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Abstract 15 

 16 

Plant Growth Promoting Rhizobacteria (PGPR) dwell in the rhizosphere, the area 17 

surrounding the root of plants, and enhance growth of the host through different 18 

mechanisms: they can protect plants against pathogens, assist in nutrient gathering, and in 19 

increasing stress tolerance. Hence, developing strategies to enhance their performance is 20 

important to increase crop productivity. Specific solutions are necessary to enhance the 21 

performance of the beneficials while simultaneously avoiding nurturing of pathogens. This 22 

requires insights into the mechanisms underlying these microbials interactions. 23 

Pseudomonas is one of the most studied genera and contains both beneficials and 24 

pathogenic species. Hence, we used comparative genome-scale constraint-based metabolic 25 

modeling to reveal key features of both classes of Pseudomonads and which can provide 26 

leads for the possible interventions regarding these solutions. Models of 75 plant-growth 27 

promoting rhizosphere and 33 epiphytic pathogenic Pseudomonas strains were 28 

automatically reconstructed and validated using phenotype microarray (Biolog) data. The 29 

models were used for compositional analysis and 12 representative strains, 6 of each group, 30 

were further selected for extensive simulation. The analyses reveal differences in the 31 

potential for metabolite uptake and transport between these two distinct classes that 32 

suggest their nutrient preferences and their differences in, among other, D-ornithine 33 

acquisition mechanisms. The models enable simulation of metabolic state of root exudates. 34 

Simulations highlighted and summarized the differences in pathway utilization and 35 

intracellular states between two groups. The insights obtained will be very valuable to 36 

broader such studies of rhizobiome and to possibly develop strategies to improve crop 37 

productivity by supporting the beneficial microbiome while reducing pathogen activities.  38 

 39 

  40 
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 2 

Introduction 41 

The rhizosphere, the interface between the plant root and the soil, is influenced by the 42 

chemicals released from the plant root system and can be inhabited by a population of plant 43 

beneficial microorganisms and sometimes pathogens attracted by such plant exudates
1,2

. 44 

The attracted beneficial organisms benefit their host by enhancing nutrient acquisition and 45 

tolerance to biotic and abiotic stresses
3–5

. Bacterial rhizosphere community members are 46 

often represented by a diverse set of taxa often with Pseudomonadaceae as one of the 47 

predominant groups
6–8

.  48 

 49 

The most studied genus within the Pseudomonadaceae is the name-giving genus 50 

Pseudomonas. Members of this genus vary in lifestyle, organic compound utilization and 51 

habitation of ecosystems and the genus contains both plant beneficial and plant pathogenic 52 

species
7–9

. Most of the plant beneficial Pseudomonas strains identified belong to the P. 53 

fluorescens species group, while most of the identified plant pathogens are P. syringae 54 

strains
10,11

. However, there are exceptions such as the plant growth promoting P. syringae 55 

pv. syringae strain 260-02
12,13

. This suggests that the functional significance or biochemical 56 

role of a given strain in a defined environment such as the rhizosphere can potentially be 57 

prioritized over taxonomy
14–16

. Moreover, the dynamic environment that accommodated 58 

these microbes compels them to adapt to changes for their own and host survivability
17,18

. 59 

For these reasons, the investigation of the metabolic differences of two distinct classes, 60 

beneficial and pathogen, can reveal the common unique characteristics per group. 61 

 62 

Genome data is available from many environmental isolates and genome-scale metabolic 63 

network reconstructions (GEMs), coupled with constraint-based analysis methods and tools, 64 

such as Flux Balance Analysis (FBA)
19,20

, allow the comparison of their metabolism and 65 

transport at a systems-level. Such comparative studies are vital to understand the principles 66 

and mechanisms involved in defining the specific traits contributing to a plant beneficial or 67 

pathogenic phenotype. 68 

 69 

In this study we utilized the CarveMe automatic GEMs reconstruction tools
21,22

 to compare 70 

GEMs from 75 known Plant-Growth Promoting Rhizobacteria (PGPR) with 33 Epiphytic 71 

Pathogenic Pseudomonas (EPP) strains originating from various Pseudomonas spp. using 72 

new and available genome sequences and a standardized de novo annotation pipeline as 73 

input
23

. This allowed us to elucidate systems-level metabolic differences between the two 74 

classes and by simulating different environmental conditions, in a time-series manner, 75 

medium specific reactions were revealed
24

. The results show that GEMs can identify 76 

different nutrient preferences through the annotated transports and pinpoint differences in 77 

pathway wiring towards optimal growth. This crucial knowledge can be implemented 78 

further to enhance crop productivity by precisely assisting the beneficial microbiome while 79 

reducing pathogen activities.  80 

 81 
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 82 

Materials and Methods 83 

 84 

Genome retrieval and annotation. 85 

 86 

Genomes of seven beneficial Pseudomonas strains: P. putida P9 (accession ERS6670306), P. 87 

corrugata IDV1 (accession ERS6652532), P. fluorescens R1 (accession ERS6670181), P. 88 

protegens Pf-5 (accession ERS6652530), P. chlororaphis Phz24 (accession ERS6670416), P. 89 

jessenii RU47 (accession ERS6670307) and P. fluorescens WCS374 (accession ERS6652531) 90 

have recently been re-sequenced
25

. In addition, 101 publicly available “complete” 91 

Pseudomonas genomes were downloaded from the Pseudomonas Genome DB version 20.2 92 

(https://www.pseudomonas.com)
26

. The downloaded data were categorized according to 93 

the literature into two classes: Plant-Growth Promoting Rhizobacteria (PGPR) (68 strains) 94 

and Epiphytic Pathogenic Pseudomonas (EPP) (33 strains). These sequences were annotated 95 

with protein domains and synteny-non directional Genome Properties (SND-GPs). The 96 

annotated data along with their literature references of the complete and classified genome 97 

were obtained from Poncheewin et al.
25

. 98 

 99 

Model construction 100 

 101 

CarveMe v.1.5.1 was used to automatically construct gap-filled genome scale metabolic 102 

models (GEMs) from the annotated protein domains using aerobic M9 minimal medium 103 

with the universal template of the gram-negative bacteria in BiGG models
21,27

 as growth 104 

conditions. The availability of metabolites in M9 was simulated by setting the lower-bound 105 

of the corresponding exchange reactions, which transfer metabolites in and outside of the 106 

organism, to -10 mmol/gDW/h along with the oxygen exchange reaction to simulate the 107 

aerobic condition. In the models, the exchange reactions corresponding to the M9 medium 108 

components are termed EX_glc__D_e, EX_o2_e, EX_ca2_e, EX_cl_e, EX_cobalt2_e, 109 

EX_cu2_e, EX_fe2_e, EX_fe3_e, EX_h2o_e, EX_h_e, EX_k_e, EX_mg2_e, EX_mn2_e, 110 

EX_mobd_e, EX_nh4_e, EX_pi_e, EX_so4_e and EX_zn2_e and are used to simulate 111 

availability of the corresponding components. 112 

 113 

Model composition analysis 114 

 115 

An enrichment analysis was performed on the model's reactions. Hypergeometric tests with 116 

Bonferroni correction were used on each class to uncover over-representative reactions (p-117 

value < 0.05) using dhyper and p.adjust functions in R
28

. The enriched reaction’s descriptions 118 

were used to create a document to illustrate a word cloud using “tm” v.0.7-8, 119 

“RColorBrewer” v.1.1-2, “wordcloud” v.2.6 and “wordcloud2” v.0.2.1 packages
29–32

. BLASTP 120 

within DIAMOND v.0.9.14.115 was used to obtain the similarity score of the protein 121 

sequences related to D-ornithine activity: D-ornithine transport via ABC system periplasm 122 
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(DORNabcpp) and ornithine racemase (ORNR)
33

. A total of 3 databases were created (1) full 123 

set of protein sequences from all the strains, (2) genes annotated to DORNabcpp reaction 124 

were removed and (3) genes annotated to ORNR reaction were removed. 125 

 126 

Strain selection 127 

 128 

Hierarchical clustering was performed on the statuses of the GPs of each class using 129 

Euclidean distance with complete linkage. The functional based dendrograms were pruned 130 

using Treemmer v.0.3 for 100 iterations to select 12 representative strains, 6 of each class
34

. 131 

Strains with the most frequent occurrences while maintaining the distances of the tree were 132 

selected.  133 

 134 

Model simulation 135 

 136 

GEMs were used to simulate fluxes and consumption capabilities through Flux Balance 137 

Analysis (FBA) using COBRApy version 0.22.0
19,20

. FBA computes reaction fluxes that 138 

optimize the flux through a selected objective reaction, which is often selected to represent 139 

either growth or production or consumption of a chemical compound of interest. Optimal 140 

growth rates were estimated using FBA by setting the biomass synthesis reaction as the 141 

objective for maximization. For comparison with Biolog data, the models were used to 142 

simulate metabolite consumption profiles. To do so, a total of 55 carbon sources were used 143 

to substitute EX_glc_e (glucose) from the initial M9, one at a time The consumption of the 144 

tested carbon was limited to 10 mmol/gDW/h by setting the lower bound of the 145 

corresponding exchange reactions to -10. The maximum possible consumption of the 146 

carbon sources was estimated using FBA by setting the corresponding exchange reactions as 147 

minimization objective (Supplementary file S1), as negative values indicate consumption of 148 

the metabolite. The profile was compared to the Biolog data while the threshold for the 149 

ability to oxidize compounds in the Biolog set to 0.1. 150 

 151 

Three media were defined to represent different growth stages of the tomato seedling. The 152 

M9 media was adjusted by adding additional organic acids and sugars as follow (Day2) M9 153 

with the addition of oxalate (15 mmol/gDW/h) and xylose (11 mmol/gDW/h), (Day4) M9 154 

with the addition of citrate (5 mmol/gDW/h) and fructose (9.17 mmol/gDW/h) and (Day14) 155 

M9 with the addition of citrate (5 mmol/gDW/h), xylose (5 mmol/gDW/h) and maltose (2.5 156 

mmol/gDW/h)
24

.  157 

 158 

For each medium and model, we performed single reaction deletions to assess their 159 

essentiality. The reactions were essential if the growth predicted after deletion was less 160 

than 10% of the optimal growth. Reactions were mapped to KEGG PATHWAY for pathway 161 

identification using their corresponding EC number yielding in the fraction of completeness 162 

per pathways
35

.  163 
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 5 

 164 

We explored growth feasibility and flexibility using 10,000 iterations of flux sampling under 165 

parsimoniousFBA (pFBA) constraint towards the optimal growth (Supplementary file 166 

S1)
36,37

. Flux sampling was performed using optGpSampler as implemented in the COBRApy 167 

sample function with “optgp” option 
37

.  168 

 169 

Pathway analysis 170 

 171 

Statistical methods were used to identify significant differences in pathways and fluxes 172 

between the two classes PGPR and EPP (p-value < 0.05). T-tests were applied to the fraction 173 

of completeness of essential pathways between two groups using the t.test function in R
28

. 174 

For sampled fluxes, we perform a pairwise comparison between each member of the 175 

different groups, resulting in a total of 36 comparisons. Kolmogorov-Smirnov tests (KS test) 176 

were applied on the sampled fluxes through the ks.test function in R
38

. In addition to the p-177 

value, the fluxes were considered significant if the distance (D) was more than 0.5 and the 178 

mean more than 0.01. 179 

 180 

Metabolic characterization 181 

 182 

Biolog phenotyping microarrays were used as suggested by the manufacturer (Biolog, 183 

Hayward (CA), USA). Microplates PM1, PM2A, and PM3B were used containing 190 carbon 184 

sources and PM10 to test for pH and carbon sources (Supplementary file S2). 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.26.501552doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501552
http://creativecommons.org/licenses/by/4.0/


 6 

 205 

Results 206 

 207 

 208 
Figure 1: Three step analysis workflow for GEM construction, enrichment, and simulation. 209 

Step (1): GEMs representing P. putida P9, P. corrugata IDV1, P. fluorescens R1 and WCS37, 210 

P. protegens Pf-5, P. chlororaphis Phz24, P. jessenii RU47 were automatically constructed 211 

with CarveMe and validated against the Biolog phenotype data. The validation showed the 212 

approach to be suitable and GEMs were automatically built for the 101 remaining strains. 213 

Step (2): Reactions from the total set of GEMs were evaluated by enrichment analysis and 214 

results were represented with a word cloud. Step (3) Treemmer was used to select 12 215 

representative strains for further in-depth analysis. Corresponding models were explored 216 

using enrichment analysis and used for extensive model simulations to identify essential 217 

reactions and differences in intracellular fluxes. 218 

 219 

Model construction and validation  220 

 221 

Seven de novo (re)-sequenced and annotated strains: P. putida P9, P. corrugata IDV1, P. 222 

fluorescens R1 and WCS374, P. protegens Pf-5, P. chlororaphis Phz24, and P. jessenii RU47 223 

were selected for automatic GEM construction based on M9 minimal medium. The carbon 224 

assimilation profile of the models was then simulated and compare with the Biolog data 225 

using a carbon substituted M9 minimal medium (Figure 2). Glucose in the M9 medium was 226 

substituted with each of the 55 tested carbon sources, one at a time. For each substitution, 227 

the carbon source was set as the model’s objective and was minimized to create a carbon 228 

assimilation profile per strain which resembles the Biolog data. The comparison allowed us 229 

to verify accuracy of the carbon consumption profiles predicted by the models. As the result 230 
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depicted, the comparison yields 69.35% accuracy with 72.98% and 88.35% for recall and 231 

precision respectively. 232 

 233 

 234 

Figure 2: Carbon assimilation profile of the 7 sequenced strains compared to the Biolog 235 

data. The square represents the Biolog data while the dot represents the prediction. Blue 236 

color (1) represents the ability to oxidize the carbon sources where red (0) is the opposite. 237 

The yellow dot are carbon sources that do not exist in the model which were calculated as 238 

the inability to oxidize the carbon sources. 239 

 240 

Once the performance of the automatic approach was validated, 101 additional GEMs were 241 

constructed. The overview of the model composition is summarized in Figure 3(a) and (b) 242 

(Supplementary file S3). Figure 3(a) shows the number of genes, metabolites, and 243 

reactions. Metabolites are separated by their cellular locations: in the periplasm, 244 

extracellular, or in the cytosol. Reactions are categorized into orphan reactions, exchange 245 

reactions and reactions with referenced genes (GPRs). In brief, all models are composed of 246 

approximately 2,000 genes, 1,700 metabolites and 2,700 reactions. Figure 3(b) illustrates a 247 

histogram regarding the number of occurrences of reactions excluding the exchange 248 

reactions and of cytosol metabolites across all models. Approximately 35% of both reactions 249 

and metabolites are shared between all models whereas approximately 5% of both contents 250 

are unique to one model. 251 

 252 

With more models involved, we assessed differences between classes in their reaction 253 

content. As a result, 314 and 197 reactions were found to be enriched in the PGPR and EPP 254 

groups, respectively (Supplementary file S3). To summarize the differences, the enriched 255 

reactions’ descriptions were visualized using a word cloud (Figure 3(c)). Notably with all 256 

enriched reactions, the most prominent differences observed are reactions related to 257 

transport of metabolites. The PGPRs' transports were mostly related to amino acid 258 

metabolisms, such as alanine, valine, and phenylalanine whereas the EPPs’ transports were 259 

annotated with carbon sources, such as galactose, xylose, and sucrose and iron-related 260 

metabolites, such as siderophore and staphyloferrin. 261 

 262 

 263 
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 8 

 264 
Figure 3: Overview of the model composition. (a) Number of genes, metabolites and 265 

reactions separated by the classes. Metabolites are separated by their cellular locations: 266 

periplasm extracellular and cytosol. Reactions are categorized into orphan reactions, 267 

exchange reactions and reactions with referenced genes (GPRs). (b) Histograms show the 268 

number of occurrences of reactions, excluding exchange reactions and cytosol metabolites 269 

across all models. (c) Word cloud of the enriched reactions' descriptions of two classes. The 270 

size of the word reflects the number of occurrences of each word. 271 

 272 

Selection of representative strains 273 

 274 

For further in-depth analysis such as flux sampling, which is computationally intensive, we 275 

selected representative strains of each class. All sequences were annotated with GPs, and 276 

these were used to construct hierarchical trees. The dendrograms were repeatedly pruned 277 

down to 6 branches per class and the strains present at the end of the pruning were 278 

recorded. After 100 iterations, strains with the most frequent occurrences in the pruned 279 

tree while maximizing the distribution of the tree were selected as the representative 280 

strains (Figure 4). The six PGPR representatives are Pseudomonas sp. UW4 194, P. 281 
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chlororaphis Phz24, P. fluorescens WCS374, P. jessenii RU47, P. rhizosphaerae DSM 16299 282 

3023 and P. stutzeri A1501 123. The six EPP representatives are P. syringae ATCC 10859 283 

3811, P. viridiflava CFBP1590 isolate E12-5 7308, P. syringae pv tomato B13-200 7111, P. 284 

savastanoi 1448A 114, P. cerasi isolate Sour cherry (Prunus cerasus) symptoma 4022 and P. 285 

cichorii JBC1 2922. 286 

 287 

 288 
 289 

Figure 4: Selection of representative strains. The occurrences of each strain were stored 290 

after each prune. The most frequent occurrence strains while maintaining the distribution of 291 

the dendrogram were selected as the representative strains. 292 

 293 

Comparative analyses of the metabolic reconstructions 294 

 295 

The reactions within the GEMs of the selected strains were compared. Sets of reactions 296 

were combined for all models of the same class. We found 3033 reactions were shared 297 

between the two classes, whereas 529 and 153 reactions were unique to PGPR and EPP 298 

groups, respectively. We further investigated the reactions that were shared between all 299 

models within the same group. A total of 4 and 7 reactions were found to be specifically 300 

shared within the PGPR and the EPP respectively (Table 1 and Supplementary file S4). We 301 

also re-evaluate the group-specific reactions with the whole set of constructed models to 302 

assess their representativeness on their occurrences in each group along with their adjusted 303 

p-value from the enrichment analysis previously performed. 304 

 305 

 306 

 307 

 308 
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 309 

Table 1: Overlapped reactions for each class. 310 

BIGG 

Reaction ID 

Description PGPR  

(75 GEMs) 

EPP 

 (33 GEMS) 

Adjusted 

p-value 

PGPR 

ACOAD1fr 
Acyl-CoA dehydrogenase (butanoyl-

CoA) 
54 (72%) 5 (15%) 1.4 x 10

-4
 

DORNabcpp 
D-Ornithine transport via ABC 

system periplasm 

61 (81%) 6 (18%) 2.5 x 10
-6

 
DORNtex 

D-ornithine transport via diffusion 

extracellular to periplasm 

EX_orn__D_e Exchange of Ornithine 

EPP 

CHOLD3 Choline dehydrogenase 4 (5%) 33 (100%) < 10
-6

 

FBA2 
D Fructose 1 phosphate D 

glyceraldehyde 3 phosphate lyase 
2 (3%) 33 (100%) < 10

-6

 

GLUSx Glutamate synthase NADH2 16 (21%) 33 (100%) < 10
-6

 

METRR Methionine racemase 14 (19%) 27 (82%) 2.5 x 10
-6

 

MNt2pp 
Manganese (Mn

+2
) transport in via 

proton symport (periplasm) 
7 (9%) 33 (100%) < 10

-6

 

ORNR Ornithine racemase 14 (19%) 27 (82%) 2.5 x 10
-6

 

SERR Serine racemase 21 (28%) 28 (85%) 1.4 x 10
-4

 

 311 

Intriguingly, reactions related to D-ornithine are represented in both groups via DORNtex, 312 

DORNtex and ORNR. This suggested that D-ornithine is utilized by both the PGPR and the 313 

EPP. This result is in line with the pathways annotated in the models. Examination of the 314 

utilization pathways shows that D-ornithine is converted to L-proline with 5-Amino-2-315 

oxopentanoate and 1-Pyrroline-2-carboxylate as intermediates through 3 reactions (1) D 316 

Amino acid dehydrogenase orn D (DAAD5), (2) 1 Pyrroline 2 carboxylate cyclation 317 

(1P2CBXLCYCL) and (3) Delta1 piperideine 2 carboxylate reductase (1P2CBXLR). All three 318 

reactions were present in all models. However, the mechanism of D-ornithine acquisition is 319 

the key difference between both groups. The PGPRs have transporters annotated with 320 

DORNabcpp and DORNtex, thus enabling direct D-ornithine uptake from the medium, while 321 

the EPPs were annotated with ornithine racemase (ORNR) that catalyze D-ornithine from L-322 

ornithine instead.  323 

 324 

We further examine the annotation quality of two reactions that have their genes 325 

annotated, DORNabcpp and ORNR. DORNabcpp involved 4 genes presented in the reference 326 

of published P. putida KT2440 model (ijN1463) with ‘AND’ logical connective, representing 327 

the formation of a protein complex. All 4 genes were identified in our selected models with 328 
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 11

high similarity of approximately 88% (±6%) identity count. On the other hand, one gene is 329 

annotated to ORNR, which is a 3 genes system presented in the reference of published 330 

Clostridioides difficile 630 model (iCN900) with 'OR' logical connective, representing 331 

isoenzymes. The annotated gene shows a low similarity of approximately 30% (±1%) identity 332 

count. In addition, we also investigate other reactions with close similarity using BLASTP 333 

with the custom databases. For the full database, DORNabcpp sequences were identified 334 

similarly to Ornithine transport via ABC system (periplasm) and D, L-lysine transport via ABC 335 

system periplasm. The annotation results are identical when using the database without the 336 

DORNabcpp related genes with the identity score remains at 88% (±7%). In contrast, ORNR 337 

sequences were similar to D-serine deaminase and other racemases namely alanine, 338 

glutamate, methionine, proline, and serine. The database without the ORNR related genes 339 

yield different results. Many proteins were detected with wide range of identity score from 340 

20 to 95%. However, none of them was recognized in any of the models (Supplementary 341 

file S5). The results suggested that the D-ornithine transports were annotated with 342 

confidence, but ORNR annotation may not be as conclusive. 343 

 344 

Comparative model analyses 345 

   346 

GEMs composition reveals that there are metabolic differences between the two classes. To 347 

simulate their performance in a biological relevant environment, tomato root exudates 348 

corresponding to three stages in the plant growth were selected for simulations 
24

. 349 

Additional carbon sources were added to the minimal M9 medium. Day2-medium1: M9 350 

with the addition of oxalate and xylose, Day4-medium2: M9 with the addition of citrate and 351 

fructose and Day14-medium3: M9 with the addition of citrate, xylose, and maltose. For each 352 

medium and model, we assess their essentiality, which is summarized in Table 2. The table 353 

describes the average number of (non-)essential reactions and the total number of (non-354 

)essential reactions of all models along with the variation of both. 355 

 356 

Table 2: Essentiality analysis using media representing environmental changes. 357 

 Average number of reactions Total number of reactions 

 Non-essential Essential Non-essential Essential Variation 

Day2-

medium1 

2456 ± 193 215 ± 7 3428 159 128 

Day4-

medium2 

2457 ± 193 212 ± 7 3431 158 126 

Day14-

medium3 

2457 ± 193 214 ± 7 3429 158 128 

 358 

The variation category is particularly interesting as it poses the differences between media 359 

which could be translated to the characteristics of each class. For the essential reactions 360 

within the variation set of each medium, we obtain the corresponding EC number from the 361 
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model. The EC numbers were mapped to pathways using KEGG PATHWAY as the reference. 362 

This results in a fraction of completeness of each pathway. We performed t-test on the 363 

fractions to find significantly different pathways between the two classes (p-value < 0.05) 364 

(Table 3). As a result, 13 pathways prove enriched in the EPP group where only 2 pathways 365 

are enriched in the PGPR group. While most of the pathways seem used in all three media, 366 

path:map00564 (Glycerophospholipid metabolism) is missing from Day4-medium2, while 367 

path:map01110 (Biosynthesis of secondary metabolites) occurred only in Day14-medium3. 368 

Most of the essential pathways are associated with amino acid metabolism which suggests 369 

that the EPPs are less flexible in the uptake, utilization, and synthesis of these metabolites. 370 

 371 

Table 3: Significantly different essential metabolic pathways. 372 

Map ID Map description p-value Media 

PGPR 

path:map00471 D-Glutamine and D-glutamate metabolism 0.025 1,2,3 

path:map00473 D-Alanine metabolism 0.025 1,2,3 

EPP 

path:map00250 Alanine, aspartate and glutamate metabolism 0.010 1,2,3 

path:map00260 Glycine, serine and threonine metabolism 0.025 1,2,3 

path:map00270 Cysteine and methionine metabolism 0.000 1,2,3 

path:map00340 Histidine metabolism 0.004 1,2,3 

path:map00350 Tyrosine metabolism 0.002 1,2,3 

path:map00360 Phenylalanine metabolism 0.004 1,2,3 

path:map00400 
Phenylalanine, tyrosine and tryptophan 

biosynthesis 
0.000 1,2,3 

path:map00401 Novobiocin biosynthesis 0.002 1,2,3 

path:map00564 Glycerophospholipid metabolism 0.004 1,3 

path:map00920 Sulfur metabolism 0.025 1,2,3 

path:map00960 
Tropane, piperidine and pyridine alkaloid 

biosynthesis 
0.002 1,2,3 

path:map00997 
Biosynthesis of various secondary metabolites - 

part 3 
0.025 1,2,3 

path:map01110 Biosynthesis of secondary metabolites 0.041 3 

 373 

We simulated growth flexibility by using flux sampling and differences in the corresponding 374 

distributions were evaluated through a Kolmogorov-Smirnov test. In total, 1870 unique 375 

reactions were found to carry significantly different fluxes between both groups across all 376 

media (Supplementary file S6). Reactions were divided into 3 categories: PGPR, EPP and 377 

undecided. The undecided group contains reactions in which the reaction direction differs 378 

between both classes and no conclusion can be drawn. Figure 5(a) shows the frequency of 379 

the number of occurrences of the reactions in the comparison. The maximum occurrences 380 

are 36 where the reaction is significantly enriched for the entire PGPR group or vice versa. 381 
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We selected reactions with at least 30 occurrences which result in 107 unique reactions. 382 

These reactions are likely to occur in 5 out of 6 of the strains of the same group. The 383 

number of reactions were further reduced to 78 by removing reactions appearing as 384 

significant in both groups, and in the undecided group. Figure 5(b) shows the media 385 

occupancy of these 78 reactions and their overlap. Regardless of the media, 57 reactions are 386 

shared and could potentially describe the general differences between classes. Figure 5(c) 387 

shows the 57 overlapping reactions along with their occurrences, media, and significance 388 

category. The reactions' information retrieved from BIGG database are shown in Table 4.  389 

 390 

A total of 33 and 24 reactions are considered significant overrepresented in the PGPR and 391 

the EPP groups, respectively. This information shows different metabolic wiring between 392 

the two classes when optimized for growth. The majority of the reactions in the PGPR group 393 

are associated with fatty acid oxidation while the EPP mostly consists of racemase reactions 394 

and iron acquisition mechanisms. 395 

 396 

 397 
 398 

Figure 5: Significantly different reactions between the two classes. Each color represents 399 

different media. Red represents Day2-medium1, green represents Day4-medium2 and blue 400 

represents Day14-medium3. (a) Histogram shows the number of occurrences of reactions 401 

across all media in all the comparisons. (b) Venn diagram of the 78 selected reactions 402 

represented in each medium. (c) The 57 overlapped reactions across all media. Significant 403 

reactions of each class are indicated by different colored dots. The full dots represent the 404 

PGPR group, and the hollow dots represent the EPP group. 405 

 406 

 407 

 408 
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 409 

 410 

Table 4: Significant reactions overlapped between all media representing different growth 411 

stages and root exudates  412 

BIGG reaction ID Description EC number 

PGPR 

ACACT5r_1 Acetyl CoA C acyltransferase decanoyl CoA  2.3.1.16 

ACOAD1fr Acyl-CoA dehydrogenase (butanoyl-CoA)  

ACOAD3 Acyl-CoA dehydrogenase (octanoyl-CoA) 1.3.99.3 

ACOAD4_1 Acyl CoA dehydrogenase decanoyl CoA  1.1.1, 

1.3.99.3 

ACOAD6 Acyl-CoA dehydrogenase (tetradecanoyl-CoA) 1.3.99.3 

AHSERL2 O acetylhomoserine thiol lyase 2.5.1.49 

ARGDI Arginine deiminase 3.5.3.6 

ARGDr Arginine deiminase 3.5.3.6 

ARGORNt7pp Arginine/ornithine antiporter (periplasm)  

CBMKr Carbamate kinase 2.7.2.2 

CITL Citrate lyase 4.1.3.6 

CYSLY3 Cysteine lyase (nadph)  

ECOAH12 3-hydroxyacyl-CoA dehydratase (3-hydroxyisobutyryl-CoA) 

(mitochondria) 

4.2.1.17 

FAO1 Fatty acid oxidation (tetradecanoate)  

FAO10 FAO10  

FAO11 FAO11  

FAO2 Fatty acid oxidation (n-C16:0)  

FAO3 Fatty acid oxidation (octadecanoate)  

GLXCL Glyoxalate carboligase 4.1.1.47 

GUAt2pp Guanine transport in via proton symport (periplasm)  

HIBDkt 3-hydroxyisobutyrate dehydrogenase 1.1.1.35 

HSERTA Homoserine O trans acetylase 2.3.1.31 

HSTPT Histidinol-phosphate transaminase 2.6.1.9 

HSTPTr Histidinol phosphate transaminase 2.6.1.9 

OCBT2i Ornithine carbamoyltransferase catabolic   

OIVD2 2-oxoisovalerate dehydrogenase (acylating; 3-methyl-2-

oxobutanoate) 

1.2.1.25 

PGLCNDH Phosphogluconate 2 dehydrogenase 1.1.1.43 

PPM Phosphopentomutase 5.4.2, 

5.4.2.2, 

5.4.2.7 

PUNP1 Purine-nucleoside phosphorylase (Adenosine) 2.4.2.1 
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THRt4pp L-threonine via sodium symport (periplasm)  

UREA2t2pp Urea reversible transport via proton symport 2 H  

2DHGLCK Dehydrogluconokinase 2.7.1.13 

3HBCOAHL 3-hydroxyisobutyryl-CoA hydrolase 3.1.2.4 

EPP 

CITDAPPD Citryl-L2,3-diamino-propionic acid decarboxylase  

CITDAPPS Citryl-L2,3-diamino-propionic acid Synthase  

DAAD4 D Amino acid dehydrogenase D met   

DAAD5 D Amino acid dehydrogenase orn D   

DABAAT DABAAT 2.6.1.76 

DABAAT2 DABA aminotransferase  

DAPADHL DAPAS  

FBA2 D Fructose 1 phosphate D glyceraldehyde 3 phosphate 

lyase 

4.1.2.13 

GLCNt2r D-gluconate transport via proton symport, reversible  

GLUSx Glutamate synthase NADH2  1.4.1.14 

INOSR Ketoinositol reductase  

LDPCDES L-2,3-diaminopropionyl-citryl-diaminoethane Synthase  

MCD Malonyl-CoA Decarboxylase cytoplasmic 4.1.1.9 

ME1 Malic enzyme (NAD) 1.1.1.38, 

1.1.1.39 

METRR Methionine racemase  

MN2tipp Manganese transport in via permease (no H+)  

MNt2pp Manganese (Mn+2) transport in via proton symport 

(periplasm) 

 

NACGS N-(1-amino-1-carboxy-2-ethyl)-glutamic acid Synthase  

ORNR Ornithine racemase  

SERD_D D-serine deaminase 4.3.1.18 

SERR Serine racemase 5.1.1.10, 

5.1.1.18 

STFRNS Staphyloferrin B Synthase  

UNK3 2-keto-4-methylthiobutyrate transamination 2.6.1.5, 

2.6.1.57 

1P2CBXLCYCL 1 Pyrroline 2 carboxylate cyclation  

 413 

 414 

 415 

 416 

 417 

 418 
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 419 

 420 

Discussion 421 

 422 

In this manuscript we demonstrate the usefulness of genome-scale metabolic models to 423 

explore the metabolic capacity of organisms in the rhizosphere and gain insights into their 424 

potential interactions. The comparative approach on the collection of species belonging to 425 

two distinct lifestyle classes, Epiphytic Pathogenic Pseudomonas (EPP) and Plant-Growth 426 

Promoting Rhizobacteria (PGPR), enables us to identify and characterize unintuitive 427 

differences at the metabolic level between the two.  428 

 429 

An automatic model construction approach was deliberately chosen because the process to 430 

manually curate GEMs is time-consuming and not practical for large-scale comparisons
39–41

. 431 

There are several tools for the automation methods and CarveMe was the tool of our choice 432 

as it has shown a good performance. Moreover the fact that it is based on a universal model 433 

facilitates comparison between models
21,22

. We evaluated the generated model 434 

reconstructions and the tool's performance by comparing model predictions with actual 435 

Biolog phenotype data of a set of strains, which characterize the carbon uptake profile of 436 

the organisms. The results show that the performance of the automatic method was 437 

acceptable, around 70% even in the absence any manual curation which increases from the 438 

original publication of the tool
21

. Additionally, the generated models were composed of 439 

proportionally high GPRs with few orphan reactions meaning that the majority of the 440 

reactions were supported by evidence of genes. The comparison was performed by 441 

considering 55 carbon sources from the 190 measured in our Biolog set as mapping the 442 

carbon sources in the model and those in the Biolog data proved rather laborious due to 443 

inconsistencies in names
42

. In addition, the comparison disclosed the knowledge gap in the 444 

field of automated genome annotation, which results in systematically incorrect predictions, 445 

such as acetoacetic acid, glycine, and L-Methionine. 446 

 447 

The automated selection of the representative strains also indicated the suitability of our 448 

choice of 7 strains to be re-sequenced. Out of the 6 representative PGPRs, three were 449 

among the re-sequenced strains, suggesting that our selection covers a broad phylogeny 450 

range and mode of actions for the PGPRs Pseudomonas. Outliers from figure 4, P. stutzeri 451 

A1501 123 and P. cichorii JBC1 2922, were also included to maximize the range of the 452 

represented groups, PGPRs and EPPs respectively.  453 

 454 

Both the construction and the simulation of GEMs highlighted the metabolic differences 455 

between the two plant-related phenotypes, the PGPRs and the EPPs. Differences were 456 

observed in their potential to transport compounds such as amino acids, sugars, or metal 457 

ions, in and out of the cellular environment (transport reactions), these signify the 458 

compositional differences between both classes and can highlight their distinct behavior. 459 
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The PGPRs were enriched with various amino acid related transporters whereas reactions 460 

related to amino acid synthesis were often found to be essential in the EPPs. This suggests 461 

that PGPRs Pseudomonas are able to import amino acids from their environment whereas 462 

the EPPs can only rely on intracellular synthesis and have limited uptake capabilities. This 463 

suggests a critical role of amino acids emitted by the host plant to affect community 464 

composition, as has been previously studied in E. coli
43,44

. On the other hand, the abundance 465 

of sugar transporters in the EPPs points to their nutrient preferences, such as galactose, 466 

xylose, and sucrose. It appears associated to their parasitic lifestyle, which is more 467 

dependent than PGRPs on carbon from the host for proliferation, as it has been shown in 468 

Xanthomonas oryzae and Pseudomonas syringae
45

. This information on preferred carbon 469 

sources can be used to develop rhizosphere management strategies aiming to exclude 470 

pathogens or to improve numbers of beneficial organisms
46–48

. 471 

 472 

Differences in D-ornithine acquisition mechanisms were observed when comparing both 473 

groups. While this metabolite is relevant for the metabolism of organisms in both groups, 474 

differences in the acquisition mechanisms were identified. The PGPR organisms can 475 

potentially take up D-ornithine from the environment whereas the EPP appear to be 476 

capable of intracellular conversion from L-ornithine using a racemase reaction. With L-477 

proline being the sole final product, the evidence implies that the PGPR class would benefit 478 

from an environment with limited L-proline and L-ornithine while supplied with D-ornithine. 479 

Additional analysis suggests other D-amino acid and racemases could share the same 480 

characteristics related to differential uptake and utilization mechanisms, for example D-481 

lysine and D-arginine
49,50

. D-amino acids have been found abundantly in soil inhabited by 482 

microbiomes with annotated racemases
51

. These substrates can be taken up by both the 483 

microorganisms and the hosts. However, it appears to be more relevant for microbial 484 

growth than plant growth as D-amino acids were found prominently in bacterial cell walls 485 

while they inhibit growth of some plants
52–55

. This may suggest another beneficial effects of 486 

the microbiome, which would be consumption of D-amino acids and their removal from the 487 

environment. 488 

 489 

In addition to the differences in the abovementioned transports, the two bacterial classes 490 

have different internal metabolic wiring shown through the flux sampling analysis when 491 

optimized towards the optimal growth in different conditions. The flux sampling comparison 492 

reveals that, in general, the PGPRs have more active fatty acid metabolisms whereas the 493 

EPPs activate pathways related to the racemization and iron and metal acquisition 494 

mechanisms. In plants, fatty acids are markers of both biotic and abiotic stresses
56,57

. Since 495 

these fatty acids are transferable between the plant and the rhizobacteria
58

, we hypothesize 496 

that the activation of these pathways in PGPRs to be a potential signal for a reinforcement 497 

from the host in combination with the amino acid secretion. On the other hand, 498 

racemization and iron scavenging are prominent in the EPPs and both functions deplete 499 

fundamental substrates from the environment, L-amino acids, and metals respectively, 500 
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which are essential and competitive substrates for both the plant and the 501 

microorganisms
59,60

. We emphasise that iron is known to be essential to all living organisms, 502 

which also represented by 23 common iron-related reactions that occur in all models 503 

(Supplementary file S7), however EPPs seem to have more efficient mechanisms to 504 

overcome this limitation. In addition, the iron-limited environment negatively affects the 505 

production of the crops and could possibly alter the behavior of the beneficial microbes, like 506 

Pseudomonas fluorescens BBc6R8
61,62

. Similar conclusions can be drawn using Genome 507 

Properties (GPs) and the dynamic nature of the simulation in GEMs further support the 508 

results
25

. 509 

 510 

Conclusion 511 

 512 

It has been shown that genome-scale constraint-based metabolic modelling is a viable 513 

approach to represent the metabolic capacity of an organism. Here, we want to emphasize 514 

that GEMs can also be used to compare metabolic spaces and gain insights into differences 515 

in metabolic behavior and implications for the environments where these microbes thrive. 516 

In addition, the validated automation method enables comparative analysis and potentially 517 

broadens the scope of the study into modeling the entire microbial community. The model 518 

allowed us to explore an organism using both composition and simulation methods, which 519 

are the composition and the simulation of the model respectively. Both methods were able 520 

to differentiate between PGPR and EPP Pseudomonas strains. Some differences could be 521 

used to explain the underlying mechanisms of the distinct lifestyle between two classes, 522 

such as the fatty acid and iron acquisition mechanisms, while other differences, such as 523 

amino acid and sugar transports, could be incorporate into the development of the 524 

rhizosphere management strategies to precisely assist beneficial microbiome while reducing 525 

the pathogen activities. 526 
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