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Abstract
Radar rainfall nowcasts can be used for real-time control (RTC) of the sewage system instead of numerical weather
predictions (NWP), as nowcasts have a higher spatial (1 km2) and temporal (5 min) resolution than NWP. In this
study the potential of nowcasts for RTC was investigated. Two nowcasting algorithms were tested in the urban
areas of Helmond and Laarbeek in the Netherlands: Pysteps Deterministic (PS-D) and Rainymotion DenseRotation
(RM-DR). An analysis of 32 rainfall events was performed to determine the potential of nowcasting in: forecasting
rainfall and RTC of the sewage system. In addition, the nowcasts were compared with the NWP model HARMONIE
on both their resulting rainfall forecasts and subsequent sewer overflow forecasts. The maximum skilful lead time
for 1-hour duration events is around 19 min or 37 min and for 24-hour duration events it is 56 min and 108 min for
respectively RM-DR and PS-D. HARMONIE was not skilled for lead times up to 3 hours. Stratiform winter events
result in higher skill than convective summer events. RM-DR can better capture high intensity rainfall as PS-D
leads to more dissipation. Both PS-D and RM-DR outperform HARMONIE, but still underestimate the total sewage
overflow volume, which partly results from the operational radar product. Skill was highest for events in spring, while
lowest for events in summer. Events in 2016 resulted in a gain in anticipation time between 75-90 min for RM-DR,
while PS-D did not predict the sewage overflow of these events. Results show much variability between events and
seasons, indicating that nowcasts are not reliable enough for RTC based on forecasting a sewage overflow, however,
it is more promising when based on forecasted rainfall that enters the system.
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1 | Introduction

1.1 Context and motivation

Urban areas are vulnerable to extreme rainfall due to
high-density built-up areas and the large proportion of
impervious surfaces, consequently leading to a fast hy-
drological response (Fletcher et al., 2013; de Vos et al.,
2017). Extreme rainfall will increase as climate change
projections expect more frequent and intense rainfall
events (Westra et al., 2014). Climate change, together
with the rapid urbanization trend will raise the vulner-
ability of cities (UN, 2018). Consequently, flood fore-
casting and real-time available warning systems are in
demand as they are able to forecast a flood hours in
advance (Codo and Rico-Ramirez, 2018), making real-
time water management possible. These urban flood
forecasting systems require rainfall data at higher tem-
poral and spatial resolutions due to the fast response
(Berenguer et al., 2005; Thorndahl et al., 2017), and
high heterogeneity in urban areas (Berne et al., 2004;
Tilford et al., 2002). Due to the spatial and tempo-
ral variability of rainfall fields, current rainfall estimates
and especially forecasts are uncertain, leading to uncer-
tain hydrological forecasts (Berenguer et al., 2005; Codo
and Rico-Ramirez, 2018; Thorndahl et al., 2017).

One of the methods that have been developed
for rainfall forecasting is numerical weather prediction
(NWP) models. Multiple countries, such as the Nether-
lands, use these models in their current operational
weather forecasting system (Bengtsson et al., 2017).
The dynamics and physics of the atmosphere are sim-
ulated in NWP models. Current NWP models can
give relatively reliable forecasts on large spatial scales
up to two to three days ahead (Liguori et al., 2012).
NWP models can be useful in predicting stratiform long-
duration storms. However, for short-term predictions up
to 6 hours NWP models are not reliable enough for early
warning systems (Lin et al., 2005). These models are re-
stricted in predicting small-scale processes, such as con-
vective showers, due to their coarse spatial resolution
and low update frequency. Therefore, it is not suited for
urban flood forecasting systems (Liguori et al., 2012).

To overcome the restrictions of NWP models, radar
rainfall products have improved significantly over the last
decades to get more reliable forecasts with higher spatial
and temporal resolution and shorter lead times. Nowa-
days, radar images are used to forecast rainfall events in

the near future, which is called radar rainfall nowcasting.
Nowcasts are extrapolated real-time radar rainfall fields.
There are two techniques to make nowcasts, namely
field- and object-based nowcasting. Field-based now-
casting advects the most recent observed precipitation
field, and is for example applied in Rainymotion (Ayzel
et al., 2019) and Pysteps (Pulkkinen et al., 2019), while
object-based nowcasting identifies individual storms and
tracks it, and is for example applied in the Thunderstorm
Identification, Tracking, Analysis, and Nowcasting (TI-
TAN) algorithm (Dixon and Wiener, 1993).

The high spatial and temporal resolution (1 km
and 5 min in the Netherlands) of nowcasts can be a
valuable addition to hydrological modelling and real-
time flood warning systems. Reliability and accuracy
depends on many factors such as rainfall type and in-
tensity (Liguori et al., 2012). However, uncertainties
from the rainfall forecasts are not necessarily resulting
in the same uncertainties in catchment flow predictions
(Achleitner et al., 2009; Brauer et al., 2016). Multi-
ple studies already quantified the skill of nowcasts in
catchments and showed promising results in hydrologi-
cal applications (Berenguer et al., 2005; Heuvelink et al.,
2020).

Despite progress in catchments, research about the
potential of nowcasts in urban flood warning systems is
still in an early stage of development (Thorndahl et al.,
2017). Achleitner et al. (2009) analysed the value of
nowcasts for better control of urban drainage systems.
Foresti et al. (2016) investigated ensemble precipitation
forecasts for urban hydrology in Belgium and concluded
that different event types vary in maximum skilful lead
time. Thorndahl et al. (2012) made a comparison of
NWP forecast and nowcasts for a small urban catchment
in Denmark. This study concluded that there is potential
for nowcasts with a lead time of 0 to 2 h, while NWP is
reasonable for lead times of 6 to 24 h. The same study
setup, but for a larger urban catchment was done by
Thorndahl et al. (2013).

However, these studies only contained a small sam-
ple of precipitation events (6 or less events), or in the
case of Thorndahl et al. (2012) also a very small urban
area (< 0.8 km2). Therefore robust conclusions about
the usefulness of nowcasts in urban hydrology can not be
made from these studies. Earlier research already showed
that the skilfulness of nowcasts depends on factors such
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as event duration, storm type, and seasonality (Imhoff
et al., 2020). However, due to the limited number of
precipitation events studied in urban areas, no conclu-
sions could be made on the dependence of forecast skill
on meteorological factors, such as event duration, type,
or seasonality. Furthermore, in most studies, only one
nowcast algorithm was used. In addition, previous stud-
ies did not assess the added value of nowcasts compared
with NWP in urban areas.

The sewerage systems in urban areas are a good
example of a hydrological system that is worthwhile in-
vestigating (Schellart et al., 2014). The traditional sew-
erage systems consist of a combined system, which is
designed to collect rainwater, industrial wastewater, and
domestic sewage in the same system. In order to pre-
vent flooding in urban areas, rainwater is drained away.
Part of the pump capacity in the sewer pumping station
is used to discharge collected rainfall. This part is re-
ferred to as pump capacity (POC). However, in the case
of extreme rainfall, not all water can always be disposed
immediately, which can result in a combined sewer over-
flow. These overflows consist of a mixture of rainwater,
untreated human waste and industrial waste, which are
loaded with toxic materials (Passerat et al., 2011). This
can result in disastrous effects for the receiving water
quality. Radar rainfall nowcasting could be used as real-
time available warning system to forecast the sewage
overflow and to prevent and mitigate damage.

This study will analyse 32 rainfall events that took
place over two urban areas, using two field-based now-
casting algorithms: Rainymotion (Ayzel et al., 2019) and
Pysteps (Pulkkinen et al., 2019). The nowcasting al-
gorithms will be compared with the current forecasting
system in the Netherlands, namely HARMONIE. In ad-
dition, the added value of nowcasting for hydrological
forecasting in an urban area in the Netherlands will be
investigated. This will be done by using a simple model
that predicts the overflow from the sewerage systems
into water bodies based on the receiving precipitation.

1.2 Research questions

The main objective of this research is to determine the
added value of radar-based rainfall nowcasting for real-
time control (RTC) in sewerage systems in the urban
areas Helmond and Laarbeek in the Netherlands. Dif-
ferent rainfall events in the period 2008-2018 will be
investigated for this. The rainfall events will be sim-
ulated using two nowcast algorithms. Next, a simple

sewer overflow model will be used to investigate the po-
tential of radar-based rainfall nowcasting for RTC.

In order to reach the objective stated in the previous
section, the following questions should be answered:

1. What is the performance of radar rainfall nowcasts
in forecasting rainfall in the urban area of Helmond
and Laarbeek?

2. What is the performance of radar rainfall nowcasts
as input for urban hydrological models in the urban
area of Helmond and Laarbeek?

2.1. To what extent would radar rainfall nowcasts
have been able to forecast the extreme pre-
cipitation events (in May and June 2016) and
the subsequent inundated areas in the urban
area of Helmond and Laarbeek?

For both questions the following sub-questions will
be investigated:

1. What is the influence of different rainfall character-
istics and seasonal differences on the performance?

2. What is the influence of different nowcast algo-
rithms on the performance?

3. How do radar rainfall nowcasts compare to rainfall
forecasts from numerical weather predictions?

1.3 Thesis contents

Chapter 2 contains the description of the study area and
the data that are used in this research. Chapter 3 de-
scribes the methods used in this study. This is divided
in two parts, one part to verify the radar nowcasts and
HARMONIE and the other part to verify the hydrological
model output. This is followed by the results (chapter
4) and discussion (chapter 5) and ends with a conclusion
(chapter 6).
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2 | Field site and data

2.1 Field site

For this study, two urban areas were used, namely Hel-
mond and Laarbeek. These urban areas were chosen be-
cause both are covered by an existing database of now-
casts. Both urban areas are located in the south-east of
the Netherlands, in the province Noord-Brabant.

Helmond has an area of approximately 55 km2

(Fig. 2.1). The area consists of approximately 46%
of built-up area and 44% of nature area (either agri-
culture or forest) (CBS, 2015). It has a population of
just over 91,500 people. The water system in Helmond
is complex, as the Aa, Astense Aa and Bakelse Aa all
debouch in the Zuid-Willemsvaart (Waterschap Aa en
Maas, 2016). This is a canal between Maastricht and
’s-Hertogenbosch which crosses Helmond and Laarbeek.

Laarbeek has an area of around 56 km2 (Fig. 2.1),
which is approximately the same as Helmond. However,
the area consists for a smaller part of built-up (only 16%)
area and 79% of nature area (either agriculture or forest)
(CBS, 2015). Consequently, with approximately 22300
people, the population of Laarbeek is smaller than Hel-
mond.

In the period 2008-2018 on average 744 mm of pre-
cipitation fell per year over Helmond. On average, April
is the driest month with 37 mm of precipitation, while
July is on average the wettest month, with 82 mm.
However, July had much variation between the years,
the driest month over this period was July 2018, with
only 3.6 mm. The wettest month was June 2016, with
200 mm of rainfall. In four days already more than
100 mm of rain fell. At the end of May and beginning of
June 2016, much rain fell in a few days, which resulted
in floods and consequently much damage in and around
Helmond.

During the period 2008-2018 the aver-
age reference evaporation was 619 mm per
year (at the meteorological station in Eind-
hoven) (KNMI, https://www.knmi.nl/nederland-
nu/klimatologie/gegevens/monv).

The municipality of Helmond and Laarbeek mea-
sure the sewage overflow already at different locations
in the city. However, the measurements, especially in
Helmond, are according to water authority Aa en Maas
not very accurate.

Figure 2.1: Map of Helmond, located in the Netherlands.
The areas show the field sites, which will be the extent
of the radar rainfall composite. The blue lines indicate
the canals which crosses Helmond and Laarbeek.

2.2 Events for radar nowcasts

The used precipitation events in this research were based
on the available nowcasts from Imhoff et al. (2020),
which contain precipitation events in the period 2008-
2018. In this study, a total of 128 rainfall events were
used that cover the Aa catchment (4 seasons, 8 per
season, and 4 durations). The selected events contain
different types of precipitation events.

A selection of these 128 rainfall events was made
based on the rainfall amounts and structure, and based
on whether they produced a significant hydrological re-
sponse in the urban areas. This was done by focussing
on events which resulted in high sums during 1 and 24
hours. In addition, the seasonal dependency was inves-
tigated by looking at all four seasons. Per season four
events were investigated. In total 32 rainfall events were
used in this research, see Table 2.1.
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Table 2.1: Chosen rainfall events and the accumulated rainfall averaged over the study area of Helmond and Laarbeek.
Note that the end time of the rainfall event is given here.

End [UTC] Helmond Laarbeek End [UTC] Helmond Laarbeek

12-09-2008, 10:40 11.95 9.82 08-10-2009, 07:00 37.93 35.54

07-10-2009, 18:30 7.74 8.85 24-11-2009, 01:00 47.98 54.45

22-10-2013, 20:40 9.52 9.25 13-11-2010, 15:40 37.63 41.8

15-09-2016, 21:25 7.98 5.51 23-09-2015, 11:00 24.40 21.08

15-05-2008, 19:00 17.69 17.03 16-05-2008, 09:00 34.56 35.06

30-05-2016, 15:50 9.22 16.16 12-05-2010,  06:00 25.11 26.38

10-04-2018, 21:50 11.01 10.04 31-05-2016, 00:00 33.37 46.91

30-04-2018, 00:15 9.25 9.75 30-04-2018, 17:50 30.57 33.32

12-07-2010, 09:50 12.94 17.35 23-08-2011, 13:00 45.78 50.26

14-07-2010, 16:50 12.22 11.81 02-06-2016, 03:00 23.59 8.49

27-07-2013, 09:40 6.94 8.31 24-06-2016, 06:00 53.85 38.85

30-08-2017, 17:55 8.28 9.91 12-07-2017, 12:00 44.69 43.74

05-02-2008, 23:45 6.39 11.34 10-02-2009, 16:40 25.81 26.13

10-12-2009, 03:10 7.16 6.68 23-12-2012, 11:00 28.26 33.33

03-01-2012, 16:55 8.80 5.4 13-01-2017, 14:00 24.78 25.64

08-12-2018, 19:50 6.38 9.64 23-02-2017, 04:00 31.48 39.07

Accumulated rainfall 

[mm]

Winter

Summer

Spring

Autumn

1 hour duration

Accumulated rainfall 

[mm]

24 hours duration

2.3 Radar nowcasts

In this study, existing nowcasts made for the 128 rain-
fall events mentioned in the previous section were ob-
tained from Imhoff et al. (2020). These nowcasts have
a 5-min temporal and 1 km2 spatial resolution and a
forecast horizon of 6 hours. Two radar rainfall now-
cast algorithms from this research were used, based on
two models, namely Pysteps (Pulkkinen et al., 2019)
and Rainymotion (Ayzel et al., 2019). The radar images
used to make these nowcasts are operational available
unadjusted radar data. The nowcasts are corrected with
a bias reduction factor as a preprocessing step.

2.3.1 PS-D

Pysteps is an open-source Python framework, that fo-
cusses on the development of probabilistic and deter-
ministic nowcasting methods. These methods are based
on extrapolating radar precipitation fields.

For this study only the deterministic setup (Pysteps
deterministic (PS-D)) was used. This model uses radar
images to determine the motion field. Those radar im-
ages are extrapolated into the near future by using a
backward semi-Lagrangian advection method (Germann

and Zawadzki, 2002). This method allows rotational
movements. A second order autoregression is used on
different spatial scales. PS-D is based on the S-PROG
algorithm. The resulting forecast produced by S-PROG
has a smooth field. When the forecast time is longer,
the radar precipitation fields become more smooth. This
ensures that the smallest scales of the field are filtered
out when they become unpredictable (Berenguer et al.,
2005). As a last step, post-processing is applied, so the
nowcasts received the same statistical properties as the
latest available observations.

2.3.2 RM-DR

Rainymotion has different models to make precipitation
forecasts. These models use global or local optical flow
algorithms (proposed by Farnebäck, 2003) in order to
determine advection of rainfall fields.

For this research the global optical flow model
Rainymotion DenseRotation (RM-DR) was used. This
model uses radar images to estimate the velocity of each
image pixel. Extrapolation is based on a forward semi-
Lagrangian advection scheme. This scheme allows large-
scale rotational movements. After extrapolation, Inverse
Distance Weighting is used to interpolate the predicted
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Table 2.2: Chosen forecasts for HARMONIE with given
issue times. For every issue time, lead times from 1 to
6 hours are used.

Issue time [UTC]

2018-01-03 06:00

2018-04-11 00:00

2018-04-30 00:00

2018-04-30 06:00

2018-05-22 18:00

2018-05-23 00:00

2018-05-23 06:00

2018-05-23 12:00

2018-12-09 00:00

2018-05-23 18:00

2018-09-04 00:00

pixel values to their original radar grid. Contrary to PS-
D, RM-DR does not use a second order autoregression
which filters out the smallest scales

2.4 HARMONIE

Currently the Royal Netherlands Meteorological Insti-
tute (KNMI) uses the numerical weather prediction
model HARMONIE 36 (HIRLAM ALADIN Research on
Mesoscale Operational NWP in Euromed) for rainfall
forecasting. This is a non-hydrostatic model that uses
the current state of the atmosphere. The rainfall fore-
casts are used by the Dutch water authority Aa en Maas.
The data has a spatial resolution of 2.5 km2, a time step
of 1 hour, and an update frequency of 6 hours. The fore-
casts are issued at 00:00, 06:00, 12:00, and 18:00 UTC.
However, the model takes some time to run (up to a few
hours), consequently, the forecasts are only available af-
ter a few hours. The forecast horizon is 48 hours.

In this study, HARMONIE was compared with radar
nowcasts. However, historic HARMONIE data is only
available since October 2017 until now, so only now-
casts between October 2017 and 2018 were compared
with HARMONIE. Because HARMONIE has a different
time step, different events than shown in Table 2.1 were
used in this part. The used forecasts were based on the
available nowcasts in the period October 2017 and 2018
and the issue times of HARMONIE forecasts. The se-
lected forecasts were based on the latest NWP forecast
that would have been available in real-time (with lead
times varying between 1 and 6 hours). This resulted in
9 issued forecasts (shown in Table 2.2).

2.5 Reference data

Gauge-adjusted radar data from a rainfall dataset by
KNMI was used as rainfall reference for the two types
of forecast. It is an accurate radar product as it is cor-
rected with rain gauge data. Radar composites have a
high spatio-temporal resolution, however, weather radars
often underestimate the rainfall. In contrast, rain gauges
produce accurate point measurements, but the network
density is too low to cover the spatial rainfall variability.
In order to get the best quality of the radar products, the
rain gauge data is merged with radar rainfall. Two ad-
justments, using a dense manual gauge network, are ap-
plied to the unadjusted radar-based precipitation depths.
This gauge-adjusted radar data set has a 5-min tempo-
ral resolution and a 1 km2 spatial resolution. (Overeem
et al., 2009).

Figure 2.2: Map of Helmond and Laarbeek, with the
layout of sewerage network, type of sewerage system and
used sub-areas for this research. Layout of the sewerage
network is obtained from Aa en Maas.

2.6 Hydrological model

In this research, a simple model that predicts the over-
flow from the sewerage system into surface water bodies
was used. This model is developed and used by the water
authority Aa en Maas. Consequently, model parameters
were already calibrated. The model uses rainfall (mm per
5 minutes) as input and the output is the sewage over-
flow at different sub-areas in the city. The input is the
area averaged rainfall, which is determined by the grid
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Figure 2.3: Small piece of the python code of the simple sewage overflow model from the water authority Aa en
Maas. Code shows the threshold based on the precipitation 2 hours prior to the last hour, line 28. The threshold of
the maximum storage also determines if a sewage overflow will take place or not (line 37).

Table 2.3: Chosen sewerage sub-areas and the specifics per area. Locations with the same prefix (e.g. HEL-HEL-CEN)
have the same rainfall input. Information in this table is obtained from Aa en Maas.

Location code Sewage type POC (mm/h) Storage (mm) Area (ha) Shapefile code

HEL-HEL-CEN-1 (HHC1) Improved combined 0.7 21.96 100.00 HEL-HEL-CEN

HEL-HEL-CEN-2 (HHC2) Improved combined 0.7 12.97 44.69 HEL-HEL-CEN

HEL-HEL-HOO-8 (HHH8) Improved combined 0.7 10.59 65.29 HEL-HEL-HOO

HEL-HEL-HOO-9 (HHH9) Combined 0.7 7.80 43.53 HEL-HEL-HOO

LAA-BEE-KOM-8 (LBK8) Improved combined 0.7 7.77 58.94 LAA-BEE-KOM

LAA-BEE-KOM-11 (LBK11) Combined 0.7 6.43 4.06 LAA-BEE-KOM

LAA-LIE-KOM-15 (LLK15) Improved combined 0.7 8.92 11.68 LAA-LIE-KOM

LAA-LIE-KOM-16 (LLK16) Improved combined 0.7 7.85 17.52 LAA-LIE-KOM

cells that overlap the area of the sewerage sub-system
indicated in Fig. 2.2.

The different sewerage sub-areas are shown in
Fig. 2.2. These sewerage systems consist of different
types, namely (improved) separated sewerage and (im-
proved) combined sewerage. Combined sewerage col-
lects both wastewater and rainfall in the same pipe,
while a separated system has one pipe for the wastewater
and another pipe for the rainwater. For every sewerage
sub-area the maximum pump capacity (POC, mm h−1),
storage (mm) and service area of the location (ha) were
given (Table 2.3). The parameters are lumped for each
sub-area. The POC is the part of the pump capacity

that is used to discharge collected rainfall. The output
of the model is the actual POC, rainfall that fell during
the hour (mm) and overflow (m3 h−1). The output is
given per hour per sub-area. The overflow is the volume
of water that can not be discharged to the wastewater
treatment plant as the maximum capacity is reached,
instead it is discharged into the environment, often the
nearest water body.

Figure 2.3 shows the most important steps of the
model. In line 25 the amount of rain that fell during
the last hour is determined, called neerslag. Next, in
line 26 the total amount of rainfall that fell during the
two hours prior to the last hour is determined and called



2.6. HYDROLOGICAL MODEL | 7

prev_2h_mm. The amount that will be subtracted from
the neerslag is determined in line 28 and is based on
two constants (1 or 0.1, see line 22 and 23) and on
prev_2h_mm. In line 29 the amount of rainfall that
actually reaches the system is calculated and is called
inloop.

With the inloop and previous storage, the new stor-
age, before subtracting the POC, can be calculated (line
31). The POC is based on the previous storage or the
previous storage plus the inloop (line 31, 32, and 33).
This shows that when there is more than 0.5 mm of stor-
age in the system, the POC will be on its maximum. In
line 34 and 35 the new storage is determined by either
the maximum storage, or on the previous storage plus
inloop (line 31) minus the POC (line 33). In line 37
the sewage overflow (in mm per hour) is based on the
previous storage plus inloop (line 31) minus the current
POC (line 33) and maximum storage. The overflow is
multiplied with the surface area (ha) and 10 to calculate
the overflow volume (m3 h −1) (line 38).

The used sub-areas in this research can be found
in Table 2.3 and are also indicated in Fig. 2.2, in which
the locations with the same prefix (e.g. HEL-HEL-CEN)
have the same precipitation input. Those used sub-areas
only consist of combined or improved combined sewerage
systems, as those systems result in the most environmen-
tal damage during an overflow. An improved combined
sewerage system has extra capacity to reduce the over-
flow from wastewater. In addition, close to the pump, a
storage settling basin is built to settle waste. This will
result in less waste emission during an overflow.

Access to this model was granted by water authority
Aa en Maas.





| 9

3 | Methods

This chapter explains the methods used in this research.
The methods are divided in two parts. First, the radar
nowcasts and HARMONIE were verified with observed
gauge-adjusted radar data (Fig. 3.1A). Note that RM-
DR and PS-D use observed unadjusted radar data to
make forecasts, while the verification data consists of
observed gauge-adjusted radar data. The nowcasts are
later corrected with a bias reduction factor. Secondly,
the rainfall forecasts were used as an input for a hy-
drological model (a simple sewer overflow model) and
compared with the reference run (Fig. 3.1B).

3.1 Data preparation

The radar nowcasts were corrected with a bias reduction
factor. This was done by using Climatology-based Ad-
justments for Radar Rainfall in an OperaTional Setting
(CARROTS), obtained from Imhoff et al. (2021). This
is a set of bias reduction factors, which varies per day of
the year and per grid cell in the Netherlands.

As a pre-processing step, The precipitation fields of
HARMONIE were re-projected to the precipitation fields
of the gauge-adjusted radar data. Additionally, the cell
size of HARMONIE was downscaled, in which the new
cells keep the same value as the overlaying cell.

3.2 Verifying nowcasts

First, radar nowcast developed by two algorithms (PS-D
and RM-DR) were compared with gauge-adjusted radar
data and subsequently mutually. The gauge-adjusted
radar data were only used for verifying the nowcasts,
which was done both area-averaged and grid-based. In
this way, the quality of the nowcast algorithms was in-
vestigated by taking into account multiple aspects. The
area-averaged precipitation was obtained by using the
shapefiles of the study area and calculating the average
rainfall depth (mm) over this area.

Different performance metrics were used. The false
alarm rate (FA) and hit rate (HR) were calculated based
on contingency tables (Wilks, 2011). Pearson’s corre-
lation, the root mean square error (RMSE), and bias
were used to quantify the accuracy of nowcasts. This
analysis was done over the surface area of Helmond and
Laarbeek, shown in Fig. 2.1. Verification of the radar

nowcasts with the gauge-adjusted radar data were done
for all 32 selected events, shown in Table 2.1.

3.2.1 Contingency tables

The hit rate (HR) and false alarm rate (FA) use pre-
defined thresholds for rainfall intensity or rainfall sum
(Liguori et al., 2012). The threshold in this study was
later on determined, by taking into account which inten-
sities led to inundation in the past. Mostly small intense
rainfall events have a considerable impact in urban areas.
The HR and FA were calculated with the accumulated
rainfall (mm) during the specific event. This was done
for each 5-min lead time up to maximum 2 hours.

A HR gives the proportion of events that were cor-
rectly forecasted for a predefined threshold, and is cal-
culated as:

HR =
a

a+ c
(3.1)

where a is the number of correct forecasts and c is the
number of events that were not forecasted while the
observation actually exceeded the threshold.

A FA gives the proportion of events that were not
forecasted for a predefined threshold, and is calculated
as:

FA =
b

b+ d
(3.2)

where b is the number of incorrect forecasts (forecast
exceeds the threshold, but the observation does not)
and d the number of correct negative forecasts (both
observation and forecast do not exceed the threshold).
FA varies between 0 and 1, in which 0 is the best possible
forecast and 1 the worst one possible.

The HR and FA were calculated at a given grid
point.

3.2.2 Pearson’s correlation

For decision making it is important to recognize the
threat as soon as possible. Therefore a maximum lead
time that is still reliable is necessary, also referred to as
maximum skilful lead time. Pearson’s correlation was
used for this. It measures the correlation between two
sets of data (in this case the gauge-adjusted radar data
and forecasted rainfall). Per event and lead time Pear-
son’s correlation was calculated. A threshold of 1/e
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Figure 3.1: Schematization of the rainfall forecasting chain for a single simulated event. Gauge-adjusted radar data
is used for verification of the nowcast or HARMONIE (A) and the hydrological model output (B).

(ρ ≈ 0.37) was used in order to say if there is still a
correlation or not (Berenguer et al., 2011). Below this
threshold, the lead time is not skilful any more. The
Pearson’s correlation coefficient (ρ) is calculated as:

ρ =
1

N

N∑
i=1

(Fi − µF )(Oi − µO)

σFσO
(3.3)

with Fi the forecasted and Oi observed rainfall amounts,
in which i indicates a given grid cell. N is the amount of
forecasts with lead time t, µF , and µO are the mean of
the forecasted and observed rainfall and σF and σO are
the standard deviation for the forecasted and observed
rainfall.

Pearson’s correlation coefficient was calculated in
two ways. It was first calculated over the area-averaged
precipitation, per lead time, and per event.

Second, Pearson’s correlation coefficient was cal-
culated per grid cell, per lead time. In this way, the
spatial dependency was calculated. This was done over
the whole study area (both Helmond and Laarbeek).

3.2.3 RMSE

The RMSE was calculated per lead time as:

RMSE =

√√√√ N∑
i=1

(Fi −Oi)2

N
(3.4)

The RMSE was calculated over the area-averaged
precipitation, per lead time, per event.

3.2.4 Bias

The bias was used to quantify overestimations and un-
derestimations for the rainfall forecasts compared with
the observed rainfall. The bias is calculated with:

bias =
Fci
Obsi

(3.5)

in which Fc is the forecasted accumulated rainfall during
one certain event at a given lead time and Obs is the
observed accumulated rainfall and i indicated a certain
event. The accumulated rainfall is calculated over the
area-averaged rainfall. The bias is calculated for multiple
lead times up to two hours.
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A bias of 1 indicates that the total rainfall sum
of the forecast is in perfect agreement with the obser-
vation, a bias smaller than 1 indicates underestimation
and a bias greater than 1 indicates overestimation of the
forecasts.

3.3 Comparison nowcasts and
HARMONIE

The nowcasts were also compared to HARMONIE, so
the skill of nowcasts could be computed relative to HAR-
MONIE. This was done by using an area-averaged and
grid-based approach. HARMONIE, PS-D and RM-DR
were verified with the observed gauge-adjusted radar
data. For this analysis Pearson’s correlation coeffi-
cient (section 3.2.2) was calculated for lead times up to
6 hours, contingency tables (section 3.2.1) were calcu-
lated for different thresholds and lead times up to 6 hours
and lastly, the RMSE (section 3.2.3) was calculated per
grid cell. The results of the verification process for the
three forecast methods were compared mutually.

Comparison of the nowcasts with HARMONIE was
only done for a few events that fell between the period
October 2017 and 2018 (see Table 2.2), because HAR-
MONIE is only available for this period. The events
used for this comparison were based on the issue times
of HARMONIE and lead times up to 6 hours. Note
that these selected events did not necessarily contain
the most extreme ones. During some events, no precip-
itation was observed in Helmond and Laarbeek.

The spatial resolution of HARMONIE (2.5 km2) dif-
fers from the observed gauge-adjusted radar data and
the nowcasts (1 km2), so HARMONIE was downscaled
by averaging the coarser-resolution to the finer spatial
resolution of the radar reference data. The temporal
resolution of HARMONIE is 1 hour. For that reason the
accumulated rainfall (mm) in one hour was calculated
for the observed radar data and nowcasts.

3.4 Verifying model output

The urban hydrological model, described in section 2.6,
was used to forecast sewage overflow volume. Only a
selection of the sub-sewerage systems shown in Fig. 2.2
were investigated (see Table 2.3). Different model out-
puts were made by using either PS-D nowcast, RM-DR
nowcast, or HARMONIE as input. The observed gauge-
adjusted radar data were used as a reference run. The
model output was compared mutually, and subsequently

with the reference run. The dependence of different rain-
fall characteristics on the performance of the urban hy-
drological model was investigated. These are the same
as described in section 2.2.

The focus of this study is on quantifying the added
value of nowcasts for operational water management.
For that reason, the output of the model was not com-
pared with measurements but with simulations using ref-
erence rainfall as input. In this way, uncertainties caused
by the hydrological model will have limited effect on the
conclusions since they impact all model runs. Evalua-
tion of the performance of the forecasts as model input
was done by computing the skill relative to the hydro-
logical forecasts based on the observed gauge-adjusted
radar data. To verify the output of the urban hydrologi-
cal model, the bias, HR, and FA were calculated for each
5 min issue times between 5 and 65 min. E.g. for the
event between 9.45-10.40 all issued forecasts between
8.40 and 9.40 were used. For the 24 hour events, a new
issue time was used after a new hour of the event has
passed. E.g. for the event starting at 07-10-2009 07:05
and ending at 08-10-2009 07:00, an issue time will be
taken for 07:05 until 8:00, a new one for 08:05-09:00, a
new one for 09:05-10:00 and so on.

The initial conditions were determined by running
the model 9 days prior to the start of the selected precip-
itation event. The 9 days were used as Aa en Maas did
the same in the model. This model run was performed
with the gauge-adjusted radar data as input. After ob-
taining the initial conditions, the 1- or 24-hour event was
used as input by using either output from one of the fore-
cast methods or the reference data. After the event the
model ran for another 12-hours with no precipitation in-
put, to see the effect of an event on the overflow and
the actual pump capacity in time.

In order to prevent flooding in urban areas, rain-
water is drained away. The part of the pump capacity
that is used to discharge collected rainfall (pump capac-
ity (POC)) should be used optimally in case of a sewage
overflow. In this way, the overflow can be prevented or
reduced. First, the HR and FA were calculated over the
total sewage overflow volume during one event, to see
if the forecasts were able to predict the overflow. The
used criterion was the occurrence of a sewage overflow.
Secondly, the bias was calculated to investigate to what
extent the overflow volume was predicted. Lastly, the
RMSE was calculated over the POC for events where an
overflow occurred and was forecasted.

For a fair comparison between HARMONIE and the
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radar nowcasts, these model output comparisons were
done by using nowcasts with the same issue time as
HARMONIE.

3.5 Real-time control

Before investigating what the maximum anticipation
time is, which is the time between forecast and occur-
rence, the reference runs were investigated. In this way,
it was investigated if there was space for better use of
the POC and how much sewage overflow volume could
be reduced. The model ran with the observed radar
rainfall as input, in order to check if there was a sewage
overflow caused by the specific event. In the case of an
overflow, a closer look at the POC and storage (mm) is
necessary. Optimal use of the POC can avoid or reduce
the amount of sewage overflow.

First, the reference run was analysed to see what
the effect is of using the storage and pump capacity
more efficiently. Second, the maximum skilful issue time
and the amount of water (mm) that could be discharged
during this time were analysed. If the forecast time is
one hour, there is already one hour in time that can be
gained. Without any forecast, the user can only measure
the values after the event has passed. Based on the
maximum issue time and the forecast time, the gain in
anticipation time was determined.

Next, the extreme events in May and June 2016
and subsequent inundated areas were looked into. The
potential of real-time control was investigated to see if
the storage capacity and pump capacity could be used
better in order to prevent or reduce sewage overflow.

Lastly, the performance of the nowcasts and HAR-
MONIE, and output of the hydrological model were com-
pared in order to analyse if there are any relations. This
was done by comparing the bias and contingency tables,
calculated for either the forecasts or forecasted hydro-
logical output.
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4 | Results

4.1 Performance nowcasts

In this section, the most important findings related to the
performance of the radar rainfall nowcasts is presented.
The performance of the nowcasts was interpreted by us-
ing a set of events and verifying it with the reference
rainfall (observed gauge-adjusted radar data). The main
focus was to identify the difference between the rainfall
characteristics, seasons and between the algorithms in
forecasting rainfall.

Figure 4.2a serves as an example of radar rainfall
scans and two nowcast algorithms (PS-D and RM-DR)
at different time steps. The event shown here is only
used to give a good example of the difference between
radar rainfall measurements and rainfall forecasts made
by the algorithms. The nowcasts were both issued at
14:50 UTC on 05 May 2016.

From Fig. 4.2 it is visible that forecasting rainfall
has some flaws. Both algorithms are able to capture the
event and its movement to a certain extent (Fig. 4.2a).
However, both algorithms are not able to predict the
average amount of rainfall that fell over the urban area
of Helmond in one hour, which was 9.22 mm. RM-
DR only measured 3.13 mm during this event and PS-D
measured a higher value of 5.16 mm (for the nowcast
issued at 14:50) (Fig. 4.2b). RM-DR is meant to be
able to capture the high-intensity rainfall centres (bright
yellow pixels in Fig. 4.2a), while PS-D is characterized
by capturing the mean of a large-scale field of rainfall.
Consequently, PS-D results in more dissipation of the
high-intensity fields. In Fig. 4.2a it is also visible that
the nowcasting algorithms have more difficulty predicting
the right location and intensity of the rainfall fields at
higher lead times.

The used urban areas in this research only cover a
small part of the radar image in Fig. 4.2a. The urban
areas of Helmond and Laarbeek are small. Consequently,
the hydrological systems of these areas are characterized
by a fast response time. In addition, smaller areas are
more sensitive for mislocation of the rainfall because it is
easier to miss rainfall if it mislocated. For those reasons,
predicting the right location of the high-intensity rainfall
centres is very important.
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Figure 4.1: Pearson’s correlation calculated over the
catchment averaged rainfall of Helmond per lead time,
averaged over all events for 1-hour and 24-hour duration
events. Pearson’s correlation is calculated over both al-
gorithms. The grey line is the threshold (1/e), indicating
the minimum correlation for a nowcast to be skilful. The
dots indicate the variability per event.

4.1.1 Dependency on rainfall characteristics

The lead time for which the radar nowcasts are still skilful
varies between rainfall duration and algorithm (Fig. 4.1).
Pearson’s correlation coefficient was calculated over the
catchment averaged precipitation in Helmond, per event,
per lead time. Second, the average of all events was
calculated and shown in Fig. 4.1. This resulted in a
maximum skilful lead time for 1-hour duration events of
around 19 min or 37 min and for 24-hour durations, it is
around 56 min or 108 min for respectively RM-DR and
PS-D. For both durations, PS-D results in the longest
skilful lead time and is almost twice as long as RM-DR.
It can be stated that increasing lead times decreases the
quality of the rainfall forecast. Calculating Pearson’s
correlation over Laarbeek resulted in similar results and
can be found in Appendix A.1.

There is much variation in the correlation between
the events, indicated by the dots in Fig. 4.1. The cor-
relation of 1-hour duration events, which often consists
of convective showers (short, but high intense precipita-
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(a) Radar images showing the rainfall intensity [mm h−1]

(b) Bar plot showing the average rainfall depth [mm] per 5 min over Helmond

Figure 4.2: Example of the reference radar, PS-D and RM-DR nowcast for the Aa catchment. (a) Rainfall intensity
(mm h−1) based on 5-min accumulation is shown here and (b) the average rainfall depth [mm] per 5 min over
Helmond. The event took place on 2016-05-30 (1-hour duration). The issue time shown here is 14:50 UTC. An
average of 9.22 mm fell in one hour over Helmond, while RM-DR forecasted 3.13 mm and PS-D 5.13 mm in one
hour. White contour lines indicate the study area (see also Fig. 2.1)

tion events), varies more than the 24-hour events (of-
ten characterized by long-duration storms). Convective
showers are small scale processes, leading to more varia-
tion in the forecasts of these type of events. The events
with a longer duration are often stratiform events, which
are larger-scale events that are more persistent. Conse-
quently, the predictive skill for longer duration events is

expected to be higher.
Figure 4.3 shows the distribution of the RMSE,

based on the comparison of precipitation forecasts
against measured radar fields. The RMSE was calcu-
lated per season over the whole study area of Helmond,
for all events. The average of lead times between 5-
30 min, 35-60 min, 65-90 min and 95-120 min were
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Table 4.1: Bias calculated over the accumulated rainfall (mm) during the event duration (1-hour or 24-hours),
averaged over all events, averaged over lead times of 5-30 min, 35-60 min, 65-90 min and 95-120 min.

Algorithm Duration

5-30 min 35-60 min 65-90 min 95-120 min 5-30 min 35-60 min 65-90 min 95-120 min

1 hours 0.69 0.44 0.3 0.21 0.77 0.46 0.28 0.19

24 hours 0.76 0.6 0.53 0.44 0.8 0.6 0.51 0.43

1 hours 0.76 0.38 0.21 0.16 0.81 0.45 0.25 0.16

24 hours 0.86 0.76 0.69 0.66 0.89 0.76 0.72 0.72

Bias Helmond

PS-D

RM-DR

Bias Laarbeek

taken. The RMSE increases over longer lead times. A
substantial difference in the performance of the forecasts
between seasons is clearly visible. The largest error is
during summer, with an average RMSE of 0.72 mm and
0.61 mm for respectively RM-DR and PS-D (Fig. 4.3).
During winter the RMSE is considerably lower with a
value of 0.39 mm and 0.36 mm for respectively RM-DR
and PS-D. At the same time, there is more spread be-
tween the events that took place in the summer than
in winter. The events during spring contain the most
outliers (black dots in Fig. 4.3).

In the Netherlands, there is a variation between the
precipitation types during the seasons. Summers are
characterized by high intense rainfall of short duration,
while winters have a lower rainfall intensity but the du-
ration is often longer. Consequently, it is expected that
capturing precipitation events in winter is more accurate.

Table 4.1 shows that in all cases the bias has a
value lower than 1, indicating that both nowcast algo-
rithms have a tendency to underestimate the total ac-
cumulated rainfall that fell during one event. The bias
was averaged over all events, calculated per algorithm
and event duration (1 hour or 24 hours) for both Hel-
mond and Laarbeek. In all cases, the underestimation
of the nowcasts increases with longer lead times. The
bias for events with a duration of 24 hours is closer to
1, indicating that the nowcasts are more representative
for 24-hour events than for 1-hour events. For shorter
lead times, PS-D underestimates the total accumulated
rainfall more than RM-DR. However, for events with a
duration of 1 hour, PS-D becomes better than RM-DR
with increasing lead times. For events with a duration
of 24 hours, RM-DR scores better for all lead times than
PS-D.

4.1.2 Spatial dependency of nowcast
algorithms

For urban areas it is important to have a high spatial ac-
curacy of rainfall. For that reason, Pearson’s correlation

Figure 4.3: RMSE (calculated per 5-min time step) per
season for all events with a duration of 1 hour over the
catchment averaged rainfall of Helmond, averaged over
lead times of 5-30 min, 35-60 min, 65-90 min and 95-
120 min. Black dots indicate outliers.

is calculated per grid cell for different events.
In Fig. 4.4 the spatial dependency is made visible in

terms of Pearson’s correlation coefficient, averaged for
lead times of 5-30 min and 35-60 min. Pearson’s cor-
relation was calculated over the grids in and around the
study area. Both events shown have a 1-hour duration.
In Appendix Figs. A.3 and A.4 the corresponding radar
images of the events can be found.

For the averaged lead times of 5-30 min and 35-
60 min both PS-D and RM-DR are in agreement about
the spatial dependency of the area shown in Fig. 4.4a,
while for Fig. 4.4b there is much difference between PS-
D and RM-DR. In addition, comparing the two events,
Pearson’s correlation varies much per location. For both
events, RM-DR results in a lower Pearson’s correlation
coefficient than PS-D, which is also in agreement with
the results of Fig. 4.1. Over longer lead times, Pearson’s
correlation coefficient decreases. However, the extent in
which Pearson’s correlation decreases over longer lead
times differs substantially between the events.

For most grid cells for the event at 2017-08-30 17:55
(Fig. 4.4a), Pearson’s correlation coefficient is less than
the threshold, and thus not seen as skilful. In contrary,
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(a) 2017-08-30 17:55 UTC (b) 2018-12-08 19:50 UTC

Figure 4.4: Pearson’s correlation per grid cell for the 1-hour event ending at 2017-08-30 17:55 UTC (a) and event
ending 2018-12-08 19:50 UTC (b), averaged over lead times of 5-30 min and 35-60 min.

Figure 4.5: Hit rate (HR) and false alarm rate (FA) calculated over the urban area of Helmond. The HR and
FA are calculated over the accumulated rainfall in 1 hour, by using a threshold of 5 mm h−1 or 10 mm h−1 (see
Appendix A.4 Table A.1 for number of times that these thresholds were reached by the reference rainfall). All events
were taken together, and averaged over lead times of 5-30 min, 35-60 min, 65-90 min and 95-120 min. Note the
difference in scale on y-axis between the HR and FA.
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Figure 4.6: Radar image, with the total amount of precipitation (mm) that fell in one hour, for the event of 2018-
04-30, ending at 01:00 (issued at 00:00 UTC). The reference radar, HARMONIE, PS-D and RM-DR nowcasts for
the Aa catchment are shown. An average amount of 3.24 mm feel in one hour over Helmond, while HARMONIE
forecasted 0 mm, PS-D 1.77 and RM-DR 3.20 mm. White contour lines indicate the study area (see also Fig. 2.1).

the event at 2018-12-08 19:50 (Fig. 4.4b) is in the case
of PS-D seen as skilful for both lead times between 5-
30 min and 35-60 min. However, in the case of RM-
DR, the forecast is not seen as skilful for every grid cell,
especially for lead times between 35-60 min Pearson’s
correlation is smaller than 0. This indicates that per
event there is much variation in the skill of the nowcasts.

Accurate rainfall intensity forecasting is essential
for predicting the maximum discharge and consequently
real-time control (RTC). Especially high intense precipi-
tation events can cause urban floods when the drainage
capacity is insufficient to deal with the rainfall. For that
reason, the hit rate and false alarm rate were calculated
over events with a duration of 1 hour (Fig. 4.5). The
used thresholds are 5 mm h−1 and 10 mm h−1. These
thresholds were determined by taking into account which
rainfall depths (mm) led to an overflow according to the
hydrological model described in section 2.6. See Ap-
pendix A.4 Table A.1 for the number of times that these
thresholds were reached by the reference rainfall.

Figure 4.5 shows the HR and FA for both PS-D
and RM-DR, determined for a threshold of 5 mm h−1

and 10 mm h−1. Both nowcasts are able to predict
the rainfall depth to a certain extent. There is a sub-
stantial difference between the HR with a threshold of
5 mm h−1 and 10 mm h−1. The HR is lower in the case
of a threshold of 10 mm h−1. This indicates that both
RM-DR and PS-D are able to predict rainfall, but are
less skilled to predict the intensity of the rainfall events
accurately. PS-D is more skilled (has a higher HR) than
RM-DR for a threshold of 5 mm h−1.

For larger lead times the HR decreases for both now-
casts. This is also in agreement with Table 4.1, which
shows that with larger lead times the precipitation is
more underestimated.

For thresholds of 5 mm h−1 the FA for PS-D is 0,
indicating that there are no false alarms present in these
nowcasts. RM-DR has a FA of around 0.02 for lead times
of 5-30 min and 35-60 min. This is not desirable as it
sends out false warnings. However, the FA is very low in
this case, indicating that only in a few cases a false warn-
ing was send out. For higher thresholds (10 mm h−1),
the number of false alarms increases.

Figure 4.7: Pearson’s correlation calculated over the
catchment averaged rainfall of Helmond per lead time,
averaged over 9 events. Pearson’s correlation is calcu-
lated over both nowcasting algorithms and HARMONIE.
The grey line is the threshold (1/e), indicating the min-
imum correlation for a nowcast to be skilful. The dot-
ted grey line indicates the significance level of 0.05, the
squares show the p-value per forecast per lead time.

4.2 Relative comparison between
forecasts

This section covers the most important results of the
comparison in performance between the forecast meth-
ods (HARMONIE, PS-D and RM-DR). A different set
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Figure 4.8: RMSE per grid, calculated over the total amount of precipitation (mm) that fell in one hour. The event
of 2018-04-30 ending at 01:00 UTC is taken as an example here. Corresponding radar images containing the rainfall
depth can be seen in Fig. 4.6.

of events is used than described in section 4.1. The
forecasts were verified with the reference rainfall.

Figure 4.6 serves as an example to compare a radar
rainfall scan with forecasts made by HARMONIE, PS-D
and RM-DR. The event of 2018-04-30 ending at 01:00
(issued at 2018-04-30 00:00 UTC) is shown here. It is
visible that PS-D and RM-DR are both able to capture
the event to some extent, while HARMONIE is not able
to capture the rainfall event at all. The underestimation
of the total rainfall forecasted by HARMONIE is too
severe, consequently, the spatial variation of rainfall is
not visible.

The average amount of rainfall that fell over the ur-
ban area of Helmond was 3.24 mm. HARMONIE did not
forecast any rainfall. PS-D underestimated the average
rainfall, and only forecasted 1.77 mm. However, RM-DR
forecasted 3.20 mm of rainfall, which is very close to the
reference. All three models are not able to predict the
core of the rainfall event (upper part of Fig. 4.6).

Pearson’s correlation coefficient was calculated for
HARMONIE, PS-D and RM-DR over the area-averaged
precipitation in Helmond for lead times up to 6 hours
(Fig. 4.7). The lines are not smooth; some bumps are
visible. It is expected that this is due to the small num-
ber of events (only 9) that are used for this analysis.
Consequently, no clear relation between Pearson’s corre-
lation coefficient and lead times for the different forecast
methods is visible. In addition, not all correlation coeffi-
cients were significant, as the p-value was in most cases
higher than 0.05 (see squares in Fig. 4.7).

While PS-D and RM-DR seem skilful up to lead
times around 2 hours, HARMONIE is not. With longer
lead times, HARMONIE becomes more skilful (after

3 hours), while RM-DR and PS-D lose their skilfulness
over time. RM-DR is not seen as skilful for lead times
of more than 2 hours, PS-D is not seen as skilful at lead
times of 5 and 6 hours.

Note that this comparison was only done for 9 fore-
casts and not during all forecasts (extreme or heavy)
precipitation was observed. It is expected that it is eas-
ier to forecast no precipitation, so that can cause the
differences in skilful lead times for RM-DR and PS-D in
Fig. 4.7 compared to Fig. 4.1.

The spatial dependency of forecasting precipitation
in terms of RMSE for the three forecast methods is
clearly visible in Fig. 4.8. The RMSE based on the fore-
cast issued at 2018-04-30 00:00 UTC is shown here. All
methods are in agreement about the spatial dependency,
with the upper part in Fig 4.8 having the highest RMSE.
At the upper part the highest amount of rain fell during
the hour (Fig. 4.6). All forecast methods have problems
with capturing the right amount of rainfall. Over the
whole area, RM-DR results in the lowest RMSE com-
pared to PS-D and HARMONIE.

In Fig. 4.9 the hit rate (HR) and false alarm rate
(FA) are shown for the three forecast methods (HAR-
MONIE, PS-D and RM-DR) over different lead times up
to 6 hours. Thresholds of 0.5 mm h−1 and 1 mm h−1

were used, as the 9 events used in this analysis contained
lower rainfall intensities. For PS-D it shows that the pro-
portion of events that were correctly forecasted decreases
for longer lead times. For RM-DR and HARMONIE the
pattern is less clear over different lead times. Both PS-
D and RM-DR have a higher HR for lead times up to
4 hours for both thresholds than HARMONIE (Fig. 4.9).
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Figure 4.9: Hit rate (HR) and false alarm rate (FA), calculated over the urban area of Helmond. A threshold of
0.5 mm h−1 and 1 mm h−1 was used. See Appendix A.4 Table A.2 for number of times that these thresholds were
reached by the reference rainfall. All events are taken together. Note the difference in scale on y-axis between the
HR and FA.

The difference in proportion of events that were cor-
rectly forecasted between PS-D and RM-DR increases
with longer lead time.

The proportion of events that were forecasted, but
not measured, increases with longer lead times for a
threshold of 0.5 mm h−1 for both PS-D and RM-DR.
For HARMONIE only at lead times of 4 or 6 hours false
alarms were present. For all lead times, HARMONIE
results in a lower FA than RM-DR and PS-D.

4.3 Performance nowcasts in a simple
sewage overflow model

In this section the differences between the sewerage sub-
areas are presented. Next, most important findings re-
lated to the performance of the radar rainfall nowcasts
as input for a simple sewage overflow model are shown.
Results are shown for different locations on the sewer-
age network around the municipalities of Laarbeek and
Helmond (See Table 2.3 for the locations).

4.3.1 Sewerage sub-areas

The chosen sewerage sub-areas for this research differ
in storage capacity, service area and type of sewerage
system (Table 2.3). Consequently, the frequency and
volume of a sewage overflow differs per location. In ad-
dition, the waste emission during an overflow differs per
sewerage system, because improved combined sewerage
systems have a storage settlement basin. However, the
lower waste emission is not visible in the output of the
model.

The locations HH9, LBK8, LBK11, LLK15 and
LLK16 (see Fig. 2.2 for sewerage locations and Table 2.3
for characteristics) have similar maximum storage capac-
ity (varies between 6.43 and 8.92 mm). Consequently,
it is expected that the frequency of the sewage overflow
will be around the same. However, the service area has
a larger variety (between 4.06 and 58.94 ha). This will
affect the volume of the sewage overflow. HHC1, HHC2
and HHH8 have larger storage capacities (varying be-
tween 10.59 and 21.96 mm). Consequently, less sewage
overflow will occur. Especially for the events of 1-hour,
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(a) LBK11

(b) LLK15

Figure 4.10: Hit rate (HR) and false alarm rate (FA) per season for all events over the sewerage sub-area LBK11 (a)
and LLK15 (b), averaged over all events for 1-hour duration event. HR and FA are shown for issue times prior to
the start of the event. Number behind the season indicates the number of occurrences of sewage overflow that took
place in the reference run. Note the difference in scale on y-axis between the HR and FA.

the frequency of a sewage overflow varies much between
the locations (Table 4.2). HHC1 has the largest storage
capacity, resulting in a lower frequency of overflows (2
times for 1-hour events). However, the service area is
larger, resulting in larger volumes of overflow during the
occurrence (a total overflow volume of 9833 m3 during

the 1-hour events). On the other hand, LBK11 has the
lowest storage capacity, and also the lowest service area.
The frequency is larger, but the volume of an overflow
will be smaller (13 times for 1-hour events, with a total
overflow volume of 3712 m3).
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Figure 4.11: Bias calculated over the total amount of sewage overflow during the event duration (1 hours or 24 hours),
averaged over all events and averaged over issue times of 5-15 min, 20-30 min, 35-45 min and 50-65 min prior to
the start of the event. The sewerage sub-areas shown are HHC1, HHC2, HHH8, HHH9, LLK15, LLK16, LBK8 and
LBK11. Grey line indicates a bias of 1. Note that the scale on the y-axis is different.

4.3.2 Dependency on rainfall characteristics

The hit rate (HR) and false alarm rate (FA) were cal-
culated per season for the sub-areas LBK11 and LLK15
Fig. 4.10. Those areas were chosen because the storage
capacity is small, consequently more sewage overflow
took place here. The used criterion is a sewage over-
flow, so the volume of overflow that took place will be
ignored.

From Fig. 4.10 it can be seen that there is a sub-
stantial difference between the seasons. The highest HR
is during spring, in which the HR is around 0.75 for
all issue times. This is followed by winter and autumn.
However, for longer issue times the HR is 0 for winter
and autumn, indicating that the sewage overflow is not
predicted at all. The forecasts in summer result in the
lowest HR with a value of 0 for all issue times, while
three out of four events in summer resulted actually in a
sewage overflow (for LBK11). During winter PS-D has
a higher skill than RM-DR, with PS-D having a HR of
0.5 for issue times until 35 min (for LBK11). For the lo-
cation LLK15, PS-D also has a higher skill than RM-DR
for the winter events for most issue times.

For both locations PS-D has a FA of 0 for au-
tumn, spring and summer, indicating that the forecasts

do not result in any false alarms. PS-D only results in a
false alarm for one event in winter, for issue times until
10 min, while RM-DR has two events in winter and one
event in autumn that results in a false alarm. The events
that occur in spring have both the highest HR, and one
of the lowest FA.

Per sub-area and event, the bias was calculated over
the total amount of sewage overflow that took place
(Fig. 4.11). The bias was averaged over all events and
averaged over issue times of 5-15 min, 20-30 min, 35-
45 min and 50-65 min prior to the event.

In most cases the bias is below 1 (Fig. 4.11), indi-
cating that in general the radar nowcasts underestimate
the total amount of overflow that took place. Only some
of the 24-hour events predicted by RM-DR resulted in
an overestimation.

In general, RM-DR results in an overflow volume
that is closer to the reference than PS-D for issue times
of 5-15 min. For longer issue times, PS-D becomes rel-
atively more skilful than RM-DR. For events with a du-
ration of 24 hours the difference between RM-DR and
PS-D increases, with RM-DR being more skilful than
PS-D for all issue times. For events with a duration of
1 hour, RM-DR and PS-D have a similar bias for issue
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times larger than 15 min.
Between the sewerage sub-areas there is a large dif-

ference in bias (e.g. varying between 0 and 0.52 for
issue times ranging from 5 to 15 min). HHC1 results
in the lowest values (Fig. 4.11). A zero indicates that
an overflow occurred but the forecasted output did not
simulate any overflow at all. HHC1 has the largest stor-
age capacity, so it takes longer before this maximum
storage is reached. Consequently, underestimating the
rainfall depth (mm) results quicker in a discrepancy be-
tween the measured and forecasted overflow. In addi-
tion, note that the sub-systems with a different prefix
(e.g. HHC) have different precipitation input, for which
the skill of the forecasts can vary substantial spatially
(see also Figs. 4.4a and 4.4b for the spatial difference in
forecasting skill).

Figure 4.11 indicated that in most cases the over-
flow volume is underestimated. Consequently, this can
influence the predicted pump capacity that is used to
discharge collected rainfall (POC (mm/h)). For that
reason, the RMSE was calculated over the POC for the
events where an overflow occurred (Fig. 4.12).

For events with a duration of 1 hour, RM-DR has a
higher RMSE for all issue times, while for events with a
duration of 24 hours, the difference between PS-D and
RM-DR is smaller, with PS-D having a higher RMSE.

There is a larger increase in RMSE for longer issue
times for the 1-hour events than for the 24-hour events.
The variability between the events is larger for 1-hour
events than for 24-hour events. For the 1-hour events,
the RMSE varies between 0 and ± 0.6, while the 24-
hour events have a maximum RMSE of 0.35 and 0.45
for respectively PS-D and RM-DR. Note that there is a
maximum pump capacity of 0.7 mm h−1, which limits
the RMSE to a maximum value of 0.7.

4.4 Comparison between forecasts in a
hydrological model

In this section the forecasted sewage overflow, resulted
from the sewage overflow model, forced by HARMONIE,
PS-D or RM-DR as input, are compared relative to each
other.

The number of overflows that took place per lead
time was little (see Appendix A.5 Table A.3 for the num-
ber of overflows that were predicted by the reference run
per location). For that reason, the hits and misses were
determined instead of the hit rate and false alarm rate.
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Figure 4.12: RMSE calculated over the POC (mm/h) of
LBK11 per issue time prior to the start of the event, av-
eraged over all events where a sewage overflow occurred
for 1-hour and 24-hour duration. RMSE is calculated
over both algorithms. The dots indicate the variability
per event.

There is a large difference between the forecasts
in bias, hits and misses (Fig. 4.13). There is also a
substantial difference in the bias between the locations
(e.g. varying between 0.63 and 15.81 for HARMONIE).
HARMONIE is not able to forecast any of the over-
flows for any of the events for lead times up to 3 hours
(Fig. 4.13). For longer lead times, the number of misses
decreases substantially. For lead times of 4 hours, HAR-
MONIE mostly overestimates the sewage overflow vol-
ume, while for lead times of 6 hours the volume is un-
derestimated. In contrary, PS-D and RM-DR are able to
forecast the occurrence of an overflow for lead times of
1 hour. PS-D underestimates the overflow volume for
all locations, while RM-DR overestimates the overflow
volume. For longer lead times PS-D and RM-DR only
results in misses. For lead times of 1 hour, RM-DR re-
sults in a bias close to 1 for some locations, indicating
that the forecasted model output and the reference are
in good agreement. The number of false alarms is higher
for RM-DR than for the other two methods.

4.5 Potential for real-time control

This section focusses on the initial conditions of the sew-
erage systems, prior to a sewage overflow, to investi-
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Figure 4.13: A) Average bias, B) misses and false alarms for forecasting sewage overflow amounts for all events,
calculated over lead times up to 6 hours for HARMONIE, PS-D and RM-DR. See Appendix A.5 Table A.3 for the
amount of overflows that were predicted by the reference run per location

gate the possibilities for RTC. In addition, some spe-
cific high-intensity rainfall events in May and June 2016
were analysed. These events resulted in floods in and
around Helmond, which caused damage in the built-up
areas. In addition, a 1-hour event in spring is analysed,
as results showed that events in spring have the high-
est hit rate. Those events were investigated, to see if
RTC could have prevented the part of the floods which
resulted from sewage overflow.

Table 4.2 shows the initial conditions per event and
sewerage sub-area. In some cases the POC prior to the
event was 0.35 (due to the used criterion of the model,
see section 2.6) and there was still storage available to
discharge. This indicates that better use of the POC is
possible, and could reduce the amount of water stored
in the sewerage system. However, this is often a max-
imum of 0.35 mm due to the used thresholds in the
model (Fig. 2.3). In addition, the maximum POC is of-
ten reached before the overflow happened. Or, in some
cases, the rainfall depth (mm) in one hour is higher than
the maximum storage capacity, resulting in immediate
sewage overflow. In these cases RTC does not have any
effect.

The 1-hour event of 30-05-2016 ending at 15:50
UTC resulted in a sewage overflow for all sub-locations.

Prior to the event there was already some rainfall. Con-
sequently, the POC was at its maximum and part of
the storage capacity of the sewerage system was already
used. The POC started working and reached its maxi-
mum 9 hours prior to the specific event, indicating that
for this specific event it was not possible to prevent or
reduce the sewer overflow.

The 24-hour event of 31-05-2016 ending at 00:00
UTC, resulted also in a sewage overflow for all locations.
However, prior to the event there was no rainfall, result-
ing in initial conditions of 0 for both POC and storage.
During the event itself much rainfall fell which caused
the sewage overflow. For some locations the rainfall
depth that fell during 1 hour was higher than the maxi-
mum storage capacity, resulting immediately in a sewage
overflow. Consequently, RTC could not have prevented
an overflow. For HHC1 a better use of the POC could
have prevented the sewage overflow. The POC could
have been 0.7 mm h−1 instead of 0.35 mm h−1, 10
hours before the overflow occurred. Precipitation now-
casts as input of the model did not result in any fore-
casted overflow, but could still be helpful in pumping the
water away on time, as the rainfall nowcasts forecasted
some rainfall.

The 24-hour event of 2016-06-02 ending at 03:00
UTC resulted in a sewage overflow at 19:00, 20:00 and
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Table 4.2: The initial conditions (pump capacity (POC) and storage (S) [mm]) per event and sewerage sub-location
for events with a duration of 1 hour. No information indicates that there was no overflow for that specific event.
Red numbers indicate that the maximum storage is reached prior to the event.

Event (1hour)

End [UTC] POC S POC S POC S POC S POC S POC S POC S POC S

Autumn 12-09-2008, 10:40 0 0 0 0 0 0 0 0

07-10-2009, 18:30 0.7 3.31 0.7 2.38 0.7 2.38 0.7 3.33 0.7 3.33

22-10-2013, 20:40 0 0 0 0 0 0 0 0

15-09-2016, 21:25

Spring 15-05-2008, 19:00 0.35 0.09 0.35 0.09 0 0 0 0 0.35 0.2 0.35 0.2

30-05-2016, 15:50 0.7 14.86 0.7 12.25 0.7 9.94 0.7 7.14 0.7 7.77 0.7 6.43 0.7 8.76 0.7 7.69

10-04-2018, 21:50 0.35 0.94 0.35 1.62 0.35 1.62 0.35 0.37 0.35 0.37 0.35 0.38 0.35 0.38

30-04-2018, 00:15 0.7 9.77 0.7 8.94 0.7 7.8 0.7 7.77 0.7 6.43 0.7 8.92 0.7 7.85

Summer 12-07-2010, 09:50 0 0 0 0 0 0 0 0 0 0 0 0

14-07-2010, 16:50 0 0 0 0 0 0 0 0 0 0 0 0

27-07-2013, 09:40

30-08-2017, 17:55 0 0 0 0 0 0 0 0

Winter 05-02-2008, 23:45 0 0 0 0 0.35 0.14 0.35 0.14

10-12-2009, 03:10 0.35 1.36 0.35 1.36 0.35 1.68

03-01-2012, 16:55 0 0

08-12-2018, 19:50 0 0 0 0 0 0 0 0

LLK15 LLK16HHC1 HHC2 HHH8 HHH9 LBK8 LBK11

01:00 UTC (Fig. 4.14). The storage was 0 at 16:00.
Only a better use of the POC at 17:00 could have re-
duced the sewer overflow with 152.36 m3 (0.35 (POC) x
43.53 (service area, ha) x 10 = 350 m3) for HHH9. How-
ever, this is two hours prior to the first overflow (19:00).
RM-DR predicted an overflow at 18:00 and 19:00 UTC
for issue times of 15 and 30 minutes. If RTC is solely
based on a forecasted overflow, than an early warning
signal could have been sent out due to the forecasted
overflow at 18:00. Consequently, the gain in anticipation
time here could have been 90 min (issue time of 30 min
prior to the event and forecasting time of 60 min for the
model output). PS-D did not predict any overflow at all
and the POC is not even close to the reference POC,
and would not been useful in this case. On the other
hand, PS-D and RM-DR both underestimated the rain-
fall around 08:00 UTC, resulting in a POC of 0, while for
the reference run the POC was 0.7. However, this could
be adjusted by real-time measurements of the storage.

For the 24-hour event of 24-06-2016 ending at
06:00 UTC, the storage prior to the event was 0. Still
the event resulted in a sewage overflow. During the
event itself much rain fell (e.g. 18.27 mm in one hour).
Consequently, the sewage overflow could not have been
prevented, only reduced. One hour prior to the sewage
overflow the POC could have been 0.7 instead of 0.35.
This would have reduced the overflow with 14.21 m3

(0.35 (POC) x 4.06 (service area, ha) x 10 = 14.21 m3)
for LBK11. In Fig. 4.15 the event is shown with the

corresponding overflow and POC. An overflow occurred
at 20:00, 21:00 and 22:00 UTC. PS-D was not able to
predict the first overflow at the right moment. The first
predicted overflow by PS-D was at 21:00 for the issue
time of 15 min. For earlier issue times, the overflow was
predicted later. Consequently, PS-D does not result in
a gain in anticipation time. RM-DR was able to pre-
dict the overflow at the right moment for issue times
of 15 and 30 min. For longer issue times, RM-DR was
not able to predict the overflow at the right moment in
time. RM-DR results in a gain in anticipation time of
90 min. From the red bar, it can be seen that RM-DR
overestimates the precipitation more often, resulting in
higher volumes of overflow or wrong warning signals.

Figure 4.10 already indicated that events in summer
result in a HR of zero for events of 1 hour, while events
in spring result in a much higher HR. For that reason
the event of 10-04-2018 ending at 21:50 UTC was also
investigated for LBK11 (Fig. 4.16) to see what the gain
in anticipation time is when using radar rainfall nowcast-
ing. An overflow occurred at 22:00. Before the overflow
there was already storage present in the system. The
overflow was simulated by both RM-DR and PS-D for
all issue times up to 60 min. The forecasted POC is also
in perfect agreement with the reference POC. The gain
in anticipation time is at least 120 min. Consequently,
the sewage overflow volume could have been reduced
with at least 14.21 m3 (0.35 (POC) x 4.06 (service area,
ha) x 10 = 14.21 m3). Although for this specific event
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Figure 4.14: The 24-hour event of 02-06-2016 ending at 03:00 UTC, lines showing the POC based on the reference
run, RM-DR and PS-D for the location HHH9. New nowcasts are issued for every hour that has passed (thus for
03:00, 04:00, 05:00 and so on, for issue times of 15, 30, 45, 60 min prior to the new hour). The vertical dashed bars
show the sewage overflow [mm] that occurred. Grey horizontal line indicates the maximum POC. Grey vertical lines
indicate the start and end of the specific event.

the forecasts are in perfect agreement with the reference,
there is a substantial amount of variation between the
events (e.g. seen in Fig. 4.12).
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Figure 4.15: The 24-hour event of 24-06-2016 ending at 06:00 UTC, lines showing the POC based on the reference
run, RM-DR and PS-D for the location LBK11. New nowcasts are issued for every hour that has passed (thus for
03:00, 04:00, 05:00 and so on, for issue times of 15, 30, 45, 60 min prior to the new hour). The vertical dashed bars
show the sewage overflow [mm] that occurred. Grey horizontal line indicates the maximum POC. Grey vertical lines
indicate the start and end of the specific event.
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Figure 4.16: The 1-hour event of 10-04-2018 ending at 21:50 UTC, lines showing the POC based on the reference
run, RM-DR and PS-D for the location LBK11. Different issue times are plotted (15, 30, 45 and 60 min prior to the
start of the event, thus nowcasts are issued at 20:40, 20:25, 20:10 and 19:55 respectively). The vertical dashed bars
show the sewage overflow [mm] that occurred. Grey horizontal line indicates the maximum POC. Grey vertical lines
indicate the start and end of the specific event.





| 29

5 | Discussion

In this chapter, the methods that resulted in uncertainty
in the output of the nowcasts and hydrological model
are discussed. Next, the most important results are dis-
cussed and compared with other research. In addition,
the limitations of this research are indicated. Lastly, the
performance of the forecasts is compared with the per-
formance of the forecasts as the input for the sewage
overflow model.

5.1 Events

In this research, the events were based on an existing
nowcast database containing heavy precipitation events.
Therefore, this study does not give any insight about
wrong warning signals made by the radar nowcasts,
which could result in unnecessary discharging of water.
However, in the case of sewerage systems, discharging
of water is only possible if there is water available in
the system. Consequently, wrong warning signals do not
always have an impact on the sewerage systems. Only
when sewage water is present, wrong warning signals af-
fect the optimization of the water treatment process.
Additionally, wrong warning signals can compromise the
credibility of the forecasts. It is more likely that RM-DR
will cause some wrong warning signals, as results showed
that the false alarm rate is higher for RM-DR than PS-D.

Furthermore, the existing nowcast database did not
contain enough events that could be used for the com-
parison with HARMONIE. Only overlapping events with
HARMONIE were used for this analysis. The events
used in this part were not selected on rainfall charac-
teristics. In addition, the events did not always contain
much precipitation. Consequently, no large statistical
analysis could be done.

5.2 Radar rainfall nowcasts

5.2.1 Methodology

The radar rainfall nowcasts in this study were compared
with gauge-adjusted radar data (reference data), which
is a very accurate radar product from the KNMI. How-
ever, the radar rainfall nowcasts are made by extrapo-
lating operational available unadjusted radar data. This
radar data contains significant biases, with a tendency
of underestimation, which influences the use of those

nowcast products (Imhoff et al., 2021). To reduce the
bias, the used nowcasts in this study were multiplied
with a correction factor from Imhoff et al. (2021). Con-
sequently, verifying the radar nowcasts with the refer-
ence data will always lead to a bias, as both products
use different correction factors, i.e. comparing the initial
precipitation conditions (t=0) would already result in a
deviation.

5.2.2 Results

The used metrics in this study show different results
in skill for the radar nowcasts, indicating the strengths
of the nowcasts. Although Pearson’s correlation and
RMSE indicate that PS-D is more skilful than RM-DR,
the bias indicated that RM-DR underestimates less (for
lead times up to 30 min). In addition, RM-DR is bet-
ter in predicting higher intensity rainfalls for lead times
up to 30 min (See Fig. 4.5, with the used threshold of
10 mm h−1). PS-D often predicts too much dissipation,
losing high-intensity rainfall centres. As a result, RM-
DR nowcasts perform better in predicting higher rain-
fall intensities, and thus a higher HR for larger thresh-
olds. However, RM-DR mislocates the rainfall fields of-
ten, especially for longer lead times (See Fig. 4.2a an
Appendix Figs. A.3 and A.4 for comparison of the radar
images of the reference en nowcasts). The mislocation of
rainfall fields is more important for smaller catchments,
i.e. in this case urban areas. Mislocation can result in
lower Pearson correlation coefficients. Even though PS-
D leads to more dissipation, it ensures that it has the
same statistical properties as the latest observation.

From Figs. 4.4a and 4.4b it became clear that there
is much spatial variation in the correlation of the radar
nowcasts. It is expected that spatial variation is caused
by the movement of an event and the location of the
core of the specific event (Appendix Figs. A.3 and A.4),
as intensity dynamics are the most difficult to forecast
(Ayzel, 2021). Especially growth and dissipation pro-
cesses are hard to forecast, as those are not or only par-
tially accounted for.

It should be mentioned that the used Pysteps prod-
uct in this study (PS-D) is not the most recent one.
Already much improvement is done, in which improved
products, e.g. individual ensemble members from Pys-
teps probabilistic (PS-P), result in less dissipation and
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expecting to have a better overall performance. The
study from Imhoff et al. (2020) already indicated that
PS-P has a higher performance than PS-D.

5.2.3 Comparison with other studies

Results showed that the accuracy of the nowcasts de-
creases with lead time. In addition, results indicated
that the nowcasts are less able to predict higher rainfall
intensities. This was also found by Liguori et al. (2012)
and Codo and Rico-Ramirez (2018). The spatial cov-
erage of the radar can influence the nowcasts in such a
manner that with longer lead times the underestimation
increases. Golding (1998) indicated already that growth
and decay of the precipitation processes are not taken
into account, only the initial precipitation state. Conse-
quently, rainfall that was measured just outside of the
radar domain will not be accounted for with increasing
lead times.

This study shows that PS-D has the highest max-
imum skilful lead time for 1-hour and 24-hour duration
events with lead times of 37 min and 108 min, respec-
tively. These results show similarities with earlier re-
search from Imhoff et al. (2020). This same paper also
showed that forecasting winter events result in more skill
than summer events, which is in line with the findings
of this research. Additionally, these results indicate that
stratiform events are better forecasted than convective
events, which was also found by Liguori et al. (2012);
Foresti et al. (2016).

5.3 HARMONIE

5.3.1 Methodology

The precipitation events used for this part are solely
based on the issue times and lead times which were
also available for the radar nowcasts. Hence, the se-
lection of events is not based on the most extreme ones.
In addition, per lead time only 9 forecasts were com-
pared. Consequently, it turned out that the results from
Fig. 4.7 are not significant. In order to draw more sta-
tistical meaningful conclusions, a study containing more
rainfall events should take place.

5.3.2 Results

HARMONIE data was compared with radar nowcasts
made by RM-DR and PS-D. The radar nowcasts have
lead times up to 6 hours. To make the most fair

Figure 5.1: Pearson’s correlation, indicated by the yellow
line, calculated over the catchment averaged rainfall of
Helmond per lead time, averaged over 9 events. Pear-
son’s correlation is calculated over HARMONIE. The
grey line is the threshold (1/e), indicating the minimum
correlation for a nowcast to be skilful. The dotted grey
line indicates the significance level of 0.05, the squares
show the p-value per forecast per lead time.

comparison, the same lead times for HARMONIE were
used. However, for operational water management
HARMONIE cannot be used for lead times up to 3 hours
because it takes some time (around 3 hours) to run the
model. Consequently, the user will obtain HARMONIE
a few hours after the forecast is issued.

Another large disadvantage of HARMONIE is that
it gives hourly volumes of rainfall instead of every 5 min
for PS-D and RM-DR. Within those 6 hours, the at-
mospheric conditions can change significantly, especially
during summers, when more convective events take
place.

Results indicated that precipitation forecasts made
by HARMONIE were not skilful for lead times up to
3 hours. This was also seen in the comparison of the
sewerage overflow model output. Pearson’s correlation
coefficients indicated that for lead times longer than 3
hours HARMONIE became skilful. However, the low HR
indicated that HARMONIE is not skilful in predicting the
right amount of precipitation, even for low thresholds.
Earlier research also stated that NWP models are not
useful for short term predictions up to 6 hours (Lin et al.,
2005). For that reason the same events are investigated,
but with forecasts that are issued 6 hours earlier. Fig-
ure 5.1 contains Pearson’s correlation coefficient calcu-
lated for HARMONIE, with lead times varying between
7 and 12 hours. However, results show that lead times
of 7 till 11 hours are not skilled. The results should be
questioned as the p-value is higher than the significance
level. It is recommended that further research should
use more events and also taking into account different
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type of events.
Radar rainfall nowcasts are more skilled in predict-

ing the rainfall for lead times up to 2 hours than HAR-
MONIE. Consequently, using nowcasting compared to
HARMONIE, results in a gain of 2 hours. Comparison of
the output of the sewage overflow model indicated that
HARMONIE is not skilled in predicting an overflow for
lead times of 1 hour, while PS-D and RM-DR are. This
results in a gain of 1 hour compared to the benchmark
HARMONIE. However, note that even though PS-D and
RM-DR outperform HARMONIE for smaller lead times,
both still result in an underestimation or overestimation
for PS-D and RM-DR respectively (based on the results
in Fig. 4.13).

5.4 Climate change

Earlier research already stated that climate change pro-
jections expect more frequent and intense rainfall (Wes-
tra et al., 2014). A more recent report about the cli-
mate scenarios for the Netherlands, made by the KNMI
(KNMI, 2021), confirms these climate projections. The
climate scenarios in this report project that the extreme
precipitation events in summer will become more severe.
Between 1951 and 2020 an increase of around 10% in
extreme precipitation events is observed for the inland
of the Netherlands. In addition, the intensity per hour
is increased by approximately 10-15% over the last 30
years for events with a recurrence time of 10 years.

This research is based on extreme precipitation
events between 2008 and 2018. However, with the ob-
served increasing trend in extreme precipitation events,
it should be questioned how valid and accurate the re-
sults of this research are for future precipitation events.
Especially, as the results of this study show that both
radar nowcasts are less skilful in predicting higher rain-
fall intensities (Fig. 4.5).

5.5 Hydrological forecast

5.5.1 Sewage overflow model

The model used in this research has some limitations.
It is a simple conceptual model that only uses precipi-
tation as input. The input is solely based on the tem-
poral and spatial resolution of the radar rainfall now-
casts. However, urban areas are characterized by a high
spatial variability in land use, which influences the frac-
tion of precipitation that actually reaches the system.

The variability in the degree of impervious areas, slope
and soil properties also affects the hydrological response
(Singh, 1997). In addition, previous research showed
that there is a correlation between the peak flow and
the level of urbanization (Isidoro et al., 2012). The
same study indicated that wind-driven rain in combina-
tion with increased urbanization also affects the hydro-
logical response, such as a higher peak discharge. For
those reasons, and also because measurement data were
not available, the model output was not compared with
measurements, in order to reduce uncertainties caused
by the model itself. In this way the focus will only be on
the uncertainties of the radar nowcasts compared to the
reference. But for future research it is recommended to
compare it with overflow measurements, to get a more
complete picture of the situation and find out which un-
certainties are caused by the model.

A small difference in forecasted and observed pre-
cipitation can result in a large difference in sewage over-
flow due to the used thresholds in the model. One of
the thresholds is the amount of precipitation that fell the
past two hours, prior to the last hour. When the precip-
itation is underestimated, this can result, on top of the
precipitation difference itself, in a maximum of 0.9 mm
difference in storage (See Fig. 2.3 for a small part of
the model with the threshold). Another threshold is the
storage, which leads to an overflow if the maximum ca-
pacity is reached. Consequently, underestimating the
precipitation can lead to a substantial difference in the
occurrence and volume of an overflow between the loca-
tions (see Fig. 4.11).

5.5.2 Results

Results showed that there is much variation between the
locations (Fig. 4.10 and Fig. 4.11). It is expected that
the sub-areas with larger maximum storage capacities
result in lower skill for the nowcast because it is more
likely that only the intense rainfall intensities result in an
overflow in those areas, and those are the most difficult
the forecast.

This study showed that real-time control (RTC),
based on forecasted sewage overflows, in order to pre-
vent sewage overflows, has limited use for the selected
sewerage areas in this study. However, this is mainly be-
cause there can not be much gained in terms of reducing
or preventing the amount of sewage overflow. Because
either the rainfall depth is higher than the maximum
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storage capacity, or the POC is already at its maximum.
Due to the used thresholds in the model (see Fig. 2.3),
the POC never immediately starts at its maximum (0.7)
in the model. Alternatively, the model user can change
the threshold of the model in such way that it is not only
based on the precipitation of the last 2 hours, prior to
the event, but also use the rainfall forecast in the model.
If a significant amount of rainfall is forecasted in the next
hour, the POC can already start earlier on its maximum.
RM-DR would be more skilful for this as RM-DR results
in less underestimation than PS-D, especially for events
with a duration of 24 hours. However, note that the
calculated bias is based on a larger area than the input
of the sewer overflow model is.

If RTC is based on the forecasted rainfall that en-
ters the system, thus not only on forecasted sewage over-
flows, and the user does not mind that all water will be
immediately pumped away, PS-D and RM-DR would be
skilled for longer issue times than indicated in the results
described in section 4.5. The maximum skilful issue time
depends on the chosen threshold of the user.

Results indicated that using radar rainfall nowcast-
ing for RTC in order to prevent the overflow in May and
June 2016 was not successful. Only for a few events a
small amount of sewage overflow (0.35 mm) could have
been reduced. Using RM-DR would have resulted in an
anticipation time of 90 min. However, RM-DR was not
always able to predict the correct amount of precipita-
tion. which resulted in a lower POC than the reference.
In this research it was not investigated what the effect
is of too low estimations of the POC on the storage.
However, real-time measurements in the sewerage sys-
tem can adjust the POC to the actual POC that is nec-
essary. So it is expected that underestimating the POC
will not have a large impact. Real-time control is not yet
implemented in Laarbeek and Helmond, however there
is a future vision from both municipalities to implement
RTC (Arcadis, 2018a,b).

There is also a possibility that hydrological fore-
casting can be used for other things. Namely, the
supply of sewage water varies a lot during the day,
while supplying water evenly to the water treatment
plants improves the water treatment process. Knowing
in advance if a sewage overflow will happen or not,
could be beneficial for using the POC optimally and
consequently reducing costs. The municipalities of
Laarbeek, ’s-Hertogenbosch and Heusden already in-
vestigated the possibilities in steering the sewage water
(https://www.winnovatie.nl/innovatie/optimaliseren-

Table 5.1: Bias of the operational radar product, calcu-
lated over the total amount of sewage overflow during
the event duration (1 hours or 24 hours), averaged over
all events. Bias is shown for all used sub-areas.

Location

1 hours 24 hours

HHC1 0.80 0.59

HHC2 0.58 0.57

HHH8 0.73 0.97

HHH9 0.52 0.76

LLK15 0.60 0.75

LLK16 0.64 0.72

LBK8 0.68 0.84

LBK11 0.69 0.92

Bias

aanvoer-afvalwater-naar-de-zuivering-op-droge-dagen).
However, Fig. 4.10 already indicated that the HR is
very low for most seasons. Consequently, using radar
nowcasts will lead to lower POC than necessary, which
may result in a larger sewer overflow. The results of
this study are only based on heavy precipitation events.
Further studies should take all kind of precipitation
events into account to investigate what the possibilities
is for steering the sewage water.

5.5.3 Operational radar product

In order to distinguish the effect of precipitation under-
estimation in the radar product and the effect of the
nowcasts itself, unadjusted radar data was used as input
for the sewage overflow model. However, first, the un-
adjusted radar product was corrected with the same bias
reduction factor (CARROTS from Imhoff et al. (2021))
that was used for the nowcasts. The HR, FA, and bias
were calculated by comparing the model output gener-
ated by the unadjusted radar data with the reference
run.

In Fig. 5.2 the HR and FA are shown per season for
the locations LBK11 and LLK15. Results indicate that
there is a difference between the seasons, in which events
in spring result in the highest HR. For both locations and
almost all seasons the HR is below 1, indicating that
the underestimation of the radar product is too severe,
consequently no overflow is measured. The same figure
also indicates that in some cases the bias reduction factor
is too high, resulting in a FA. Winter and autumn also
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Figure 5.2: Hit rate (HR) and False alarm rate (FA) per season for all events over the sewerage sub-area LBK11
and LLK15, averaged over all events for 1-hour duration event. The shown HR and FA are based on the operational
radar product.

resulted in false alarms in Fig. 4.10.
Results indicate that in the unadjusted radar data,

after correcting with a bias reduction factor, still results
in a bias for all sewerage sub-areas and both event du-
rations (Table 5.1). For most sub-areas the events with
a duration of 1 hour have a larger underestimation than
the events with a duration of 24 hours. Comparing Ta-
bles 5.1 and 4.1 makes it clear that still part of the
underestimation results from the nowcasts itself.

5.5.4 Comparison with other studies

Previous research showed that using rainfall information
has a positive effect on reducing the combined sewer
overflow. However, the effect of RTC is limited by oper-
ational constraints such as the treatment capacity of the
wastewater treatment plant (Rouault et al., 2008). An-
other research indicated that forecast horizons exceeding
90 minutes result in uncertainties that become unaccept-
able with regard to RTC in the sewer system (Achleitner
et al., 2009). Or in the case of Codo and Rico-Ramirez
(2018), lead times longer than 1 hour do not result in
accurate forecasts. These findings seem more promising
than the overall results from this research.

However, note that results from other research are

not immediately transferable as different hydrological
models are used, with different thresholds, which has
an effect on the results.

5.6 Comparison rainfall forecasts and
hydrological forecasts

This section compares the results from the performance
of the nowcasts and how they perform as an input for a
hydrological model.

The bias was calculated for the radar nowcasts (Ta-
ble 4.1) and for the total amount of sewage overflow that
took place during an event (Fig. 4.11). Those results
were compared in order to see if there are any relations
between them. There is more underestimation in the
model output than in the radar nowcasts itself. Table 4.1
and Fig. 4.11 both showed that in general RM-DR scores
better (lower underestimation) than PS-D over shorter
lead times for 1-hour events. For longer lead times PS-D
becomes more skilful. However, there is some variability
between the sub-systems if RM-DR or PS-D is more skil-
ful in predicting the right volume (Fig. 4.11). The bias
calculated over the total sewage overflow volume varies
between the sub-areas. Consequently, no clear relation
between the bias from Table 4.1 and Fig. 4.11 can be
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seen. Additionally, Table 4.1 shows the bias for different
lead times, while the bias in Fig. 4.11 is calculated over
different issue times, making it more difficult to see any
relation.

Note that the bias for the rainfall forecasts are cal-
culated over larger areas (containing 60 grid cells) than
the input of the hydrological forecasts (containing 1 to
3 grid cells). This can influence the bias, as the rainfall
forecasts are averaged over a larger area and outliers will
have a smaller effect on the results. Therefore, it is rec-
ommended for future studies to analyse the precipitation
in the sub-areas.

Results showed that there is a clear seasonal depen-
dency on the performance of the radar rainfall nowcasts
(Fig. 4.3), in which events during winter resulted in the
lowest RMSE. However, the output from the hydrologi-
cal analysis indicated that spring resulted in the highest
HR over all issue times (Figs. 4.10a and 4.10b). How-
ever, those are two different metrics. RMSE measures
the differences between the predicted values and the ob-
served values, while the HR uses a threshold and is more
sensitive to higher rainfall intensities.

According to this research, the maximum skilful
lead time for PS-D and RM-DR was respectively 37 and
19 min for events of 1-hour duration, and 108 and 56 min
for events of 24-hour duration a (Fig. 4.1). However, the
hydrological analysis in this research showed different re-
sults. The hydrological analysis indicated that RM-DR is
more skilled in predicting the overflow volume than PS-
D. Additionally, results from the specific events in May
and June 2016 indicated more promising results for RM-
DR than for PS-D. Achleitner et al. (2009) also indicated
that uncertainties in the forecasts does not immediately
lead to the same uncertainties in flow dynamics.
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6 | Conclusion

The main goal was to find the added value of radar
rainfall nowcasting for real-time control (RTC) in sewer-
age systems in the urban areas Helmond and Laarbeek.
In this study, existent nowcasts made with Pysteps De-
terministic (PS-D) or Rainymotion DenseRotation (RM-
DR) were used as an input for a simple urban hydro-
logical model. In total 32 extreme precipitation events
were analysed to find the performance of the radar now-
casts in: forecasting rainfall and as an input for a simple
sewage overflow model (made by the water board Aa
en Maas). The nowcasts were also compared to HAR-
MONIE, the operational numerical weather prediction
model in the Netherlands.

In general, the longer the rainfall is forecasted prior
to the event, the lower the skill becomes, and the higher
the underestimation. The maximum skilful lead time for
1-hour duration events is around 19 min or 37 min and
for 24-hour durations events it is around 56 min and
108 min for respectively RM-DR and PS-D, while HAR-
MONIE was not skilled for lead times up to 3 hours.
HARMONIE results in a lower HR than the radar now-
casts, indicating that HARMONIE results in more under-
estimation. RM-DR is better in predicting high-intensity
rainfall for lead times up to 30 min as PS-D results in
more dissipation. At the same time, RM-DR often mis-
locates the core of the rainfall. A clear difference be-
tween more persistent stratiform and convective events
was observed, in which stratiform events have a maxi-
mum skilful lead time that is almost 3 times higher. Ad-
ditionally, events in winter have a higher predictability as
they resulted in a lower RMSE than events in summer.

Verification of the hydrological model output
showed that for longer issue times the forecast skill de-
creases. PS-D results in more underestimation than RM-
DR. Part of the underestimation is already present in the
operational radar data. The difference in hit rate (HR)
between PS-D and RM-DR is small. Only for the events
in winter it is clear that PS-D outperforms RM-DR. Re-
sults show that events with a duration of 1 hour re-
sult in more underestimation of the total sewer volume
than 24-hour events. This is because 1-hour duration
events consist often of convective showers having small
scale processes, leading to more variation in the fore-
casts. Events in spring resulted in the highest HR, and
summer in the lowest.

The specific events in June and May 2016 indi-

cated that it was possible to reduce the amount of sewer
overflow volume for some events. RM-DR was able to
forecast the sewer overflow to some extent, resulting in
a gain in anticipation time varying between 75-90 min
compared to the benchmark HARMONIE or not using
a forecast. The underestimation in precipitation by PS-
D is often too severe, resulting in no overflow and in a
gain in anticipation time of less than 75 min. However,
looking at an event in 2018 showed that both PS-D and
RM-DR were able to perfectly forecast the overflow and
POC, resulting in a gain in anticipation time of at least
120 min. Together with the results from the used met-
rics and the restrictions of the used sewerage systems,
indicate that the performance of RM-DR and PS-D is
highly variable in predicting an overflow, and for that
reason not yet reliable enough to use for RTC.

Interpretation of the performance of the nowcasts
as input for the sewage overflow model highly depends
on the goal of the user. If the user does not mind
that all water will immediately be pumped away, RTC
can be based on forecasted rainfall that enters the sys-
tem instead of forecasting a sewage overflow. In this
case, PS-D and RM-DR would be skilled for longer issue
times than mentioned before. However, the performance
of the radar nowcasts depends on the chosen threshold
(amount of precipitation [mm]) of the user.

The hydrological model output indicated that for
lead times up to 3 hours HARMONIE only resulted in
misses, while PS-D and RM-DR were able to forecast
the sewer overflow for lead times of 1 hour. However,
there is still much bias present in the nowcasts. For that
reason, it is recommended to further improve the radar
rainfall nowcasts to reduce these uncertainties. Further
research should also focus on blending radar nowcasts
with numerical weather prediction models, in order to
improve the forecast skill.
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A | Additional figures

A.1 Pearson’s correlation Laarbeek

−0.25

0.00

0.25

0.50

0.75

1.00

1/e

P
ea

rs
on

's
 c

or
re

la
tio

n 
[−

]

1h

−0.25

0.00

0.25

0.50

0.75

1.00

1/e

0 15 30 45 60 75 90 105 120
Lead time (min)

P
ea

rs
on

's
 c

or
re

la
tio

n 
[−

] 24h

Pearson's correlation Laarbeek

PS−D
RM−DR

Figure A.1: Pearson’s correlation calculated over the catchment averaged rainfall over Laarbeek per lead time,
averaged over all events for 1-hour and 24-hour duration. Pearson’s correlation is calculated over both algorithms.
The grey line is the threshold (1/e), indicating the minimum correlation for a nowcast to be skilful. The dots indicate
the variability per event.



42 | APPENDIX A. ADDITIONAL FIGURES

A.2 RMSE 1h Laarbeek

Figure A.2: RMSE per season for all events with a duration of 1 hour over the catchment averaged rainfall of
Laarbeek, averaged over lead times of 5-30 min, 35-60 min, 65-90 min and 95-120 min.
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A.3 Radar images

Figure A.3: Radar image of the event of 2017-08-30, ending on 17:55. The reference radar, PS-D and RM-DR
nowcasts for the Aa catchment are shown. Rainfall intensity (mm h−1) based on 5-min accumulation is shown here.
White contour lines indicate the study area (see also Fig. 2.1)
.



44 | APPENDIX A. ADDITIONAL FIGURES

Figure A.4: Radar image of the event of 2018-12-08 ending on 19:50. The reference radar, PS-D and RM-DR
nowcasts for the Aa catchment are shown. Rainfall intensity (mm h−1) based on 5-min accumulation is shown here.
White contour lines indicate the study area (see also Fig. 2.1)
.
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A.4 Contingency tables

Table A.1: Amount of times that the threshold of 5 and 10 mm h−1 was reached by the rain gauge-adjusted radar
data, calculated for every grid cell for Helmond and Laarbeek per event. Both areas contain a maximum of 60 grid
cells.

End [UTC] 5 mm/h 10 mm/h 5 mm/h 10 mm/h

12-09-2008, 10:40 60 50 60 25

07-10-2009, 18:30 60 3 60 7

22-10-2013, 20:40 60 13 60 9

15-09-2016, 21:25 47 10 31 0

15-05-2008, 19:00 47 39 55 53

30-05-2016, 15:50 56 21 60 60

10-04-2018, 21:50 60 50 60 26

30-04-2018, 00:15 60 17 60 30

12-07-2010, 09:50 60 52 60 55

14-07-2010, 16:50 60 45 60 36

27-07-2013, 09:40 60 0 60 10

30-08-2017, 17:55 60 12 60 30

05-02-2008, 23:45 60 4 60 43

10-12-2009, 03:10 60 0 60 0

03-01-2012, 16:55 60 16 43 0

08-12-2018, 19:50 53 0 60 27

Helmond Laarbeek

Figure A.5: Hit rate (HR) and false alarm rate (FA) calculated over the urban area of Laarbeek. The HR and FA are
calculated over the accumulated rainfall in 1 hour, by using a threshold of 5 mm h−1 or 10 mm h−1 (See Table A.1
for number of times that these thresholds were reached by the reference rainfall). All events were taken together,
and averaged over lead times of 5-30 min, 35-60 min, 65-90 min and 95-120 min. Note the difference in scale on
y-axis between the HR and FA.
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Table A.2: Amount of times that the threshold of 0.5 and 1 mm h−1 was reached by the rain gauge-adjusted radar
data, calculated for every grid cell for Helmond per event for the analysis with HARMONIE. Both areas contain a
maximum of 60 grid cells.

Issue time [UTC]

0.5 mm/h 1 mm/h 0.5 mm/h 1 mm/h 0.5 mm/h 1 mm/h 0.5 mm/h 1 mm/h 0.5 mm/h 1 mm/h 0.5 mm/h 1 mm/h

2018-01-03 06:00 0 0 60 60 60 51 60 60 0 0 0 0

2018-04-11 00:00 0 0 60 60 60 60 60 60 60 60 40 40

2018-04-30 00:00 60 37 60 60 60 60 60 0 60 60 60 60

2018-04-30 06:00 60 60 40 5 60 40 0 0 34 0 53 40

2018-05-22 18:00 0 0 0 0 0 0 0 0 0 0 0 0

2018-05-23 00:00 0 0 60 60 60 60 60 51 18 0 13 4

2018-05-23 06:00 0 0 0 0 0 0 0 0 0 0 1 0

2018-05-23 12:00 7 0 0 0 0 0 0 0 0 0 0 0

2018-12-09 00:00 60 60 60 60 0 0 0 0 55 15 27 6

1 2 3 654

A.5 Model output

Table A.3: Sewerage sub-areas and the number of overflows that took place per lead time in a specific sub-area.
Calculated for lead times up to 6 hours.

Location code 1 2 3 4 5 6

HHC1

HHC2 1 1 1

HHH8 1 1 1 1

HHH9 1 1 1 1

LBK8 1 1 1 1 1

LBK11 1 1 1 1 2

LLK15 1 1 1 1 1

LLK16 1 1 1 1 1

Amount of overflows predicted by 

the reference run


