The main study design comparing spatial predictions of scenicness at a 5×5 km grid cell 
resolution using random forests. These used different combinations of variables based on (a) the 
predictions of two deep learning models on Flickr images, (b) a set of environmental indicators, and 
(c) combinations of the two. Photos © Alun Ward (cc-by/2.0). 

3.2.3. Flickr and deep learning-based variables 

To model scenicness at the grid level, spatial variables were generated using two deep 
learning models developed in Python 3.8.3 (Figure 6). The pre-trained Places365-ResNet-50 
model48 was applied to Flickr images to produce a first set of variables: a mean of 365 scene 
classes and 102 SUN image attribute scores per grid cell (a complete list is available in 
Supplementary Table S2 and Table S3). Scene classes capture the overall semantic 
interpretation of an image, with scores representing probabilities between 0 and 1 based on 
the most likely scene out of 365 scene classes. Image attribute scores indicate the presence 
of objects and remarkable scene characteristics. These were normalised using a sigmoid 
function to produce a 0–1 probability per attribute.  

The second model, the SoN ResNet, was used to predict scenicness in Flickr images 
and to generate a second set of variables: a normalised count of its image predictions across 
ten scenic rating bins between 1 and 10, representing a scenic rating distribution per grid 
cell. We constructed this model using a modified ResNet-50 convolutional neural network, 
available pre-trained on the ImageNet database through the PyTorch 1.6.0 library. The final 
two layers of the network, originally designed to output confidence scores for ImageNet’s 
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1000 object classes, were removed and replaced with new layers designed to output an 
image scenicness score (Marcos et al., 2020). These consisted of an adaptive average pooling 
layer and two linear layers with a ReLU activation function on the output of the first linear 
layer. The network was trained and tested using SoN images according to the 70% training, 
10% validation and 20% test areas. For training, this consisted of 152,470 images resized to 
500×500 pixel dimensions. Images were also randomly flipped horizontally to increase the 
size of the training dataset. Batch size was set to 16. Model weights were optimised using 
stochastic gradient descent and a mean squared error loss function. Test statistics are shown 
in Supplementary Table S4. 

3.2.4. Environmental indicator variables 

Variables were calculated per grid cell based on visual preference concepts put forward in 
the landscape aesthetics literature. The EEA ecosystem type map was used to calculate the 
percentage of different ecosystems to capture the naturalness of the landscape; relief in m 
was measured using the EU DEM to capture the aesthetic appeal of higher elevation areas 
and elevation differences; the PDI and SDI were calculated using the EEA ecosystem type 
map to measure landscape complexity; and, finally, to capture the uniqueness of natural 
environments and cultural elements in the landscape, the relative difference in the 
percentage area of ecosystems within 10 km was calculated, as well as the number of 
historical points of interest (POI) using OSM (Figure 6). More details on the theoretical basis 
for these indicators and their calculation can be found in Supplementary Table S1. 

3.2.5. Environmental indicator reduction 

To improve model performance and interpretability, the initial environmental indicator set 
was reduced. First, ecosystem variables that could be calculated for less than 100km2 or 
0.04% of Great Britain were removed using a threshold analysis (Supplementary Figure S3). 
Then, a check for collinearity between the remaining variables was performed. The model 
accuracy effect of removing variables with a correlation ≥0.7 was measured through a 
leave-one-out process in which random forest models were iteratively generated without 
one of the indicator variables in the full indicator set. The collinear variable with the 
smallest effect on model accuracy was removed (Supplementary Table S5 and Figure S4). 
This resulted in a final indicator set of 41 variables. 
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3.2.6. Time-series analysis 

An additional experiment was conducted to examine landscape aesthetics over time in the 
15 national parks of Great Britain (Supplementary Figure S5). Flickr images within these 
areas were extracted for the time period June 2009 to May 2019. The image attribute scores 
were extracted using the Places365-ResNet-50 model and prevalence was calculated on an 
image-level basis by taking only attribute scores greater than 0.5, subtracting 0.5 and 
multiplying by 2. All other values were set to 0. The linear model was trained and tested 
using a random 80/20% sample of images. MODIS snow cover data used the MOD10CM 
product which reports monthly average snow cover in 0.05 . The centroids of the 
intersecting 5×5 km grid cells with national parks were used to extract percentage snow 
cover on a monthly basis. Additional spatial data sources are given in Supplementary Table 
S6. 

3.3. Results 

3.3.1. Scenicness predictions using Flickr images and deep learning 

An example of a Flickr and deep learning-based prediction for a single 5 × 5 km grid cell is 
shown in Figure 7. Individual Flickr images (Figure 7a) are passed through the Places365-
ResNet-50 model to generate a grid cell mean for 365 scene classes (Figure 7b) and 102 SUN 
image attributes scores (Figure 7c), while image scenicness scores generated by the SoN 
ResNet are used to produce a normalised rating distribution between 1 and 10 (Figure 7d). 
The scene class and image attribute scores show that, on average, the Places365-ResNet-50 
model scored the images in the grid cell the highest for the “lagoon”, “tundra” and “islet’ 
scenes, and the lowest for “atrium”, “shopping mall” and “living room”. In terms of 
attributes, the images were scored the highest for “natural light”, “open area” and “natural” 
while “enclosed area”, “praying” and “indoor lighting” received the lowest scores. A full list 
of image attribute and scene classes is available in Supplementary Table S2 and Table S3. 
The normalised rating distribution shows that most images were rated 7 and above by the 
SoN ResNet. The predictions produced by the two deep learning models were then used as 
individual variables in a random forest model which predicted a final scenicness score of 6.9 
for the grid cell (Figure 7e).
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3.3.2. Comparison of Flickr, environmental indicator and combined models 

The accuracy of the random forest models using the Flickr and deep learning-based 
variables, environmental indicators, and different combinations of the two, within a 20% 
hold-out test area are show in Table 4. Accuracy is reported using 2, root mean squared 
error (RMSE) and Kendall’s , a ranking correlation coefficient between − 1 (inverse 
correlation) and 1 (absolute correlation). Using Kendall’s  to rank the models, the best-
performing Flickr model used the Places365 scene classes and SUN attributes as variables. 
The model achieved a  of 0.683 versus 0.730 achieved by the indicator model. Model 
performance was maximised when the environmental indicator variables and the scenic 
rating distribution were combined, producing a  of 0.739. 

Table 4. Scenicness model accuracy results on the gridded test set at 5 km resolution, derived from 
the SoN database. 

Model Places365 
scene classes 

SUN 
attributes 

Scenic rating 
distribution 

Environmental 
indicators 

r2 RMSE Kendall’s τ 

Flickr 

1 – –  – 0.659 0.639 0.611 

2 –  – – 0.754 0.542 0.671 

3 –   – 0.757 0.540 0.672 

4  – – – 0.757 0.541 0.677 

5  –  – 0.757 0.541 0.677 

6    – 0.766 0.529 0.680 

7   – – 0.770 0.525 0.683 

Indicator 

8 – – –  0.819 0.468 0.730 

Combination 

9   –  0.827 0.458 0.732 

10     0.827 0.457 0.733 

11 –    0.830 0.453 0.734 

12  – –  0.832 0.453 0.738 

13 – –   0.830 0.453 0.739 
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The spatial predictions generated by the best-performing Flickr model and indicator model 
for the whole of Great Britain at 5 km grid cell resolution are shown in Figure 7f. The two 
model types produced very similar spatial predictions. Areas of particularly high aesthetic 
value are captured well by both models, such as Snowdonia National Park in Wales, the 
Lake District in England and the Scottish Highlands. Similarly, urban areas of less scenic 
quality such as London in England and Glasgow in Scotland, are also clearly visible. In 
Figure 8, a more detailed comparison is shown of the model predictions at 500m resolution 
versus the observed values. In both the Greater London area (Figure 8a) and in the Lake 
District (Figure 8b), we see more nuanced predictions using the Flickr model, while the 
indicator model produces more extreme values and sharp boundaries. For example, in 
Greater London, Richmond Park and Heathrow Airport are predicted as very scenic areas 
in contrast to some of the neighbouring areas by the indicator model, while the predictions 
of the Flickr model are much more muted and in line with the observed values. In the Lake 
District, we also see more extreme values in the unscenic areas using the indicator model, 
while the Flickr model behaves again in a more conservative manner. Overall, the Flickr 
model predictions in both areas show more consistency with the observed values, although 
the least scenic areas in the Lake District are less visible. 

Variable importance for the Flickr, environmental indicator and combination models 
at 5 km resolution are shown in Figure 9. The best-performing Flickr model, which used the 
Places365 scene classes and SUN attributes as variables, mainly drew on “climbing” and 
“rugged scene” in making its predictions. Natural scenes and attributes closely related to 
landscape aesthetics were also prominent such as “valley”, “mountain” and “natural”, as 
well as other recreation-related attributes such as “hiking”. The indicator model relied 
heavily on the presence of arable land and market gardens (I1), relief, and the presence of 
buildings (J1 and J2) to generate a scenicness prediction. This was followed by the presence 
of natural ecosystems, including grasslands (E2), mires/bogs (D1), heathland (F3s, F4s and 
F3), and inland scree/bare surfaces (H3s). The complexity indices SDI and PDI did not 
constitute important variables. The best-performing combined model, incorporating the 
scenic rating distribution (model 13, Table 1), drew on a similar set of indicator variables and 
the more extreme scenic ratings, focusing on the distributions across rating bins 2, 3, 7 and 
8.
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3.3.3. Limiting Flickr user activity 

For ES modelling purposes at national level, it is important to capture a representative 
measure of ecosystem contributions to human well-being. In the case of the Flickr models, 
accuracy results are reported after limiting individual Flickr users to one image per day per 
5×5 km grid cell. We applied the limitation after finding large geographic disparities in 
images per user (Supplementary Figure S7). After applying the limitation, model accuracy 
improved versus a non-filtered dataset (Supplementary Table S8). Figure 10 shows the 
largest resulting change in image attribute confidence scores. A key change that can be 
observed is a decrease in the prevalence of images related to sporting. For example, 
“playing”, “competing”, “sports”, and “exercise” all saw notable decreases. This suggests that 
a large number of images associated with sporting events, less relevant for measuring 
landscape aesthetics, were removed from the dataset by the filtering. This in turn appears 
to have increased the prevalence of landscape-focused imagery, indicated by the increase in 
confidence scores for the “clouds”, “far-away horizon”, “ocean” and “natural” attributes. 

 
Figure 10. The largest differences in image attribute scores after limiting Flickr user contributions. 
To calculate the difference, a single image per user per day per grid cell was randomly selected ten 
times and the mean attribute scores were calculated per grid cell. The median difference versus the 
unfiltered dataset is shown here with summary statistics available in Supplementary Table S9. 

3.3.4. Measuring changes in aesthetic enjoyment over time 

Deep learning-based variables generated using social media can also support measures of 
landscape aesthetics over time. This can support more frequent updates to national ES 
assessments, and tell us more about how the landscape is contributing to peoples’ well-
being. In an additional experiment aiming at studying the temporal dynamics of peoples’ 
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aesthetic enjoyment through their interactions with the landscape, we analysed how 
scenicness evolves over time in national park areas. Figure 11 shows the contributions of a 
selected group of image attributes over a ten year period within the 15 national parks of Great 
Britain. These contain some of the most valuable natural areas in Britain, such as the Peak 
and Lake Districts in England, the Pembrokeshire coast in Wales, and the Cairngorms in 
Scotland. 

The contribution of aesthetic-related image attributes change in these national parks 
according to the season. We focus on the “snow” attribute as a specific example of how these 
contributions change over time. Figure 11a shows how the prevalence of “snow”, the average 
score accounting only for images with a score higher than 0.5, increases in the winter 
months. The winter of 2009/2010 reveals itself as a particularly snowy period. The 
prevalence of snow in user images correlates strongly with remote sensing-based 
measurements of snow cover using MODIS satellite data, shown in Figure 11b. In Figure 11c, 
we also see how the prevalence of “snow” increases around the weekend when people are 
more likely to visit snowy landscapes, whilst the prevalence of “asphalt” in images remains 
relatively constant throughout the week. This shows that the use of social media-based data 
provides a combination of information about the state of the environment and how people 
interact with it. 

In a direct connection to aesthetic landscape quality, when the selected group of image 
attributes shown in Figure 11d, including “snow”, are used to predict the image ratings 
generated by the SoN ResNet, we see again how the contributions change over time. For 
example, the contributions of “snow” appear between December and April, reaching a peak 
in the winter month of February, before disappearing again. In contrast, the contributions 
of “vegetation” grow to their highest between June and August, reflecting the positive 
influence of deciduous growth on landscape aesthetics in the summer. Although smaller in 
size, the contributions of “ocean” also grow in the summer, suggesting an increase in user 
posts of coastal images to Flickr in these warmer months. It is also notable that the 
contribution of “rugged scene” to scenicness increases in the rainy months of spring.
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3.4. Discussion 

The potential of social media and deep learning to capture peoples’ interactions with the 
landscape has yet to be fully confirmed. In an ES context, social media provides a rich new 
source of data to capture the cultural contributions of ecosystems to human well-being but 
its use is rarely validated46. In the ES community, deep learning applications also remain 
limited and those that do exist tend to limit their analysis to using the objects detected in 
images as proxies for cultural ES (Egarter Vigl et al., 2021; Lee et al., 2019; Richards and 
Tunçer, 2018). We have demonstrated that deep learning-based variables which consider 
the overall semantic meaning of an image can accurately capture the aesthetic quality of the 
British landscape. Crucially, these techniques also incorporate peoples’ actual interactions 
with the environment, a key methodological requirement from an ES perspective. 

Nevertheless, our study highlights the relevance of traditional environmental 
indicator models in capturing landscape quality in the absence of survey data. The visual 
concepts put forward in the landscape aesthetics literature serve well to capture the spatial 
variation in scenicness provided by the SoN database. The especially strong influence of 
unnatural, man-made environments on aesthetics is reflected in the high variable 
importance of arable land and buildings (Ulrich, 1979). At the same time, the importance of 
highly valued and unique natural environments, such as bog and heathland ecosystems, as 
well as the importance of relief, are also accurately identified by the random forest model 
(Cordingley et al., 2015; Newton et al., 2009; Tveit, 2009). Surprisingly, the SDI and PDI, 
normally key indicators for measuring landscape aesthetics (Frank et al., 2013) and relevant 
to Britain (Graham and Eigenbrod, 2019), did not constitute important variables in our 
results. The variety of ecosystem type indicators and their interaction in the non-linear 
model space may have offered enough opportunities to capture landscape complexity (Ryo 
and Rillig, 2017). Alternatively, visibility modelling of the landscape could produce a more 
accurate set of indicators (Foltête et al., 2020; Karasov et al., 2020; Tenerelli et al., 2017). 
Theoretically, these could capture more of the aesthetic quality of the landscape by 
providing a 3D perspective using the location of Flickr images. However, the challenge with 
visibility modelling at very large scales is the computational resources needed for the geo-
spatial calculations (Labib et al., 2021). For example, in our case, the sightlines from 9.8 
million images would need to be calculated using a 25×25 m Digital Elevation Model (DEM) 
for a 210,000 km2 area. On the other hand, in the case of our Flickr model, the presence of 
image attributes including “far-away horizon” and scene classes such as “mountain” give the 
model a lot of indirect information on the 3D characteristics of an area. 



 60 

The inclusion of individual spatial interactions offered by the Flickr and deep 
learning-based approach also makes it a more attractive method for ES modelling purposes. 
The comparable model accuracy versus the indicator model shows that this key 
methodological requirement from an ES perspective can be incorporated without 
significant losses in accuracy. The results also show that this individual perspective 
produces a finer-grained view which captures highly-valued and unique landscape 
elements such as rock or water features (Ode et al., 2008). For example, the highly aesthetic 
view of Achmelvich Bay in Scotland, shown in Figure 7. This is in contrast to the indicator 
model, which uses variables measured with remote sensing data at 25 m resolution and 
above. At the same time, important negative environmental contexts, such as Heathrow 
Airport in London (Figure 8), are also better captured by the Flickr model. Figure 8 also 
shows how the Flickr model stays relevant at different scales while simultaneously 
highlighting the scaling issues common to indicator models61. While the indicator model is 
heavily constrained by the scale of measurement, producing more extreme differences 
linked to land cover, the Flickr model is able to reproduce a more consistent view of the 
landscape using the images available to it (see also Supplementary Figure S6). At a national 
level, it appears that explicitly capturing this more nuanced view of the landscape through 
the scenic rating distribution, in combination with the strong overall predictive power of the 
indicator model, produces the highest level of model accuracy in our study. 

In contrast to the static nature of the indicator approach, the granularity of the Flickr 
data also enables a detailed examination of aesthetics over time. The time-series analysis 
illustrated in Figure 11 shows how the aesthetic contributions of landscapes change over the 
course of a year in the national parks of Britain. The influence of seasonality on landscape 
quality, defined as ‘ephemera’ in the landscape aesthetics literature (Tveit et al., 2006), is 
notably captured. Such granularity can greatly benefit ES assessments requiring regular 
updates, such as those performed for the purposes of ecosystem accounting in the context 
of national annual accounts of economic production (Hein et al., 2020a). These results also 
show how the contributions of specific landscape characteristics to peoples’ aesthetic 
enjoyment can be accurately captured using a social media and deep learning-based 
approach. The large prevalence of snow in images during the 2009/2010 winter is consistent 
with one of the last great snowfall events in Britain (Royal Meteorological Society, 2010). The 
consistency with remote sensing data further supports the reliability of the data. 
Understanding how ecosystems in the landscape contribute to individuals’ aesthetic 
enjoyment of the landscape, and accurately tracking these contributions over time, can help 
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policy-makers manage and protect the most valuable natural areas for peoples’ recreation 
and well-being. 

Although the Flickr and deep learning approach has its advantages, some biases in 
the method should still be taken into account. By using the SoN database for training 
purposes, the models have largely learnt a British representation of aesthetic quality. For 
applications in other cultural and topographical contexts, additional fine-tuning will most 
likely be required. Challenges also lie in trying to gain an ES measure demographically-
representative of the entire population. Flickr has been found to be the most popular with 
40 to 60 year-old males (Lenormand et al., 2018) and user contributions, as in our study, are 
usually skewed by small, highly active user groups (Li et al., 2013). At the same time, a great 
number of differences in the content of images exist and not all images are relevant for 
measuring landscape aesthetics. However, in this respect, the user limitation in our study 
appears to have shifted the overall image content away from sporting scenes and more 
towards landscape images, improving model accuracy versus the SoN database. Notably, 
the agreement between the Flickr-based models, SoN and the environmental indicators 
shows that there is a strong consistency between the preferences captured by each dataset. 
This consistency is also promising for applications in other European contexts as the 
aesthetic concepts used to develop the environmental indicators have already been 
successfully applied in a number of European settings (Uuemaa et al., 2013). 

3.5. Conclusion 

In conclusion, landscape aesthetics are an important source of cultural value but large-scale 
measurement for ES assessments is difficult due to a lack of survey data. Now, social media 
offers the opportunity to measure the aesthetic contributions of ecosystems whilst 
integrating peoples’ actual interactions with the environment, and tracking changes over 
time. In this study, we have demonstrated that models using Flickr images and deep 
learning enable a highly accurate measure of aesthetic landscape quality, with 
independence of the scale of measurement. This supports ES measures based on the 
revealed preferences of individuals rather than a set of broad theoretical concepts. Small 
gains in accuracy are also achieved when an explicit, deep learning-based measure of 
aesthetics in the form of an image rating distribution is combined with environmental 
indicator variables. Changes in the aesthetic contributions of landscapes over time can also 
be measured. Our results advance ES modelling to better capture the cultural contributions 
of nature to human well-being.
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Chapter 4.  

Deep learning and social media reveal specific 
contributions of biodiversity 
 

 

 

 

 

 

Abstract. Biodiversity generates large contributions to human well-being. However, rarely 
are the cultural contributions of biodiversity to human well-being quantified at large scales 
in the form of Cultural Ecosystem Services (CES). We trained a deep learning model to 
capture peoples’ interactions with selected flora and fauna on social media. We map the 
distribution of these interactions in Great Britain and compare user activity with citizen 
science data. We find that user activity is closely related to the accessibility of natural 
ecosystems and that urban green space plays a key role. Using a second, pre-trained deep 
learning model, we were also able to identify different preferences for individual species on 
social media versus citizen science.  Finally, we compared peoples’ cultural interactions with 
species richness and abundance for a group of 36 bird species, sometimes finding large 
differences between peoples' interactions and these ecological measures. Still, we found that 
peoples' interactions with a set of threatened migratory birds matched their presence in the 
country over time. Our findings show that deep learning and social media constitute 
powerful new techniques in capturing CES related to biodiversity and in understanding the 
cultural importance of biodiversity to achieve sustainable policy goals. 

 

Based on: 

Havinga, I., Marcos, D., Bogaart, P.W., Massimino, D., Hein, L. and Tuia, D. 2022. Deep 
learning and social media reveal specific contributions of biodiversity. People and Nature 
(under review). 
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4.1. Introduction 

The importance of biodiversity for human well-being is widely recognised (Bowler et al., 
2010; Cardinale et al., 2012; Díaz et al., 2018). Alongside its intrinsic value, biodiversity 
generates a great amount of value for people through its contributions to a variety of 
instrumental and relational benefits (Chan et al., 2016). For example, contact with living 
species can improve an individual's mental health (Bratman et al., 2012; Hartig et al., 2003; 
Remme et al., 2021) while also contributing to better social relations (Herzog and Strevey, 
2008; Kuo and Sullivan, 2001; Weinstein et al., 2015) and a stronger sense of collective 
identity (Chan et al., 2018; Hausmann et al., 2016). These contributions represent Cultural 
Ecosystem Services (CES) which can be broadly defined as ecosystems' contributions to the 
non-material benefits arising from human–ecosystem relationships (Chan et al., 2012a; 
United Nations et al., 2021) or, for more specific, quantitative purposes: information-flows 
contributing to cultural experiences (Havinga et al., 2020). 

The complex socioecological relationships that determine the provision of CES by 
ecosystems require a wide range of methods to measure these services (Chan et al., 2012b; 
Daniel et al., 2012), all of which help encourage the inclusion of cultural values in 
environmental assessments and policy-making (Satz et al., 2013). For example, participatory 
mapping and deliberative approaches employing qualitative methods from the social 
sciences have been used to examine CES in local settings (Kenter et al., 2016; Klain and Chan, 
2012). These approaches are able to represent the context-specific and situated knowledges 
in which ecosystems generate cultural value (Gould et al., 2020a). However, to inform 
decision-making at large scales, a level of generalisation is still needed (Gould et al., 2019a; 
Norton et al., 2012). The generalising perspective put forward by the Intergovernmental 
Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) therefore suggests 
a universally applicable set of CES categories (Díaz et al., 2018), as does the System of 
Environmental-Economic Accounting Ecosystem Accounting (SEEA EA) framework which 
aims to better represent ecosystem value in national statistics (Edens et al., 2022; Hein et al., 
2020a). 

Generally, such large-scale applications require quantitative, spatially-explicit 
methods to measure CES (Gould et al., 2019a; Havinga et al., 2020). The spatial 
representation of CES supports assessments at multiple scales (Hernández-Morcillo et al., 
2013), addresses issues of double-counting (Bagstad et al., 2013) and enables the identification 
of CES “hotspots'” to focus management efforts (Allan et al., 2015). However, these methods 
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are still faced with the challenge of capturing the large variety of preferences that underpin 
CES (Bieling and Plieninger, 2013) and in determining which ecosystem attributes are 
generating these services (Gould et al., 2019a). In particular, the connection between CES 
and biodiversity remains an underexplored area of research (Echeverri et al., 2020; Hevia et 
al., 2017; McGinlay et al., 2017), especially on a spatially-explicit basis (Gould et al., 2019a; 
Plieninger et al., 2013). Consequently, more investigation of CES provision and biodiversity 
is needed to better understand the complex interplay between CES and land management 
policies (Gould et al., 2020b), including those related to conservation (Echeverri et al., 2021; 
King et al., 2017). 

In this context, spatial methods using social media data have gained an increasing 
amount of attention in CES applications (Ghermandi and Sinclair, 2019; Havinga et al., 
2020). This is because social media data enables large-scale analyses of CES based on a wide 
range of self-reported, revealed preferences, with the level of detail necessary to identify 
specific ecosystem attributes as contributing factors (Havinga et al., 2021a; Richards and 
Friess, 2015; van Zanten et al., 2016). Still, research on peoples' spatial interactions with 
biodiversity on social media has so far been limited (August et al., 2020). More specific data 
for these purposes are available such as the data generated by eBird and iNaturalist, two 
citizen science platforms through which millions of amateur naturalists record their 
interactions with individual species (Havinga et al., 2020). Nevertheless, human-species 
interactions occur in numerous ways and citizen science initiatives do not capture the full 
range of peoples' interactions with biodiversity (Schröter et al., 2017). For example, a holiday 
trip can facilitate interactions with local biodiversity through wildlife photography 
(Hausmann et al., 2018). Closer to home, a walk in the park can lead to a number of casual 
interactions related to social and physical activities (Lopez et al., 2020).  

Social media platforms therefore present themselves as promising sources of data in 
capturing a wider range of CES related to biodiversity. Flickr, an image-led platform, has 
already been broadly utilised in environmental research, offering a wide range of 
photography including images of individual species (Ghermandi and Sinclair, 2019). To 
process this data in large quantities, however, requires machine learning methods (Richards 
and Tunçer, 2018). Here, deep learning, which uses artificial neural networks to generate 
image predictions, has proven to be especially useful in examining CES and the biophysical 
elements generating these services (Egarter Vigl et al., 2021; Havinga et al., 2021a; Lee et al., 
2022). In some recent examples using Flickr, deep learning models have accurately 
identified plant species (August et al., 2020), detected birdwatching activities (Koylu et al., 
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2019) and classified the preferences of national park visitors (Väisänen et al., 2021). 
Meanwhile, deep learning is being directly integrated into citizen science platforms such as 
iNaturalist to support species classifications (Ceccaroni et al., 2019; McClure et al., 2020). On-
going development work using the iNaturalist image database has also resulted in the 
release of tailored training datasets and pre-trained models for species detection (Van Horn 
et al., 2018).  

These technological developments now enable large-scale CES analyses using social 
media. By utilising such large social datasets alongside citizen science data, large-scale CES 
assessments related to biodiversity can potentially include a greater diversity of preferences 
(Fox et al., 2021b; Scowen et al., 2021). At the same time, the detail with which particular 
aspects of biodiversity can be identified using deep learning, including individual species of 
flora and fauna, means that better connections can be made between biodiversity and CES 
(Echeverri et al., 2020; Gould et al., 2019a). For the purposes of large-scale CES assessments 
these points are particularly relevant (Havinga et al., 2020), especially if these are to 
contribute to national-level statistics (Hein et al., 2020a). On the other hand, the use of social 
media comes with a number of known biases including those related to sociodemographic 
factors and the accessibility of ecosystems (Levin et al., 2015; Toivonen et al., 2019). As a 
result, a closer examination of the CES that can be measured through the use of these novel 
techniques is important. In doing so, their contribution to environmental assessments can 
be better understood (Ghermandi and Sinclair, 2019). 

The objective of our study is to assess the potential of deep learning and social media to 
measure CES related to biodiversity at large-scales. We focus on Great Britain as our case 
study area and use iNaturalist data to compare activity between social media and citizen 
science. In doing so, we seek to answer the following research questions: (1) what is the 
distribution of human-species interactions using Flickr data as a measure of CES related to 
biodiversity? (2) What species and species groups are users interacting with? (3) What is the 
relationship between users’ activity and key socio-environmental and policy variables? (4) 
How do users’ species interactions compare with biodiversity metrics? We hypothesised 
that most human-species interactions on Flickr occur in accessible areas and that urban 
green spaces are particularly important (Heikinheimo et al., 2020; Muñoz et al., 2020). We 
also hypothesised that Flickr users would have preferences for different species to users of 
citizen science data (Hausmann et al., 2018; Levin et al., 2017) and that these revealed 
preferences would not necessarily match ecological measures of biodiversity (Dallimer et 
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al., 2012). However, we expected that additional data could still be gathered on highly-valued 
species, such as those with special conservation status in Britain (Di Minin et al., 2015). 

4.2. Methods 

4.2.1. Study design 

Our study focused on examining peoples' interactions with species using deep learning and 
Flickr images (Figure 12). We defined a human-species interaction as an image depicting an 
individual species as its main subject and broadly conceptualised these interactions as CES 
related to the cognitive enjoyment of biodiversity (Havinga et al., 2020). To capture peoples' 
interactions on social media, we first trained and applied a deep learning model using a 
novel training technique designed to capture a broad range of human-species interactions 
in Flickr images. To determine what species users were interacting with, we applied a 
second, pre-trained deep learning model to generate individual species classifications. We 
then explored the determinants of user activity using a set of socio-environmental and 
policy variables. For each of these steps, we compared our results to iNaturalist user activity 
to better understand social media as an alternative source of data. Finally, we compared 
users’ interactions with bird population density data to examine the connection to species 
richness and abundance as well as preferences for threatened species. 

 
Figure 12. The overall study design. (a) Training data was collected using a random sample of Flickr 
and iNaturalist images within Europe. These were used to (b) (i) train a deep learning model to detect 
human-species interactions in Flickr images. Then, (b) (ii) the species depicted in these images were 
classified by a second, pre-trained deep learning model. Predictions were generated for (c) Great 
Britain. These were used to examine and compare (d) spatial interactions with species, (e) 
determinants of user activity and (f) biodiversity indicators using modelled population data for bird 
species. 



  68 
 

4.2.2. Study area data 

To apply our deep learning approach at national-scale in Great Britain, we used a Flickr 
image dataset created in previous research which provided 9.8 million geo-located images 
depicting outdoor scenes (Havinga et al., 2021a). These images were downloaded using 
metadata records retrieved through the Flickr Application Programming Interface (API) 
and filtered to outdoor images using the Places365 deep learning model (B. Zhou et al., 2017). 
At the same time, for comparison, we compiled a new dataset of research-grade iNaturalist 
observation metadata, including image urls, by using the ‘rinat’ package in R to access the 
iNaturalist API. In total, we downloaded 1.1 million iNaturalist records for Great Britain. The 
image corresponding to each record were accessed using the image urls during model 
prediction. Additional taxonomic information was downloaded using the ‘taxize’ package 
in R. 

4.2.3. Species interaction model 

4.2.3.1. Training data 

To identify human-species interactions in images, we compiled a large dataset of images 
from iNaturalist and Flickr to train our deep learning-based species interaction model. For 
training, we used images uploaded to iNaturalist as a representation of peoples’ interactions 
with individual species and Flickr images as a representation of all other, “generic” types of 
interactions to train our model. To download the images, we used the `flickrapi' library in 
Python to access the Flickr API and the ‘rinat’ package in R to access the iNaturalist API. We 
downloaded images using a randomly generated sample grid, representing a 10% random 
sample of a 25km resolution grid over the whole of Europe (Supplementary Figure S8). 
Within each grid cell, we downloaded an equal number of images from each source by 
randomly downsampling the greater image set in the case of imbalances. This produced a 
50/50 training dataset of 1.3 million Flickr and iNaturalist images. Finally, the images were 
split into training (70%), validation (10%) and test (20%) sets. 

4.2.3.2. Model architecture 

Our model consisted of a ResNet-18 with an additional five layers replacing the two final 
layers (He et al., 2016). The model was developed using the ‘PyTorch’ library in Python. 
Using PyTorch’s built-in model library, we downloaded the original architecture with the 
model weights pre-trained on the ImageNet database. We then adapted the model to 
produce a binary output, each converted to a 0-1 range using a softmax transformation. This 



 

 69   

output represented either a human-species interaction, such as those observed on 
iNaturalist, or a generic interaction, consisting of any other kind of interaction. Generic 
interactions were only observable in the Flickr data and included, for example, images of 
buildings, sporting events, transport and landscapes. 

4.2.3.3. Model training 

Training was initialised with the model tasked to distinguish between images depicting 
human-species interactions and generic interactions. All iNaturalist images were labelled as 
human-species interactions and all Flickr images were labelled as generic interactions. We 
set our deep learning model to train on the image dataset for ten epochs with an initial 
learning rate of 1e05 for the weights of the final two layers and 1e04 for the rest of the 
network. The learning rate was halved every epoch. We used Adam as our optimisation 
algorithm and a cross-entropy learning loss (Kingma and Ba, 2014). Therefore the standard, 
cross-entropy loss for a single image during model training was calculated as: 

 

with  denoting the loss calculated over , the training labels, and , the model predictions, 
for  number of classes (two), with a softmax applied to the model class predictions before 
calculating the loss. 

During normal training, the model is penalised if it identifies a Flickr image as a 
human-species interaction because all Flickr images are labelled as generic interactions. 
However, the Flickr image may still be of an individual species, in which case it is beneficial 
to introduce a level of leniency into the training scheme by adding noise to the image 
training label. This supports the inclusion of this type of Flickr image within the species 
image decision boundary of the final model (Figure 13). To do this, we applied a special 
minimum entropy regularisation technique in the training scheme to adjust the influence 
of the model’s predictions versus their training labels in the case of generic-labelled images 
(Reed et al., 2015; Yves and Yoshua, 2006). Keeping the cross entropy learning loss 
unchanged for species-labelled images, we integrated a β regularisation coefficient in the 
learning loss for generic-labelled images as follows:  
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with  denoting the loss calculated over , the training labels, and , the model predictions, 
with each training label  adjusted for the β coefficient. For example, if β = 0.1, this places a 
10% emphasis on the original training labels, putting more trust in the predictions of the 
current model. On the other hand, if β = 1 this would represent the baseline model with only 
the training labels considered in the training. Model accuracy on the test set is reported in 
the results. 

 

Figure 13. The effect of the β coefficient on the species interaction model's decision boundary. By 
placing a less strict emphasis on the training labels, applying the β coefficient allows more images 
within the Flickr dataset to be identified as human-species interactions. For example, image (a) joins 
image (b) as a human-species interaction as a result of the decision boundary being moved versus 
the baseline model, while image (c) is still predicted as a generic interaction. 

4.2.3.4. Selecting the regularisation coefficient 

To help identify the most optimal β regularisation coefficient, we calculated the entropy 
across the species classification scores predicted by the species classification model 
(introduced in Section 4.2.4) in Flickr and iNaturalist observation images in Great Britain. A 
much larger entropy across Flickr images predicted as human-species interactions as 
compared to generic image predictions and iNaturalist images would indicate a significant 
drop in model confidence and suggest the inclusion of irrelevant images as human-species 
interactions. We calculated entropy as: 
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with  denoting the entropy across the 8,142 individual species classification scores . As an 
additional accuracy measure, we also conducted a visual check of the images predicted as 
human-species interactions in the test dataset at 0.1 softmax intervals for different 
regularised models. We report these results in Supplementary Table S11. Based on the 
model test accuracy statistics, the entropy across the species classification model's 
predictions and visual inspection of the predictions, the most optimal species interaction 
model was selected. This model was then used to predict the distribution of human-species 
interactions on Flickr in Great Britain. 

4.2.4. Species classification model 

To better understand the types of human-species interactions occurring on social media 
versus citizen science, we applied a second deep learning model to classify the individual 
species in Flickr images identified as human-species interactions and compared this with 
iNaturalist. Using the species classification model's predictions, we examined what the most 
popular species were at the genus level on Flickr versus iNaturalist. To make the fairest 
comparison and control for biases between datasets, we also ran the model on the images of 
the iNaturalist observations and used its predictions to compare the two datasets. 

To classify species in images, we applied the pre-trained 2018 iNaturalist competition 
winner model, which is capable of detecting 8,142 species. The model consists of a fine-tuned 
Inception V3 deep learning model, pre-trained on ImageNet2. Because the model is trained 
to identify species sampled from a global geographic range, we were not primarily interested 
in using the individual species classifications as many would not be present in Great Britain. 
Rather, we were interested in their corresponding genus, family and class classifications, 
hypothesising that their accuracy would be sufficient to analyse the types of human-species 
interactions occurring.  

Still, we felt it necessary to apply a second filtering step when conducting our analysis 
at the genus and family levels because model accuracy was found to be fairly low at these 
classification levels versus the taxonomic data associated with iNaturalist observations 
(Supplementary Table S12 and Table S13). This second image filter excluded all species 
images with a classification score entropy higher than 2.42. This cut-off point was identified 
based on the entropy distribution across the iNaturalist image predictions, 2.42 reflecting 
the mean entropy of image classification scores in the dataset (Supplementary Figure S9). 
At species class level this filter was not needed because accuracy at phylum level was already 

 
2 https://github.com/visipedia/inat_comp/tree/master/2018  
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found to be high at 89%. However, at genus and family level, accuracy needed to be 
improved to support the reliability of the results. 

4.2.5. Determinants of user activity 

To understand the factors influencing human-species interactions on Flickr, we modelled 
the relationship between these interactions and a number of socio-environmental and 
policy-related variables at 10km resolution. We then did the same for iNaturalist 
observations and compared the influence of the explanatory variables. In this case, our aim 
was to examine broad determining factors influencing user activity related to human-
species interactions rather than every single interaction with individual species. We 
therefore restricted the number of images and observations per user per grid cell to one 
image or observation per user per day. This limited the effect of a small group of very active 
users. We used multiple linear regression, drawing on the ‘caret’ and ‘AICcmodavg’ 
packages in R. 

Four sets of variables were considered (Table 5). First, the relationship between user 
activity and the accessibility of nature was modelled. We used population density as a proxy, 
with a higher population density indicating a greater amount of accessibility due to the 
shorter distances to peoples’ homes and the associated infrastructure enabling access. For 
population density, we used the Office for National Statistics (ONS) and Scottish statistical 
office population density figures per lower administrative unit. These have an average area 
of 6km2. For every 10km resolution grid cell, we took the mean population density of the 
intersecting administrative units.  

Following this we generated a second and third set of models using policy-related 
and socioeconomic variables. For policy, we calculated the total area of urban green space 
and Special Areas of Conservation (SACs) per grid cell. Urban green space plays an 
important role in urban planning designs to provide people with access to nature while 
SACs are protected areas set up to conserve a variety of wild animals, plants and habitats. 
To represent socioeconomic factors, we included the mean total weekly income and mean 
age of the population in the intersecting administrative units of each 10km grid cell, sourced 
from the ONS and the Scottish statistical office. 

Finally, we generated a fourth set of models based on environmental factors using the 
European Environmental Agency (EEA) ecosystem type map. For this, we calculated the 
total area of coastal, water, bog, grass, heath, wood, scree and farm ecosystem per grid cell 
to understand how this could affect the level of user activity. We calculated total area to 
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consider the likely interaction within each grid cell. As well as examining the accuracy of 
each set of models on their own, we also generated models using combinations of the 
variable groups to understand the total amount of explanatory power provided by the 
variables. To test the accuracy of the models, we overlaid a 50km resolution grid over the 
10km grid and randomly split the larger grid cells into 5 cross-validation sets. We compared 
model fit using the Akaike Information Criteria (AIC) and R2 statistics. 

Table 5. Socio-economic and policy variables. 

Group Variable Datasets Sources 

Accessibility Population density 
(persons / km2) 

ONS Mid-2019 LSOA Population density (ONS, 2019) 

Statistics Scotland Datazone population 
Mid-2019 

(Statistics Scotland, 2019) 

Policy Urban green space 
(km2) 

OS Open Green Space (Ordnance Survey, 2021) 

SAC (km2) Special Areas of Conservation spatial 
boundaries 

(JNCC, 2020) 

Socio-economic Mean weekly 
income (£ / week) 

Mean weekly income & Income estimates 
for small areas, England and Wales 

(ONS, 2014) 

Scotland Local Level Household Income 
Estimates 

(Statistics Scotland, 2014) 

Mean age (years) Population - all usual residents (NOMIS, 2011) 

Environmental Ecosystem types 
(km2) 

EEA ecosystem types of Europe (EEA, 2019) 

 

4.2.6. Connection to biodiversity 

4.2.6.1. Bird species richness 

To compare the human-species interactions on Flickr with ecological measures of 
biodiversity, we compared the perceived species richness of bird species on Flickr with a 
measure of species richness based on modelled species density data. To do this, we selected 
a group of bird species and drew on species abundance maps to spatially compare the 
variety of species in Flickr images with the variety in modelled bird densities at 10km2 
resolution (Massimino et al., 2015). To better understand the variation in species richness as 
compared to citizen science, we also compared to the species classification models' 
prediction in iNaturalist observation images and mapped population density as an 
additional point of reference. 
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The bird species abundance maps were generated in previous work using Generalised 
Additive Models (GAMs) \citep{Massimino2015}. These modelled species abundance per 
km2 at 1km resolution using explanatory variables including the percentage of different land 
cover types such as forest, grassland, coastal and urban land cover, as well as a three-
dimensional thin plate penalised spline with longitude, latitude and elevation. The models 
also accounted for the detectability of bird species. We calculated the total number of birds 
at 10km2 and then, to compensate for the high variability in population density across 
species, we counted a species as present if the density per bird species was greater than its 
median density. As such, our indicator of species richness using modelled abundance data 
can be regarded as a high-likelihood measure of species presence on a grid cell basis. 

We selected 36 bird species. This included a wide range of species from a number of 
different habitats including Kestrels, Swallows, Goldfinchs, Mallards, Curlews, Great Tits 
and Swifts. In some cases we grouped the modelled densities of individual bird species 
within the same genus to enable a better comparison with the species classification models' 
predictions at genus level. This was because the models' predictions were more reliable at 
this taxonomic classification level. As with the bird density maps, we counted the number 
of bird species in Flickr images per 10km2 grid cell using the species classification models' 
predictions.  

In most cases, we used the predictions of the model at the genus level for comparison 
with individual species. However, in some cases the visual variety within the genus was 
deemed to be too great to accurately capture the individual species in the bird density maps. 
In this case, we excluded some of the species models' predictions for individual species 
classifications within the genus. In other cases, it was more appropriate to group the models' 
predictions at the family taxonomic level. A full list of the species densities used, the 
corresponding species classification model classes and justifications can be viewed in 
Supplementary Table S14. 

4.2.6.2. Bird species abundance 

To examine the relationships between people and bird species in more detail, we also 
compared the total number of human-species interactions on Flickr with the 36 selected bird 
species and their total population. In doing so, we sought to gain an insight into the 
popularity of bird species versus their relative abundance. We did this by summing the 
modelled bird population densities per 10km2 grid cell and comparing this to the total 
number of Flickr interactions per species. To better understand the individual relationships 
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between species interactions and total population, we fitted a linear model to capture the 
overall relationship between the two variables. At the same time, we also considered their 
conservation status in Britain to understand whether this had an effect on the preferences 
of Flickr users, adding this as a categorical variable to the linear model to test for 
significance. 

4.2.6.3. Threatened migratory species 

Finally, we also examined interactions over time on Flickr and iNaturalist with threatened 
migratory bird species. In doing so, we sought to understand peoples' preferences for a set 
of culturally significant and highly-valued species from a conservation perspective. At the 
same time, this also allowed us to validate the interactions against known migratory periods 
as well as verified iNaturalist observation data. Four migratory bird species were examined: 
the Nightingale (Luscinia megarhynchos), Swifts (Apodidae), Turnstones (Arenaria) and 
Wheatears (Oenanthe). We filtered the species classification model predictions using these 
individual and taxonomic groups with a species model class entropy score < 2.42. 

The Nightingale is an iconic but threatened species in Britain. It has a great cultural 
resonance, being widely represented in music, art and literature. Its breeding season in 
Britain begins in mid-April and extends into early July. By mid-July, its autumn migration 
to Africa begins with the species becoming very scarce by September (Holt et al., 2012). 
Similarly, swifts, which also feature prominently in British culture, arrive in Britain from 
Africa in mid-May and begin their autumn migration between the end of July and early 
August (Hurrell, 1951). Both species feature on Britain's Birds of Conservation Concern Red 
List (Stanbury et al., 2021).   

Turnstones, a coastal bird species, have two main migratory populations in Britain. The 
first arrive from Greenland and arctic Canada to winter in Britain in early August, many 
staying on till early March. At the same time, another large migratory population passes 
through in August on its way to Africa from the Scandinavian countries, returning again 
through Britain in the spring (Branson et al., 1978). These migratory patterns are similar to 
those of the ground-dwelling Wheatear with one migratory population arriving from Africa 
to breed in Britain in March/April while another continues on to Greenland. Both 
populations are seen returning to Africa in Britain between August and October (Bairlein, 
2008). The Turnstone and the Wheatear are on the Amber List of Britain's Birds of 
Conservation Concern (Stanbury et al., 2021). 
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4.3. Results 

4.3.1. Species interaction model 

The accuracy of the species interaction models trained using different $\beta$ coefficients 
is shown in Table 6. The overall accuracy of the models on the test dataset decreased with 
the value of the β coefficient. The overall accuracy of the baseline (β=1) model was high, at 
98%. The β=0.1 model achieved a similarly high 97% accuracy, followed by the β=0.01 model 
with a 96% accuracy and the β=0.001 model, with an accuracy of 92%. Increasing the value 
of the β coefficient by another factor of 10 to β=0.0001 failed to produce a working model. 

Table 6. Overall accuracy of the species interaction model on the test dataset using different β 
regularisation coefficients and the species classification entropy associated with each models' 
predictions for the Flickr image dataset in Great Britain. In comparison, a mean entropy of 2.42 was 
reported against the iNaturalist observation dataset. 

Model Test: Overall Test: generic 
interactions 

Test: species 
interactions 

Entropy: species 
interactions 

Entropy: generic 
interactions 

β=1 98.0%  98.5% 97.5% 2.83 5.19 

β=0.1 97.4% 99.4% 95.4% 2.89 5.27 

β=0.01 95.5% 99.8% 91.2% 3.05 5.34 

β=0.001 92.2% 99.9% 84.5% 3.56 5.40 

 

The drop in accuracy in detecting generic interactions in Flickr images can be directly 
related to the human-species interactions that are also found within the Flickr dataset. This 
was also reflected in the ability of the β=0.001 model to predict images from iNaturalist as 
human-species interactions with almost perfect accuracy. This shows how the 
regularisation coefficient enables the model to detect a wider range of human-species 
interactions. However, there was a much larger drop in accuracy in detecting generic 
interactions relative to this accuracy improvement and versus the accuracy of the baseline 
model. We therefore found the β=0.01 model to be the most optimal in terms of its accuracy 
on the test dataset, maximising its ability to detect human-species interactions while 
maintaining a high level of overall accuracy. 

For each β model's image predictions of human-species interactions, we also 
calculated the mean entropy across the species class scores predicted by the species 
classification model. We found entropy to increase from 2.83 for the baseline model to 3.56 
for the β=0.001 model. This amounted to a 26% increase. For the β=0.1, a much smaller 
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increase of 2% to 2.89 was observed, with a small increase of 8% for the β=0.01 model. The 
entropy recorded against the models' generic image predictions stayed relatively similar, 
only increasing from 5.19 for the baseline to 5.40 for the β=0.001 model. In comparison, the 
entropy recorded for the species model predictions on the iNaturalist dataset for Great 
Britain was 2.42. 

A full set of randomly sampled images of each β models' predictions at different 
confidence levels can be found in Supplementary Table S11. Overall, we observed a good 
ability by the β=0.01 model to identify species images, even at low confidence levels, with a 
very small amount of generic-type images present among the models' predictions. Based on 
these results, the test accuracy and species model entropy, we selected the β=0.01 model to 
predict human-species interactions using Flickr images in Great Britain. 

4.3.2. Human-species interactions 

Table 7 shows the total number of species  interactions and interactions per user on Flickr 
for the main taxonomic groups. In all cases, the median number of images per user was quite 
low at 1 to 2 images. Birds were the most popular species with 352,177 images taken by 24,936 
users. These saw the highest average amount of 14.1 images per user with one user taking 
21,560 images. Plants were the second most popular species, with 261,948 images taken by 
24,572 users, similar to birds. The maximum number of images taken by one user was much 
lower at 3,304 images. Insects were captured in 136,738 images by 12,553 users, about half of 
the level of activity for plants, with a similar average number of images per user. Mammals 
were captured by more users than insects, with 15,871 users, but there were less images at 
89,095 interactions. Reptiles and Fungi saw a further drop in the number of interactions and 
users. In total, the species interactions model identified 950,601 images, representing 44,404 
users. These took on average 21.4 species images each with one highly active user taking 
28,457 images. 

Figure 14 shows the spatial distribution of species images on Flickr in Great Britain, 
and is compared to iNaturalist observations at a more local-scale for different species groups 
in the Peak District and Greater London area. At national-scale, human-species interactions 
were concentrated around urban areas with large cities such as London, Birmingham, 
Manchester, Edinburgh and Glasglow showing some of the largest concentrations of 
interactions. On the other hand, higher elevation areas such as Snowdonia National Park in 
Wales, the North Pennines in England and the Scottish Highlands showed very little 
amounts of interaction. 
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Table 7. The total number of human-species interactions per user and taxonomic class on Flickr. 

Species Number of 
images 

Number of users Images per 
user (median) 

Images per user 
(mean) 

Images per user 
(max) 

Birds 352,177 24,936 2 14.1 21,560 

Plants 261,948 24,572 2 10.7 3,304 

Insects 136,738 12,553 2 10.9 4,637 

Mammals 89,095 15,871 1 5.61 4,320 

Reptiles 31,596 9,106 1 3.47 964 

Fungi 19,853 5,147 1 3.86 1,152 

Other 59,194 23,071 1 2.57 532 

Total 950,601 44,404 2 21.4 28,457 
 

At a more local scale, differences in the types of human-species interactions 
occurring on Flickr versus iNaturalist could be observed. Flickr users appeared to have a 
stronger preference for mammals, as observed in the Peak District, with similar levels of 
interaction with birds species in both the Peak District and Greater London area, although 
in different areas. For plant species, Flickr users showed lower levels of interest as compared 
to iNaturalist, both in the Peak District and Greater London area. This difference was even 
more pronounced for insects, as observed in the Greater London area, with a much large 
number of interactions on iNaturalist versus Flickr. 

The tendency of Flickr users to capture large, common species was also evident at the 
genus classification level (Figure 15). Flickr users took the most pictures of swans, ducks and 
robins. Herons were also popular, as where black geese, squirrels, deer, gulls, thrushes and 
white/grey geese.  In comparison, iNaturalist users took the most pictures of butterflies with 
three genera appearing in the top ten most popular classes. Geraniums, lady bugs, honey 
bees and clover where also popular, again reflecting a much larger interest in plants and 
insects versus Flickr users. However, similar to Flickr, ducks, swans and thrushes were also 
captured a large number of times. Notably, the number of images per species was also more 
evenly distributed on iNaturalist than on Flickr. 
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Figure 14. Distribution of (a) all human-species interactions on Flickr in Great Britain at 10km 
resolution, (b) human-species interactions by taxonomic class on Flickr and iNaturalist in the Peak 
District at 2.5km resolution, as well as (c) human-species interactions by class and source in the 
Greater London area at 1km. A full species count comparison between Flickr and iNaturalist at the 
national level can be found in Supplementary Figure S10. 
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Figure 15. The most popular genera predicted by the species classification model in (a) Flickr species 
images and (b) iNaturalist observation images. Photos (top left to bottom right) © sagesolar}, Peter 
Trimming, Peter Trimming, Gareth Williams, Steve Parker, Peter Hurford, Daniel, Ron Knight ,  
Julian Burgess, Daniel Cahen , William Stephens , Barry Walter, William Stephens, Stephen 
McWilliam, Daniel Cahen, Barry Walter, Jon Mortin Alec Mcclay, Don Loarie , (cc-by-2.0 and cc-by-
4.0, cropped from originals). Species model accuracy statistics against the iNaturalist observation 
dataset can be found in Supplementary Table S13. 

4.3.3. Determinants of user activity 

Table 8 shows the linear model results using various combinations of explanatory variables 
to predict user activity relating to human-species interactions on Flickr versus iNaturalist in 
Britain. The AIC and R2 statistics are used to measure and compare model fit. Combining 
all the explanatory variables produced the best model in predicting user activity on Flickr 
based on the AIC. This was the same for iNaturalist activity and, overall, the explanatory 
power of the various variable combinations was similar for both Flickr and iNaturalist. 
However, the variable combinations provided the most explanatory power for the 
distribution of Flickr interactions as compared to iNaturalist. For example, using the R2 
statistic to compare between platforms, all the variables combined produced an R2 of 0.603 
for Flickr versus 0.530 for iNaturalist. 
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Table 8. Linear regression model results per data source using different combinations of 
explanatory variables. The AIC is calculated using a final model fitted on the entire dataset while 
the R2 is calculated using five-fold cross validation. AIC weights represent the probability of the 
model being the best model. 

Model* AIC Delta AIC weight R2 

Flickr 

Sac 39,205 2,624 0 0.012 

Env 39,073 2,492 0 0.054 

Socio 38,674  2,093 0 0.170 

Urb 37,238  657 0 0.517 

Pop+Env 37,169 588 0 0.517 

Pop 37,168  587 0 0.525 

Pop+Pol 36,758 177 0 0.587 

Pop+Socio+Pol 36,587 5.38 0.064 0.606 

Pop+Socio+Pol+Env 36,581 0 0.936 0.603 

iNaturalist 

Sac 41,234  2,178 0 0.013 

Env 41,136  2,080 0 0.042 

Socio 40,747  1,691 0 0.153 

Urb 39,526  69 0 0.469 

Pop+Env 39,511  454 0 0.463 

Pop 39,504 448 0 0.474 

Pop+Pol 39,156 99.5 0 0.524 

Pop+Socio+Pol 39,057  0.687 0.415 0.532 

Pop+Socio+Pol+Env 39,056 0 0.585 0.530 

 

Notably, the variables population density and urban green space both independently 
explained around 50% of the variance in activity on both platforms. This highlights the 
accessibility of natural ecosystems as a major factor determining the amount of user 
interactions with species, if population density is taken as a proxy. Similarly, urban green 
space appear to play a major role in determining the distribution of user activity. On the 
other hand, socioeconomic variables did not provide a significant amount of explanatory 
power but did produce the strongest models in combination with other variables. This was 
in contrast to the environmental variables, which did not add any significant explanatory 
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power to the models. The presence of SACs were also not found to be a major determining 
factor, producing the weakest models for both Flickr and iNaturalist user activity. 

4.3.4. Connection to biodiversity 

4.3.4.1. Bird species richness 

Figure 16 shows a comparison of species richness based on models of species abundance 
versus perceived species richness on Flickr and iNaturalist for a selected group of 36 bird 
species. Most of England and Wales saw a high level of species richness, with reductions in 
large urban areas such as London, Birmingham and Manchester. On the other hand, very 
low species richness was recorded in higher altitude areas such as Snowdonia National Park 
in Wales, the Yorkshire Dales and the Peak and Lake Districts. Similarly, the high altitude 
areas of Scotland including the Scottish Highlands also saw low bird species richness. 
However, richness increased further south in Scotland around key urban centres such as 
Edinburgh and Glasgow. 

 
Figure 16. Species richness for a selection of 36 bird species calculated using models of species 
abundance, in comparison to the perceived species richness observed on Flickr and iNaturalist using 
the deep learning model predictions. Population density is shown as an additional point of reference. 
The maps show very different perceptions of species richness on Flickr and iNaturalist linked to high 
population areas versus a measure based on modelled abundance data. 

In contrast, the perceived species richness on Flickr was mainly concentrated around 
highly-populated areas such as in London and large cities in the north including 
Birmingham, Sheffield and Leeds. Coastal cities also saw a large variety of species captured 
by Flickr users, including Portsmouth and Exeter in the south. One notable exception were 
the coastal and wetland areas on the northern coastline of Norfolk, England which saw a 
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concentration of perceived richness away from a major urban centre. Also notable was the 
moderate amount of species richness perceived in some higher elevation areas such as in 
the Peak and Lake Districts, even in the northern part of the Cairngorms national park, in 
contrast to the species richness based on models of species abundance. 

Higher perceived species richness in urban areas also occurred on iNaturalist. These 
occurred in similar cities such as in London and Edinburgh as well as the large cities in the 
north including Birmingham and Sheffield. However, notably, a much larger number of 
species were observed in and around the cities of Liverpool and Manchester. Higher 
elevation areas including the Lake and Peak Districts as well as similar parts of the 
Cairngorms, like Flickr, saw moderate amounts of perceived species richness. The higher 
level of perceived richness on the north coast of Norfolk was also observed for iNaturalist. 

4.3.4.2. Bird species abundance 

Figure 17 shows the comparison between peoples' interactions on Flickr with 36 bird species 
and species population as well as their conservation status. A weak relationship was found 
between the two variables based on the linear model (R2 = 0.17). A general divide can also be 
observed, as highlighted by the line of best fit, which shows two general groups of species. 
One group, below the line of best fit, see less interactions relative to their overall abundance 
while another group, above the line of best fit, see more interactions relative to their 
abundance. This pattern is most prominently featured towards the left-side of the figure 
with large, charismatic and visible birds such as the Kestrel, Buzzard, Great Spotted 
Woodpecker and Nuthatch experiencing a large number of interactions relative to their 
population. Similarly, coastal and wetland birds such as the Curlew, Moorhen and Mallard 
also see a much larger amount of interactions versus their population.  

Bird species that experienced similar levels of interactions versus their population 
included the Goldcrest, Magpie, Goldfinch, Great and Blue Tit as well as Thurshes, Crows, 
the House Sparrow and Pigeons. On the other hand, other small birds such as the Long-
tailed Tit, Coal Tit, Meadow Pipit and Warblers saw less interactions relative to their 
abundance. Similarly, the Skylark saw a lower relative amount of interaction versus its total 
population. Swifts and the Green Woodpecker experienced very little amounts of 
interaction relative to their small population sizes. Overall, conservation status did not 
determine any kind of relationship between interactions and species abundance as an 
additional categorical variable to the linear model (Amber, p-value=0.4 and Red, p-
value=0.7, R2=0.14). 



  84 
 

 
Figure 17. The total interactions on Flickr for a selection of 36 bird species compared to their total 
population and conservation status in Britain. The grey line shows the line of best fit between 
interactions and total population with 95\% confidence intervals (R2=0.17). This shows a weak overall 
relationship and highlights a division between species with higher and lower popularity relative to 
their abundance. Conservation status was not found to be significant when it was added as an 
additional categorical variable to the linear model (Amber, p-value=0.4 and Red, p-value=0.7, 
R2=0.14). 

4.3.4.3. Threatened migratory species 

The total monthly interactions on Flickr and iNaturalist with four threatened migratory 
species are shown in Figure 18. The Nightingale saw no or less than one interaction per 
month from October to February. In line with its spring migration, interactions started 
increasing from March up till May at which point interactions began falling again to 
September. There were a much larger number of interactions on Flickr versus iNaturalist. 
Swifts saw a similar pattern of monthly interactions with interactions increasing from a very 
low baseline in April up into the summer months of June and July, before dropping off in 
August. This matched its known migration to Britain in spring and autumn migration out of 
the country in late summer. In this case, there were similar amounts of interactions on Flickr 
versus iNaturalist with interactions on Flickr weighted towards the spring months and 
iNaturalist observations towards the summer months.  
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Figure 18. Total monthly interactions on Flickr and iNaturalist with migratory bird species of 

conservation concern. 

A different pattern in monthly interactions was observed for the Turnstone. In contrast, 
interactions peaked twice in the year in line with its two known migrations in the year. June 
and July saw the lowest amount of interactions, with interactions increasing up to the late 
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summer and early winter months, before decreasing to a lower level, although higher than 
the lows in June and July. Interactions then peaked again around February and March. As 
with Nightingales, there were a much larger number of interactions on Flickr than on 
iNaturalist. Lastly, for the Wheater, two peaks in the number of interactions were also 
observed which were again much more pronounced on Flickr than on iNaturalist. The first 
peak occurred in April/May and the second in August/September. This was also in line with 
its known migrations in the spring and autumn. However, a slightly different pattern was 
observed in the interactions occurring on iNaturalist with much more interaction occurring 
on iNaturalist in June and July in comparison to Flickr.  

4.4. Discussion 

4.4.1. User preferences 

The results of our study reveal key differences between the interactions occurring on social 
media and citizen science. This was in line with our hypothesis that Flickr and iNaturalist 
users would express different preferences for individual species. Flickr users mostly shared 
their interactions with large, charismatic species, common to urban areas, with birds as the 
most popular type of species. This was in contrast to iNaturalist users, who were most 
interested in smaller species, including plants and insects. This trend was also visible at a 
spatial level, with users' activity concentrated in different areas. For example, in the case of 
peoples' interactions with bird and plant species in the Peak District (Figure 14). Our results 
are similar to those of other studies that show large-bodied mammals and birds are more 
frequently captured on Flickr versus iNaturalist, as well as other social media sites and 
surveyed preferences (Hausmann et al., 2018; Lopez et al., 2020). This may be because Flickr 
users can more easily capture these type of animals from a distance with high-specification 
cameras (Singla and Weber, 2011). As a result, Flickr can be a good additional source of data 
alongside citizen science data due to the number and variety of interactions occurring in the 
same locations (August et al., 2020; Mancini et al., 2018). These findings support the need to 
include a wider diversity of preferences in CES assessments using large social datasets 
(Gould et al., 2020b; Scowen et al., 2021). 

Nevertheless, although we found differences in user preferences between platforms, 
these may only reflect the varying preferences of a small number of people (Mancini et al., 
2019; Tenkanen et al., 2017). We discovered strong user biases within our results such as the 
28,457 human-species interactions occurring through one user, about 3% of the total number 
of interactions (Table 7). For large-scale assessments, including national assessments, it is 
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important that a representative sample is collected (Hein et al., 2020a; Raymond et al., 2014). 
These biases therefore present a key challenge in capturing a complete range of preferences 
using these new methods (Ghermandi and Sinclair, 2019). Still, these biases highlight the 
importance of using a combination of data sources as these may prove to be complementary 
in gaining a more representative measure of CES (Tenkanen et al., 2017; Wilkins et al., 2022). 
Our study also highlighted how combining multiple data sources with a spatial approach 
can help in identifying a greater number of potential CES hotspots despite user biases (van 
Zanten et al., 2016). 

4.4.2. Spatial patterns 

One common pattern to user behaviour between Flickr and iNaturalist were the large 
concentrations of interactions in urban areas. Through our linear model analysis, we found 
the accessibility of nature and urban green space to be key determinants of user activity on 
both platforms. The importance of urban green space for human well-being is well-
documented (Gómez-Baggethun and Barton, 2013; Remme et al., 2021). However, similar to 
previous studies, we found human-nature interactions on Flickr to be especially associated 
with urban green space (Ilieva and McPhearson, 2018; Lopez et al., 2020; Song et al., 2020). 
This was also visible based on the most frequent species captured with all top ten genera 
common to local parks in Britain. The most frequent species captured on iNaturalist also 
point to the importance of private gardens in generating CES, with many of the smaller 
species including butterflies a feature of these small patches of vegetation in populated areas 
(Owen and Owen, 1975). On the other hand, SACs were not found to be related to user 
activity, despite their significant cultural importance (Environmental Audit Committee, 
2021). Similar to Mancini et al. (2019), we found that these areas of high conservation value 
did not see a corresponding level of human-species interactions on social media. 

4.4.3. Bird biodiversity and conservation 

A further mismatch between peoples' perceptions of biodiversity and actual biodiversity 
was found in our comparison of user-bird interactions and modelled abundance data. While 
some studies have found a connection between higher levels of biodiversity and cultural 
appreciation (King et al., 2017; Lindemann-Matthies et al., 2010), our comparisons at national 
level did not. For example, the perceived species richness of the 36 selected species on Flickr 
and iNaturalist was highest in urban areas. A misalignment between peoples' perceived and 
actual biodiversity has been reported in similar studies at smaller scales (Belaire et al., 2015; 
Dallimer et al., 2012; Graves et al., 2017). Preferences for bird species also showed no clear 
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relationship with conservation status, nor were interactions necessarily related to species 
abundance. This further highlighted the effect of species visibility in terms of size, charisma 
and preferred habitat on the level of interaction. For example, the large number of 
interactions with Kestrels and Buzzards relative to their total population can be related to 
their iconic status, size and presence in the skies above open farmland. In contrast, other 
birds with less amounts of interaction such as the Meadow Pipit and the Skylark, besides its 
brief song flight, are mostly inconspicuous on the ground, or Warblers, which are fast-
moving and prefer woodland (Sharrock, 1976). 

Still, our time-series analysis captured interactions with a set of threatened migratory 
species during known migratory periods. This showed how the use of social media data can 
still enable an accurate analysis of how people express preferences for highly-valued species 
from a conservation perspective (Di Minin et al., 2015). Notably, interactions were also much 
higher on Flickr versus iNaturalist. Nevertheless, generally the weak connection between 
interactions and both species and areas of high conservation value shows how social media 
can only reveal specific cultural contributions of biodiversity. That is, CES captured through 
the methods employed in our study are most useful in determining the value of highly-
accessible nature which may not be under the same level of conservation management as 
more remote, protected areas. For example, urban parks can play a critical role in local 
biodiversity conservation (Aronson et al., 2017). The CES captured using social media can 
therefore provide vital support for urban conservation policies (Andersson et al., 2015). In 
Britain, this includes the proposed Natural Recovery Network which aims to link protected 
sites with green and blue urban infrastructure (The Wildlife Trusts, 2018). In doing so, this 
would support the creation of multi-purpose habitats for both recreation and biodiversity 
(Hansen and Pauleit, 2014). 

Our comparison, however, only considered species richness in terms of the 36 bird 
species we selected. Considering a larger group of species across different taxonomic classes 
may reveal stronger relationships. The use of a median threshold to count a bird species as 
present using the modelled data may also have affected our comparison as this value may 
not be appropriate for all species (Nenzén and Araújo, 2011). In addition, we relied on the 
accuracy of the species interaction and classification models to generate image predictions. 
A large user study could be conducted to definitively measure model accuracy. 
Alternatively, the use of user-generated metadata associated with Flickr images, such as tags 
and descriptions could also be used to confirm prediction accuracy (Havinga et al., 2021b). 
Applying more conservative filters to image predictions is also possible. For example, we 
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saw significant improvements in the accuracy of the species classification model after 
applying the maximum entropy filter of 2.42 (Supplementary Table S12) which resulted in 
the majority of the most frequently captured genera being identified with 70% accuracy or 
more (Supplementary Table S13). This strengthened the reliability of our results. 

4.4.4. Large-scale CES assessment 

Finally, the specificness with which CES can be measured using social media and deep 
learning presents both challenges and opportunities in conducting large-scale CES 
assessments. The key challenge facing decision-makers in ecosystem management is how 
to integrate culture in a way that both reveals its diversity and makes it amendable to 
systematic appraisal (Fish et al., 2016). The scale and level of detail provided by social media 
and deep learning enable the systematic appraisal of CES at large scales (Egarter Vigl et al., 
2021). Such appraisals can support the quantification of CES beyond simple scoring 
methods (Boerema et al., 2017) and better link ecosystem condition and processes to CES 
(Gould et al., 2020b). For example, we were able to identify specific species and locations 
generating CES in our study, and capture changes related to threatened bird species 
through the seasons. This is especially relevant to ecosystem service assessment frameworks 
such as the SEEA EA which aim to connect CES measurements to national statistics while 
monitoring ecosystem service supply and ecosystem condition over time (Hein et al., 2020a, 
2015). Making such information available, and in a format compatible with frameworks such 
as the SEEA EA, is one important way in which to make the ecosystem service concept more 
relevant to decision-making (Mandle et al., 2021).   

However, in seeking to capture CES at large-scales, deep learning and social media-
based methods take on a reductionist approach to CES assessment which may ignore 
important context-specific meanings (Gould et al., 2020a). We approached our study of CES 
in very broad terms, relating human-species interactions to the cognitive enjoyment of 
biodiversity (Havinga et al., 2020). Still, there are many different individual, collective and 
sometimes overlapping contexts in which CES are generated and these may have varying 
degrees of value (Chan et al., 2012b; Fish et al., 2016). Much of this value may not be 
measurable through the quantification of single human-species interactions because not all 
are recorded on social media (Calcagni et al., 2019) or because they only emerge through 
deliberative approaches (Kenter et al., 2016). Nevertheless, the data that is available through 
social media does make it possible to untangle some of this cultural variation. For example, 
the text data associated with Flickr images can contain quite specific motivations for 
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peoples' interactions (Havinga et al., 2021b). At the same time, social media also offers the 
opportunity to examine collective experiences through the presence of virtual communities 
(Langemeyer and Calcagni, 2022). It is therefore still important to use a variety of approaches 
to CES assessment with different epistemological underpinnings (Raymond et al., 2014; UK 
NEA, 2014). 

4.5. Conclusion 

Our findings show that deep learning and social media reveal specific contributions of 
biodiversity to cultural well-being. Peoples' species interactions on social media were found 
to be closely linked to the accessibility of nature and peoples' perceptions of biodiversity 
based on a selected group of bird species did not always match ecological measures. The use 
of social media and deep learning is therefore most useful in determining the cultural 
contributions of accessible nature, especially in urban settings. Here, the use of social media 
alongside citizen science data captures a greater variety of preferences due to the differences 
in user activity between platforms. These preferences can then be linked to specific 
biophysical attributes in terms of spatial location and species classes using deep learning, 
including preferences for species of conservation concern over time. These novel 
techniques can therefore make key contributions to large-scale CES assessments. In doing 
so, the cultural value of nature can be better represented in ecosystem service assessments 
to achieve sustainable policy goals. 
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Chapter 5.  

Understanding the sentiment generated by cultural 
ecosystem services using social media and natural 
language processing 
 

 

 

 

Abstract. Social media is increasingly being employed to develop Cultural Ecosystem 
Services (CES) indicators. The image-sharing platform Flickr has been one of the most 
popular sources of data. Most studies, however, tend to only use the number of images as a 
proxy for service supply quantity, but this does not fully represent the benefit generated by 
ecosystems in terms of peoples’ positive experiences. To address this gap, we apply a 
number of natural language processing (NLP) models to measure the sentiment associated 
with Flickr-based CES estimates using the accompanying text posted by users. We find that 
the aesthetic quality of the landscape and the presence of particular species results in higher 
levels of sentiment. However, we also find that different biophysical settings influence this 
sentiment and that sentiment is sometimes more strongly related to social activities than 
many natural factors. Nevertheless, we find clear connections between CES and sentiment 
captured on social media and a national, geo-referenced survey of recreational well-being. 
Our findings illustrate that using only the number of images to establish CES indicators 
using social media may ignore the varying degrees of CES generated by nature. The 
additional detail provided by these novel techniques can also help policy makers identify 
optimal biophysical features for recreational land use management. 

 

Based on: 

Havinga, I., Marcos, D., Bogaart, P.W., Tuia, D. and Hein, L. 2022. Understanding the 
sentiment generated by cultural ecosystem services using social media and natural language 
processing. Ecosystem Services (submitted).



  92 
 

5.1. Introduction 

The experience of nature generates a great amount of human well-being (Chang et al., 2020; 
Russell et al., 2013). Peoples’ interactions with individual species and ecosystems at the 
landscape level contribute to a number of benefits including better mental and physical 
health (Sandifer et al., 2015). These contributions can be broadly defined as Cultural 
Ecosystem Services (CES) which capture the contributions of ecosystems to the non-
material benefits arising from human-nature interactions (Chan et al., 2012a). For example, 
human-ecosystem interactions with individual flora and fauna can produce a level of 
cognitive enjoyment related to biodiversity (Keniger et al., 2013) while also generating 
feelings of aesthetic appreciation at the landscape level  (Bratman et al., 2012). 

The benefits derived from CES are closely tied to the positive experiences generated 
by human-nature interactions (Havinga et al., 2020). Such experiences are currently under 
threat as opportunities to experience nature and develop positive emotional attachments 
have decreased with increasing urbanisation and the rise of alternative multisensory 
experiences such as electronic media (Soga and Gaston, 2016). Termed the “extinction of 
experience” (Miller, 2005), this decrease in human-nature interactions, and the positive 
sentiment attached to these experiences, has motivated calls for careful land use planning 
and management to reconnect people with the natural environment (Abson et al., 2017).  

However, land management policies, especially at large scales, are often restricted 
by the amount of quantitative, spatially-explicit information available (Edens et al., 2022; 
Gould et al., 2020b). As well as employing a number of qualitative methods such as 
deliberative approaches, CES assessments also seek to provide quantitative information on 
ecosystem service supply to achieve sustainable policy goals (Raymond et al., 2014). For 
these purposes, social media has emerged as a promising new source of data due to the scale 
and detail in which CES measures can be established (Gould et al., 2019a; Havinga et al., 
2020). This has led to a number of studies exploring the potential of social media including 
the image-sharing platform Flickr, which has become one of the most widely utilised due to 
the accessibility and geographic scope of its data (Ghermandi and Sinclair, 2019; Richards 
and Tunçer, 2018). 

So far, CES measures based on social media data have generally relied on generic 
indicators, such as the number of Flickr images per site or spatial unit, with an implied 
uniform value (Graham and Eigenbrod, 2019; van Zanten et al., 2016; Wood et al., 2013). 
However, one human-nature interaction recorded on social media may hold more weight 
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than another in terms of the emotional response it elicits in the person (Fox et al., 2021a). 
This is especially relevant when considering CES as contributing factors to non-material 
benefits because this relies on people having a positive experience in nature (Havinga et al., 
2020). Different biophysical features or settings may contribute to the level of mental or 
physical enjoyment experienced by an individual and this should also be considered in 
developing CES measures (Gould et al., 2019a). 

Here, the text associated with Flickr images in the form of titles, tags and descriptions 
can offer a large amount of relevant information to determine the degree to which CES 
generate positive experiences (Wartmann et al., 2019). Some recent studies have begun to 
utilise this information from Flickr to assess peoples’ experiences of nature using sentiment 
analysis, a form of natural language processing (NLP) used to predict affective states in text 
(Becken et al., 2017; Brindley et al., 2019; Fox et al., 2021a). A range of NLP models are 
available to conduct sentiment analyses (Soleymani et al., 2017), including bag-of-words 
approaches such as hedonometer, a corpus of 10,000 words each with a crowdsourced 
sentiment rating between 1 and 9 (Alshaabi et al., 2021) and Sentiment140, a maximum 
entropy-based model trained using emoticons on Twitter (Go et al., 2009). This is in addition 
to more advanced methods such as RoBERTa, a deep learning-based model which uses 
artificial neural networks to extract abstract feature representations from text, which are 
then used to assess its sentiment (Liu et al., 2019). 

Nevertheless, despite the availability of these models, the application of sentiment 
analysis to better understand CES measures based on social media has so far been limited 
(Fox et al., 2021a). Machine learning methods, including deep learning, have now enabled 
detailed CES predictions using the image content on Flickr (Egarter Vigl et al., 2021; Havinga 
et al., 2021a; Lee et al., 2022) or their relations to satellite imagery (Levering et al., 2021). The 
application of a range of NLP models can in turn enable an assessment of the sentiment 
associated with these predictions and, ultimately, the degree to which these are associated 
with a positive experience of nature. At the same time, the application of deep learning 
models to predict image scenes and attributes can reveal the different factors determining 
the sentiment associated with CES supply (Cao et al., 2022). Still, validating the use of social 
media for CES assessment using alternative sources such as surveys remains an important 
research priority (Englund et al., 2017; Oteros-Rozas et al., 2018). 

The objective of our study is to examine the positive experiences associated with 
CES supply using sentiment analysis. To do this, we utilise Flickr and deep learning-based 
predictions of CES generated in previous research for Great Britain (Havinga et al., 2021a). 



  94 
 

We deploy NLP models to associate those predictions with sentiments related to the text 
accompanying the images. We seek to answer the following research questions: (1) What is 
the sentiment associated with CES-related human-nature interactions on social media? (2) 
How do different biophysical and human-related settings influence the sentiment 
generated by these interactions? (3) Do measures of sentiment and CES match national 
survey measures of well-being? In doing so, we aim to understand sentiment analysis and 
social media more broadly as an effective tool in measuring CES and, in particular, the 
positive experiences derived from human-nature interactions (Langemeyer and Calcagni, 
2022). 

5.2. Methods 

5.2.1. Study design 

Our study sought to examine the positive experiences associated with human-nature 
interactions using social media data and NLP. We focused on two CES: landscape 
enjoyment and cultural appreciation of biodiversity. We used information relating to these 
two CES generated in previous research in the form of geo-located Flickr images with 
aesthetic quality and human-species interaction predictions (Havinga et al., 2021, Havinga 
et al., under review). These predictions were generated using deep learning-based models 
and trained using crowdsourced datasets. We conceptualised aesthetic quality as an integral 
factor in determining aesthetic ecosystem service flow and a human-species interaction as 
CES broadly related to the cognitive enjoyment of biodiversity. CES are, in turn, determined 
by whether people are having a positive experience and the size of contribution to this 
experience from nature, in terms of CES supply, can be determined by the setting and type 
of interaction occurring, alongside other contributing factors such as social context and the 
effort of the individual themselves (Havinga et al., 2020). 

In addition, we also utilised image scene and attribute predictions to understand the 
biophysical and human-related factors influencing CES supply such as landscape features 
or human activities. A scene class can be defined as the overall semantic description of an 
image while an image attribute is a specific characteristic within it (e.g. a collection of objects 
or human activity). To understand the positive experiences linked to these human-nature 
interactions, we compared three NLP models tasked to estimate the sentiment expressed in 
user-generated image text and also looked at the adjectives employed by users. We examine 
the differences in predicted sentiment for aesthetic quality and used the best-performing 
model for the remaining analysis. To validate and compare our Flickr and NLP-based 
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measures of sentiment and CES, we compared our results to a national-wide survey of 
nature recreation in England, including self-reported well-being measures. 

5.2.2. Dataset: a collection of outdoor Flickr images in Great Britain 

To examine the sentiment associated with landscape enjoyment and cultural appreciation 
of biodiversity, we drew on a Flickr image dataset and CES predictions generated in 
previous research (Havinga et al., 2021, Havinga et al., under review). This consisted of 9.8 
million outdoor images, identified using the Places365 deep learning model (B. Zhou et al., 
2017). For this research, we also utilised the image scene class and attribute predictions 
generated by the Places365 model: we used 35 of the most relevant attribute classes and 30 
scene classes (see Supplementary Table S2 and Table S3), taking only the most confident 
scene class predictions per image. To conduct the sentiment analysis in this study, we then 
also utilised the associated Flickr image metadata in the form of titles, tags and descriptions 
by accessing the Flickr Application Programming Interface (API) using the ‘flickrapi’ library 
in Python. 

5.2.3. Text data processing 

To conduct part of our analysis, an additional text processing step was needed to better 
structure the data. This was because the image titles, tags and descriptions generated by 
users contained a large amount of irrelevant text such as website links, stopwords and 
duplicated words. For example, without removal, duplicated words recognised by the 
hedonometer model would contribute multiple times to the overall sentiment of a single 
image. We therefore took a number of text filtering steps to produce a second, processed 
text dataset to apply this model and look at individual words employed by users through 
different types of interactions.  

To filter the dataset, first, we removed all html, numeric characters, punctuation, 
English stopwords and words less than three characters in length using the ‘tm’ package in 
R. Second, we removed local toponyms by querying local place names using a 5km grid 
overlay and the OS Place Names API3. This was because local place names generate a 
considerable amount of semantic ambiguity. For example, “Lizard” can mean the name of 
the southernmost peninsula in Britain rather than someone’s interaction with the type of 
animal. As a final step, we only used images with at least three words to limit the bias of 
single or small groups of words on overall sentiment. This ultimately meant working with a 

 
3 https://www.ordnancesurvey.co.uk/business-government/products/names-api  
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dataset of 4.7 million images to conduct our analysis, with the unfiltered dataset reduced to 
the size of the filtered dataset for an equal comparison. 

5.2.4. CES predictions  

The Flickr dataset contained both CES measures of landscape enjoyment and cultural 
appreciation of biodiversity. For landscape enjoyment, this consisted of an aesthetic quality 
rating between 1 and 10 per image. These predictions were generated using a Convolutional 
Neural Network (CNN) trained on a crowdsourced image dataset of the British landscape 
(Havinga et al., 2021a). Cultural appreciation of biodiversity was captured as a binary 
prediction representing a generic or human-species interaction. This prediction was also 
generated using a CNN model, trained to distinguish between species and generic 
interactions using a dataset of Flickr and iNaturalist images, a citizen science platform 
(Havinga et al., under review). We took only the most confident predictions and structured 
our analysis around five of the most frequent species classes captured by users: Plants, birds, 
insects, mammals and arachnids. We then looked at the sentiment associated with the most 
common species orders per class (0.75 quantile, with a minimum of 100 interactions). 

5.2.5. NLP models 

5.2.5.1. Hedonometer 

To estimate the sentiment associated with peoples’ aesthetic enjoyment and cultural 
appreciation of biodiversity, we applied three different NLP models. The first model, the 
Hedonometer dataset, was applied using a bag-of-words approach which meant estimating 
sentiment using the intersection of a dictionary of words with individual sentiment scores. 
This hedonometer dataset consists of a 10,000 word corpus each with a crowdsourced 
sentiment rating between 1 and 9 collected using the Amazon Mechanical Turk platform 
(Alshaabi et al., 2021). The dataset has been successfully applied to Twitter data in the 
context of national well-being measures in the USA (Mitchell et al., 2013), examining the 
sentiment of urban green space visitors (Schwartz et al., 2019) and peoples’ attitudes towards 
climate change (Cody et al., 2015). The mean sentiment per image was calculated by taking 
a “bag” of words from the filtered Flickr text dataset and then taking an average of the 
crowdsourced sentiment assigned to the subset of words that appear in the Hedonometer 
dataset. We then normalised to a range of -1 to 1 so as to compare with the predictions of the 
two other models. 
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5.2.5.2. Sentiment140 

The second model applied we applied was the Sentiment140 model which uses the machine 
learning classifier Maximum Entropy (MaxEnt) to generate predictions (Go et al., 2009). 
MaxEnt models are feature-based models which calculate a conditional probability across 
a set of classes using optimised feature weights generated after training. The model was 
trained on a dataset of Tweets with emoticons as training features and a model output of -1 
for negative, 0 for neutral, and 1 for positive sentiment. It has been applied in the context of 
public health monitoring to infer Twitter users’ health status over time (Kashyap and 
Nahapetian, 2014) and to test the relationship between sentiments expressed on Twitter and 
socio-demographic indicators (Ostermann, 2021). In our case, we applied the model to the 
descriptions of the unfiltered Flickr images to capture whole sentences, similar to the format 
of Twitter. We did this using the Sentiment140 API4, before normalised the resulting scores 
to be between -1 and 1. 

5.2.5.3. RoBERTa 

Finally, the third model we applied to generate sentiment predictions was the RoBERTa 
model. RoBERTA is a deep learning-based model which uses artificial neural networks to 
generate feature representations of words and then uses these to produce sentiment 
estimates (Liu et al., 2019). It has produced state-of-the-art results based on a two-step 
training scheme, drawing on both large amounts of unlabelled training data and task-
specific, labelled data. It has previously been used to estimate the effects of the Covid-19 
pandemic on student sentiment using data from the social media site Reddit (Yan and Liu, 
2021) and the sentiment associated with common points of interests such as parks in cities 
globally (Stelzmüller et al., 2021). We used a RoBERTa-base model trained on 124 million 
tweets from January 2018 to December 20215, and finetuned for sentiment analysis using a 
crowdsourced, annotated training dataset of tweets (Barbieri et al., 2020; Loureiro et al., 
2022). The model produced a softmax score across a negative, neutral and positive class. We 
used the Python libraries ‘Transformers’ to download the model and apply it to our dataset, 
taking the positive score and subtracting the negative score before normalising the model 
output to a -1,1 range. As with the Sentiment140 model, we applied the model to only the 
descriptions of the unfiltered Flickr text dataset to preserve whole sentences similar to the 
format of Twitter. 

 
4 http://help.sentiment140.com/api 
5 https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest 
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5.2.6. Adjective analysis 

To gain additional insight into the sentiments expressed by users in the text associated with 
their images, we also looked at the most common and unique adjectives used across 
aesthetic quality ratings and for different species. Adjectives are the most emotive elements 
of language and can therefore provide one of the clearest indications of the affective state of 
people (Bush, 1973). To do this, we looked at how users employed positive and negative 
adjectives across aesthetic quality ratings. We looked at a selection of adjectives, choosing 
“beautiful”, “enjoy”, “like”, “calm”, “happy”, “love” as well as “afraid”, “awful”, “sad”, “angry”, 
“hate” and “ugly”. In addition, we also examined the most uniquely employed adjectives for 
the species orders spiders (Araneae), songbirds (Passeriformes), butterflies/moths 
(Hymenoptera) and the Asparagales plant order, which includes the daffodil flowering plant 
genus (Narcissus). This was done by calculating the term frequency-inverse document 
frequency (tf-idf) of adjectives used by Flickr users for each species order in comparison 
with each other. Employing tf-idf meant we could analyse the frequency of an adjective used 
to describe a particular species in proportion to the frequency of its use for other species. 
This was done using the ‘udpipe’ package in R to identify adjectives and the ‘tidytext’ 
package to calculate the tf-idf. To gain a more balanced view of the adjectives employed by 
all users, we took a 10% sample of images per user and only included adjectives if they 
occurred at least twice for each species order. 

5.2.7. MENE survey 

To validate our results, we compared our social media and NLP model results with nature 
trips and well-being measures reported in a national recreation survey of England. The 
Monitor for Engagement with the Natural Environment (MENE) is a demographically-
representative survey of England conducted throughout the year in which respondents are 
asked about their trips to nature in the past week. Respondents are then asked more 
information about one of these trips, such as the location and motivation for their visit, with 
some then asked to report measures of well-being as a result of the trip. For our study, we 
used the survey results collected over a ten year period between 2009 and 2019 (Natural 
England, 2019).  

In the survey, people are given a number of options to choose from to state the 
motivation for their trip. The options most relevant to our study were the statements “to 
enjoy the scenery” and “to enjoy the wildlife” to which people could answer either “Yes” or 
“No”. As a first point of comparison, we compared the mean sentiment, aesthetic quality and 
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species interactions captured in Flickr images within a 1km radius of these visits using the 
trip coordinates. This subset consisted of 82,950 respondents. This enabled us to compare 
whether “Yes” responses were associated with higher sentiment and CES measures 
generated using Flickr data. We checked the significance of these differences using two 
sample tests chosen after checking for normal distributions using the Shapiro-Wilk test. 
This included the Welch Two Sample t-test as a parametric test and the Wilcoxon rank sum 
test as a non-parametric test. 

A further subset of respondents (11,667 people) were asked to report feelings of well-
being associated with their trip. These respondents were asked to what degree they agreed 
with the statements “I enjoyed it”, “it made me feel calm and relaxed”, “it made me feel 
refreshed and revitalised”, “I took time to appreciate my surroundings”, “I learnt something 
new about the natural world” and “I felt close to nature”. We took the responses to these 
statements as a second point of comparison, also calculating the mean sentiment, aesthetic 
quality and species interactions in Flickr images within a 1km radius and then comparing 
the level of agreement with these Flickr-based measures. 

5.3. Results 

5.3.1. Sentiments associated with CES 

5.3.1.1. Aesthetic quality 

Figure 19 shows the relationship between sentiment and aesthetic quality using the 
predictions of the three NLP models as well as the relative word frequencies of a set of 
positive and negative adjectives. All three models resulted in significant (p<.001) trends in 
the relationship between aesthetic quality and sentiment, with a clear upward overall trend. 
The application of all three models showed a similar pattern with sentiment the lowest for 
the lowest aesthetic quality ratings, a small levelling-off between the 5 and 7 ratings, before 
increasing again with the highest ratings. This increase was the most prominent for the 
RoBERTa sentiment predictions, followed by the Sentiment140 and hedonometer models, 
with the hedonometer predictions barely increasing from the average ratings. The 
sentiment140 saw the largest range of uncertainty, indicating a wider range of 
positive/neutral predictions for each rating. Ultimately, although the RoBERTa model 
showed the strongest relationship with higher aesthetic ratings, the Hedonometer model 
showed the best overall relationship (Supplementary Table S15), and the highest correlation 
with the MENE survey responses (Pearson’s R=0.142) versus Sentiment140 (Pearson’s 
R=0.053) and RoBERTa (Pearson’s R=0.09) (Supplementary Table S16). 
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 In terms of the adjectives employed by users across the aesthetic ratings, more 
positive adjectives and less negative adjectives were used per image relative to the total 
number of images per rating as aesthetic quality increased (Figure 19b). The positive 
adjectives “beautiful”, “calm” and “like” showed the clearest relationship with aesthetic 
quality, showing substantial increases with higher ratings. For example, many landscape 
images were associated with the word “beautiful”. The words “happy”, “enjoy and “love” 
showed less of a clear relationship, with a slight increase across the average ratings 
associated with activities such as picnicking in the park. Conversely, the use of the word 
“hate” fell steeply from low to high aesthetic quality. The use of the word “hate” was 
associated with urban settings such as the road network being described in Figure 19b (i). 
Generally, the words “sad” and “ugly” also fell with increasing aesthetic quality while the 
words “afraid”, “awful” and “angry” showed less of a clear relationship, sometimes being 
used to describe the behaviour of animals in images. Notably, the number of positive 
adjectives employed by users was far greater than negative adjectives. 
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Figure 19. The relationship between Flickr user sentiment and aesthetic quality. In (a) the sentiment 
predictions of the three NLP models are shown versus aesthetic quality. Images were grouped into 
aesthetic quality rating bins (e.g. 1 represents images with a rating between 0 and 1) and the mean 
sentiment calculated per rating bin with a loess smoothing filter showing the 95% confidence 
intervals. All three models were found to produce a significant (p<.001) relationship between 
sentiment and aesthetic quality. In (b) the relative word frequencies are shown of six positive and 
six negative adjectives per rating, in addition to four image examples for (i) “enjoy”, (ii) “beautiful”, 
(iii) “hate” and (iv) “angry”. Photos © Marco Verch, Scott Wylie, Lydia and Stephen Gidley (cc-
by/2.0). 
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5.3.1.2. Human-species interactions 

We found that, overall, the hedonometer model produced the strongest correlations with 
the MENE survey responses (Supplementary Table S15) as well as the number of species 
interactions (Supplementary Table S17). For example, the responses to “I felt close to nature” 
saw a 0.06 correlation with the number of species interactions. We therefore used its 
predictions to look at the relationship between different species interactions and sentiment, 
shown in Figure 20, although, overall, correlations for all sentiment predictions were low.  

Plants produced the highest levels of sentiment with plant orders such as Asparagales, 
which includes daffodils, seeing some of the highest levels of sentiment. Other flowering 
orders such as Ranunculales which includes the buttercup family, also saw high levels of 
sentiment versus others, such as Caryophyllales, which includes cacti, and Poales, which 
includes grasses, with lower sentiment. After plants, birds and specifically butterflies and 
moths as insects saw the next greatest level of sentiment associated with user interactions. 
In terms of birds, this included cranes, waterfowl and songbirds, while pelicans and herons 
produced the lowest levels of sentiment. Mammals also saw relatively high levels of 
sentiment in comparison to the other species while arachnids, including spiders and 
scorpions, saw the lowest sentiment expressed towards them out of all species. 

Considering the difference in the words used by Flickr users for a selection of these 
species, the tf-idf scores in Figure 20 shows the uniqueness of the adjectives employed by 
users in their interactions with spiders, songbirds, butterflies/moths and the Asparagales 
plant order. Spiders saw very little unique words with only five words gaining a non-zero tf-
idf score, the strongest of which were “international” and “globular”. In contrast, songbirds, 
butterflies/moths and the Asparagales order saw a much larger and more positive range of 
adjectives more uniquely employed by users versus the other species. For example, in the 
case of butterflies/moths, the adjectives “magnificent”, “perfect” and “beautiful” gained 
relatively high tf-idf scores. “beautiful” was also often used to describe Asparagales versus 
the other species orders. In the case of songbirds, adjectives such as “young” and “friendly” 
were more often used in comparison to the other species. 
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Figure 20. The sentiment and adjectives associated with species interactions using the predictions 
of the hedonometer NLP model. In (a) mean sentiment for the most common species order 
interactions are shown while (b) shows the adjectives with the highest tf-idf scores employed by 
Flickr users to describe their interactions with spiders, songbirds, butterflies/moths and the 
asparagales order. Some additional place and camera-related words such as “nationaltrust” and 
“macro” have been removed. 
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5.3.2. Influence of biophysical settings 

Figure 21 shows the sentiment and aesthetic quality related to different image attributes and 
scenes based on the prediction of the hedonometer model. Again, we used the hedonometer 
model for this as it showed the strongest correlation with the responses in the MENE survey. 
However, overall, the correlation was still small. For example, the statement “I enjoyed it” 
saw a Pearson’s R of 0.05 (Supplementary Table S15). This was also reflected in the weak 
overall correlation between sentiment and aesthetic quality in Figure 21 per attribute 
(R2=0.05) and scene class (R2=0.08). The sentiment and aesthetic quality linked to different 
attributes varied greatly. The attributes “flowers” and “socializing” were linked to the 
highest levels of sentiment while “railroad” and “brick” experienced the lowest sentiment. 
Most of the urban or man-made attributes, including other attributes such as “pavement” 
and “asphalt”, saw both low sentiment and low aesthetic quality. Also, notably, other social 
activity-related attributes such as “congregating” and “spectating” were linked to high levels 
of sentiment but low aesthetic quality. In contrast, “hiking” and “climbing” were associated 
with high aesthetic quality but fairly low sentiment. This was also true of nature-related 
attributes such as “ocean”, “natural” and “snow”, although water-related activities and 
features elicited fairly high levels of sentiment. 

 Although the overall relationship between sentiment and aesthetic quality again 
varied greatly for scene classes, a similar pattern of both low sentiment and aesthetic quality 
associated with man-made and urban-related settings was also detected (Figure 21). For 
example, the scenes “train station/platform”, “highway” and “bus station/indoor”. In 
particular, “cemetery” was associated with the lowest sentiment. However, it was still 
associated with a moderate level of aesthetic quality. “orchard” and “filed/wild” were linked 
to the highest levels of sentiment, suggesting a link with nature, while “golf course” and 
“campsite” also generated high levels of sentiment versus moderate aesthetic quality, an 
indication that social activities are also important to peoples’ positive experiences. Scenes 
linked to natural settings, such as “tundra”, “waterfall” and “hayfield” were linked to very 
high aesthetic quality but moderate sentiment. 



 

 105   

 
Figure 21. Sentiment versus aesthetic quality for a selection of (a) image attributes and (b) scene 
classes generated by the Places365 model. The size of points for attributes indicate the number of 
images with a score > 0.6 and for scenes images with a softmax score > 0.5. The grey lines indicate 
the line of best fit with 95% confidence intervals (attributes R2=0.05 and scenes R2=0.08). 
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5.3.3. Comparison with surveyed well-being measures 

Table 9 shows Flickr-based measures of CES and sentiment, using the mean prediction of 
the hedonometer model, compared with trips reported in the MENE survey. A clear 
relationship was observed between the locations visited by survey respondents and the CES 
measures estimated using Flickr images. Trip locations visited to enjoy the scenery saw a 
mean aesthetic quality of 4.29 in Flickr images within 1km versus 3.91 in images near trip 
locations not taken for this reason (p<.0001). The sentiment associated with Flickr images 
near trip locations undertaken for enjoying the scenery was also significantly higher 
(p<.0001). There was also a significant difference between trips taken to enjoy wildlife and 
the mean number of species interactions, with 19.3 species interactions for wildlife-related 
trips versus 10.9 for trips not taken for this reason (p=.001). Again, sentiment was found to be 
significantly higher in Flickr images in the same areas as wildlife-related trips reported in 
the MENE survey (p<.0001).  

Similarities were also found between Flickr-based CES measures and sentiment and 
the self-reported well-being statements in the MENE (Figure 22). Significant differences 
were especially visible for the level of agreement with the statement “I took time to 
appreciate my surroundings” and aesthetic quality. The statements “it made me feel calm 
and relaxed” and “I felt close to nature” also showed significant differences between the 
levels of agreement and aesthetic quality. Further analysis looking at the correlations 
between aesthetic quality and the levels of agreement with each statement confirmed this 

Table 9. Comparison of Flickr-based sentiment and CES measures within 1km of trips taken to 
enjoy the scenery or wildlife as reported in the MENE survey. 

Trip 
Motivation 

Response Flickr-based CES 
measure 

Mean CES Mean sentiment 

To enjoy 
scenery  

Yes Aesthetic quality 4.29 (± 0.03) 
(p<.0001)† 

0.14 (± 0.003) 
(p<.0001)‡ 

No 3.19 (± 0.02) 
(p<.0001)† 

0.13 (± 0.002) 
(p<.0001)‡ 

To enjoy 
wildlife 

Yes Human-species 
interactions  

19.3 (± 5.46) 
(p=.001) ‡ 

0.145 (± 0.004) 
(p<.0001)‡ 

No 10.9 (± 0.780) 
(p=.001)‡ 

0.135 (± 0.002) 
(p<.0001)‡ 

†based on Welch Two Sample t-test, ‡based on Wilcoxon rank sum test 
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(Supplementary Table S18). The levels of agreement with the different statements and 
number of species interactions generally showed large standard errors which affected the 
significance of some of the differences. However, the statement “I felt close to nature” 
produced significant differences in the number of species interactions associated with 
“strongly agree” and almost all other levels of agreement. Correlation analysis again 
confirmed this relationship between the statement and peoples’ level of agreement 
(Supplementary Table S19). 

In terms of sentiment, significant differences were also observed. The most notable 
were associated with the statement “I enjoyed it” which saw larger sentiment associated with 
stronger levels of agreement. Less notable but still significant differences were also observed 
between levels of agreement for the statements “I took time to appreciate my surroundings’ 
and “I felt close to nature”. Levels of agreement with other statements were generally not 
associated with significant differences. In particularly, “strongly agree” was affected by large 
standard errors. This was because there were only a small number of people (<60) that gave 
this response in the survey. Further correlations between sentiment, CES measures and the 
MENE survey results can be found in Supplementary Table S15, Table S16 and Table S17). 
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Figure 22. Comparison of satisfaction expressed in the MENE survey data and the mean (a) aesthetic 
quality, (b) number of species interactions and (c) sentiment expressed in Flickr images within 1km 
distance of the geo-located visits. 
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5.4. Discussion 

The use of social media to measure CES has seen rapid growth in recent years (Ghermandi 
and Sinclair, 2019). Nevertheless, so far, it’s potential has not been fully realised, and key 
challenges remain regarding the representativeness of the data and its use in producing 
policy-relevant indicators (Havinga et al., 2020; Oteros-Rozas et al., 2018). In our study, we 
have demonstrated that, through the application of NLP methods and machine learning, 
connections can be made between social media-based CES measures and peoples’ positive 
experiences of nature, a key consideration for CES indicator development in the context of 
public health (Sandifer et al., 2015). At the same time, our findings highlight a number of 
biophysical features and settings that influence peoples’ positive experiences of nature. 

Overall, there was a clear relationship between aesthetic quality and sentiment, with 
a clear uptrend towards higher aesthetic ratings. This finding is consistent with the health-
promoting impacts of outdoor environments outlined in the landscape aesthetics literature 
(Abraham et al., 2010). For example, landscapes of high aesthetic quality, in terms of their 
perceived naturalness and diversity, evoke positive emotions in people, resulting in 
improvements to their general mood and mental health (Bieling et al., 2014; Seresinhe et al., 
2019). Notably, there was a levelling-off in sentiment for the images within the average 
aesthetic rating bins. This may highlight the greater variability in peoples’ responses to 
landscapes of ordinary quality and the more consistent responses elicited by either very ugly 
or attractive environments (Workman et al., 2017). This effect was observable in the relative 
word frequencies of adjectives employed by users in our study, such as “beautiful” and 
“calm” versus “ugly” and “sad”, which showed strong relationships with high and low 
aesthetic quality. 

In terms of species sentiment, some notable differences between species groups were 
also observed, with plants, especially flowering plants, generating the highest level of 
sentiment, following by insects and birds. These results are in line with those of survey-
based studies in Great Britain (Aerts et al., 2018). For example, in public green spaces around 
England, higher levels of flower cover were associated with larger restorative effects (Hoyle 
et al., 2017). Similarly, in a survey of public attitudes towards biodiversity attributes, 
butterflies were found to be one of the most valued insect species (Austen et al., 2021), 
confirming our results. In another study of urban households, songbirds were especially 
appreciated by people out of all garden birds (Cox and Gaston, 2015). It has been argued that 
more positive overall reactions to plants versus birds or insects may be due to their static 
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and thus more visible presence (Dallimer et al., 2012; Fuller et al., 2007). Some insects can 
also appear as a threat to people, evoking less positive emotions (Austen et al., 2021). This is 
also true of arachnids such as spiders which saw the lowest levels of sentiment expressed 
towards them in our study (Zvaríková et al., 2021). 

Previous studies employing survey methods have also shown the importance of 
particular biophysical features and settings on the positive experiences people gain from 
their interactions with nature. For example, social cohesion has been found to be one of the 
strongest mediators between green space and health (de Vries et al., 2013; Wolf and 
Wohlfart, 2014). This was also reflected in the results of our study, with the image attribute 
and scene classes “socializing” and “campsite” linked to some of the highest levels of 
sentiment, and the word “enjoy” being associated with picnicking in an urban park. 
Similarly, the high sentiment associated with the attributes “flowers” and “shrubbery”, as 
well as the more colourful plant species orders, reflect the significant positive effects of 
colour diversity and green planting (Carrus et al., 2015; Hoyle et al., 2018). Conversely, the 
sentiment linked to “tundra”, “hiking” and “climbing” versus aesthetic quality suggests very 
appealing but less comfortable environments may elicit more reflective responses rather 
than explicitly positive ones (Baklien et al., 2016; Stevenson and Farrell, 2018). 

The comparison with the MENE survey results showed good consistencies between 
CES measures, sentiment and respondents’ trip motivations and reported well-being. This 
provides good evidence that Flickr-based measures of CES are consistent with a large 
sample of self-reported visits across a large geographic and seasonal range, evidence that is 
generally missing in the CES literature (Oteros-Rozas et al., 2018). The positive experiences 
recalled by respondents in the survey such as “I enjoyed it” were also consistent with the 
sentiment expressed by Flick users, suggesting a common level at which these CES 
contribute to non-material benefits such as better mental health. Social media sentiment 
has been linked to national indicators of well-being (Kokil et al., 2020) while higher levels of 
vegetation cover and bird abundances have been found to be positively associated with a 
lower prevalence of depression, anxiety, and stress (Cox et al., 2017; Methorst et al., 2021). 
Social media-based measures of CES can therefore integrate these casual pathways to better 
study the effect of nature on people below the ecosystem scale (Botzat et al., 2016). 

However, not all statements of agreement in the MENE survey matched sentiment 
levels on Flickr. This may again be due to the fact that statements such as “I took time to 
appreciate my surroundings” are linked to more thoughtful experiences, rather than 
expressly positive ones. The number of people disagreeing or strongly disagreeing was also 
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very low, reflecting a general human positivity bias in relation to peoples’ voluntary trips to 
experience nature (White et al., 2013). Nevertheless, the significant differences between the 
more stronger levels of agreement and the Flickr-based sentiment measures is encouraging 
evidence that these novel data and techniques capture representative information on 
peoples’ interactions with nature. This confirms the results of some more recent studies 
which have started looking at validating social media-based indicators of CES with survey 
data (Johnson et al., 2019; Moreno-Llorca et al., 2020). 

The more reflective nature of some peoples’ positive experiences during their 
outdoor recreation also highlights some of the limitations of the approach taken in our 
study. Not all positive experiences related to nature may be expressed on social media while 
the full range of positive experiences that are expressed in users’ text may not be fully 
captured through the application of NLP models. For example, we found the image scene 
class “cemetery” to be associated with the lowest level of sentiment. However, cemeteries 
are associated with significant restorative effects (Quinton and Duinker, 2018), produced 
through feelings of peacefulness and contemplation (Nordh et al., 2017). Such positive but 
more ambiguous emotions are difficult to detect through sentiment analysis and require 
additional contextual information to generate accurate predictions (Poria et al., 2020). At the 
same time, Flickr users may be less eager to share more contemplative experiences such as 
these due to the heavy positivity bias found on social media platforms (Waterloo et al., 2017). 

The manner in which people use Flickr may also have resulted in the hedonometer 
model achieving the highest correlation with the MENE survey, even versus the more 
advanced RoBERTa model. This is because RoBERTa has been trained to predict 
sentiments using Twitter data, a platform on which users express much stronger opinions 
versus Flickr (Samani et al., 2018). Therefore, the way in which Flickr users refer to the 
natural environment around them, such as a particular flower species, may be more neutral 
than the model is trained to detect. In contrast, the positive benefit gained from the 
interaction is better picked up by the hedonometer model just based on the inclusion of 
these words and their crowdsourced sentiment rating. The accurate performance of the 
hedonometer model has previously been demonstrated versus other national well-being 
survey data with the added advantage of a high level of interpretability (Loff et al., 2015; 
Mitchell et al., 2013). In contrast, understanding the factors influencing the predictions of 
machine-learning based NLP models is a challenge and these types of models have often 
been criticised for being “black boxes” (Barredo Arrieta et al., 2020). For example, it is not 
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always clear how RoBERTa is using the words in a sentence, such as verbs or adjectives, to 
generate a prediction (Clark et al., 2019). 

Nevertheless, our findings illustrate the relevancy of these novel data and techniques 
in the development of CES indicators. From a CES perspective, it is important to move 
beyond the use of simple proxies such as the number of images to better incorporate 
peoples’ positive experiences (Richards and Tunçer, 2018; Zhang et al., 2020). In a broader 
context, public health measures also typically miss specific but important details of nature 
exposure such as the quality of the nature (Hartig et al., 2014). In our study, we were able to 
relate different levels of aesthetic quality to different levels of sentiment using social media 
and deep learning. This can support CES measures that incorporate both aspects, and those 
that move beyond simple image counts (Fox et al., 2021a). However, the configuration of 
these different elements into a single indicator per CES requires further research. For 
example, simple weights using the sentiment and aesthetic quality scores could be used. 
This would follow similar weighting approaches taken in survey-based CES assessments 
using expert opinion and stakeholder views (Alvarez-Codoceo et al., 2021; Nahuelhual et al., 
2014). These measures could then be validated by comparing with survey-based data on the 
most appreciated ecosystem types or other biophysical attributes (Gould et al., 2019a).  

5.5. Conclusion 

There is an increasing urgency to address rapidly falling levels of human-nature interaction 
and policy-makers need relevant indicators to maximise the public health benefits 
generated by peoples’ positive experiences of nature. CES indicators representing the 
contributions of nature to peoples’ mental and physical health should therefore also 
account for this experiential aspect in their measures. In our study, we have demonstrated 
that social media and machine learning can account for the varying degrees of peoples’ 
positive experiences associated with two CES: landscape enjoyment and the cultural 
appreciation of biodiversity. We find that sentiment increases with aesthetic quality and 
that different human-species interactions generate varying levels of sentiment. These CES 
and sentiment measures  were found to match relevant well-being measures in a national 
survey of nature recreation. At the same time, we find that biophysical attributes and 
settings also influence peoples’ positive experiences such as those related to social activities. 
Our findings illustrate the relevancy of applying these novel techniques for CES indicator 
development.  
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Chapter 6. Synthesis 
The main aim of this thesis is to explore the potential of crowdsourced data and machine 
learning in measuring CES. In the previous four chapters, a variety of datasets and machine 
learning methods have been utilised in order to help further clarify the CES concept, 
develop spatial CES models and demonstrate the relevancy of these models in addressing 
key challenges in a CES context. This work was carried out in the form of four scientific 
papers which addressed the following four research questions: 

RQ1. How can CES be defined and spatially modelled in the context of crowdsourced 
data? 

RQ2. How can social media and deep learning capture the aesthetic quality of the 
landscape in support of aesthetic ecosystem service models? 

RQ3. What do social media and deep learning-based indicators of biodiversity-related 
CES capture in comparison to citizen science and ecological measures? 

RQ4. How can social media and NLP capture the positive experiences associated with 
different CES measures? 

In this synthesis chapter, I summarise the main findings of my research in relation to the 
overall aim and individual research questions, I critically discuss the methods employed to 
answer these questions as well as the relevancy of the results in a broad ecosystem service 
and policy context. Reflections on future research directions in the development of CES 
indicators using crowdsourced data and machine learning are then summarised with some 
final concluding remarks. 

6.1. Main findings 

6.1.1. Defining and spatially modelling CES in the context of crowdsourced data 

Crowdsourced data provides a useful lens through which to conceptualise and spatially 
quantify CES. Working within the context of different crowdsourced data sources and 
established CES conceptualisations in Chapter 2, I found that defining CES as information-
flows generated by ecosystems that contribute to cultural experiences best enables the spatial 
quantification of CES. This definition considers a range of established conceptualisations, 
including the SEEA EA and IPBES frameworks. As a result, in the course of writing this 
thesis, this conceptual work was used in the final consultation stages of the SEEA EEA 
before it grew out of its experimental phase and was adopted as an international statistical 
standard by the UN Statistical Commission (Barton et al., 2019). In the adopted standard, 
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CES are defined as “the perceived or realized qualities of ecosystems whose existence and 
functioning enables a range of cultural benefits to be derived” (United Nations et al., 2021, p. 
146). The standard makes three further clarifications: CES are “(i) the ecosystem 
contribution in terms of providing places and opportunities for activity by people”, “(ii) 
linked to flows from ecosystems to people that may be considered ‘experiential’” and “(iii) 
able to contribute to multiple benefits” (United Nations et al., 2021, p. 146), with the second 
clarification specifically drawing on the conceptual exercise undertaken in Chapter 2.  

The definition developed in the SEEA EA makes an explicit link between 
biophysical features and peoples’ cultural preferences with ecosystem qualities generating 
CES as they relate to people. This additional operational aspect to measuring CES as 
information flows is further demonstrated through the aesthetic and biodiversity-related 
measures developed in Chapters 3 and 4. Using deep learning, specific biophysical features 
can be predicted as information conveyed to people across space and time in geo-located 
images on Flickr. In these cases, the information-flow conceptualisation is also broad 
enough to include full semantic representations of CES generated using machine learning 
for aesthetic enjoyment and appreciation of biodiversity. These were produced by training 
a deep learning model to predict a measure of aesthetic quality and another to identify 
human-species interactions in images. In this way, peoples’ cultural preferences from a first-
person perspective can be directly linked to complete impressions of the surrounding 
nature as well as specific biophysical features. 

The definition presented in Chapter 2 also emphasises the human effort and/or 
goods and services involved in producing the resulting benefit enjoyed by people. I found 
this conceptual feature of the definition to be further reinforced through the findings of 
Chapter 5. In it, the varying importance of the information conveyed to people by 
ecosystems is captured through the varying levels of sentiment associated with different 
human-nature interactions, many of which relied on social contexts rather than natural 
ones. Nevertheless, the social aspect to many different sources of crowdsourced data 
produces a rich variety of datasets than can be used in a variety of ways. The Strava-based 
activity model in Chapter 2, for example, highlights the possibility of combining 
crowdsourced data with national survey data to produce CES indicators representative of 
the whole population. At the same time, access to citizen science platforms such as 
iNaturalist further enrich spatial CES assessments as these provide very different 
distributions versus social media, as I found in Chapter 4. 
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6.1.2. Measuring landscape aesthetics using social media and deep learning 

Social media and deep learning provide large-scale measures of landscape aesthetics in 
support of aesthetic ecosystem service models. In Chapter 3, I found the application of deep 
learning to outdoor Flickr images in Great Britain to provide accurate measures of 
landscape aesthetic quality versus an environmental indicator model. In doing so, these 
measures enable the inclusion of individuals’ first-person, revealed preferences, without a 
significant drop in accuracy in comparison to traditional indicator models, a key 
methodological advancement from an ecosystem service perspective. As well as using deep 
learning-based image attribute and scene classifications, a deep learning model was also 
successfully trained to generate an aesthetic quality rating per image, providing a full 
semantic measure of peoples’ landscape enjoyment. This supported the highest level of 
model accuracy when combined with the environmental indicator variables. 

The application of these novel methods also provides a number of other advantages. 
One primary advantage is a fine-grained view of highly-valued and unique landscape 
elements. The point-based, geo-located image data from social media, coupled with the 
information captured using deep learning, meant that the aesthetic appeal of specific rock 
or water features and their complex interaction could be integrated into the model. This 
included, for example, the 3D impression of an ocean bay view from a person’s perspective 
on an a nearby set of cliffs. Important negative environmental contexts are also better 
represented, such as Heathrow Airport in London. This means that social media and deep 
learning-based models stay relevant at different scales in contrast to indicator models which 
are constrained by the input data and their spatial resolution. In Chapter 2 I also found that 
capturing the 3D experience of people as they enjoy the aesthetic appeal of the landscape is 
possible with a 3D viewshed model using only the location of Flickr images. Nevertheless, 
this assumed a uniform value for all Flickr images and did not allow any further quantitative 
insights into which ecosystem features were generating the service. 

The fine-gained view of the landscape provided by deep learning and social media 
also captures specific contributions over time. For example, the contribution of snow to 
landscape aesthetic quality increased in the winter but especially on the weekends during 
peoples’ leisure time. On the other hand, the contributions of the ocean increased in 
summer. These changes show how social media and deep learning can provide a 
combination of information about the state of the environment and how people interact 
with it over time, reflecting their changing seasonal preferences from a first-person 
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perspective. This constitutes a significant modelling advantage in the context of regular 
ecosystem service assessments. Finally, the limitation places on the number of images per 
user to gain a more balanced set of preferences in both Chapters 2 and 3 was found to be 
useful in achieving a better measure of landscape aesthetics. In the modelling exercise in 
Chapter 3, this limitation decreased the number of sporting-related images and increased 
the number of landscape images, resulting in a higher accuracy versus the ground truth. 

6.1.3. Using deep learning and social media to model biodiversity-related CES 

In Chapter 4, I found that deep learning and social media reveal specific cultural 
contributions of biodiversity in comparison to citizen science and ecological measures of 
bird biodiversity. Using a large training dataset of images from citizen science and social 
media, a deep learning model was trained to identify a broad range of human-species 
interactions in images versus generic interactions. This incorporated a special training 
hyperparameter to enable the model to recognise a larger variety of species interactions also 
occurring on social media versus citizen science due to some of the differences between the 
platforms. This hyperparameter, in the form of a regularisation coefficient, meant a greater 
number of human-species interactions were detected in the test dataset while maintaining 
a high level of overall accuracy. 

The application of the deep learning model enabled large-scale predictions of 
human-species interactions in Great Britain using Flickr images. The distribution of 
interactions showed some notable differences in comparison with interactions on 
iNaturalist, a citizen science platform. This was particularly evident in terms of the types of 
species users were interacting with after a applying a second, pre-trained deep learning 
model to predict species classes. Flickr users most frequently interacted with birds and 
mammals whilst iNaturalist users interacted more with plants and insects, reflecting a 
difference in peoples’ preferences between data sources in relation to specific biophysical 
features in their environment. Despite these differences, interactions on both platforms 
were heavily influenced by the accessibility of nature with large population centres and 
urban green space key determining factors of users’ activity in contrast to more natural 
areas. This presents a key limiting factor in that the presence and or absence of species 
together with their cultural importance cannot be fully captured using only these methods.  

This observation was further emphasised by the notable differences found between 
human-species interactions and ecological measures of bird biodiversity. Peoples’ perceived 
bird species richness in terms of 36 bird species was again found to be highest in more 
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accessible places such as in major urban centres. This was in contract to a measure of species 
richness based on modelled distribution data which saw concentrations in low elevation 
areas outside of urban centres. More visible, charismatic bird species were also found to be 
more popular versus their modelled abundance. For example, Kestrels and Buzzards saw a 
large number of images versus relatively small populations. On the other hand, Warblers, 
with larger populations, saw a smaller number of interactions. Nevertheless, interactions 
with specific, highly-valued birds species in terms of their conservation status were 
accurately captured, highlighting the utility of social media and deep learning in developing 
specific CES indicators. 

6.1.4. Using social media and machine learning to connect peoples’ positive experiences to 
CES measures 

In Chapter 5, after applying a number of different NLP models to produce measures of 
sentiment using the text associated with Flickr images, I found that machine learning and 
social media can provide a better understanding of the positive experiences associated with 
CES. However, a simple bag-of-words model still outperformed machine learning-based 
methods using national survey data as a ground truth. Higher sentiment was linked to 
higher levels of aesthetic quality and the presence of particular species. The lowest and 
highest aesthetic quality ratings saw significant sharp downward and upward trends in 
sentiment, the more advanced deep learning model predicting the strongest effect of high 
aesthetic quality on sentiment. Higher sentiment was also associated with specific species, 
such as flowering plants, songbirds and butterflies versus other species such as spiders. The 
species and aesthetic quality ratings with the highest sentiment were also found to be 
associated with more positive, affective words such as “beautiful”, “calm” and “happy”. 

As well as capturing the sentiment associated with different CES-related measures, 
I found that the text provided by users on Flickr also reveal the influence of different 
biophysical settings on peoples’ positive experiences. Natural elements, in particular 
flowers, were associated with higher sentiment, reflecting the positive influence of nature. 
This was in contrast to image attributes and scenes associated with the urban environment, 
such as “highway”, “asphalt” and “metal”. Although natural elements generated higher 
sentiment, social activities were found to have the greatest effect, with scene and attributes 
such as “golf course” and “socialising” producing very high levels of sentiment. However, 
these social activities were not associated with high levels of landscape aesthetic quality, 
highlighting the varying contributions of nature to peoples’ positive experiences.  
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The CES measures and associated sentiment captured using the NLP models and 
social media were also consistent with  a national, geo-referenced survey of recreational 
well-being in England. Trips taken to enjoy the scenery and wildlife were found to have 
significantly higher measures of aesthetic quality and species interactions in nearby Flickr 
images. Surveyed trips for which people strongly agreed with the statements “I enjoyed it” 
and “it made me feel calm and relaxed” were also associated with higher Flickr sentiment. 
Higher aesthetic quality was also related to stronger agreement with the statement “I took 
time to appreciate my surroundings” while larger numbers of human-species interactions 
were associated with “I felt close to nature”. Peoples’ trip motivations were also consistent 
with these CES measures. This confirmed the relevancy of using these novel techniques as 
an alternative to survey data in developing CES indicators. 

6.2. Cultural preferences through the lens of new technologies 

 
Figure 23. The main characteristics, or “lenses”, inherent to crowdsourced data and machine 
learning-based approaches that determine the cultural preferences and biophysical features 
reflected in CES measures. CES are quantified based on the relationship between peoples’ cultural 
preferences and the biophysical features in their environment. The extent to which these are 
revealed depends on the type, purpose, demographics, geographical scope and temporal range of 
both the crowdsourced data and the datasets used to train the machine learning models. 

6.2.1. Key factors determining CES measures 

Ultimately, CES measures are representations of peoples’ cultural preferences for particular 
biophysical features such as individual species or landscape elements (Gould et al., 2020b). 
Machine learning and crowdsourced data provide novel techniques to generate such 
measures for large areas. In this thesis, crowdsourced datasets were used to both train 
machine learning models and generate spatial measures based on peoples’ interactions on 
platforms such as social media. This represents a step-change from traditional survey 
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methods which are rare at large scales due to the cost and complexity involved in carrying 
out such surveys (Richards and Tunçer, 2018). Nevertheless, CES must accurately reflect the 
cultural preferences of the relevant population (Raymond et al., 2014) and at large scales this 
is particularly challenging due to the varying individual and collective contexts through 
which CES are generated (Satz et al., 2013).  

The degree to which CES are captured using crowdsourced data and machine 
learning depends on several key factors. These factors are common to both crowdsourced 
data and the training datasets used to train machine learning models. The factors include 
the data type, purpose of the dataset, demographics, geographical scope and temporal range 
(Figure 23). These key characteristics act as filters, or what I would call “lenses”, in 
determining the extent to which the cultural preferences and biophysical features 
generating CES are captured using crowdsourced data and machine learning. As the use of 
these novel technologies become more widespread, these factors form a set of important 
points of consideration in the assessment of CES. In the following sections, I explore these 
in more detail. 

6.2.2. Data type 

The type of data used to generate predictions using machine learning can determine the 
nature of the final CES measures used in ecosystem service assessments. For example, in 
Chapter 5, sentiment models were applied to the textual data associated with Flickr images 
to reveal the positive experiences generated by human-nature interactions, an important 
feature of CES measures. Sentiment analysis using image-based data is also possible but 
relies on the image training datasets used to train a machine learning model rather than the 
words expressed by the users themselves, adding a layer of uncertainty (Ortis et al., 2020). 
This means that without the accompanying text describing the nature of the specific 
interaction, only a more restricted representation of CES supply is possible. Similarly, in the 
case of mobile signal data, an even more restricted measure of CES supply is available as 
only movement data can be inferred through these digital records (Venter et al., 2021).  

In terms of the training datasets used to train machine learning models and generate 
CES measures, the type of data also matters. In Chapter 5, sentiment models were applied 
which were trained using tweets from Twitter. Tweets are restricted to 280 characters in a 
micro-blogging format while on Flickr, descriptions can be much longer (Tenkanen et al., 
2017). This adds an element of uncertainty to the models’ predictions as the change of format 
could lead to spurious predictions without fine-tuning (Edwards et al., 2022). In other words, 
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the preferences expressed by Flickr users may not be captured in their entirety. Recently, 
video formats have also been used to establish CES measures in the form of clips uploaded 
to YouTube (Huertas Herrera et al., 2021; Park et al., 2017). These constitute extremely rich 
media formats that open the possibility of integrating sound into an assessment, an 
additional experiential dimension along which the contribution of biophysical features to 
CES can be measured (Buie and Blythe, 2013; Chesnokova and Purves, 2018). 

6.2.3. Purpose 

The purpose behind the existence of a source of crowdsourced data or model training 
dataset also affects the extent to which the relevant preferences and features are captured 
in CES measures. In terms of social media, Flickr is primarily a photo-sharing platform with 
an emphasis placed on aesthetics, including landscape photography (Schifanella et al., 2021). 
On the other hand, platforms such as Instagram also generate a lot of content centred 
around social activities (de Juan et al., 2021). Activity on Twitter’s platform is primary 
focused around topical discourse (Manikonda et al., 2021). These framings have an effect on 
the type of preferences expressed through different sources of crowdsourced data because 
users work towards the social norms established within the online space (Calcagni et al., 
2019; Venturelli et al., 2017). Similarly, the technology through which spatial records are 
generated will also affect how users express their preferences for particular biophysical 
features (Malik and Pfeffer, 2016). For example, iNaturalist data are primarily generated 
using its mobile app. This makes distant sightings of bird or mammal species more 
challenging due to the limited camera specifications of many smartphones (Di Cecco et al., 
2021). 

 Training datasets used for the application of machine learning also have defined 
purposes which determine the ability of the models to detect preferences and features in the 
data. For example, the species classification model applied in Chapter 4 was trained using 
an iNaturalist image dataset of 8,142 species. However, the Flickr dataset on which the model 
was applied does not only include images of living species and is not restricted to a limited 
number of species (Edwards et al., 2021). This places a boundary up to which peoples’ 
preferences for particular species can be measured and creates a source of uncertainty in 
relation to the model’s existing predictions. Other pre-trained computer vision models, such 
as the Places365 model used in Chapter 3, will also have a predefined set of classes to 
generate predictions, the purpose of which may not be relevant to the generation of all CES 
measures (Ghermandi et al., 2022). For example, the indoor-related classes of the Places365 
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model. Ideally, new, purpose-built models can be trained. A large number of potential 
training datasets continue to be produced for different purposes and these can support a 
greater variety of preferences in CES measures (Bubalo et al., 2019; Scowen et al., 2021). 

6.2.4. Demographics 

Social demographics influence both the availability of spatial data on peoples’ cultural 
preferences and the representativeness of training datasets used to detect these preferences. 
Each source of crowdsourced data comes with its biases towards specific demographic 
groups (Olteanu et al., 2019; Yuan et al., 2018). Flickr users have been found to mainly 
originate from an older, white and well-educated demographic (Lenormand et al., 2018; Li 
et al., 2013). In some areas, images are heavily biased to those of visiting tourists (Echeverri 
et al., 2022; Li et al., 2018). The rapid rise of technology has resulted in the global adoption of 
smartphones although internet use in developing countries lags behind richer countries 
(Roser et al., 2015). This means underserved and poorer communities may not be properly 
represented (Arts et al., 2015). Even with mobile signal data, data can be biased towards more 
mobile, urban populations and sourcing the data through different providers may lead to 
different preferences based on different customer bases (Wesolowski et al., 2013). 

 Factors related to social demographics will, therefore, also determine the 
importance of various biophysical features revealed through crowdsourced data. For 
example, older, more educated groups of users tend to express preferences for a wider range 
of species, including species of conservation concern, versus only the most charismatic or 
visible species (Niemiller et al., 2021). On the other hand, many tourist preferences captured 
through social media focus on flagship species such as the Big Five in Africa (Hausmann et 
al., 2018; Roberge, 2014). In many cases, the preferences of local people are at odds with those 
of conservationists. For example, farmers do not always appreciate the presence of 
predators such as wolves as they pose a real or perceived threat to their livestock (Krafte 
Holland et al., 2018; Nilsen et al., 2007). Demographics can also affect the types of 
interactions with the landscape, with younger populations more inclined to participate in 
active sports such as climbing and canoeing, both of which do not allow as many photos to 
be taken but may be visible in activity-sharing apps such as Strava (Griffin and Jiao, 2015; 
Wood et al., 2013). 

The social demographics integrated into machine learning training datasets will also 
influence the preferences revealed by CES measures. For example, the deep learning model 
trained using the British SoN database in Chapter 3 may not accurately represent the 
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preferences of people in another country. This is because the perceived quality of the 
landscape can change with varying socio-cultural norms, such as the value placed on 
agricultural landscapes (Gobster et al., 2007). Similarly, many studies have found that older 
generations place greater aesthetic value on natural landscapes than younger people 
(Fischer et al., 2018), and that gender can also play a role (Palliwoda et al., 2017). If the 
demographic sample involved in the crowdsourcing to generate training datasets does not 
match the population in the study area, biophysical features may be over or under-valued. 
For the model to sufficiently capture peoples’ preferences in other socio-cultural settings, 
fine-tuning of model parameters is likely required using additional training data, some of 
which may need to be generated through new crowdsourcing activities (Bubalo et al., 2019; 
Li and Hoiem, 2016).  

6.2.5. Geographic scope 

The geographic scope of the available data will also determine the extent to which cultural 
preferences and biophysical features are sufficiently captured in CES measures. Social 
media data is generally concentrated in different geographic regions. For example, Flickr is 
most popular in Western Europe and the United States (Wood et al., 2013) whilst Weibo and 
VK are largely constrained to China and Russia-speaking countries (Gao et al., 2012; 
Semenov et al., 2018). On the other hand, the availability of mobile signal data is more 
universal due to the global adoption of mobile devices. However, this data may not be 
available in remote locations which could, for example, be very important to people due to 
their “off-grid” nature (Giddy and Webb, 2018). Restrictions on peoples’ mobility for 
conservation reasons, such as those found in national park areas, will also effect the 
geographical distribution of the data (Tenkanen et al., 2017). In other cases, the geography 
itself will determine the data available, with marine ecosystems underrepresented in CES 
assessments for accessibility reasons (Retka et al., 2019).  

 Machine learning models may also struggle to accurately capture peoples’ 
preferences for biophysical features due to the geographical ranges of the training datasets. 
For example, the geography of the British landscape learnt by the deep learning model 
trained in Chapter 3 does not include representations of landscapes in other parts of Europe. 
This includes countries such as Spain and the Canary Islands, which feature desert and 
volcanic landscapes absent in Britain (Balzan et al., 2018). The geographic range of the 
individual features a model is trained to detect will also have an effect. This was evident in 
the results of Chapter 4 where the Odocoileus genus of deer native to the Americas was 
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misclassified as one of the most popular species by the species classification model. This was 
because the model lacked a species class for the European, and visually similar, Cervus genus 
of deer. Similarly, language models trained on data from specific geographic regions will 
not be as effective if applied in another geographical areas because of differences in 
language and cultural expression such as humour or sarcasm (Medrouk and Pappa, 2017; 
Mocanu et al., 2013).  

6.2.6. Temporal range 

Finally, the temporal range of the data used to measure CES with crowdsourced data and 
machine learning also has a significant effect on the extent to which the preferences and 
biophysical features in the study area are captured. In Chapter 3, the seasonal effects of 
natural elements to landscape aesthetics such as deciduous vegetation and snow was visible 
with their changing contributions to landscape quality over time. The increase in the 
relevance of snow in users’ images over the weekend showed how this biophysical attribute 
contributed more in peoples’ leisure time. These effects would not have been visible if data 
had been used from a narrow space in time. Examining crowdsourced data over time can 
also reveal peoples’ preferences for natural areas such as urban parks just based on mobility 
patterns (Soliman et al., 2017; Venter et al., 2020), in addition to the associated benefit 
associated with these trips in terms of the change in peoples’ sentiment (Schwartz et al., 
2019). In this way, integrating crowdsourced data over time can provide useful baseline 
measures for the quantification of CES (Wood et al., 2020). 

 The timeframe of the data used to train machine learning models also matters. For 
example, the deep learning model trained in Chapter 4 to identify human-species 
interactions was trained using images over an entire year to capture seasonal interactions 
with species, such as migratory species (Borowiec et al., 2022). Seasons and weather can also 
greatly affect the composition of landscape images and their appeal to people if their 
preferences are being crowdsourced to build a training dataset (Joglekar et al., 2020). 
Understanding peoples’ preferences based on temporal patterns in user activity also relies 
on having the training data available within a large-enough timeframe to detect these 
patterns (Heikinheimo et al., 2020). Sometimes platform access has been suddenly cut off 
such as in the case of the photo-sharing site Panaramio (Ghermandi and Sinclair, 2019). 
Cultural preferences also change over the long-term under the influence of education, 
advertising and cultural assumptions (Norton et al., 1998). As the application of machine 
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learning to measure CES matures over time, it is important that the training datasets used 
remain relevant to the assessment being carried out. 

6.3. Epistemological contexts and opportunities 

In addition to the key characteristics or “lenses” determining CES measures developed 
using crowdsourced data and machine learning, a wider, epistemological context must also 
be considered. A key feature of the debate surrounding the CES concept and its relevancy 
to policy-making centres around the need to incorporate a variety of approaches based on a 
range of worldviews, knowledge systems, and input from stakeholder groups (IPBES, 2022; 
Kadykalo et al., 2019). This follows common critiques of CES, as well as the ecosystem 
service concept more broadly, that these are too firmly rooted in a western-scientific view of 
the world (Kirchhoff, 2019; Tengö et al., 2017). It is argued that this is not only true in 
indigenous contexts but also in western settings such as in Great Britain because peoples’ 
accounts of nature’s cultural value do not necessarily revolve around individual, 
consequential activities and objective elements in the landscape (Cooper et al., 2016; 
Satterfield et al., 2013). Alternative methods from the social sciences have therefore been 
proposed such as deliberative approaches which seek to incorporate situated knowledges, 
cultural narratives and shared cultural values through collective reasoning (Kenter et al., 
2016). 

From this more qualitative research perspective, the applications of crowdsourced 
data and machine learning explored in this thesis fits more within the universal and 
reductionist approaches to CES measurement suited to western-scientific modes of inquiry 
(Echeverri et al., 2018; Gould et al., 2020a). That is, the CES measures generated using these 
novel techniques are aimed at providing standardised, quantitative metrics based on single 
interactions between individuals and specific biophysical elements (Hirons et al., 2016). This 
approach is based within a standard stock-to-flow framing of people-nature relationships 
(Chan et al., 2012b) while seeking to illuminate existing objective phenomena rather than 
co-creating these through the research process (Satterfield et al., 2013). Such an approach is 
motivated by the need to integrate cultural information into large-scale assessments of 
ecosystem value (Gould et al., 2019a). At these scales, a level of generalisation is necessary, 
especially in the context of economic accounting standards, and therefore qualitative 
information is not immediately compatible with these systems of measurement, 
constituting an on-going challenge (Raymond et al., 2014).  
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Nevertheless, crowdsourced data and machine learning also provide an opportunity 
to combine measurement approaches from different epistemological standpoints. Both 
quantitative and qualitative approaches have previously been combined. For example, CES 
preferences gathered using interviews and deliberative processes were mapped to the 
English landscape using quantitative variables (Norton et al., 2012). Such combinations 
enable a pragmatic solution whereby knowledge of reality is informed both by physical 
evidence and shared social constructions (Derungs and Purves, 2016; Raymond et al., 2014). 
In terms of crowdsourced data such as social media, these already provide a quantitative 
framing to a number of deliberative-like practices such as sharing, commenting and liking 
content (Calcagni et al., 2019). Similarly, crowdsourcing to create training datasets for 
machine learning models can employ deliberative processes to ascribe shared cultural 
meanings to the content of digital media (Chang et al., 2017). For example, groups can discuss 
and agree upon image annotations to come to collective decisions about the cultural 
importance of certain biophysical features. Consequently, these data would fit comfortably 
within current proposals to use digital tools for deliberative processes including the use of 
participatory mapping and online polls (Kenter et al., 2015). 

Despite this compatibility, the scope of crowdsourced data and machine learning to 
capture peoples’ cultural preferences on a spatial basis has its ultimate limitations. Some 
knowledge systems will always resist digitalisation due to their metaphysical nature or the 
legitimate resistance of certain populations to the use of digital technologies (Ginsburg, 
2008). This includes, for example, cultural beliefs such as the moral values represented by 
ancestral beings in indigenous cultures (Gould et al., 2019b). Similarly, intrinsic values of 
nature are based on the idea of nature holding value independent of people (Chan et al., 
2016). These limitations are not, however, only restricted to the application of digital 
technologies, as these cultural values also cannot be mapped based on single interactions 
using other methodological approaches (Nahuelhual et al., 2016), presenting a challenge for 
all ecosystem service assessments aimed at integrating these into mainstream policy-
making (Pascual et al., 2021). Nevertheless, as digital technologies become more widespread 
and their use in cultural contexts evolves, a greater number of opportunities will emerge to 
include more of these diverse cultural values of nature in CES assessments (Garneau, 2018; 
Rice et al., 2016). 
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6.4. Relevancy in an ecosystem service and policy context 

6.4.1. Global sustainability agenda 

The rapid degradation of the Earth’s ecosystems has resulted in a number of headline, 
international policy responses, including the 2030 Agenda for Sustainable Development, 
the UN Decade on Ecosystem Restoration and the drafting of the Post-2020 Global 
Biodiversity Framework. These all require monitoring frameworks, underpinned by 
science, with explicit outcomes at the country-level (Nature – Editorial, 2020). As a result, 
recent commitments to achieve these global policy objectives have emphasised the use of 
the SEEA EA and IPBES assessment frameworks. Following the meeting of the ministers of 
the G7 in May 2022, their communiqué included a commitment to implement the SEEA EA 
and a call on the IPBES to enable long-term transformative change towards the 
international sustainability agenda (G7, 2022). In this section, I explore the relevancy of the 
findings of this thesis to these leading international monitoring frameworks. 

6.4.2. SEEA EA 

The SEEA EA provides a comprehensive statistical framework for organizing data about 
habitats and landscapes in relation to economic and other human activities. Using the 
conceptual guidelines set out in the SEEA EA framework, national statistical institutes and 
researchers have developed CES models for integration with national statistics. Currently, 
most models have focused on producing models of outdoor recreation and nature-based 
tourism as broad CES categories (Hein et al., 2020a; Remme et al., 2014). For example, in the 
Netherlands, outdoor recreation was measured by allocating surveyed trips per province 
and environment to the density of hiking paths at a 500m resolution, with the distance from 
population centres also considered (Statistics Netherlands and WUR, 2021). These models 
are considered state-of-the-art, representing the most accurate indicators with the current 
availability of data (Hein et al., 2020b). Nevertheless, the SEEA EA guidelines encourage 
compilers to include as many ecosystem service types as possible to ensure accounts are as 
comprehensive as possible, citing a range of other potential services including education, 
scientific and research services as well as spiritual, artistic and symbolic services (United 
Nations et al., 2021). Thus, generally, a level of spatial granularity and service specificity is 
still missing from current efforts to compile CES indicators in line with the SEEA EA. 

 Here, crowdsourced data and machine learning offer an opportunity to achieve a 
greater amount of spatial variation and a larger range of service categories in SEEA EA-
related assessments. Instead of uniform areas or environments, the spatial records of 
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crowdsourced data can highlight specific hotspots of service supply, with the associated 
media in the form of images or text allowing for more specific service categorisation. 
Machine learning can then, in turn, automate this process at large scales (Richards and 
Tunçer, 2018). Nevertheless, the use of these novel technologies also brings up a new set of 
challenges. The demographic and geographic representativeness of the data is a key issue 
when considering SEEA EA measures should be compatible with national economic 
statistics (United Nations et al., 2021). Encouragingly, the model for landscape aesthetic 
quality developed for Great Britain in Chapter 2 achieved a high level of accuracy. However, 
its accuracy in other geographic and demographic settings is yet to be tested.  

Moving from measures of aesthetic quality to measures of aesthetic CES supply is 
another challenge. In this regard, more work is needed to develop relevant indicators of CES 
based on the information generated by crowdsourced data and machine learning. In on-
going experimental work, it has been proposed to multiply, on a grid cell basis, the image-
based aesthetic quality predictions produced in Chapter 2 by the quantity of images to 
produce a measure of aesthetic utility (Havinga and Hein, 2021). This would be analogous to 
the economic utility derived from the quality and quantity of different fuels at the fuel pump 
(Hirshleifer et al., 2005). Nevertheless, more empirical work is needed to determine the 
numeric relationship between aesthetic quality and a persons’ enjoyment as well as the 
overall conceptual alignment with the SEEA EA. Alternatively, the cultural preferences 
captured through these novel techniques can also be used to better distribute national 
survey data. For example, in the case of the recreational model in the Netherlands, the total 
metres hiked could be linked to the distribution of Flickr activity as well as its relation to 
more specific biophysical features such as elevation or the presence of water.   

Many other opportunities also exist to integrate the information generated by 
crowdsourced data and machine learning into SEEA EA-related assessments because this 
information is comprised of revealed preferences. These are particularly compatible with 
the conceptual basis of the SEEA EA which ultimately uses exchange values (Hein et al., 
2020a). These reflect observed, or sometimes equivalent, market price transactions for goods 
and services (United Nations et al., 2021). In contrast, many survey methods are not directly 
compatible with the SEEA EA because these gather peoples’ stated preferences. For 
example, their stated choices or willingness to pay in relation to ecosystems and particular 
biophysical features such as species types (United Nations et al., 2021). Crowdsourced data 
can therefore also be used to establish economic values using monetary valuation methods 
such as the travel cost method. This has been used to estimate the total value of trips made 
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by Flickr users to travel to national parks using the distance travelled from users’ home 
locations (Sinclair et al., 2020). However, the method must be adapted and combined with 
other valuation approaches so as to be compatible with the SEEA EA (Caparrós et al., 2017).  

 As the SEEA EA establishes itself as an international statistical framework for use in 
environmental monitoring, several new research priorities have been identified (Edens et 
al., 2022). One of these includes the spatial modelling of ecosystem services and its further 
development, especially with respect to the use of ecosystem services and its relation to 
ecosystem capacity, the ability of an ecosystem to generate an ecosystem service (United 
Nations et al., 2021). From a CES perspective, crowdsourced data and machine learning 
provide one of the best new opportunities to develop spatial ecosystem service models, as 
demonstrated in this thesis. These novel techniques can therefore play an important role in 
the work needed to meet this particular research priority. Drawing on the granularity of the 
data, ecosystem service use versus capacity can also be assessed. For example, in 
understanding the carrying capacity of national park areas, where social media use may 
have negative environmental consequences due to concentrations of activity (Barros et al., 
2019). Finally, the continued generation of crowdsourced data from different technologies 
and platforms will also support the spatial assessment of CES over time, which is essential 
in producing annual accounts of ecosystem service supply (United Nations et al., 2021). 

6.4.3. IPBES 

The IPBES assessment framework is much larger in its scope and objectives versus the 
SEEA EA in that it seeks to include a variety of knowledge systems to measure both  
monetary and non-monetary values, as well as the implications of different policy decisions 
(IPBES, 2019). It proposes both a generalising and context-specific perspective to measure 
these broad range of values, centred around the concept of Nature’s Contribution to People 
(NCPs) (Díaz et al., 2018), equivalent in many ways to the concept of ecosystem services 
(Kadykalo et al., 2019). The generalising perspective is aimed at providing a universal set of 
categories to record the contributions of nature to peoples’ well-being while the context-
specific perspective seeks to do so in a way that is relevant to local knowledge (Hill et al., 
2021). As part of both perspectives, relational values have also been introduced which are 
preferences, principals and virtues associated with peoples’ relationships with nature and 
between themselves (Díaz et al., 2015). This includes, for example, individual environmental 
stewardship or increased social cohesion from being in nature (Chan et al., 2018). 
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  Crowdsourced data and machine learning can be relevant to both measurement 
perspectives. From a generalising perspective, methods that are able to produce measures 
of NCP at large-scales are particularly relevant because these NCP are aimed at producing 
universal indicators. The spatial CES measures produced in this thesis are therefore 
especially amenable to this measurement approach. In particular, the measures in this 
thesis related to peoples’ aesthetic enjoyment and appreciation of biodiversity are very 
much in line with the generalising NCP categories “physical and psychological experiences” 
and “learning and inspiration” (Díaz et al., 2018). A third culture-specific category, 
“supporting identities” is also proposed which relates more to the relational aspect of 
nature’s contributions to people. Although not explored in this thesis, the advantage of 
crowdsourced data is that it provides a lot of information on these more relational 
interactions with nature (Langemeyer and Calcagni, 2022). In other research, for example, 
Flickr images and the associated text have been used to understand cultural properties such 
as digital identities (Davies, 2007) and peoples’ sense of place (Jenkins et al., 2016; Wartmann 
et al., 2018). These rich new data sources can therefore also support measures of this more 
relational NCP at the generalising-level. 

 Relational NCP measures are even more relevant within the context-specific 
perspective (Hill et al., 2021). This is because this perspective makes room for reciprocal 
relationships between people and nature, common especially in the context of indigenous 
knowledge (Díaz et al., 2018). Because such relational contributions of ecosystems often defy 
reductionist empirical approaches, qualitative approaches are generally recommended 
(Tadaki et al., 2017). As previously discussed in Section 6.3, this does not, however stop social 
media from being relevant in these cases. For example, researchers have produced “spatial 
folksonomies’ using the vocabularies employed by people in the Swiss alps through 
different sources of crowdsourced data (Derungs and Purves, 2016). Moreover, a quantitative 
approach to relational NCP has also been proposed based on methods such as regression 
analysis (Schulz and Martin-Ortega, 2018). This also leaves room for quantitative spatial 
measures of relational NCP measures based on crowdsourced data. However, measures will 
ultimately rely on data availability and the use of digital technologies by the relevant 
population (Calcagni et al., 2019). 

Finally, the focus on interwoven analyses and plural perspectives in the application 
of the IPBES framework is also very conducive to the quantitative/qualitative nature of  
crowdsourced data (Hill et al., 2021). Contributions of nature in the context of local 
knowledge and expressed through digital technologies can be assessed through qualitative 
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methods. The quantitative basis of crowdsourced data can then be used to link these records 
to a more generalising layer of analysis relevant across large scales. For example, in East 
Africa, social media and mobile technologies have been found to facilitate and preserve the 
use of indigenous knowledge, including ideas of environmental conservation (Owiny et al., 
2014). As a result, these unique relationships with nature expressed through stories and 
narratives are automatically linked with spatial records that can be classified according to 
the generalising perspective of the IPBES framework. In this way, crowdsourced data and 
machine learning can also support the pluralistic approach of the IPBES (U. Pascual et al., 
2017).  

6.5. Research outlook 

6.5.1. Moving to full measures of CES 

The research presented in this thesis seeks to explore the potential of crowdsourced data 
and machine learning in measuring CES. In doing so, I have demonstrated a number of 
advantages to the application of these novel techniques in CES assessment. Now, more 
conceptual and empirical work is needed to develop these indicators into full CES measures. 
In the context of the SEEA EA, this means quantitative measures, divisible to different scales 
and representative of national demographics (United Nations et al., 2021). For example, this 
would require developing the measure of aesthetic quality produced in Chapter 3 to a 
measure of aesthetic utility. This research is starting to be explored in other work with the 
conceptual idea of multiplying the number of images by their quality on a grid cell basis 
(Havinga and Hein, 2021).  

In another example, this could involve weighting the human-species interactions 
produced in Chapter 4 by the sentiment expressed in the associated text to better reflect the 
size of the CES contribution per image. Other weights could also be applied, such as greater 
weights for interactions in less accessible places, implying a person has expended more 
effort to gain such an interaction. Not only sentiment could be used to weight human-
species interactions as indicators of CES; species rarity could also imply an interaction of 
greater cultural importance. Recently, some studies have begun to explore this research 
challenge with promising results, using the text and content of the images to produce more 
advanced indicators (Fox et al., 2021a; Winder et al., 2022).  
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6.5.2. Testing and developing models in a broad range of cultural contexts 

 My research provides one of the first large-scale measurement exercises of CES-
related indicators using crowdsourced data and machine learning. In the case of landscape 
aesthetics, the use of these novel techniques was validated versus a geographically-
representative survey of the British landscape and a set of environmental indicators relevant 
to a variety of European landscapes. Nevertheless, more research is needed to understand 
the relevancy of the models in other geographical and cultural settings, including the 
development of new training datasets and model finetuning. This would involve carrying 
out questionnaires with demographically-representative samples to validate the predictions 
of the models versus particular biophysical features and environmental contexts. In this 
sense, CES research in this field is linked to one of the primary challenges of machine 
learning: the existence of appropriate training datasets for predictive tasks (Jordan and 
Mitchell, 2015). Machine learning models are ultimately constrained by their training 
datasets and further research should explore how well certain models generalise across 
different cultural contexts. 

Moreover, for these techniques to be further developed in the context of CES, other 
related challenges in the field of machine learning must also be considered. This includes 
fairness which means ensuring models do not develop inherent biases that prioritise 
particular preferences or people over others (Mehrabi et al., 2021). Understanding why 
models make certain predictions, or the field of explainable AI, is therefore also worth 
exploring in the case of CES (Vinuesa and Sirmacek, 2021). Deep learning especially is often 
criticised for being a “black box”, obscuring the processes behind model predictions 
(Barredo Arrieta et al., 2020). Planning decisions that directly affect peoples’ cultural 
connection to the land can be the most controversial (Chan et al., 2012b). It is therefore of 
great importance that CES assessments applying machine learning techniques begin to 
incorporate a level of interpretability in their service predictions to satisfy the need for 
dialogue and transparency in a wider policy context (Langemeyer et al., 2016). 

6.5.3. Working with the potential sources of bias in crowdsourced data 

 This thesis also provides novel contributions in the context of aesthetic and 
biodiversity-related CES measures for large-scale assessments. In particular, the 
development of a deep learning model to detect a broad range of cultural preferences for 
biodiversity on social media led to new insights into the differences between sources of 
crowdsourced data. In this case, Flickr versus the citizen science platform, iNaturalist. 
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However, further research is needed to understand the different sources of biases inherent 
to the data and how a combination of different data sources can address some of these biases 
to make measures more relevant to large-scale ecosystem service assessments. These biases 
(or “lenses” as I’ve referred to them in this chapter) are key limitations if CES assessments 
are to be compatible with national economic accounts or represent the cultural preferences 
of entire populations within other large-scale management areas.  

Key to addressing this issue would be demographics in the case of the SEEA EA but 
also other factors are at play such as the purpose of different platforms. Combinations of 
data could address some of these biases. Existing research has started to explore this using 
estimated home locations of users using activity data (Li et al., 2013; Lopez et al., 2020). 
Nevertheless, these techniques also come with their limitations, introducing model 
uncertainty. Alternatively, mobile phone data, especially in countries with very high uptake 
has the potential to generate highly-representative indicators based on movement patterns. 
For example, which types of ecosystems and corresponding attributes are most visited 
during leisure hours including weekends. In this case, understanding which movement 
patterns are associated with nature recreation is a key research challenge. Ultimately, 
ground-truthing exercises using survey data will answer many of these questions.  

6.5.4. Developing relational CES measures 

 Finally, the research presented in this thesis also demonstrated how crowdsourced 
data and machine learning can help establish connections between CES and peoples’ 
positive experiences of nature. Using NLP models applied to the text associated with Flickr 
images, different levels of individual sentiment were linked to different levels of aesthetic 
quality and human-species interactions. Similar work using the text associated with social 
media images could also establish relational CES measures such as the generalising NCP 
category “supporting identities” proposed by IPBES. As discussed previously in this chapter, 
Flickr images and the associated text have already been used to understand peoples’ sense 
of place which is similar in its conceptual underpinning (Jenkins et al., 2016). As the 
application of the IPBES conceptual framework matures, developing and testing these types 
of indicators using crowdsourced data while maintaining the connection to the concept of 
relational values constitutes an important research frontier (Hill et al., 2021).  

Further research should also explore the collective benefits gained from interactions 
with nature in the context of relational values. Previous research has already highlighted 
the presence of virtual communities on social media and how these shape relational values 
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towards the environment (Calcagni et al., 2019). However, demonstrating the co-
construction of these values using crowdsourced data, developing measures and integrating 
these into CES assessments remains an under-researched area. The quantitative foundation 
of digital data provides promising opportunities to capture these highly deliberative social 
processes in a way that could also be amenable to quantitative approaches. Nevertheless, 
more research is again needed to understand what these measures could mean in practice, 
especially in the context of the SEEA EA and IPBES conceptual frameworks. 

6.6. Crowdsourced data, machine learning and society 

As crowdsourced data and machine learning become ubiquitous in our society, their 
application and its consequences are still being realised, especially as these novel 
technologies continue to rapidly develop. “Big data” and  “AI” have become familiar 
buzzwords, finding themselves into the vocabulary of engineers, medical practitioners, 
business people and policy-makers as well as scientists. Their application to CES 
assessment, especially the use of deep learning, is only just emerging and therefore many of 
the challenges are still yet to be explored (Ghermandi et al., 2022; Winder et al., 2022). 
Similarly, the use of key sources of crowdsourced data such as social media data have been 
demonstrated but rarely validated or explored from a conceptual standpoint. In this thesis, 
I have sought to provide some answers to these challenges. 

The application of crowdsourced data and machine learning in the context of CES 
assessments, however, is an especially complex one as it tries to bring both understanding 
of natural and cultural processes together in a wider policy context. Any spatial metrics 
produced using these novel techniques must accurately reflect the biophysical reality and 
the cultural preferences of a population. Addressing pressing environmental issues such as 
land degradation, biodiversity and climate change all require difficult decisions to be made 
with the aim of balancing the interests of society. CES assessments produced using 
crowdsourced data and machine learning must not lose sight of this wider societal context. 
With technological advancement also comes complexity and CES measures employing 
crowdsourced data should remain credible through transparent and deliberative processes 
with the people the measures are meant to represent. How far digital worlds can really go to 
represent our physical reality is still an open question (Lahsen, 2020). I hope with the ideas 
set out in this thesis, this can continue to be explored in relation to the ecosystem service 
concept and the field of CES research. 
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Supplementary material for Chapter 2 

 
Figure S1. Literature search diagram.
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Supplementary material for Chapter 3 

 

Figure S2. The 70% training, 10% validation and and 20% test split used in the study. 
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Figure S3. Threshold analysis of ecosystem types in GB. B = coastal, C = water, D = 
mires/bogs, E = Grasslands, F = heathland, G = woodland, H = inland scree/bare surface, I = 
Arable land and market gardens, J = buildings. A threshold point at shrub plantations (FB) 
onwards was selected, after which very little or none of the ecosystem types are present in 
the country. Table S3 contains a full list of ecosystem code and class descriptions. 
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Figure S4. Model accuracy (R2) per excluded indicator. B = coastal, C = water, D = 
mires/bogs, E = Grasslands, elv_diff = relief, F = heathland, G = woodland, H = inland 
scree/bare surface, I = Arable land and market gardens, J = buildings. “s” denotes 
surrounding ecosystem indicator. Supplementary Table S7 contains a full list of ecosystem 
code and class descriptions. 
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Figure S5. National parks of Great Britain. 
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Figure S6. Observed versus predicted values in (a) the Greater London area and (b) the 
Lake District. A Kendall’s tau correlation test resulted in a 0.223 correlation for the Flickr 
model versus 0.175 for the indicator model in Greater London, and correlations of 0.334 

versus 0.330 in the Lake District. 
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Table S1. Environmental indicators of aesthetic landscape quality. 

Visual 
concept 

Theory Indicator(s) Description Dataset Source 

Naturalness Important visual factor 
related to nature's restorative 
effects on mental health 
(Ulrich, 1984, 1979) and the 
innate biological need to 
affiliate with nature(Kellert 
and Wilson, 1993). The 
aesthetic value of water, in 
particular, is linked to its 
perceived naturalness 
(Kaplan and Kaplan, 1989; 
Nasar, 2000; Nasar and Li, 
2004). 

% 
ecosystem 
type 

The % of 
ecosystem 
types per grid 
cell 

EEA 
ecosystem 
type map at 

 

(EEA, 
2019) 

Visual scale A key driver of peoples' 
aesthetic experience of the 
landscape. Landscapes that 
are both open and offer 
refuge are said to be more 
attractive because of our 
evolutionary history as both 
predator and prey (Appleton, 
1975). Thus, higher elevation 
areas and differences in the 
landscape are likely to offer a 
greater aesthetic appeal. 

Relief ( ) The difference 
in elevation 
within each 
grid cell 

EU DEM at 
 

(EEA, 
2017) 

Complexity According to Kaplan’s 
Informational Processing 
Theory, complexity satisfies 
our physiological need to 
explore, providing content 
and things to think about 
(Kaplan and Kaplan, 1989). 
Complexity in the landscape 
can manifest itself in terms of 
the number and distribution 
of landscape attributes. 

Patch 
Density 
Index (PDI) 

Fragmentation, 
number of 
distinct 
ecosystem 
patches 

EEA 
ecosystem 
type map at 

 

(EEA, 
2019) 

Shannon 
Diversity 
Index (SDI) 

Number of 
ecosystems and 
their spatial 
proportion 

EEA 
ecosystem 
type map at 

 

(EEA, 
2019) 
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Table S1. Environmental indicators of aesthetic landscape quality. 

Indicators to represent 
landscape complexity 
therefore frequently draw 
upon landscape metrics in 
landscape ecology such as 
the PDI and SDI (Ode et al., 
2008). 

Uniqueness Takes into account the 
distinctiveness of an area 
(Jessel, 2006). For example, a 
natural feature can hold a 
much larger aesthetic value 
in the urban environment 
than in a more natural 
context. Uniqueness is also 
related to concepts of 
imageability and historicity 
which recognise the 
impression landscape 
elements with a cultural 
significance can have on the 
viewer (Ode et al., 2008; Tveit 
et al., 2006). 

% 
ecosystem 
type versus 
surrounding 
area 

Relative 
difference in 
the percentage 
area of 
ecosystem 
types in grid 
cells within 

 

EEA 
ecosystem 
type map at 

 

(EEA, 
2019) 

Historic POI Number of 
historic points 
of interest per 
grid cell1 

OSM (Padgham 
et al., 
2017) 

1The OSM API was used to calculate historical point features per grid cell. This included archaeological sites, ruins, 
castles and churches (a full list can be found in Table S10). All spatial features returned by the API query that were not 
points were converted to point features by calculating their centroids 

 

 

 



 

 189   

Table S2. Places365 scene classes. 
airfield bowling alley drugstore industrial 

area 
parking 
garage / 
outdoor 

subway 
station / 
platform 

airplane 
cabin 

boxing ring elevator / 
door 

inn / outdoor parking lot supermarket 

airport 
terminal 

bridge elevator 
lobby 

islet pasture sushi bar 

alcove building 
facade 

elevator 
shaft 

jacuzzi / 
indoor 

patio swamp 

alley bullring embassy jail cell pavilion swimming 
hole 

amphitheater burial 
chamber 

engine room japanese 
garden 

pet shop swimming 
pool / indoor 

amusement 
arcade 

bus interior entrance hall jewelry shop pharmacy swimming 
pool / 
outdoor 

amusement 
park 

bus station / 
indoor 

escalator / 
indoor 

junkyard phone booth synagogue / 
outdoor 

 apartment 
building / 
outdoor 

butchers 
shop 

excavation kasbah physics 
laboratory 

television 
room 

aquarium butte fabric store kennel / 
outdoor 

picnic area television 
studio 

aqueduct cabin / 
outdoor 

farm kindergarden 
classroom 

pier temple / asia 

arcade cafeteria fastfood 
restaurant 

kitchen pizzeria throne room 

arch campsite field / 
cultivated 

lagoon playground ticket booth 

archaelogical 
excavation 

campus field / wild lake / natural playroom topiary 
garden 

archive canal / 
natural 

field road landfill plaza tower 

arena / 
hockey 

canal / urban fire escape landing deck pond toyshop 

arena / 
performance 

candy store fire station laundromat porch train interior 

arena / rodeo canyon fishpond lawn promenade train station / 
platform 

army base car interior flea market / 
indoor 

lecture room pub / indoor tree farm 

art gallery carrousel florist shop / 
indoor 

legislative 
chamber 

racecourse tree house 

art school castle food court library / 
indoor 

raceway trench 

art studio catacomb football field library / 
outdoor 

raft tundra 

artists loft cemetery forest / 
broadleaf 

lighthouse railroad track underwater / 
ocean deep 

assembly line chalet forest path living room rainforest utility room 
athletic field / 
outdoor 

chemistry lab forest road loading dock reception valley 
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Table S2. Places365 scene classes. 
atrium / 
public 

childs room formal 
garden 

lobby recreation 
room 

vegetable 
garden 

attic church / 
indoor 

fountain Lock chamber repair shop veterinarians 
office 

auditorium church / 
outdoor 

galley locker room residential 
neighborhood 

viaduct 

auto factory classroom garage / 
indoor 

mansion restaurant village 

auto 
showroom 

clean room garage / 
outdoor 

manufactured 
home 

restaurant 
kitchen 

vineyard 

badlands cliff gas station market / 
indoor 

restaurant 
patio 

volcano 

bakery / shop closet gazebo / 
exterior 

market / 
outdoor 

rice paddy volleyball 
court / 
outdoor 

balcony / 
exterior 

clothing store general store 
/ indoor 

marsh river waiting room 

balcony / 
interior 

coast general store 
/ outdoor 

martial arts 
gym 

rock arch water park 

ball pit cockpit gift shop mausoleum roof garden water tower 
ballroom coffee shop glacier medina rope bridge waterfall 
bamboo 
forest 

computer 
room 

golf course mezzanine ruin watering hole 

bank vault conference 
center 

greenhouse / 
indoor 

moat / water runway wave 

banquet hall conference 
room 

greenhouse / 
outdoor 

mosque / 
outdoor 

sandbox wet bar 

bar construction 
site 

grotto motel sauna wheat field 

barn corn field gymnasium / 
indoor 

mountain schoolhouse wind farm 

barndoor corral hangar / 
indoor 

mountain 
path 

science 
museum 

windmill 

baseball field corridor hangar / 
outdoor 

mountain 
snowy 

server room yard 

basement cottage harbor movie theater 
/ indoor 

shed youth hostel 

basketball 
court / indoor 

courthouse hardware 
store 

museum / 
indoor 

shoe shop zen garden 

bathroom courtyard hayfield museum / 
outdoor 

shopfront  

bazaar / 
indoor 

creek heliport music studio shopping mall 
/ indoor 

 

bazaar / 
outdoor 

crevasse highway natural 
history 
museum 

shower  

beach crosswalk home office nursery ski resort  
beach house dam home theater nursing home ski slope  
beauty salon delicatessen hospital oast house sky  
bedchamber department 

store 
hospital 
room 

ocean skyscraper  

bedroom desert / sand hot spring office slum  



 

 191   

Table S2. Places365 scene classes. 
beer garden desert / 

vegetation 
hotel / 
outdoor 

office 
building 

snowfield  

beer hall desert road hotel room office cubicles soccer field  
berth diner / 

outdoor 
house oilrig stable  

biology 
laboratory 

dining hall hunting 
lodge / 
outdoor 

operating 
room 

stadium / 
baseball 

 

boardwalk dining room ice cream 
parlor 

orchard stadium / 
football 

 

boat deck discotheque ice floe orchestra pit stadium / 
soccer 

 

boathouse doorway / 
outdoor 

ice shelf pagoda stage / indoor  

bookstore dorm room ice skating 
rink / indoor 

palace stage / 
outdoor 

 

booth / 
indoor 

downtown ice skating 
rink / 
outdoor 

pantry staircase  

botanical 
garden 

dressing 
room 

iceberg park storage room  

bow window / 
indoor 

driveway igloo parking 
garage / 
indoor 

street  
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Table S3. SUN image attributes. 
boating competing vegetation marble rusty 
driving sports shrubbery glass warm 
biking exercise foliage surf cold 
transporting playing leaves ocean natural 
sunbathing gaming flowers running water man-made 
touring spectating asphalt still water open area 
hiking farming pavement ice semi-enclosed 

area 
climbing constructing shingles snow enclosed area  
camping shopping carpet clouds far-away horizon 
reading medical activity  brick smoke no horizon   
studying working & tiles fire rugged scene  
training using tools concrete natural light vertical 

components  
research digging metal sunny horizontal 

components 
diving conducting 

business 
paper indoor lighting symmetrical 

swimming praying wood aged cluttered space 
bathing fencing vinyl glossy scary 
eating railing plastic matte soothing 
cleaning wire cloth sterile stressful 
socializing railroad sand moist  
congregating trees rock dry  
waiting in line grass dirt dirty  
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Table S4. SoN ResNet-50 test statistics. Model accuracy is reported using root mean squared error 
(RMSE) and Kendall's ,a ranking correlation coefficient. 

Epoch RMSE Kendall's  

1 0.6998 0.6299 

2 0.7008 0.6339  

3 0.7079 0.6381  

4 0.6909 0.6361  

5 0.7546 0.6368  

6 0.6926 0.6375  

7 0.6997 0.6328  

8 0.7491 0.6275  

9 0.7189 0.6215  

10 0.7325 0.6172 
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Table S5. Most correlated indicators. “(s)” denotes an ecosystem in surrounding area variable. 

Indicator 2nd indicator Pearson's R 

I1 farmland I1 farmland (s) 0.904 

J2 low density buildings (s) I2 gardens and parks (s) 0.887  

J1 cities, towns and villages (s) I2 gardens and parks (s)  0.886  

G3 coniferous woodland (s) G5 lines of trees (s)  0.858  

E2 mesic grasslands E2 mesic grasslands (s) 0.819  

F2 alpine shrub F2 alpine shrub (s) 0.816  

I2 gardens and parks (s) J4 roads (s) 0.802 

J1 cities, towns and villages (s) J4 roads (s) 0.793 

D1 bogs D1 bogs (s) 0.777 

J1 cities, towns and villages (s) J2 low density buildings (s) 0.760 

J2 low density buildings (s) J4 roads (s) 0.752 

F2 alpine shrub (s) E4 alpine grasslands (s) 0.748 

G1 deciduous woodland G1 deciduous woodland (s) 0.746 

J2 low density buildings J2 low density buildings (s) 0.744 

I2 gardens and parks I2 gardens and parks (s) 0.713 

G3 coniferous woodland G3 coniferous woodland (s) 0.713 

J1 cities, towns and villages I2 gardens and parks 0.704 
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Table S6. Time-series analysis - additional data sources. 

Dataset Source 

National Parks (England) https://naturalengland-
defra.opendata.arcgis.com/ 

Cairngorms National Park Designated 
Boundary 

https://spatialdata.gov.scot/ 

Loch Lomond and The Trossachs National 
Park Designated Boundary 

https://spatialdata.gov.scot/ 

National Parks (Wales) https://lle.gov.wales/ 

MOD10CM.V6 https://nsidc.org/ (Hall and Riggs, 2015) 
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Table S7. EEA ecosystem types. 
EUNIS 
code 

EUNIS Class name Area (km2) Area (%) 

B1  Coastal dunes and sandy shores 205.05 0.09 
B2 Coastal shingle 15.75 0.01 
B3 Rock cliffs, ledges and shores, including the supralittoral 9.79 0.00 
C1 Surface standing waters 2027.55 0.88 
C2 Surface running waters 177.16 0.08 
C3 Littoral zone of inland surface waterbodies 3.74 0.00 
D1 Raised and blanket bogs 21249.21 9.24 
D2 Valley mires, poor fens and transition mires 23.34 0.01 
D3 Aapa, palsa and polygon mires 0 0.00 
D4 Base-rich fens and calcareous spring mires 17.31 0.01 
D5 Sedge and reedbeds, normally without free-standing water 114.05 0.05 
D6 Inland saline and brackish marshes and reedbeds 18.44 0.01 
E1 Dry grasslands 6630.9 2.88 
E2 Mesic grasslands 52083.24 22.64 
E3 Seasonally wet and wet grasslands 16040.37 6.97 
E4 Alpine and subalpine grasslands 1465.75 0.64 
E6 Inland salt steppes 0 0.00 
E7 Sparsely wooded grasslands 0 0.00 
F1 Tundra 0 0.00 
F2 Arctic, alpine and subalpine shrub 5106.45 2.22 
F3 Temperate and mediterranean-montane scrub 12265.09 5.33 
F4 Temperate shrub heathland 1146.42 0.50 
F5 Maquis, arborescent matorral and thermo-Mediterranean 

brushes 0 0.00 
F6 Garrigue 0 0.00 
F7 Spiny Mediterranean heaths (phrygana, hedgehog-heaths 

and related coastal cliff vegetation) 0 0.00 
F8 Thermo-Atlantic xerophytic scrub 0 0.00 
F9 Riverine and fen scrubs 7.65 0.00 
FB Shrub plantation 51.22 0.02 
G1 Broadleaved deciduous woodland 11485.08 4.99 
G2 Broadleaved evergreen woodland 0 0.00 
G3 Coniferous woodland 11202.43 4.87 
G4 Mixed deciduous and coniferous woodland 3047.2 1.32 
G5 Lines of trees, small anthropogenic woodlands, recently 

felled woodland, early-stage woodland and coppice 2619.83 1.14 
H2 Screes 219.63 0.10 
H3 Inland cliffs, rock pavements and outcrops 430.22 0.19 
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Table S7. EEA ecosystem types. 
H4 Snow or ice-dominated habitats 0 0.00 
H5 Miscellaneous inland habitats with very sparse or no 

vegetation 889.47 0.39 
I1 Arable land and market gardens 58901.8 25.61 
I2 Cultivated areas of gardens and parks 3895.57 1.69 
J1 Buildings of cities, towns and villages 8526.9 3.71 
J2 Low density buildings 8052.28 3.50 
J3 Extractive industrial sites 674.15 0.29 
J4 Transport networks and other constructed hard-surfaced 

areas 1385.46 0.60 
J5 Highly artificial man-made waters and associated structures 26.75 0.01 
J6 Waste deposits 23.85 0.01 
Total  230039.1 100 
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Table S8. Scenicness model accuracy results without the user limitation. 

Model Places365 
scene 
classes 

SUN 
attributes 

Scenic rating 
distribution 

Environmental 
indicators 

r2 RMSE Kendall’s τ 

Flickr 

1 – –  – 0.672 0.627 0.613 

2 –  – – 0.739 0.558 0.654 

3 –   – 0.746 0.552 0.660 

4  – – – 0.756 0.542 0.674 

5    – 0.760 0.537 0.674 

6  –  – 0.757 0.540 0.674 

7   – – 0.762 0.534 0.675 

Indicator 

8 – – –  0.819 0.468 0.730 

Combination 

9   –  0.827 0.458 0.731 

10     0.827 0.458 0.732 

11 –    0.829 0.455 0.732 

12  – –  0.830 0.456 0.734 

13 – –   0.831 0.453 0.738 
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Table S9. Summary statistics for largest differences in image attribute scores with unfiltered 
dataset based on ten random image selections per user per day per grid cell. 

Attribute min 0.25 median 0.75 max 

grass -0.0129345 -0.012813 -0.012728 -0.0126741 -0.0125904 

cloth -0.0117806 -0.0117536 -0.0117219 -0.0116848 -0.0116245 

playing -0.0082253 -0.0081799 -0.00814 -0.0081338 -0.0081115 

competing -0.0080414 -0.0079843 -0.0079614 -0.0079484 -0.0079092 

sports -0.0080318 -0.0079829 -0.0079552 -0.0079414 -0.0078951 

vegetation -0.0080157 -0.0078309 -0.0078205 -0.0077516 -0.0075968 

no horizon -0.0079613 -0.0078365 -0.0077178 -0.0076277 -0.0075967 

exercise -0.0070634 -0.0070209 -0.0069846 -0.0069786 -0.0069431 

foliage -0.0068866 -0.0067719 -0.0067143 -0.006672 -0.0064665 

sunny -0.0065354 -0.0064305 -0.0063678 -0.0063338 -0.0062988 

railroad 0.00125414 0.00129332 0.00129991 0.00130359 0.00134532 

swimming 0.00144828 0.00147526 0.00154538 0.001581 0.00161854 

enclosed area 0.00188263 0.00191018 0.0019217 0.0019345 0.00200661 

transporting 0.00230039 0.00233472 0.00236526 0.00239926 0.0024206 

natural 0.00271528 0.00278886 0.00285209 0.00304828 0.00318441 

boating 0.00280333 0.00284384 0.00291285 0.00296349 0.00302866 

ocean 0.00295043 0.00301037 0.00308272 0.00311155 0.00313657 

indoor lighting 0.00367905 0.00371899 0.00374535 0.0037538 0.00378158 

far-away horizon 0.00531631 0.005401 0.00546001 0.00560656 0.00575712 

clouds 0.00646776 0.00654812 0.00665955 0.0066942 0.00684807 
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Table S10. OSM historic POI. 

Category Description 

aqueduct A historic structure to convey water 

archaeological site A place in which evidence of past activity is preserved. 

building Unspecified historic building. 

castle Used for various kinds of castles, palaces, fortresses, manors, stately 
homes, kremlins, shiros and other. 

castle wall A fortification surrounding the bailey of a castle 

church A building with historical value for Christian religious activities, 
particularly for worship services. 

city gate A city gate within a city wall 

citywalls A citywall is a fortification used to defend a city. 

farm A historical farm, kept in its original state. 

fort A military fort, a stand-alone defensive structure which differs from a 
castle in that there is no permanent residence 

manor Historic manors/mansions having different use today \\ 

monastery Building/place that was a monastery. 

monument A memorial object, which is especially large, built to remember, show 
respect to a person or group of people or to commemorate an event. 

ruins Remains of structures that were once complete, but have fallen into 
partial or complete disrepair. 

rune stone Stones, boulders or bedrock with historical runic inscriptions. 

tower This property distinguishes a tower as historic 

wayside cross A historical cross, symbol of christian faith. 

wayside shrine A shrine often showing a religious depiction. Also for modern shrines. 
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Supplementary material for Chapter 4 
 

Figure S8. European sample grid at 25km resolution to download the Flickr and iNaturalist image 
training dataset. 
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Figure S9. Distribution of iNaturalist observation image entropy scores based on the species 
classification models’ predictions. 
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Figure S10. The percentage of images per species “supercategory” in Flickr species images and the 
images of iNaturalist observations, as predicted by the species classification model. 
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Table S11. Randomly sampled images (hyperlinks) of the species interaction model’s predictions 
using different beta coefficients. Confidence bands reflect the confidence of the image being a 
species image (species image => 0.5, max=1). 
Confidence 
band 

Beta=1 Beta=0.1 Beta=0.01 Beta=0.001 

(0.9,1] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20]  

(0.8, 0.9] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20]" 

(0.7, 0.8] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0.6, 0.7] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0.5, 0.6] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [6], 
[7], [8], [9], [10], [11], 
[12], [13], [14], [15], 
[16], [17], [18], [19] , 
[20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0.4,0.5] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 
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Table S11. Randomly sampled images (hyperlinks) of the species interaction model’s predictions 
using different beta coefficients. Confidence bands reflect the confidence of the image being a 
species image (species image => 0.5, max=1). 
(0.3, 0.4] [1], [2], [3], [4], [5], 

[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[NA], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0.2, 0.3] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20]  

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0.1, 0.2] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

(0, 0.1] [1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 

[1], [2], [3], [4], [5], 
[6], [7], [8], [9], [10], 
[11], [12], [13], [14], 
[15], [16], [17], [18], 
[19], [20] 



  206 
 

Table S12. Overall accuracy of the species classification model at different taxonomic levels. 

Taxonomic level Overall accuracy (no filter) Overall accuracy (<2.42 entropy 
filter) 

Genus 32.4% 49.6% 

Family 47.0% 65.9% 

Order 59.1% 76.3% 

Phylum 89.1% 94.7% 
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Table S13. Overall accuracy of the species classification model with a <2.42 entropy filter on the 
iNaturalist observation dataset for the most frequent genera predicted on Flickr and iNaturalist. 

Genus Common 
name 

Total 
predicted 

Genus 
OA (%) 

Family 
OA (%) 

Order 
OA (%) 

Phylum 
OA (%) 

Top 
misclassification 

(% of total 
predictions) 

Aglais Tortoiseshells 5,435 99.6 99.8 99.9 99.9 Bumblebee (0.18)  

Erithacus Robins 3,470 99.1 99.1 99.9 100 Bumblebee (0.09) 

Sciurus Squirrels  3,385 91.5 91.5 92.4 98.9 Thrushes (3.28) 

Larus Gulls 3,887 87.4 95.1 95.5 99.9 Fulmars (3.09) 

Cygnus Swans 5,664 87.4 94.3 94.3 99.6 Gulls (2.61) 

Ardea Herons 3,409 85.9 90.5 90.8 99.7 Swans (4.81) 

Turdus Thrushes 5,419 85.7 85.7 98.2 99.8 Moorhens (0.87) 

Anas 
Dabbling 
Ducks 7,121 85.1 95.4 95.4 99.8 Coots (2.49) 

Branta Black Geese 4,043 84.5 94.2 94.2 98.7 Coots (2.08) 

Pieris Garden Whites 5,706 83.5 89.9 94.1 94.6 Wood sorrels (0.7) 

Geranium Geraniums 7,951 78.8 79.1 79.1 97.8 Mallow (6.55) 

Vanessa Red Admiral 7,742 78.4 95.6 98.3 99.7 Bumblebee (1.47) 

Anser 
Grey/white 
Geese 3,078 73.2 91.0 91.0 97.0 Gulls (1.92) 

Harmonia Ladybugs 7,402 72.2 97.2 98.1 99.7 Froghoppers (0.51) 

Trifolium Clover 6,535 62.8 64.2 64.2 96.1 Anacamptis (8.28) 

Apis Honey bees 7,214 32.1 47.0 61.0 98.2 Hoverflies (20.6) 

Odocoileus 
Deer 
(Americas) 1,911 0 80.3 80.6 96.9 Foxes (5.18) 

 



  208 
 

Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

Species Bird density 
maps 

Species 
model 
grouping 

Species model classes* Conserv
ation 
status† 

Grouping 
justification 

Blue Tit Blue Tit Cyanistes Cyanistes caeruleus (3,016) Green None - only one 
species class 
available within 
the genus. 

Bullfinch Bullfinch Pyrrhula Pyrrhula pyrrhula (599) Amber None - only one 
species class 
available within 
the genus. 

Buzzard Buzzard Buteo Buteo augur (2) 
Buteo buteo (274) 
Buteo galapagoensis (31) 
Buteo jamaicensis (1,866) 
Buteo lagopus (5) 
Buteo lineatus (452) 
Buteo plagiatus (131) 
Buteo platypterus (71) 
Buteo regalis (64) 
Buteo rufinus (7) 
Buteo swainsoni (147) 

Green The available 
species classes 
within the genus 
are visually 
similar. 

Chaffinch Chaffinch Fringilla Fringilla coelebs (2,685) Green None - only one 
species class 
available within 
the genus. 

Coal Tit  Coal Tit  Periparus Periparus ater (415) Green None - only one 
species class 
available within 
the genus. 

Collared 
Dove  

Collared Dove  Streptopelia Streptopelia capicola (13) 
Streptopelia chinensis (104) 
Streptopelia decaocto (957) 
Streptopelia decipiens (52) 
Streptopelia (24) 
Streptopelia senegalensis (33)  
 

Green The available 
species classes 
within the genus 
are visually 
similar. 

Crows Carrion Crow 
Jackdaw 
Rook 

Corvus Corvus brachyrhynchos (784) 
Corvus corax (721) 
Corvus cornix (73) 
Corvus corone (123) 

Amber Genus is visually 
similar. 
Conservation 
status has been 
set to amber to 
reflect amber 
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Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

Corvus frugilegus (58) 
Corvus monedula (585) 

status of Rook. 

Curlew Curlew Numenius Numenius americanus (266) 
Numenius madagascariensis (458) 
Numenius phaeopus (356) 
 

Red The available 
species classes 
within the genus 
are visually 
similar. 

Dunnock Dunnock Prunella Prunella collaris (22) 
Prunella modularis (1,151) 
 

Amber The available 
species classes 
within the genus 
are visually 
similar. 

Goldcrest Goldcrest Regulus Regulus calendula (618) 
Regulus satrapa (218) 

Green The available 
species classes 
within the genus 
are visually 
similar. 

Goldfinch Goldfinch Carduelis Carduelis carduelis (1,614) Green None - only one 
species class 
available within 
the genus. 

Great Spotted 
Woodpecker 

Great Spotted 
Woodpecker 

Dendrocopos Dendrocopos major (1,297) 
Dendrocopos medius (94)  
Dendrocopos minor (2) 
Dendrocopos syriacus (23) 

Green The available 
species classes 
within the genus 
are visually 
similar. 

Great Tit Great Tit Parus Parus major (2,021) 
Parus minor (31) 

Green The available 
species classes 
within the genus 
are visually 
similar. 

Green 
Woodpecker 

Green 
Woodpecker 

Picus Picus canus (82) Green None - only one 
species class 
available within 
the genus. 

Greenfinch  Greenfinch  Chloris Chloris chloris (960) 
Chloris cucullata (9) 
Chloris sinica (84) 

Red The available 
species classes 
within the genus 
are visually 
similar. 

House 
Martin, 
Swallow 

House Martin, 
Swallow 

Hirundinidae Cecropis abyssinica (3) 
Delichon urbicum (13) 
Hirundo neoxena (7) 
Hirundo rustica (972) 

Amber Due to the visual 
similarity of 
species at the 
family level, the 
bird densities 
were combined 
and compared to 



  210 
 

Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

Hirundo tahitica (3) 
Petrochelidon pyrrhonota (205) 
Progne subis (34) 
Ptyonoprogne rupestris (5) 
Pygochelidon cyanoleuca (1)  
Riparia riparia (38) 
Stelgidopteryx ruficollis (11) 
Stelgidopteryx serripennis (209) 
Tachycineta albiventer (7) 
Tachycineta bicolor (68) 
Tachycineta thalassina (29) 

the models’ 
predictions at 
family level. 
Conservation 
status was set to 
amber to reflect 
the House 
Martin’s red list 
status. 

House 
Sparrow 

House Sparrow Passer Passer diffusus (26) 
Passer domesticus (4127) 
Passer griseus (12) 
Passer hispaniolensis (35) 
Passer melanurus (33) 
Passer montanus (505) 

Red The available 
species classes 
within the genus 
are visually 
similar. 

Jay Jay Garrulus Garrulus glandarius (447) Green None - only one 
species class 
available within 
the genus. 

Kestrel Kestrel Falco Falco cenchroides (58) 
Falco naumanni (60) 
Falco sparverius (454) 
Falco tinnunculus (1,790) 
 

Amber Excluded 
Merlins (Falco 
columbarius), 
Peregrine (Falco 
peregrinus) and 
gyrfalcon (Falco 
rusticolus) from 
species model 
classes as too 
visually 
dissimilar.  

Lapwing Lapwing Vanellus Vanellus albiceps (9) 
Vanellus chilensis (91) 
Vanellus coronatus (41) 
Vanellus senegallus (21) 
Vanellus vanellus (486) 

Red The available 
species classes 
within the genus 
are visually 
similar. 

Long-tailed 
Tit  

Long-tailed Tit  Aegithalos Aegithalos caudatus (489) Green None - only one 
species class 
available within 
the genus. 

Magpie  Magpie  Pica Pica hudsonia (469) Green The available 
species classes 
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Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

Pica nuttalli (10) 
Pica pica (570) 

within the genus 
are visually 
similar. 

Mallard Mallard Anas Anas acuta (984) 
Anas castanea (5) 
Anas crecca (1,550) 
Anas erythrorhyncha (64) 
Anas flavirostris (116) 
Anas fulvigula (210) 
Anas georgica (8) 
Anas platyrhynchos (11,900) 
Anas poecilorhyncha (20) 
Anas rubripes (124) 
Anas superciliosa (61) 
Anas undulata (41) 
Anas zonorhyncha (1) 

Amber The available 
species classes 
within the genus 
are visually 
similar. 

Meadow Pipit  Meadow Pipit  Anthus Anthus cervinus (67) 
Anthus petrosus (243) 
Anthus rubescens (495) 
Anthus rufulus (11) 
Anthus spinoletta (3) 
Anthus spragueii (60) 
Anthus trivialis (9) 

Amber The available 
species classes 
within the genus 
are visually 
similar. 

Moorhen Moorhen Gallinula Gallinula chloropus (893) 
Gallinula galeata (1,041) 
Gallinula tenebrosa (56) 
 

Amber The available 
species classes 
within the genus 
are visually 
similar. 

Nuthatch Nuthatch Sitta Sitta canadensis (253) 
Sitta europaea (1,154) 
 

Green Excluded  
White-breasted 
nuthatch (Sitta 
carolinensis) and 
Pygmy nuthatch 
(Sitta pygmaea) 
from species 
model classes as 
too visually 
dissimilar. 

Pied/White 
Wagtail 

Pied/White 
Wagtail 

Motacilla Motacilla alba (1,035) 
Motacilla capensis (12) 
Motacilla maderaspatensis (20) 

Green Excluded Grey 
wagtail (Motacilla 
cinerea) from 
species model 
classes as too 
visually 
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Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

dissimilar. 

Pigeons Stock Dove 
Woodpigeon 

Columba Columba guinea (43) 
Columba livia (1,916) 
Columba oenas (18) 
Columba palumbus (1,198) 
 

Amber Genus is visually 
similar so bird 
densities and 
species classes 
have been 
combined. 

Robin Robin Erithacus Erithacus rubecula (9,804) Green None - only one 
species class 
available within 
the genus. 

Skylark Skylark Alauda Alauda arvensis (240) Red None - only one 
species class 
available within 
the genus. 

Starling Starling Sturnus Sturnus unicolor (4) 
Sturnus vulgaris (1,753) 

Red The available 
species classes 
within the genus 
are visually 
similar. 

Swift Swift Apodidae Aeronautes saxatalis (15) 
Chaetura pelagica (9) 
Streptoprocne zonaris (58) 
 

Red Species model 
classes not 
available within 
Apus genus so 
classifications 
taken at family 
level which 
includes visually 
similar species. 

Thrushes Blackbird  
Mistle Thrush  
Song Thrush   

Turdus Turdus amaurochalinus (28) 
Turdus assimilis (2) 
Turdus eunomus (34) 
Turdus falcklandii (14) 
Turdus fuscater (35) 
Turdus grayi (177) 
Turdus iliacus (8) 
Turdus leucomelas (12) 
Turdus libonyana (14) 
Turdus merula (3,404) 
Turdus migratorius (194) 
Turdus philomelos (1,033) 
Turdus pilaris (309) 
Turdus rufiventris (5) 
Turdus rufopalliatus (46) 

Amber Genus is visually 
similar so bird 
densities and 
species classes 
have been 
combined. 
Conservation 
status is set to 
amber because of 
the red list status 
of the Mistle 
Thrush. 
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Table S14. Bird density and species model class groupings to conduct the biodiversity comparison. 

Turdus torquatus (35) 

Warblers Chiffchaff 
Blackcap 
Garden 
Warbler 
Whitethroat 

Phylloscopus 
Sylvia 

Phylloscopus collybita (252) 
Sylvia atricapilla (110) 
Sylvia communis (270) 
Sylvia melanocephala (2) 
 

Amber The available 
species classes 
within the Sylvia 
genus are 
visually similar. 
The Chiffchaff is 
also included due 
to visual 
similarities, 
having formally 
formed part of 
the same 
taxonomic family 
Sylviidae. 
Conservation 
status is set to 
amber because of 
the amber status 
of the 
Whitethroat. 

Wren Wren Troglodytes Troglodytes aedon (870) 
Troglodytes pacificus (26) 
 

Amber The available 
species classes 
within the genus 
are visually 
similar. 

Yellowhamm
er 

Yellowhammer Emberiza Emberiza citrinella (666) Red Excluded other 
Eberiza species 
classes Emberiza 
cia, Emberiza 
cirlus, Emberiza 
elegans, Emberiza 
melanocephala 
and Emberiza 
rustica due to the 
visual 
uniqueness of the 
Yellowhammer 
within this genus. 

*Number of species class predictions in parentheses  
†Source: BTO BirdFacts. Url: https://www.bto.org/understanding-birds/birdfacts 
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Supplementary material for Chapter 5 
Table S15. The relationship between the levels of reported well-being per statement in the MENE 
survey and the sentiment estimated by the three NLP models in Flickr image text within a 1km 
radius of the surveyed trips. 

Model Statement correlation (Pearson’s r) 

 I enjoyed 
it 

It made 
me feel 
calm and 
relaxed 

It made me 
feel 
refreshed 
and 
revitalised 

I took time to 
appreciate my 
surroundings 

I learned 
something 
new about 
the natural 
world 

I felt 
close to 
nature 

Hedonometer 0.05218 0.03776 0.03480 0.05070 0.01392 0.06013 

Sentiment140 0.02105 0.00980 0.00762 0.01913 -0.00902 0.00531 

RoBERTa 0.04401 0.02831 0.01604 0.03213 0.00506 0.01901 

 

Table S16. Correlation (Pearson’s R) between aesthetic quality ratings and sentiment estimated 
by the three NLP models on an individual image basis. 

Model Aesthetic quality (1-10) Aesthetic quality (<6) Aesthetic quality (>6) 

Hedonometer 0.142 0.156 0.0289 

Sentiment140 0.0526 0.0571 0.0201 

RoBERTa 0.0897 0.0859 0.0467 

 
Table S17. Correlation (Pearson’s R) between species interactions and sentiment estimated by the 
three NLP models on an individual image basis. 

Model Species interactions 

Hedonometer 0.124 

Sentiment140 0.003 

RoBERTa 0.033 
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Table S18. Correlations between aesthetic quality in Flickr images and the level of agreement with 
the well-being statements associated with trips within 1km reported in the MENE survey. 

Statement Correlation (Pearson’s R) 

I enjoyed it 0.0885 

It made me feel calm and relaxed 0.0835 

It made me feel refreshed and revitalised  0.0898 

I took time to appreciate my surroundings 0.151 

I learnt something new about the natural world 0.0718 

I felt close to nature 0.163 

 
Table S19. Correlations between the number of species interactions in Flickr images and the level 
of agreement with the well-being statements associated with trips within 1km reported in the 
MENE survey. 

Statement Correlation (Pearson’s R) 

I enjoyed it 0.0244 

It made me feel calm and relaxed 0.0353 

It made me feel refreshed and revitalised  0.0199 

I took time to appreciate my surroundings 0.0306 

I learnt something new about the natural world 0.0232 

I felt close to nature 0.0581 
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Summary 
 
Machine learning and crowdsourced data offer new ways in which to generate measures of 
Cultural Ecosystem Services (CES) in ecosystem service assessments. As a result, 
demonstrating the use of these novel techniques can help better integrate the ecosystem 
service concept into decision-making, especially at large-scales.  
This thesis aims to explore the potential of crowdsourced data and machine learning to 
measure CES through the following research questions: 

1. How can CES be defined and spatially modelled in the context of crowdsourced data? 
2. How can social media and deep learning capture the aesthetic quality of the 

landscape in support of aesthetic ecosystem service models? 
3. What do social media and deep learning-based indicators of biodiversity-related CES 

capture in comparison to citizen science and ecological measures? 
4. How can social media and natural language processing capture the positive 

experiences associated with different CES measures? 
 
The thesis contains six chapters: 

Chapter 1: General introduction 
This chapter introduces the existing challenges and knowledge gaps facing CES assessment 
using crowdsourced data and machine learning, as well as the research questions. 
 
Chapter 2: Defining and spatially modelling CES using crowdsourced data 
This chapter presents a conceptual exercise in which the CES concept is reconsidered in the 
context of existing, established conceptualisations and sources of crowdsourced data. At the 
same time, three spatial models of CES are presented for the island of Texel to further 
inform the conceptualisation. 
 
Chapter 3: Social media and deep learning capture the aesthetic quality of the landscape 
In this chapter, a measure of landscape aesthetics is generated for Great Britain using Flickr 
images and deep learning. The accuracy of the model is assessed using a national, 
crowdsourced database of landscape aesthetics and compared to a traditional indicator 
model. The final model uses a full, image-based semantic prediction of landscape aesthetic 
quality, produced by a deep learning model trained for the study. 
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Chapter 4: Deep learning and social media reveal specific cultural contributions of 
biodiversity 
This chapter explores the potential of deep learning and social media to develop CES 
measures of biodiversity. A deep learning model is trained on a large database of images to 
generate predictions of human-species interactions in images. This model is applied to 
Flickr images in Great Britain and the spatial distributions are compared with citizen science 
data. User activity is explored versus key socio-environmental factors and further 
comparisons are made with ecological measures of biodiversity.  
 
Chapter 5: Understanding the sentiment generated by CES using social media and 
natural language processing 
In this chapter, the connection between peoples' positive experiences and CES measures 
produced using social media and natural language processing, including machine learning, 
is explored. A number of sentiment models are applied to the textual data associated with 
Flickr images in Great Britain and compared with different CES measures of landscape 
aesthetics and individual interactions with different species. 
 
Chapter 6: Synthesis 
Finally, this chapter presents a synthesis of the main findings, a discussion of the methods, 
relevancy of the findings for key ecosystem service frameworks, research outlook and 
concluding remarks. 
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