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Abstract
Accurate rainfall measurements are a critical component in many hydrological and agricultural applications. Tropical
regions often lack the infrastructure for measuring rainfall at high spatial and temporal resolutions.
Commercial Microwave Links (CML) provide opportunities for high-resolution rainfall measurements in tropical regions.
As their standalone applicability is limited by various sources of error and their distribution in space they should be
complemented with additional sources of rainfall measurements. For that purpose, this study uses rainfall estimations
from the Integrated Multi-satellitE Retrievals for GPM (IMERG) V06 Late Half Hourly. CML and IMERG-derived
rainfall estimations between September and December 2019 for Sri Lanka are combined through Kriging with External
Drift (KED). This study was the first one to attempt to merge CML and satellite data and found that KED is not
suitable. Using KED does not increase performance compared to IMERG or CML as standalone methods. Overall,
KED underestimates rainfall and contains more errors than IMERG and CML, due to the low correlation between
CML and IMERG and the strong variation over the domain. Validations using a gauge data set showed some seasonal,
but no spatial patterns. Future research should implement methods that rely less on assumptions such as Double
Kernel Density Smoothing or Geographically Weighted Regression Kriging. Additionally, improving understanding of
precipitation and landscape characteristics allows more effective tailoring of the merging method.
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1 | Introduction

1.1 Context and motivation

Accurate rainfall monitoring is required for applications
such as flood prediction and management, agricultural
modelling, and weather forecasting (Grum et al., 2005;
Brauer et al., 2016; Gaona et al., 2018; Chwala and5

Kunstmann, 2019; Overeem et al., 2021). Additionally,
precipitation data can be used to assess the effects of cli-
mate change (Skofronick-Jackson et al., 2018). Because
of its high variability in both time and space, rainfall is no-
toriously difficult to measure on large scales (Grum et al.,10

2005; Chwala and Kunstmann, 2019; Overeem et al.,
2021). Especially in developing countries with tropical
climates, rainfall estimation remains a hefty challenge
(Tapiador et al., 2021). The rainfall regimes in tropical
climates are characterised by high spatial and temporal15

variability (Wong and Jim, 2014). However, developing
regions usually lack measuring networks that can accu-
rately capture the diversity in precipitation intensity and
location (Gosset et al., 2016).

Various methods to estimate rainfall over large areas20

exist, such as rain gauges, satellites, weather radar and
commercial microwave links (CML), each with different
benefits and drawbacks. Rain gauges, for example, are
able to directly measure rain but are negatively affected
by wind, evaporation, and snow and usually have limited25

spatial coverage (Brauer et al., 2016). Regional rainfall
estimates interpolated using sparse gauge networks are
shown to contain large errors due to the limited sampling
density (Shao et al., 2021).

Weather radars can continuously measure precipita-30

tion with a radius of 200 kilometres but are costly to
install and maintain and often not present in econom-
ically underdeveloped regions. Radar estimations are
also affected by errors such as ground clutter and beam
blockage (Todini and Mazzetti, 2006).35

Satellites provide global estimates, often being the
only source of precipitation estimation in developing re-
gions. However, satellite estimations of precipitation are
known to be afflicted by errors and bias and can have very
low accuracy. The quality of the estimations is mainly40

impacted by instrumental, algorithmic and sampling er-
rors (Zhao et al., 2022). Additionally, most satellite
products have coarse resolutions, both on spatial and
temporal scales (Gaona et al., 2018). This severely limits
the stand-alone applicability of satellites for precipitation45

measurements (Overeem et al., 2016a).
CML are recognized as a valuable opportunistic source

of precipitation estimations (e.g. Leijnse et al. (2007);
Overeem et al. (2016b); Gaona et al. (2018); Christofi-
lakis et al. (2020); Graf et al. (2020)). The frequency 50

of the emitted electromagnetic waves from telephone
towers is sensitive to attenuation by rainfall (figure 1.1).

Figure 1.1: Workings of CML. Adapted from Polz et al. (2021).
Karlsruhe Institute of Technology.

Records of the transmitted and received signal level
(RSL) allow the estimation of a path averaged rain rate
based on a power-law attenuation equation (equation
1.1), where A is the attenuation, R is the path averaged
rain rate and a and b are functions of the drop size dis-
tribution and signal frequency and polarisation (Zinevich
et al., 2008).

A = aRb (1.1)

The difference in RSL of the emitted and received mi-
crowave between wet and dry events allows for estimation
of path-averaged rainfall rates (Overeem et al., 2016b). 55

Overeem et al. (2013) found that around 90% of the
land area of the world is covered by telecommunication
networks, resulting in the low additional costs and global
applicability of this technique.

CML derived rainfall data also knows drawbacks. Sig- 60

nal strength is not only affected by precipitation, but
also by fog, dust, wet antenna attenuation, and reflection
of the beam by objects such as buildings (Gaona et al.,
2018; Overeem et al., 2021). The accuracy of the esti-
mation depends on the number of links present and the 65

density of radio towers strongly correlates with popula-
tion density. This results in CML estimations being most
accurate in and around urban areas, but generally much
less so in remote regions (Gaona et al., 2017; Chwala
and Kunstmann, 2019). As stated by David et al. (2021), 70

the associated sources of error and the unequal spatial
distribution means that CML should be supplemented
with other data sources, especially when used in remote
areas.
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Efforts to improve precipitation estimation worldwide75

are made through NASA’s and JAXA’s Global Precipita-
tion Mission (GPM). Their Multi-satellitE Retrievals for
GPM (IMERG) product offers a gridded global precipi-
tation data set that is available at 30 minute intervals.
While IMERG has been a big step towards tackling ac-80

curate precipitation measurements, the product does
contain significant bias and error. Anjum et al. (2019)
found that IMERG tends to underestimate low-intensity
events and fails to capture light rainfall. Subsequently,
multiple studies have found that IMERG fails to record85

high-intensity events, underestimating the total amount
of precipitation (Foelsche et al., 2017; Maranan et al.,
2020; Bogerd et al., 2021). However, validations of
IMERG in the West African forest zone and the Merapi
basin in Indonesia have shown promising results regard-90

ing IMERG’s performance in tropical climate regimes
(Maranan et al., 2020; Rahmawati et al., 2021). Addi-
tionally, Skofronick-Jackson et al. (2017) have confirmed
IMERG’s capability to capture monsoon dynamics in In-
dia. IMERG is thus a viable candidate to supplement95

CML in tropical regions. However, as mentioned by
Sunilkumar et al. (2019), evaluation results differ be-
tween regions and region-specific evaluation is advisable
prior to using IMERG precipitation estimates.

Merging multiple sources of measurements is a so-100

lidified manner to improve rainfall estimation (Liberman
et al., 2014; Trömel et al., 2014; Kumah et al., 2020; Shao
et al., 2021). Bianchi et al. (2013) have demonstrated
that rainfall estimations combining satellite, gauge, radar,
and CML derived measurements perform better than the105

individual methods. For example, Kumah et al. (2021)
used satellite data for Wet-Dry classification and esti-
mation of wet path length resulting in improved CML
accuracy. Most research on merging rainfall products is
conducted on merging gauges and radar, radar and CML,110

or satellites and gauges (e.g. Krajewski (1987); Sinclair
and Pegram (2005); Yuehong et al. (2008); Kim and Yoo
(2014); Park et al. (2017)). As radar and gauges are not
always available in tropical regions, the current research
will merge CML and satellites, which is, as far as the115

author is aware, the first attempt at doing so.
Merging can be done using a panoply of methods (Sa-

font et al., 2019). Some examples are a mean field bias
(MFB) adjustment (Cummings et al., 2009), a distance
weighted algorithm (Liberman et al., 2014), various types120

of Kriging (Haberlandt, 2007; Cantet, 2017; Eisele et al.,
2021), a Kalman filter (Trömel et al., 2014), Kernel den-
sity smoothing (Li and Shao, 2010; Long et al., 2016)
and by integrating some of the previously mentioned
methods (Shao et al., 2021). Simplistic methods such125

as using an MFB adjustment, Inverse Distance Weight-

ing and Nearest Neighbours usually fail to capture the
variability of the rainfall field (Haberlandt, 2007; Trömel
et al., 2014; Liberman et al., 2014). Approaches using
calculus of variation such as described by Bianchi et al. 130

(2013), are complex and difficult to implement for large
data sets.

In the existing literature, Kriging is reported as one
of the best methods for merging different sources of
rainfall measurements when using a sufficiently large 135

number of observations. Non-stationary types of Kriging
that combine a regression of the dependent variable, an
auxiliary variable, and the spatial autocorrelation between
the residuals such as Kriging with External Drift (KED)
show the most favourable performance compared to some 140

of the other methods mentioned above. When used
for large regions, these non-stationary Kriging methods
are able to capture the dynamic nature of rainfall and
produce lower errors and inaccuracies (Goudenhoofdt and
Delobbe, 2009; Sideris et al., 2014; Park et al., 2017). 145

Implementing a merged product in tropical regions can
significantly improve rainfall estimation. The current
research uses multiple sources of rainfall estimation to
create such a merged product, combining IMERG and
CML using KED. 150

1.2 Research questions

This research will study the potential of a merged IMERG-
CML based rainfall product. The input measurements
need to be evaluated on their performance to identify
sources of bias and error that can propagate into the 155

merged product. Initially, the performance of IMERG
in Sri Lanka should be evaluated. For the evaluation
of the performance of CML, the results from Overeem
et al. (2021) will be used, which examine the same area
and period as the current research. These evaluations 160

will be used to assess whether combining of CML and
IMERG leads to improved estimation compared to the
individual products. From this objective, the following
research questions are formulated.
1. How accurate are IMERG precipitation estimates 165

over Sri Lanka?

2. What is the potential of a merged product using
KED for estimating rainfall in Sri Lanka?

a) How does the performance of the merged prod-
uct compare to the rain gauge measurements 170

and CML and IMERG individually?

b) What are the most important precipitation
characteristics and spatial factors associated
with errors and biases in the merged product?
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1.3 Thesis contents175

This thesis is divided into five chapters. Chapter 2 ad-
dresses the data and methods used and describes the area
under evaluation. In this chapter the site characteristics
of the study area are discussed. Additionally, the studied
data sets, preprocessing steps and implemented methods180

are described. Subsequently, the chapter describes the
methods used. Chapter 3 describes the results of the
previously described methods. In chapter 4, the limita-
tions of the current research as well as suggestions for
future research are presented. The last chapter, chapter185

5, provides the conclusion of the research.
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2 | Materials and Methods

2.1 Field Site
The research area comprises Sri Lanka, an island na-
tion located in the Indian Ocean. The yearly average
temperature is 27° C and the country has a tropical190

monsoon climate. The Sri Lankan monsoon climate is
characterised by intense precipitation events, as stated
by Thambyahpillay (1954): "It never rains, it pours."

The precipitation pattern is subject to strong temporal
and spatial variation, with mean annual rainfall below195

900 mm in the southeast and northwest and above 5000
mm on the western slopes of the mountains in the south
(Overeem et al., 2021). Following the classification of
Karunaweera et al. (2014), the country is divided into
three climatic zones: wet, dry, and intermediate (figure200

2.1).

Figure 2.1: Climatic regions Sri Lanka. Adapted from Karunaweera
et al. (2014)

Rainfall characteristics such as intensity and drop
size distribution influence the accuracy of measurements,
understanding the different drivers of the Sri Lankan
weather patterns thus increases understanding of valida-205

tion results.
The period under review spans from 12 September

to 31 December 2019. This period captures the last
part of the southwest monsoon (SWM) -from May until
September-, the second inter-monsoon period (IMP) -210

between October and November-, and the first part of
the northeast monsoon (NEM), between December and
February (Thambyahpillay, 1954).

During the SWM the monsoon brings moisture from
the Indian Ocean and causes intense precipitation, up to215

2500 mm per month, on the southwest coast. Addition-
ally, heavy rains occur on the windward (southwestern)
side of the mountains, while there is very little rain on
the leeward (northeastern) side.

Within the IMP, rainfall most of Sri Lanka receives 220

400 mm of rain. In the same period, the southwestern
slopes are subject to rainfall sums of up to 1200 mm.
Furthermore, this period is characterized by strong winds,
thunderstorms, and high-intensity precipitation events.
These are influenced by the southward migration of the 225

Inter Tropical Convergence Zone over Sri Lanka, tropical
depressions, and cyclones.

During the NEM, the west coast receives relatively
little rain, while heavier precipitation occurs in the north-
eastern part. The windward slopes of the mountain range 230

experience rainfall up to 2500 mm (Marambe et al., 2015;
Overeem et al., 2021).

2.2 Data

Three sources of rainfall data are used: CML, satellite,
and gauge measurements. CML and satellite measure- 235

ments will be merged and the gauge data is used for
the validation of the merged product and IMERG. These
sources will be described in the following section.

CML derived rainfall measurements

Path averaged rainfall rates derived from the CMLs are 240

retrieved using the R package RAINLINK1. Using the
maximum and minimum signal level over a period of
15 minutes, the maximum and minimum RSL are deter-
mined which are converted to mean rainfall intensities.
To estimate rainfall rates, RAINLINK follows a five-step 245

process: 1. Wet-Dry classification, 2. reference level
calculation, 3. outlier filtering, 4. conversion to signal
attenuation, and 5. path averaged rainfall intensity calcu-
lation. These steps are shortly explained in the following
paragraph. 250

Firstly, to prevent rainfall overestimation during dry
periods, wet-dry classification using the nearby link ap-
proach is employed to separate wet and dry periods (step
1). If at least half of the links in the vicinity (i.e., within
10 km) are experiencing a decrease in RSL, the link for 255

that time step is classified as wet. Secondly, a Reference
Signal Level is computed (step 2) after which outliers

1The package can be found on GitHub
https://github.com/overeem11/RAINLINK
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Figure 2.2: Cml locations. Adapted from Overeem et al. (2021)

are removed based on a Received Power Threshold (step
3). Subsequently, the minimum and maximum received
powers are converted to attenuations using the reference260

signal level (step 4). Lastly, the path averaged rainfall
intensities are computed from these corrected and filtered
attenuations (step 5). For more details on RAINLINK,
consult Overeem et al. (2016a).

The minimum and maximum RSL used for produc-265

ing rainfall rates for Sri Lanka are provided by Dialog
Sri Lanka for 1326 link paths at 15-minute intervals
(Overeem et al., 2021). Although RAINLINKs parame-
ters such as the nearby link search radius, wet antenna
attenuation, and the outlier filter threshold are calibrated270

for the Netherlands, Overeem et al. (2021) found that
this does not severely impact RAINLINKs performance
for Sri Lanka. This is likely due to the smaller relative im-
portance of wet antenna attenuation and errors in dry-wet
classification as a result of the generally higher rainfall275

intensity in Sri Lanka. Additionally, Gaona et al. (2017)
found that differences in climatology do not strongly
affect the power-law relation (equation 1.1) used to re-
trieve rainfall rates. This renders RAINLINK useful and
effective for estimating rainfall in tropical regions.280

Satellite rainfall measurements

For the satellite measurements the GPM IMERG prod-
uct is used, of which the most current version is V06.
IMERG is a combination of observations from the GPM
Core Observatory satellite, the GPM constellation, and285

reanalysis data2. Gaps in the observations are filled using
morphing algorithms (consult Huffman et al. (2015b);
Tan et al. (2019); Huffman et al. (2015a) for a more
in-depth description of IMERG). Additionally, temporal
interpolation is done using displacement vectors derived 290

from infrared measurements (Tan et al., 2016; Maranan
et al., 2020). This combination allows for precipitation
estimation at 30-minute intervals at a 0.1° resolution
(~120km2). 1066 IMERG pixels are considered in the
current research, depicted in figure 2.3 (Foelsche et al., 295

2017).

Figure 2.3: IMERG pixel location over Sri Lanka

Three types of IMERG products exist, IMERG Early
(IMERG-E), IMERG Late (IMERG-L) and IMERG Final
(IMERG-F). Their respective latencies are three hours,
twelve hours, and three months. Selecting the most 300

appropriate version of IMERG is subject to several con-
siderations, regarding their performance and temporal
availability.

Bogerd et al. (2021) describes that IMERG-L per-
forms better than IMERG-E, due to the inclusion of 305

additional sources of data and the usage of both forward
and backward propagation, instead of only forward in-
terpolation. The IMERG-F product is regarded as the
most accurate version, due to its calibration using gauges
from the Global Precipitation Climate Centre (GPCC) 310

(Huffman et al., 2015a). However, these GPCC gauges
are unequally spread. As Brocca et al. (2020) have
found, IMERG-L outperforms IMERG-F in gauge-poor
areas. As the number of GPCC gauges in Sri Lanka is
limited and the latency of IMERG-L is much lower than 315

that of IMERG-F, 14 hours versus 3 months, IMERG-L
is assumed to perform best and is chosen. The prod-

2Reanalysis data is a combination of past short-term forecasts
and observations through assimilation, used in meteorology.
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uct is available both on half-hourly and daily timescales.
The current research uses the V06 IMERG-L half-hourly
product, hereafter referred to as IMERG.320

Rain gauge measurements

A rain gauge network provided by the Sri Lanka Depart-
ment of Meteorology is used to validate both IMERG and
the merged precipitation estimates. Two sets of gauge
measurements are available, one containing the data for325

September-December 2019, and one data set for the
whole of 2020. Both contain stations that take hourly
and/or daily measurements. Daily measurements span
from 08:30-08:30 (+5:30 UTC) the following day.

The location of the gauges is shown in figure 2.4.330

Not all gauges provide consistent measurements due to
instrument errors, in which case no data is available for
that time step. The stations, months for which data
is available, and the percentage of time intervals where
rainfall data was recorded (availability) are displayed in335

table 2.1. The 2019 data serves as validation for the final
product, whereas the 2020 data only serves as validation
for IMERG.

Table 2.1: Available data

Measurement Months Year Nr. of Availability
Interval stations
Hourly Sept-Dec 2019 12 86%
Daily Sept-Dec 2019 11 100%
Hourly Jan-Aug 2020 19 99%
Daily Jan-Dec 2020 428 100%

(a) Gauge data 2019 (b) Gauge data 2020

Figure 2.4: Hourly and daily rain gauge measurement locations

2.3 Methods

This section describes the preprocessing of the data, the340

method used for merging CML and IMERG predictions,
and the subsequent validation. To increase insight into
the performance of IMERG in Sri Lanka and the sources

of error in the merged product, a separate validation of
IMERG is conducted, also explained in this section. 345

2.3.1 Merging CML and IMERG
precipitation measurements

For combining the gridded IMERG and the CML point
estimations, Kriging with External drift (KED) is used.
To avoid confusion, it should be mentioned that KED is 350

mathematically very similar to and thus sometimes also
called Regression Kriging or Universal Kriging. Kriging is
a statistical method that describes the unknown value Ẑ
as a weighted combination of observations and a trend.

KED is an extension of Kriging that uses a drift func- 355

tion to describe a non-constant trend, allowing for the
interpolation of non-stationary variables, such as rainfall
(Cantet, 2017). KED utilises the correlation between
measurements of the variable to be interpolated at lo-
cation s, Z(s), and a second variable Y (s) to construct 360

the drift function. The drift function represents a linear
model of the prediction of Z(s) by Y , where Y is well
known and accurately sampled. Additionally, Z and Y
are assumed to strongly correlate over the whole domain.

After the construction of the drift function, the resid- 365

uals are computed. Using the covariance structure of
these residuals, the variogram that captures the spatial
autocorrelation of the residuals of Z(s) is constructed.
Local differences in Z(s) that are not captured with the
drift function, are modelled by this variogram. This au- 370

tocorrelation is described by the variogram parameters:
the nugget, which represents random error, the highly
local variation between observations, the range, which
is the maximum distance over which there is correlation,
and the sill, the variance in the observations at the range 375

distance. Additionally, there are multiple shapes of vari-
ogram models such as Gaussian, exponential, and linear.
Using the drift function and the spatial autocorrelation
Ẑ is estimated (Haberlandt, 2007).

As IMERG data is available for the whole country, it 380

represents Y (s), while the CML derived measurements
represent the value to be estimated, Z(s). Prior to merg-
ing, path averaged rainfall rates are converted to points
in the middle of the link path to simplify the interpola-
tion procedure. Additionally, the CML measurements are 385

averaged from measurements of every 15 minutes to half-
hourly measurements to match the temporal resolution
of IMERG. KED requires some variation in the value of
Z(s) for the construction of the variogram. Following
Grimes and Pardo-Igúzquiza (2010), only time steps with 390

at least 0.1% of CML measurements indicating precipi-
tation over 0.001 mm were interpolated. Instances with
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lower precipitation do not yield meaningful KED results
and are considered as dry.

Using KED for rainfall estimation faces two important395

challenges. Fitting variograms on rainfall data is complex
because of the variable nature of precipitation events,
where the spatial autocorrelation of one time step can
strongly differ from the autocorrelation at the next. As
such, constructing a variogram from observations for ev-400

ery subsequent time step leads to improved performance
of KED. This requires sufficient data, with a minimum
of 300 measurements of Z(s). The data provides at
least 500 measurements per time step, which makes the
continuous fitting of the variogram possible.405

For every iteration, the linear model is constructed,
the residuals are computed, and the variogram is drawn
up. This will increase processing time but improve ac-
curacy (Grimes and Pardo-Igúzquiza, 2010). The auto-
mated variogram fitting is done for every iteration using410

the automap package in R3. The variogram parameters
are determined for every time step separately, which re-
sults in unique variograms with a different nugget, sill,
range, and model structure. An overview of the vari-
ogram parameters can be found in the appendix ??.415

To further complicate matters, rainfall is strongly
non-normal and Kriging assumes Gaussianity (Goovaerts
et al., 1997). This is all the more important for KED, as it
requires the residuals to be Gaussian as well. Normalising
rainfall is complex due to the large number of zero values420

and extremes, causing the high possibility of introducing
bias when back transforming the data.

Cecinati et al. (2017) compared different normali-
sation techniques when merging rainfall measurements
through KED. It was concluded that a Box-Cox trans-425

form with λ = 0.25 provides the best trade-off between
improving Gaussianity and avoiding high bias introduced
through the back transform after the interpolation. Box-
Cox transformation is a well-known method and is defined
as follows430

y∗ =

{
yλ−1
λ λ 6= 0

log(y) λ = 0
(2.1)

here y represents the untransformed variable of inter-
est and y∗ is the same variable after transformation (Box
and Cox, 1964). IMERG and CML derived measurements
are both normalised using the Box-Cox transform with
λ = 0.25. Normalised CML and IMERG measurements435

are then interpolated on a 0.02° grid. These interpolated
values are back-transformed to obtain rainfall intensities
at half-hour temporal resolutions. Regular back trans-
formation produces the median of the variable. When

3The documentation on this package can be found on:
https://cran.r-project.org/web/packages/automap/automap.pdf.

interpolation is done, the interpolation variance can be 440

used to decrease bias in the back transform, after which
the back-transformed mean is produced using equation
2.2.

(λµ+ 1)1/λ
[
1 + σ2(1−λ)

2(λµ+1)2

]
if λ 6= 0

eµ
[
1 + σ2

2

]
if λ = 0

(2.2)

Using the Kriging variances, the KED derived measure-
ments are back transformed. 445

KED derived measurements below zero are set to zero
as negative rainfall is physically impossible. Additionally,
rainfall intensity values over 500 mm/h are removed for
the same reason.

2.3.2 Performance measures 450

The validation of rainfall measurements consists of two
parts. Firstly, the wet-dry classification is assessed, which
relates to the skill of signalling rainfall, irrespective of the
amount. This classification is followed by an appraisal
of the rainfall intensity estimation. Both evaluations are 455

conducted for IMERG and KED predictions. Rain gauge
measurements are compared to both measurements. As
mentioned before, some stations provide daily measure-
ments while others provide hourly measurements. As
these are not always the same station nor provide the 460

same amount of measurements, the hourly and daily
data are evaluated separately. As the stations used for
the daily and hourly evaluations are not the same (table
2.1), the performance scores, apart from the HSS, cannot
easily be compared between the hourly and daily evalu- 465

ations. The HSS is normalised by the complete range
of of possible improvement over the standard, thus this
metric can be compared.

Wet-Dry classification

Evaluation of the wet-dry classification is conducted as 470

follows. IMERG and KED predictions are averaged to
match the temporal resolution of the gauges. IMERG
and KED values are extracted at the location of the
gauges and compared.

Based on a threshold of at least 0.1 mm/h to distin- 475

guish between wet and dry, following Gaona et al. (2017),
IMERG and KED predictions are compared to the gauge
measurements and classified as Hit (H), Miss (M), False
Alarm (FA), and Correct Negative (CN). H represents a
correctly classified wet event, CN a correctly classified 480

dry event, M is a wet event which is classified as dry,
and FA defines dry events classified as dry. These perfor-
mance scores are combined to obtain several contingency
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metrics, following Kumah et al. (2020): Probability of
Detection (POD), Probability of False Alarm (POFA),485

Accuracy (ACC) and Heike Skill Score (HSS).
Formulas for these metrics are shown in table 2.2. The

POD represents the fraction of rain correctly detected,
the POFA (also known as False Alarm Ratio) is the
fraction of no rain incorrectly detected, and ACC is the490

fraction of rain and no rain correctly detected. The HSS
compares the performance of the forecast to random
chance. A POFA of 0 and POD of 1 indicate that rain is
always correctly classified. The optimal score for HSS and
ACC is 1, representing flawless forecasting and perfect495

accuracy of the forecasting respectively.

Table 2.2: Metrics for evaluating Wet-Dry classification of IMERG
and KED
Metric Formula Range Optimum

POD H
H+M 0 to 1 1

POFA FA
H+FA 0 to 1 0

ACC H+CN
H+CN+M+FA 0 to 1 1

HSS 2(H∗CN−FA∗M)
(H+M)(M+CN)+(H+FA)(FA+CN) −∞ to 1 1

Statistical evaluation

The estimations of rainfall intensity by IMERG and the
KED are compared to the gauge measurements. Perfor-
mance of the rainfall depth estimation is evaluated using500

the Normalized Mean Absolute Error (NMAE) and the
Relative Bias (RB).

The NMAE is the Mean Absolute Error (MAE), nor-
malized using the mean. The MAE expresses the total
amount of error between the sample and the prediction.505

The normalisation is applied to be able to compare the
metric between different scales. Not all stations and mea-
surement periods have the same data availability, so the
normalisation allows for comparison between the different
months, stations, and time intervals. The RB indicates510

the average systematic error. A RB smaller than 0 and
over 0 indicate under and over estimation respectively.
An NMAE and RB of 0 would indicate perfect agreement
between the gauges and the estimation (table 2.3).

To compare the performance of KED and IMERG with515

the CML data as evaluated by Overeem et al. (2021),
additional metrics, found in that paper, are used. These
are the coefficient of determination, r2 and the coefficient
of variation of the residuals, CV. Comparison between
CML and gauge values is done by constructing a simple520

linear model, describing the relationship between the
two measurements. CML estimations are treated as the
predictor variable and the gauge measurements are the

measured variable. From this linear model the r2 and
the CV are calculated. Model fit is described by the r2, 525

where 0 indicates no skill and 1 indicates perfect skill.
CV captures the spread of the residuals of the model
around the regression line, the maximum value depends
on the values in the data set. A CV of 0 indicates perfect
agreement between the predictor and measured variable. 530

Table 2.3: Statistical metrics for evaluating IMERG and the merged
product
Metric Formula Range Optimum

NMAE
∑n
i=1 |RIMERG,i−Rgauge,i|∑n

i=1 Rgauge,i
0 to −∞ 0

RB
∑n
i=1(RIMERG,i−Rgauge,i)∑n

i=1 Rgauge,i
∗ 100% −∞ to ∞ 0

CV
√∑n

i=1(Yi−Ŷi)
2

df - 0

r2 1− SSres

SStot
0 to 1 1

Previous research has shown that IMERG performance
depends on rainfall intensity, which varies with location
and season (e.g Bogerd et al., 2021). As briefly men-
tioned before, CML are mainly present around urban
areas and thus, CML-derived rainfall measurements are 535

not equally spread over the country. Additionally, not
all links consistently provide trustworthy power levels,
resulting in a variable number of usable links over time.
Thus both the availability and the performance of CML
and IMERG vary over time and space. 540

This spatial and temporal variability of CML and
IMERG can propagate into the KED estimations. To
discover whether bias and error in IMERG and the KED
estimation is linked to season or location, all evaluations
are carried out on the complete data set, on data aggre- 545

gated per month, and data aggregated per location. For
a more in-depth evaluation of IMERG, the measurements
are also compared against the 2020 gauge data set. To
conduct spatial evaluation for 2020, aggregation is done
based on the three climatic regions as seen on figure 2.1. 550

KED measurements are compared to the performance
evaluation of IMERG and the CML evaluation as provided
by Overeem et al. (2021). Furthermore, as KED is
based upon assumptions regarding the input data, these
assumptions are checked. These assumptions constitute 555

the strong correlation between the auxiliary variable and
the variable to be estimated and the anisotropy of the
data. Investigating the validity of these assumptions
for the current data sets improves understanding of the
results. 560
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3 | Results

This section consists of four parts. Firstly, overall per-
formance scores and statistical metrics are presented.
Secondly, metrics are compared between months to un-
cover seasonal effects. Thirdly, evaluations are conducted
between stations for the 2019 evaluations and per cli-565

matic region for the validation of IMERGs performance
in 2020. Lastly, four rainfall maps derived from KED
and IMERG are presented to appreciate rainfall patterns
produced by IMERG and KED and possible sources for
errors are discussed.570

3.1 Evaluation overall performance

Firstly, the Wet-Dry classification is assessed. This relates
to the ability to distinguish between rain and no rain.
The results of the evaluations of IMERG in 2019 serve as
a benchmark for the later evaluation of the KED derived575

rainfall (referred to as KED). Also, the evaluations of
IMERG in 2020 are used for general conclusions on the
performance of IMERG in Sri Lanka.

3.1.1 Wet-Dry Classification

The Wet-Dry classification is evaluated by comparing the580

POD, POFA, ACC, and HSS (table 2.2). The aggregated
scores are shown in table 3.1.

The POD and POFA indicate that IMERG can accu-
rately distinguish between wet and dry time days. Hourly
variations are classified a lot more poorly. As hourly rain-585

fall is a lot more variable, classification per hour is more
challenging than classification per day, partly explaining
this difference (Haberlandt, 2007). IMERG has a low
HSS, especially for hourly measurements, with almost
no improvement of skill compared to random guessing.590

When considering the performance of IMERG in 2020,
the discrepancy between the hourly and daily evaluation
is again striking. The HSS between 2019 and 2020 is
similar. This indicates that the time period does not
strongly impact IMERG’s country wide Wet-Dry classifi-595

cation. ACC and HSS are comparable for daily IMERG
between 2019 and 2020, while slightly worse for hourly
in 2019. IMERG has a overall high accuracy, which can
be accounted to IMERGs skill at correctly classifying no
rain.600

The latter is further investigated and confirmed by
calculating the same performance scores after the re-
moval of rainfall events below 1 mm, using the gauge
measurements as the indicator. From table 3.2, it can

Table 3.1: Performance scores IMERG

Scores 2019 POD POFA ACC HSS
Daily 0.83 0.35 0.71 0.42
Hourly 0.34 0.73 0.64 0.06
Scores 2020
Daily 0.67 0.47 0.76 0.43
Hourly 0.27 0.84 0.84 0.12

be seen that the ACC and HSS decrease, this effect is 605

most pronounced for the daily evaluations. Performance
for daily and hourly measurements become more similar.

Table 3.2: Performance scores IMERG when solely considering
rainfall depths > 1 mm

Scores 2019 ACC HSS
Daily 0.69 0.22
Hourly 0.58 0.19
Scores 2020
Daily 0.65 0.16
Hourly 0.64 0.06

When considering KED performance scores, daily Wet-
Dry classification is somewhat decreased compared to
IMERG (table 3.3). POD and POFA are similar and there 610

is a small decrease in ACC and HSS. Hourly variations are
captured slightly better with KED. All hourly performance
scores have increase with respect to IMERG. However,
HSS is still very low, indicating skill on par with random
guessing.

Table 3.3: Performance scores KED

Scores POD POFA ACC HSS
Daily 0.76 0.37 0.66 0.32
Hourly 0.43 0.80 0.73 0.13

615

Performance scores change when only considering
rainfall depths over 1 mm. The difference with the full
evaluation for KED is smaller than for IMERG. Both for
IMERG and KED, the HSS is more favourable in the
filtered evaluations, albeit this effect is more pronounced 620

for IMERG. In general, neither IMERG nor KED display
high skill in Wet-Dry classification, regardless of the
inclusion of light rainfall.

Table 3.4: Performance scores KED with rainfall depths > 1 mm

Scores ACC HSS
Daily 0.72 0.12
Hourly 0.67 0.2
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3.1.2 Statistical evaluation

For a more quantitative evaluation the NMAE, RB, CV,625

and r2 are computed (table 2.3). Scatter plots indicating
the correlation between gauge measurements and IMERG
are shown in figure 3.1. From the figures, it can be seen
that while the NMAE is rather low, the measurements
are not aligned with the 1:1 line. For the hourly measure-630

ments, there is a strong scatter around the zero rainfall
values for both years. This can stem from local variations
at the location of the gauges not captured by IMERG.
Overall, the RB indicates that IMERG slightly overesti-
mates rainfall, apart from the hourly measurements in635

2019, which show an underestimation of 10.6%.
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Figure 3.1: Scatter plots for IMERG rainfall depth correlation

Figure 3.2 shows that KED performs worse at estimat-
ing rainfall sums than IMERG. Generally, the NMAE is
quite low an comparable for both intervals and measure-
ments, with KED measurements having higher NMAE640

for both hourly and daily gauge values. The RB shows
that daily rainfall is underestimated and hourly rainfall is
overestimated. This pattern is also visible in IMERG. The
hourly measurements show significant disagreement with
the 1:1 line, with strong scatter at zero rainfall values,645

both for IMERG and KED.
In Overeem et al. (2021), scatter plots displaying

the correlation between CML and gauge measurements
can be found. To compare the patterns, these plots
are also presented here. The CML measurements show650

better agreement with the 1:1 line than both IMERG
and KED. Additionally, the scatter shows a better skill
in estimating correct rainfall depths with non-zero rain-
fall, which is absent for both KED and IMERG. For the
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Figure 3.2: Scatter plot for KED rainfall depth correlation

hourly measurements, it can be seen that there are large 655

rainfall depths estimated by KED, CML, and IMERG
for near-zero gauge measurements. This is most likely
stemming from strong local variability in rainfall or gauge
measurement errors, as the same pattern is found in all
three measurements and thus originates from the gauges 660

rather than the measurement method. Additionally, from
this, the propagation of the rainfall estimation errors in
IMERG and CML into KED can be seen.

Figure 3.3: Scatter plots for CML rainfall depth. Adapted from
Overeem et al. (2021)

This statistical evaluation is concluded by a compari-
son of metrics from the paper by Overeem et al. (2021), 665

IMERG, and KED. From table 3.6 it can be seen that
IMERG and KED are outperformed by CML, with lower
r2 and a higher CV. KED shows a decrease in all met-
rics, while IMERG shows lower r2 and CV but less over-
and underestimation for the daily measurements and the 670

hourly measurements respectively. Especially the very
low r2 values show that KED has no skill in estimating
rainfall depth.

When only considering rainfall > 1 mm, both KED
and IMERG show further decreased performance. CV 675

slightly improves, but r2 is lower and especially increased
underestimation of hourly rainfall is found. It is interest-
ing to note that KED performs significantly worse than
both IMERG and CML.
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Table 3.5: Comparison of the statistical metrics IMERG, CML and
KED

All rainfall values
IMERG CV r2 RB
Daily 1.5 0.3 -10.6%
Hourly 5.7 0.2 1.1%
CML
Daily 0.87 0.79 -17.6%
Hourly 4.33 0.57 2.1%
KED
Daily 1.70 0.07 -7.8%
Hourly 5.9 0.003 3.2%

Table 3.6: Comparison of the statistical metrics IMERG, CML and
KED with > 1 mm of rain

Rainfall values > 1 mm
IMERG
Daily 1 0.2 -24.4%
Hourly 2.5 0.1 -60.1%
CML
Daily 0.87 0.79 -18.6%
Hourly 0.86 0.58 15.6%
KED
Daily 1.1 0.02 -11.9%
Hourly 3.5 0.001 -63.4%

Monthly comparison680

To evaluate how seasons affect performance, metrics are
aggregated per month as shown in figure 3.4. Recall that
the period under review spans three different monsoonal
periods, with the first one taking place until September,
the second one between October and November and685

the last one starting in December. From this figure, no
clear seasonal pattern is visible. There is some variation
between the different months, the most notable is the
difference in HSS in KED measurements. December,
which coincides with the NEM, has the most favourable690

ACC and HSS for both IMERG and KED, but the effect
is small. The differences between the months do overlap
for KED and IMERG, indicating that seasonal effects
propagate.

The same comparison is made for 2020, displayed in695

figure 3.5. The daily rainfall sums are available for the
whole year, the hourly only from January until August.
There is some difference between the months, with July
having the best overall performance and February the
worst. Monthly differences between are comparable for700

the hourly and daily evaluations. Low HSS and ACC are
found for March-May, which coincides with the first inter-
monsoon period. December still has more favourable
scores compared to September - November, comparable
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Figure 3.4: Performance skills per month in 2019

to what is seen in figure 3.4. January has the best HSS 705

and ACC, which also falls within the NEM. However, the
differences remain small and February, which is also part
of the NEM, is characterised with worse performance
metrics.

To further explore seasonal effects, metrics per month 710

are shown in figure 3.6. The NMAE is relatively consis-
tent between the months, the figure displays that IMERG
is associated with lower error than KED for all months.
From the NMAE plots, no pattern is visible. When com-
paring the NMAE for hourly and daily measurements 715

the small monthly variations are different. For example,
NMAE is higher in September than in October for both
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Figure 3.5: IMERG performance skills per month in 2020

IMERG and KED for the daily comparisons. For the
hourly evaluations, NMAE is similar for KED and higher
in October for IMERG. In case of strong seasonality, its720

effect should have been visible in both the hourly and
daily gauge measurements.
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Figure 3.6: Monthly statistical metrics KED and IMERG

The difference in RB between the months is larger.
The direction of the bias, albeit not the amount, shows
agreement between KED and IMERG performance for725

September - November, whereas the directions in De-
cember are opposite. Agreement between the hourly and
daily metrics is variable. The overestimation of KED and
underestimation of IMERG in December are present in
both plots, but October rainfall is underestimated on a730

daily interval but overestimated on an hourly one. When

considering the patterns found in the Wet-Dry classi-
fication, with December having the best performance,
these plots show a different outcome. The spikes and
dips in IMERG metrics do somewhat correspond to the 735

spikes and dips in the KED metrics, again indicating the
propagation of the seasonal effects.

To conclude the monthly validations, the metrics for
IMERG in 2020 are displayed in figure 3.7. Here, a
strong increase in both NMAE and RB is found between 740

March and May, whereas the rest of the months have
comparable scores. These months coincide with the first
inter monsoonal period, which runs from the end of
February until April. This decreased performance for this
season was also found in figure 3.5.
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Figure 3.7: Monthly statistical metrics for IMERG in 2020
745

Spatial variability

The spatial distribution of the metrics is evaluated by
aggregating the data over the whole period per location.
For the 2019 data, maps are created displaying the hourly
and daily metrics per station (figure 3.8 and figure 3.9). 750

There is no distinct spatial pattern visible, however,
IMERG performs slightly worse in the eastern part of the
country, especially at the station that is at the upper
part of the eastern coast (Trincomalee). POD, POFA
and HSS show worse performance in the dry part of the 755

country (figure 2.1).
The scores of the daily data set are more homoge-

neous compared to the hourly ones, seen in figure 3.8
and figure 3.10. Additionally, the hourly data are both
under and overestimated, while the daily measurements 760

are mainly underestimated. The most favourable scores
coincide with the wet region as seen in figure 2.1. The
strong difference between the performance scores for the
hourly measurements may stem from the highly local
hourly rainfall dynamics. The large variation between 765

performance among gauges was also found by Overeem
et al. (2021) and can also originate from gauge errors.

The 2020 data sets are aggregated into a wet, in-
termediate, and dry zone (figure 2.1). The aggregated
scores per climatic region in 2020 for the hourly and daily 770
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Figure 3.8: Hourly performance metrics per station for IMERG

sets are shown in table 3.7. IMERG performs best in the
wet zone, with the most striking difference the improved
RB for the hourly data. The fact that scores indicating
the most optimal IMERG performance in the wet zone
and decreased performance elsewhere overlaps with the775

results as seen in the maps.

Table 3.7: Scores for IMERG in 2020

Scores (Hourly) Dry Intermediate Wet
POD 0.18 0.31 0.34
POFA 0.89 0.82 0.82
ACC 0.87 0.82 0.80
HSS 0.07 0.14 0.14

NMAE 2.32 2.27 1.81
Rel. Bias 75.7 78.3 27.6

Scores (Daily) Dry Intermediate Wet
POD 0.86 0.88 0.86
POFA 0.7 0.61 0.46
ACC 0.6 0.6 0.63
HSS 0.23 0.26 0.3

NMAE 1.36 1.31 1
Rel. Bias 43.2 24.5 -14.6

The KED maps display no particular spatial pattern.
The reduced performance in the eastern part of Sri Lanka
as seen in figure 3.12 is also visible in the KED perfor-
mance scores. Again, Wet-Dry classification skill is lowest780

at the Trincomalee station. From the figure, it can be

Figure 3.9: Daily performance metrics per station for IMERG

seen that the locations of the CMLs (figure 2.2) coincide
with more favourable performance scores for KED. Espe-
cially for the daily performance, the locations with better
scores are similar between KED and IMERG, indicating 785

that spatial differences in IMERG performance are some-
what present in KED. Both maps indicate propagation
of spatial variability of CML and IMERG into KED.

The same spatial separation is conducted for the
hourly RB and NMAE and displayed in figure 3.12. Strik- 790

ing are the two stations with very distinct scores. The
most extreme ones are again Trincomalee, on the east
coast with an NMAE of 2.13 and an RB of 50.7% and
Ratmalana, on the bottom west coast, with an NMAE
of 2.12 and an RB of 105.3%. Especially the last one is 795

remarkable, as the stations that are close display signif-
icantly better metrics. It is unlikely that the variations
in rainfall are that local, the high RB might stem from
errors with the gauge. When looking at these metrics, no
clear relation with the climatic regions is seen. There is 800

no overlap between the spatial distribution of the perfor-
mance scores and the metrics. Both maps show strong
variation in performance scores per station, indicating
that there is a strong spatial variability in the perfor-
mance of IMERG, with the variation between the hourly 805
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Figure 3.10: Daily performance metrics per station for KED

measurements once again being greater than the daily
ones.

When appreciating the hourly KED map (figure 3.13),
the extreme values for the Trincomalee station are even
more pronounced with an NMAE of 7.58 and an RB810

of 503.7% for KED. The Ratmalana station shows less
extreme metrics, however, the difference in RB with the
stations that are near remains notable.

The daily map, figure 3.15, contains less extreme val-
ues but still shows strong variation between the stations.815

The similarity between scores and their magnitude is less
pronounced between the daily evaluation of KED and
IMERG as compared to the hourly evaluations (figure
3.9). For example, the station on the bottom has an
RB of -79.2% compared to IMERG and an RB of 53.6%820

compared to KED. The locations with the most links,
on the eastern coast, do somewhat coincide with more
favourable metrics, but the effect is less pronounced than
as seen on the performance score maps.

Rainfall maps825

The last part of this results section contains four rainfall
maps showing the rainfall patterns over Sri Lanka as de-
rived from IMERG and KED. To increase understanding

Figure 3.11: Hourly performance metrics per station for KED

Figure 3.12: Hourly RB and NMAE per station for IMERG

of the results and possible sources of error, two events
are chosen where KED performs well, with differences 830

between the gauges and KED below 0.001 mm/h. Ad-
ditionally, two events where KED performs bad, with
differences over 100 mm/h, are selected.

Figure 3.16 and figure 3.17 show two maps for itera-
tions with small differences between the interpolated and 835

the gauge rainfall. For the event on the 2nd of October
(figure 3.16), the location of the rainfall event overlaps
partly between IMERG and KED, rainfall on the top part
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Figure 3.13: Daily RB and NMAE per station for IMERG

Figure 3.14: Hourly RB and NMAE per station for KED)

Figure 3.15: Daily RB and NMAE per station for KED)

of the west coast is visible on both maps. Precipitation
at the bottom part of the country is not found by KED,840

this part corresponds to a location with virtually no link
coverage. For the other two precipitation events in figure
3.16, the location of the rain is different. When looking
at the gauge values in table 3.8, the gauges only indi-
cate zero rainfall values, whereas KED displays very low845

rainfall values. Non-zero IMERG rainfall values are more
sparse in the table but mostly higher than KED. Rainfall
as depicted by KED is highly local, IMERG shows more
spread-out events.

In figure 3.17 the location of the rainfall is widely 850

different between KED and IMERG. The location of the
precipitation event on the current and the previous map is
similar for KED but not for IMERG. This might indicate
the effect of CML picking up a highly local event or a
malfunctioning link. Rainfall as indicated by IMERG is 855

now also highly local and isolated. Again, all gauges
indicate zero rainfall, with IMERG estimating less wet
instances but with higher values.

The two events where KED performs bad are depicted
in figure 3.18 and figure 3.19. The interpolated precipi- 860

tation intensities on the 25th of October do somewhat
coincide with higher precipitation intensities as measured
by IMERG. Additionally, the rainfall pattern is compara-
ble, however IMERG estimates rain are more locations
and again shows less local rainfall. 865

Especially for the the 9th of November, the rainfall
patterns as depicted by KED are present at locations
where IMERG measures very low to no rainfall and vice
versa. From table 3.11, it can be seen that KED generally
gives estimations close to the zero values as indicated by 870

the gauges, but has one high value, which is the cause
for the large overall difference. Note that four all four
maps, gauges indicated zero values. It might be the
case that IMERG incorrectly detected rainfall, however
looking at the intensities, it is more likely that the gauges 875

were affected by measurement errors. Additionally, the
location of the precipitation events might not have been
close to the gauges.

The KED interpolated rainfall is more local, while
the IMERG measurements are more smooth. From the 880

figures, it can be concluded that KED is better at captur-
ing the highly local and intense tropical rainfall patterns,
albeit giving possible overly local estimations. Neither
IMERG nor KED show very realistic representations of
rainfall patterns, however IMERG might have a slightly 885

better performance.

Violation of Kriging Assumptions

As mentioned in the methods section, KED assumes
isotropy and correlation between the variables used in the
interpolation. Some interpolated time steps contain very 890

high rainfall values and the overall performance of KED
is bad. An attempt at understanding the bad perfor-
mance of Kriging is made by comparing two directional
variograms and two correlation plots. Again, the com-
parison between a time step with bad and good KED 895
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Table 3.8: Rainfall values for IMERG, KED and gauges

Station Name IMERG KED Gauge
Colombo 0.1 0.0008 0
Jaffna 0 9.1E-07 0
Puttalam 0 1.7E-08 0
Trincomalee 0 0.63
Batticaloa 0 0 0
Kurunegala 0.1 7.8E-05 0
Katunayake 0 0 0
Anuradhapura 1.2 1.79E-05 0
Mahailluppalama 0 0
Polonnaruwa 0 0 0
Ratmalana 0.6 0 0
Vavuniya 0 2.7E-07 0

Figure 3.16: Rainfall maps of IMERG and KED on the 2nd of
October

Table 3.9: Rainfall values for IMERG, KED and gauges

Station Name IMERG KED Gauge
Colombo 0 0 0
Jaffna 0 0 0
Puttalam 0 0 0
Trincomalee 0.4 0
Batticaloa 0 6.08E-14 0
Kurunegala 0 9.20E-12 0
Katunayake 0 3.26E-10 0
Anuradhapura 0 0 0
Mahailluppalama 0 3.26E-10 0
Polonnaruwa 0 0 0
Ratmalana 0 0 0
Vavuniya 0 0 0

Figure 3.17: Rainfall maps of IMERG and KED on the 13th of
October

performance is made. The plots shown here serve as an
general example for the time steps not presented, the
patterns described are also present in the variograms and
scatter plots of events with similar performances.

One of the reasons for the low skill of KED could be900

anisotropy. Figure 3.21 shows two directional variograms,
displaying the spatial autocorrelation of the residuals in
multiple directions. In case the variogram displays a
strongly differing pattern in one of the directions it indi-
cates anisotropy. The left variogram is based on a time905

step with good KED performance (see figure 3.18). The
variogram shows some anisotropy, with autocorrelation
in the 0 direction varying from the other directions. How-
ever, when the variogram is compared to the one on the
right, it can be seen that its fit is much better. The right910

plot shows the variogram for the 9th of November, a
time step with bad KED performance (figure 3.19). The
variogram has distinctly different shapes in the different
directions and thus anisotropy is present.

The second Kriging assumption that can be violated 915

in the current research is the strong correlation between
the drift and the variable to be interpolated. When
looking at figure 3.23, it can be see that the left plot
has a low Pearson’s correlation. When looking at the
scatter, most points are indicating zero rainfall and the 920

scatter indicates good agreement between IMERG and
CML, with limited outliers. Looking at the gauge values
in figure 3.17, KED, gauge, and IMERG values show
good agreement.

The right plot shows a strong deviation from the 925
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Table 3.10: Rainfall values for IMERG, KED and gauges

Station Name IMERG KED Gauge
Colombo 1.2 1.19E-05 0
Jaffna 0 0.15 0
Puttalam 0.3 0.3 0
Trincomalee 0.3 0.3
Batticaloa 0.8 0.002 0
Kurunegala 0.3 0.3 0.4
Katunayake 0.2 0.0005 0
Anuradhapura 0 8.22E-05 0
Mahailluppalama 0 0.0006 0
Polonnaruwa 1 0.0001 0
Ratmalana 0.7 0.0004 0
Vavuniya 0.3 1.66 0

Figure 3.18: Rainfall maps of IMERG and KED on the 25th of
October

Table 3.11: Rainfall values for IMERG, KED and gauges

Station Name IMERG KED Gauge
Colombo 3.2 5.6 0
Jaffna 0.1 0.02 0
Puttalam 0.1 0.05 0
Trincomalee 0.1 0.07
Batticaloa 0 2.84E-05 0
Kurunegala 0.2 0.22 0
Katunayake 0.5 0.5 0
Anuradhapura 0.1 4.17 0
Mahailluppalama 0 0 0
Polonnaruwa 0.2 147.34 0
Ratmalana 3.8 0.002 0
Vavuniya 0 0.0005 0

Figure 3.19: Rainfall maps of IMERG and KED on the 9th of
November

1:1 line. The scatter portraying a straight line can be
explained by the fact that the resolutions of CML and
IMERG measurements do not match. Within an IMERG
pixel with a single measurement, multiple CML mea-
surements are present. Additionally, the figure shows930

that CML measures significantly higher rainfall intensi-
ties. When comparing the values seen in the scatter
plots to the gauge values found in figure 3.19 it can be
seen that the gauges and IMERG indicate much lower
rainfall intensities than KED. The weak correlation be-935

tween IMERG and CML measurements can be seen in
the different between the location of KED and IMERG
rainfall, resulting in the difference between KED and the
gauges.



CHAPTER 3. RESULTS | 18

Figure 3.20: Directional variogram for IMERG and CML on 13-10-
2019

Figure 3.21: Directional variogram for IMERG and CML on 9-11-
2019

Figure 3.22: Correlation plot for IMERG and CML on 13-10-2019 Figure 3.23: Correlation plot for IMERG and CML on 9-11-2019
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4 | Discussion

First, the limitations of the different sets of data used940

are discussed, the limitations of KED and the overall
methodology are considered. Suggestions for further
research are given throughout all sections.

4.1 Data limitations

4.1.1 IMERG945

The applicability of KED used is strongly dependent
on the data quality and availability of the drift and in-
terpolation variable. Passive rainfall retrieval such as
used in IMERG is intrinsically affected by bias and error
which is usually region-specific Maranan et al. (2020).950

While IMERG has shown to have improved performance
compared to KED, CMLs mostly outperformed IMERG,
indicating that IMERG provides lower quality estimates.
Especially when considering the more variable hourly
rainfall, IMERG displayed bad performance.955

Uncovering the sources of error and bias in IMERG
for Sri Lanka will increase understanding of errors in
the final product and allows for tailoring of the merging
method (Kumah et al., 2020). The scope of the current
research was not covering an in-depth analysis of sources960

of IMERG errors. A more extensive validation the quasi-
real-time products IMERG-E and IMERG-L for Sri Lanka,
such as the recent paper by Bandara et al. (2022) will
provide opportunities for improving the current method
as sources of error and bias can be dealt with accord-965

ingly. Furthermore, Li and Shao (2010) found that direct
merging using gridded satellites estimate introduces sig-
nificant bias around the boundaries between consecutive
grids. The current study directly used the gridded prod-
uct, which possibly introduced these boundary errors. A970

suggestion to circumvent these errors, as presented by Li
and Shao (2010), is using a smoothing method such as
Kernel Density Smoothing.

Lastly, the release of IMERG V07 is due in near future.
This version will likely have improved accuracy and thus975

the possibility to improve the overall quality of merged
estimates in which IMERG is used as a source.

4.1.2 CML

As mentioned in the method section, the parameters
of RAINLINK were not optimized for Sri Lanka. The980

discrepancy this causes between the measured and actual
rainfall can propagate through the merged product al-
though Overeem et al. (2021) showcased that the effect

of this lack of optimization is limited. However, as found
by Overeem et al. (2016a), interpolation methods and 985

the link density play a minor, albeit, important role in
the total error. Main sources of error are related to the
retrieval of the rainfall rates. With the current efforts
to reduce errors in CML rainfall retrieval, as stated by
Chwala and Kunstmann (2019), future versions of rainfall 990

estimation might produce better quality CML estimations.
By extend, this will increase the performance of KED.

4.1.3 Gauges

While the rain gauge measurements had good availability,
the number of stations was rather limited. The spatial 995

variability in interpolated rainfall map quality may be very
large, which is difficult to accurately assess based on the
limited coverage of the gauges (Overeem et al., 2021).
Additionally, the daily gauges were mainly located in the
southern part of the country, preventing an appraisal 1000

of the spatial variation in performance over the whole
country. The rain gauge measurements in 2020 were
more spread, so future research could consider choosing
2020 as their period under review to provide more holistic
conclusions on this variation. It is well known that gauges 1005

are also subject to errors, and taking them as absolute
truth measurements is sometimes incorrect (Haese et al.,
2017). However, the gauge data used in this research
was sufficient to provide general conclusions.

4.1.4 General 1010

Merging different sources of data has the benefit that
weak points of a source may be counteracted with the
other. In this research, the limited availability of CML
measurements in sparsely inhabited regions could poten-
tially be counteracted by the widespread availability of 1015

IMERG. However, in case both sources have the same
weak points, the weak points can reinforce each other.
For example, both IMERG and CMLs are negatively af-
fected by orthography. As described by Tan et al. (2019),
the current version of IMERG, used in this study, does 1020

not have a scheme to account for orthographic influ-
ences on precipitation, leading to decreased accuracy in
mountainous areas. CML density in mountains is usually
limited.

As the elevated areas in Sri Lanka receive a lot of 1025

rain, accurate measurement is vital for applications such
as flood and hydrological modelling (Min et al., 2020).
For the current research, there was only a limited amount
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of validation gauges available in mountainous regions, so
no clear conclusions can be made on whether the KED1030

interpolation performed worse in mountainous regions.
The 2020 gauge data is significantly more extensive and
does provide opportunities for evaluation of both IMERG
and KED based on elevation. Staying on the topic of
elevation, it has shown to be a very effective drift variable1035

in previous studies to be added to the KED interpola-
tion (e.g. Hudson and Wackernagel (1994); Hengl et al.
(2007)). By combining different measurement methods
with additional drift variables, such as presented in Park
et al. (2017), KED performance can be improved.1040

Assessing the effect of geographical characteristics
such as elevation is a valuable extension of the current
research. This research addressed spatial variation to
some extent, but did not go in-depth on the underlying
mechanics. Linking the spatial variance in performance1045

to landscape characteristics may provide additional op-
portunities for tailoring merging methods. Both IMERG
and KED show strong spatial variations, however, it re-
mains unclear what exactly causes this. It is advised that
prior to a implementation of different methods of rainfall1050

estimation in Sri Lanka, more research into spatial factors
influencing rainfall is conducted.

The Box-Cox transformation with λ = 0.25 used to
normalise the CML and IMERG measurements before
interpolation has greatly improved the results of KED.1055

However, as mentioned before, normalisation of rain-
fall values is tricky. There are many methods available,
all with their strengths and weaknesses (Krzysztofowicz,
1997; Cecinati et al., 2017). The current research em-
ployed the Box-Cox normalisation, which has provided the1060

best results in previous research, however, it was beyond
the scope to compare different methods and quantify the
bias introduced through this normalisation. In the future,
different methods for normalisation of tropical rainfall
prior to interpolation should be conducted.1065

4.2 Limitations of using KED

KED assumes that the drift variable and the variable to
interpolated are strongly correlated. However, the corre-
lation between IMERG and CML rainfall measurements is
highly variable. This limits the accuracy and consistency1070

of the interpolated rainfall between interpolations. An
additional assumption is the requirement that the drift
variable is accurately sampled over the whole domain.
As mentioned before, IMERG is not always accurate. As
found in the scatter plots showing the correlation be-1075

tween IMERG and CML, correlation is often very low.
This can partly be explained by the difference in reso-
lution, causing IMERG to fail to capture local rainfall

events. Applying methods where this correlation is not
required, such as a simplistic mean-field bias Cummings 1080

et al. (2009) or a more sophisticated one, like Double
Kernel Density Smoothing (Shao et al., 2021), will likely
improve results. The anisotropy of rainfall in Sri Lanka
violates the second assumption of Kriging. This will
decrease the effectiveness of the method for estimating 1085

rainfall. However, Haberlandt (2007) and Overeem et al.
(2016a) have reported minute decreases in uncertainty
related to the anisotropy of the data (e.g.Hudson and
Wackernagel, 1994; Goudenhoofdt and Delobbe, 2009).
No in-depth evaluation of the effect of anisotropy on the 1090

accuracy of Kriging has been done for tropical climates,
however. Current results have suggested that anisotropy
negatively impacts the KED performance, although the
effect is limited. However, the methods mentioned previ-
ously do not require isotropy and might thus pose even 1095

better candidates for future endeavours.
Most implementations of KED separate wet and dry

pixels and only employ KED for the wet pixels. This is
motivated by the complication of large amounts of zero
values and improves the correlation of the drift variable 1100

with Z(s) (Haberlandt, 2007; Park et al., 2017). The
exclusion of zero values has the added benefit of making
the normalisation and the subsequent back transform
more effective. However, as the current research aimed to
produce rainfall estimations for the whole country, KED 1105

was employed for all locations. Additionally, assuming the
aim of creating a method that is applicable to real-life,
the creation of country-wide estimations is important.
Thus it is advisable to change the method used or alter
the parameters, rather than limiting the scope. 1110

Kriging on both wet and dry areas significantly com-
plicates the fitting of the variogram. The added lack
of correlation between CML and IMERG prevented the
usage of a climatological variogram, such as used by
Overeem et al. (2021), as the Kriging function could not 1115

be solved. This created the necessity for fitting a new
variogram for each iteration. This method can, however,
lead to badly fitted variograms, in cases where there is
no correlation between CML and IMERG. Additionally,
the difference between the variograms for each iteration 1120

make the methods unstable and computationally expen-
sive (Haberlandt, 2007). Using an extensive record of
IMERG and gauge measurements it is possible to fit a cli-
matological variogram, decreasing the variability between
time steps and making KED more robust. 1125

Another limitation of KED is that the matrix is not
stable when the covariate does not vary smoothly in space
(Goovaerts et al., 1997). Kriging methods that separate
the estimation of the trend from the interpolation of the
residuals, such as Regression Kriging, avoid this by using 1130
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more complex forms of regression (Park et al., 2017).
Furthermore, KED does not allow user-defined weights to
be given. For example, for the current research, it could
have improved performance if locations with a dense
CML network could have had a higher weight for CML1135

measurements and vice versa. IMERG has shown to be
outperformed by CML, and it would thus be favourable to
apply such weights. Geographically Weighted Regression
Kriging, as described by Kumar et al. (2012), is a good
choice between using different sources of measurements1140

as well as other covariates and knowledge about the data
and the field site. This know-how can subsequently be
used to construct a tailor-made merging algorithm, as
presented by Zinevich et al. (2008).
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5 | Conclusion

The current section will provide conclusions on the per-1145

formanco of IMERG for Sri Lanka in both 2019 and 2020.
Next, the performance of KED is discussed. This section
will answer the research questions as posed in chapter
1.2.

5.1 IMERG1150

IMERG shows good Wet-Dry classification for daily mea-
surements but fails to capture the more variable hourly
rainfall. This is signified by the large difference in per-
formance when comparing the hourly and daily measure-
ments. The same difference can be seen when evaluating1155

the statistical metrics, however, IMERG then performs
somewhat better at measuring hourly rainfall intensities.
Especially when compared to the hourly gauge measure-
ments, performance is good, with an RB close to 0 and a
low NMAE. IMERG does show variation in performance1160

between different months, but no distinct seasonal effects
are found within the period under review. When consid-
ering the whole year, some seasonal variation is found.
Especially when considering the RB and NMAE, IMERG
appears to be unable to accurately capture rainfall during1165

the first IMP. The results suggest a slightly improved
performance in the NEP and a decreased performance in
the second IMP. This does correspond with the behaviour
of IMERG as described in previous literature. IMERG is
unable to capture the highly local and intense showers of1170

the second IMP, while dryer NEM with more moderate
rainfall is captured better. However, the results show
only minimal change between months, and the pattern
is not sufficiently clear to warrant strong claims. With
regards to the spatial variability, IMERGs performance1175

in the wet region of Sri Lanka, the southwestern part, is
better than in the other regions. However, no distinct
spatial patterns are found. Understanding of the topog-
raphy and the effect of other factors on precipitation
patterns is very valuable for future research. The strong1180

spatial variation in KED and IMERG indicate strong spa-
tial rainfall variability over Sri Lanka. Future attempts
at merging multiple sources of data need to be able to
address this challenge.

5.2 KED1185

Rainfall interpolation using KED with CML derived val-
ues and IMERG is not able to capture rainfall better
than CML or IMERG alone. In general, KED underesti-

mates rainfall. Compared to the performance of IMERG
and CML, all metrics point towards a decreased perfor- 1190

mance. Especially the statistical metrics show a strongly
decreased performance with respect to CML. KED per-
forms well at Wet-Dry classification, but still does not
perform significantly better than IMERG.

Seasonality does not seem to affect the performance 1195

of KED, with all performance metrics similar between
different months. While the difference in RB is large
when considering the separate months, no distinct pat-
tern is visible in the metrics. Spatially, more pronounced
patterns are recognized, mainly coinciding with the cli- 1200

matic regions. Additionally, the events in locations within
regions with high link density are captured better. This
further limits the applicability of KED for Sri Lanka,
as one of the main potential benefits was its perceived
ability to estimate rainfall in rural areas with limited 1205

amounts of links present. The quality of estimations by
KED strongly varies over the country, complicating any
solid conclusions on its overall performance. However, as
it has not garnered improvements compared to existing
methods, merging IMERG and CML can best be done 1210

with a different method.
Considering the rainfall maps, it can be seen that

KED maps rainfall events in a highly local manner. Fur-
thermore, KED interpolated rainfall intensities can be
very high. While these very local and intense precipita- 1215

tion events are present in tropical climates, the extreme
amounts of precipitation render the maps unlikely to
represent reality. KED is also not able to realistically
capture rainfall patterns.

From this research, it can be concluded that the cur- 1220

rent implementation of KED is not suitable for estimating
rainfall in Sri Lanka. While KED does perform well for
some events, the performance is not consistent and varies
strongly. In some instances, impossibly high values are
estimated. Overall, the current research has contributed 1225

to the understanding of the performance of IMERG and
the difficulties of constructing a merging algorithm for
Sri Lanka.

The method presented in the current research can be
improved upon by constructing a more robust variogram, 1230

with climatologically derived parameters. This will pre-
vent the large variation between time steps. Additionally,
different normalisation methods should be employed to
uncover the possible negative effects of the Box-Cox
transform as used in this study. Future research should 1235

aim to employ merging methods that have fewer assump-
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tions associated with them, such as Double Kernel Den-
sity Smoothing or methods that allow differentiation on
covariate weighing such as Geographically Weighted Re-
gression Kriging. The rather simplistic regression model1240

as used in KED is not able to capture the complicated
relationship between the CML and IMERG measurements.
Furthermore, an important suggestion is the extensive
evaluation of seasonal and spatial factors prior to merging
different sources of data is very important for understand-1245

ing and improving results. Building upon the method
as presented in the current research will further under-
standing of weaknesses in methods used and allow for
effective improvements.
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Table A.1: Table of performance scores for IMERG for hourly and
daily gauge sums in 2019

Station Name (D) POD POFA ACC HSS
Badulla 0.99 0.16 0.85 0.48

Bandarawela 0.99 0.15 0.85 0.35
Galle 0.99 0.33 0.67 0.075

Hambantota 0.96 0.29 0.72 0.3
Katugastota 0.94 0.25 0.75 0.39
Mannar 0.93 0.41 0.64 0.28
Mattala 0.93 0.23 0.77 0.43

Monaragala 0.95 0.24 0.77 0.4
Pottuvil 0.9 0.26 0.73 0.34

Ratmalana 0.98 0.26 0.73 0.09
Station Name (H)

Anuradhapura 0.76 0.65 0.82 0.39
Batticaloa 0.63 0.69 0.76 0.29
Colombo 0.84 0.73 0.65 0.25
Jaffna 0.62 0.77 0.71 0.19

Katunayake 0.78 0.77 0.64 0.2
Kurunegala 0.15 0.76 0.55 -0.1

Mahailluppalama 0.15 0.63 0.49 -0.08
Polonnaruwa 0.69 0.63 0.79 0.37
Puttalam 0.74 0.78 0.69 0.2
Ratmalana 0.49 0.79 0.58 0.06
Trincomalee 0.006 0.89 0.19 -0.008
Vavuniya 0.67 0.65 0.81 0.36

Table A.2: Table of variogram parameters

month day hour minute model nugget sill range
09 12 08 00 Matern 0.005589113296940393 0.22808828202229586 37093.76962561694
09 12 09 00 Spherical 9.108982867930609e-4 1.7442658266845914 24087.094274913215
09 12 10 00 Matern 0.11629149051076963 2.393756560980867 13250.691374731437
09 12 11 00 Matern 0.14475087625975383 1.3138379616419995 56502.65991561526
09 12 12 00 Matern 0.02760509021869387 1.4361796877420916 109873.94272171016
09 12 13 00 Matern 0.02622728431563996 0.7650065302432604 113598.00409708492
09 12 14 00 Matern 0.04444916953462991 163554.44115965505 125705300.38014339
09 12 15 00 Matern 0.026087366560612762 36.291295131955096 3624407.979533299
09 12 16 00 Matern 0.018352783528233295 14.93075019043334 2177061.7517854203
09 12 08 30 Matern 0.15660771044110217 1.2735160986768024 20871.770960232774
09 12 09 30 Matern 0.14091591834874637 2.182773284164124 23507.944781831502
09 12 10 30 Gaussian 0.13756126218188103 1.6615060821005074 14672.126124672532
09 12 11 30 Matern 0 0.8461446936080963 42466.65460655821
09 12 12 30 Matern 0.02659634985688147 1.519937256564354 121806.44626193121
09 12 13 30 Matern 0.0931228468413834 5209.457441062224 28243378.61393427
09 12 14 30 Matern 0.0362013896716372 9293.726559949495 95217704.16102463
09 12 15 30 Matern 0.03290956305084913 31203.12060827257 144188035.56019634
09 13 00 00 Spherical 0.043871694282218675 0.2904052247435692 10589.718389510532
09 13 01 00 Matern 0.013434120010583698 0.5726533690532423 3830.273951568925
09 13 03 00 Matern 0.010578982378703944 0.07859522085043992 12787.026708105463
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09 13 04 00 Spherical 0.14191354812914747 0.1590788681420222 10579.762821669017
09 13 05 00 Matern 0.11862774940163215 9.750003772236205 16249836.157411609
09 13 06 00 Matern 0.004264754149204802 0.4545141296508821 99701.68660262576
09 13 07 00 Matern 0.0023998617785729193 0.16426288062784541 236029.35121864392
09 13 08 00 Matern 4.073003704944881e-4 0.8320460223101129 495468.21157689404
09 13 13 00 Matern 0.03290760659477636 1.0975510463622589 76736.89483070375
09 13 14 00 Matern 0.03425373808222919 2.3504366111227935 169888.94077901338
09 13 15 00 Matern 0.04692326364923575 2.2751506847411505 189158.48112663097
09 13 16 00 Matern 0 3.411940489719586 170671.16816819334
09 13 17 00 Matern 0 3.371632481623456 369914.488617324
09 13 18 00 Matern 0 5.865476404875405 700502.2393197595
09 13 19 00 Matern 0.026219208193515794 4.2557728410588656 365284.39865969925
09 13 20 00 Matern 0.012336696478755214 427.40624247163225 14800899.124390485
09 13 21 00 Matern 0.004901622329359081 112.41720995821083 29574233.834928755
09 13 22 00 Matern 0.002338630462109691 0.4926449736547378 465529.1915910043
09 13 00 30 Matern 0 0.7500910917781517 3947.269119405594
09 13 02 30 Gaussian 0.11510736220222723 0.28558401074731166 11089.040432894533
09 13 03 30 Spherical 0.0773608726083181 0.0773608726083181 52481.320630991075
09 13 04 30 Gaussian 0.12264459335890895 0.20581826563848432 8687.525831417968
09 13 05 30 Gaussian 0.0066906884643854235 0.6284890075259095 80723.58685457896
09 13 06 30 Matern 0.0025233743509108387 0.19763606522597468 123632.75215784264
09 13 08 30 Matern 0.0015316209182140996 0.15324130519403512 212651.4685670108
09 13 10 30 Matern 0.13033325580577954 0.5198493959117958 109124.46521420394
09 13 11 30 Matern 0 5.187418894937304 2145.938587924779
09 13 12 30 Matern 0.05760945805256919 0.4734830945976607 33739.071537891046
09 13 13 30 Matern 0.05597941801266831 1.5724880947680893 112910.46182586126
09 13 14 30 Matern 0.021133282126118043 1.678649126322971 112570.25108595767
09 13 15 30 Matern 0 2.861478283541106 116122.34411512964
09 13 16 30 Matern 6.709293889288557e-5 4.687347101375042 346504.3658174571
09 13 17 30 Matern 0.0026497391754595778 2.8506700603725434 347157.1760629948
09 13 18 30 Matern 0.017607569637519103 3.4219783371646115 625206.2949443264
09 13 19 30 Matern 0.012121346966840323 13225.388717550957 110043858.16746694
09 13 20 30 Matern 0.026269058401594103 16.418590039341463 1167655.665062557
09 13 21 30 Matern 0.0010237301244571061 0.8390026223794483 1057361.0722065743
09 13 23 30 Spherical 0.02470867478512847 0.03835309043277651 13956.532587310638
09 14 00 00 Spherical 0.003560164951640842 0.21574714839801978 8163.522718890576
09 14 01 00 Matern 0.04465791680424408 0.5201374417357496 6717.500898539507
09 14 02 00 Matern 0.021385207339336822 0.3688500542023622 5231.943676179357
09 14 03 00 Matern 0.002066771247072911 0.009170227571176692 126676.88207482292
09 14 04 00 Spherical 0.030981051057682785 0.06689345937218788 9926.076195762305
09 14 05 00 Matern 0.011256635897083901 0.43569142932934013 148188.06948663856
09 14 06 00 Gaussian 0.013114642925173848 0.15438435806471226 11891.031626101309
09 14 07 00 Gaussian 0.03487519056317878 0.8051691946425105 7781.718182265326
09 14 12 00 Matern 0.014653628253794671 0.395336019825134 19493.522856874348
09 14 13 00 Matern 4.0351206483911275 4.0351206483911275 52481.320630991075
09 14 15 00 Gaussian 0.008451703282734965 0.7297205141739828 55290.535595499845
09 14 16 00 Matern 0.01652743938528187 3.432919425916824 109850.28052432691
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09 14 17 00 Matern 0.026491289711495433 0.5675047002231008 108707.57623179411
09 14 18 00 Matern 0.029035560929566367 2024507.6670864122 891557223.6059744
09 14 21 00 Matern 0 6.690078352858552 1719.751911564051
09 14 22 00 Matern 0.012732853503672982 0.1958203571309129 21139.418405829754
09 14 23 00 Gaussian 0.24050227223834925 0.3008906591705131 10791.710952074936
09 14 00 30 Spherical 0.02585728461176075 0.3649512424255654 9731.894467410802
09 14 01 30 Spherical 0.03336174603658578 0.27585500925172013 12862.31400047627
09 14 02 30 Matern 0.011421993872482604 0.21874421226053306 11000.061323719437
09 14 03 30 Spherical 0.022120374781945513 0.03504842882666172 4204.067992551638
09 14 04 30 Matern 0.022536952767828654 0.3793946788376613 289463.97639601707
09 14 05 30 Matern 0.009361829574413384 0.3155863276877768 89080.88781933318
09 14 06 30 Matern 0.17096604272898952 1.342571176553752 8900.033185239752
09 14 11 30 Gaussian 0.027751178136248937 1.2796156262064662 20311.899234207656
09 14 12 30 Gaussian 0.031411051475494424 1.1502483164653117 28508.120585574135
09 14 13 30 Matern 3.972682825762235 3.972682825762235 52481.320630991075
09 14 14 30 Matern 0.0030642684626006346 0.43588436487981574 36177.719408631434
09 14 15 30 Matern 0.07116241338122399 1.9839717025902108 110728.80740763077
09 14 16 30 Matern 0.02188243357882313 2.1445476256773297 114674.91725762002
09 14 17 30 Matern 0.037155850039377714 6.6525412789787115 1132175.7852364553
09 14 18 30 Matern 0.0014931535202049255 196.88872956200314 142825893.55683863
09 14 20 30 Matern 0.07304503614694756 0.28785281033761884 8250.362672721616
09 14 21 30 Matern 0.09112759977027332 1.5541802464468142 4949.408251164205
09 14 23 30 Spherical 0.13031779191328308 8.747092875101828 11120.990238330283
09 15 01 00 Spherical 1.664755022163072 3.7452098715952022 5461.946472969574
09 15 02 00 Spherical 0.31654325921320137 3.0883949043866137 8656.927269830727
09 15 03 00 Gaussian 0.002837584647252193 0.2170034902221573 41957.24910797407
09 15 04 00 Gaussian 0 3.956978150822941 2870.2211361943882
09 15 05 00 Matern 3.3052590140277545 5.782877813387364 5032.091107050195
09 15 07 00 Gaussian 0.015281517300591624 1.7753602255567402 32214.07369688844
09 15 08 00 Matern 0.2464042491244648 1.242932761418269 50099.43821168277
09 15 09 00 Spherical 0.5202571935680501 5.202012755412935 13242.7497698185
09 15 10 00 Gaussian 0.11808141910818094 2.7906220766261733 24549.774201499124
09 15 11 00 Gaussian 0.13138713504400037 4.75607455797949 42679.951747038736
09 15 12 00 Matern 0 8.139185093036204 2960.646137293945
09 15 13 00 Gaussian 0.6655417641989952 4.988635230467254 12120.450768679153
09 15 14 00 Gaussian 0.5082834054322412 4.4612058509899235 15619.49415164038
09 15 15 00 Matern 0.5771823865305962 6.80795145438758 14127.87782491997
09 15 16 00 Matern 0 8.205820852211282 9709.076545847387
09 15 17 00 Spherical 1.9350891171029072 5.599785945401907 25945.428217626246
09 15 18 00 Gaussian 0.6436486817208876 8.514966651985501 23375.262716052443
09 15 19 00 Gaussian 0.6405626347051917 3.9699727258505635 15676.264193919093
09 15 20 00 Gaussian 0.060511183965724746 1.938111629103513 53366.30388505557
09 15 21 00 Matern 0 5.846412940956025 822.962999876781
09 15 22 00 Matern 0.9817310059799246 8.740138901004968 4566.981109852034
09 15 23 00 Gaussian 0.8018413626531378 8.896220766983928 12200.875013869803
09 15 00 30 Matern 0 5.3791763263210415 2343.340885979444
09 15 01 30 Matern 0 6.000860156653075 1892.281288924534
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09 15 02 30 Gaussian 0.21972378857969208 1.4405542675692844 8938.4751641998555
09 15 04 30 Spherical 2.327052740433223 6.743270970949419 5476.445868590423
09 15 05 30 Matern 0.3696242937842659 5.3957457757991 6503.500634459961
09 15 06 30 Matern 0.03296128748453878 1.4883357976830824 26298.72900771672
09 15 07 30 Gaussian 0.03459329677280134 1.7985585503008354 30984.447830558798
09 15 08 30 Spherical 4.0169375736341335 10.094006626410202 5588.155679956225
09 15 09 30 Gaussian 1.5126729983040121 5.905334811580134 12997.309032295569
09 15 10 30 Gaussian 0.08384538371171503 3.8830000907358664 41134.3653583551
09 15 11 30 Gaussian 0.3898528508971826 5.518915470361039 40406.68116873687
09 15 12 30 Matern 3.0298891927190144 7.9293079928982095 5269.464318566251
09 15 13 30 Gaussian 0.8386175944078029 6.771797312672123 12899.829538759877
09 15 14 30 Matern 0.30344810328074817 5.028732801095265 31418.94336647328
09 15 15 30 Spherical 1.823105786175702 6.591335964626316 12577.014704714968
09 15 16 30 Matern 1.0912388170036051 9.007543286639798 15008.036841315077
09 15 17 30 Gaussian 0.6258298543413818 8.135212344960571 20942.67235881631
09 15 18 30 Gaussian 1.328202029954648 5.913320957691936 9519.616464761295
09 15 19 30 Gaussian 0.0821982845917098 2.677193426748599 32416.07836154832
09 15 20 30 Spherical 0.012066380906055222 0.8302480134868488 13171.276235950252
09 15 21 30 Gaussian 1.1483850831110303 9.514665605511082 17071.977932880014
09 15 22 30 Gaussian 0.43919105441010226 9.65734809741283 11375.42251187517
09 15 23 30 Gaussian 3.1541057651381172 9.529572753069552 10703.336461522149
09 16 00 00 Gaussian 0.851904244015224 7.182210417250013 8782.61956142162
09 16 01 00 Matern 0.3926715277965749 5.659211944662687 7331.593359266849
09 16 02 00 Spherical 1.0451201565257677 5.805111297090514 10148.84306737889
09 16 03 00 Spherical 1.708259412689852 9.491364394613104 10569.08012918675
09 16 04 00 Spherical 0.6508074078470915 6.081907138230068 11522.514275136322
09 16 05 00 Gaussian 1.6619952528118083 10.832567696493296 14896.039639415674
09 16 06 00 Gaussian 1.1613207876255565 6.268225087810425 12376.377290710916
09 16 07 00 Exponential 0.03906587591907812 1.9012530943344392 13002.67751232707
09 16 08 00 Gaussian 0.23574550278336143 3.067790083194583 17376.425202188668
09 16 09 00 Spherical 1.0661166386115388 5.217141639886485 9179.283642647251
09 16 10 00 Spherical 0.36387648003920436 2.5379363424975456 6588.055557508096
09 16 11 00 Matern 0.890272421762698 9.563544358353465 11945.327972510242
09 16 12 00 Matern 0.4936473369843119 6.348285371142297 9950.387547507464
09 16 13 00 Gaussian 0.5667024950394973 6.119236206475015 14173.162914492068
09 16 14 00 Gaussian 0.2034075608062672 6.871863576429865 21857.115374256646
09 16 15 00 Gaussian 0.20999129293284058 1.5999235329215904 19623.91234816813
09 16 16 00 Matern 0.15802385723636522 1.7664633805899632 18004.59558749113
09 16 17 00 Gaussian 0.006696581249990704 0.44534713455367675 39052.783971050485
09 16 18 00 Gaussian 0.0010703206896878722 0.09440528839106722 35937.34979243763
09 16 20 00 Spherical 0.11275976994666859 0.6458658561014987 30790.832304364045
09 16 21 00 Matern 0.0457163041113285 0.6615256023565161 12007.87481741814
09 16 22 00 Matern 0.004627071145116426 1207.0624994763239 180886558.02277657
09 16 23 00 Spherical 0 6.393228510941886 6041.5600936355
09 16 00 30 Spherical 1.990007660156444 8.094408211389327 5205.136289660271
09 16 01 30 Spherical 1.3466070287716092 5.650197745433562 9145.465695431929
09 16 02 30 Gaussian 0.3985123055553032 4.2384991973215955 17294.535906807043
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09 16 03 30 Matern 0.772587872843198 5.950696331683707 16731.32517011128
09 16 04 30 Spherical 0.6540361970840701 5.825332297942259 12468.566032288383
09 16 05 30 Spherical 0.42478125192409855 7.584589466880576 18346.35621203936
09 16 06 30 Gaussian 0.35209964869703086 2.469976046504316 13509.910612474076
09 16 07 30 Gaussian 0.3045887470242687 1.7920980852173958 16465.231691863788
09 16 08 30 Gaussian 1.8311432007353632 3.8482772978636133 16679.95436072353
09 16 09 30 Spherical 2.4440751701637082 4.3399919860358 8732.19428850519
09 16 10 30 Spherical 0.044172956643249946 7.65128578624522 14159.386821742293
09 16 11 30 Spherical 1.0617542436806755 8.698632290543491 8961.290467120883
09 16 12 30 Matern 0.316638526528566 4.410351991050686 13979.79343434031
09 16 13 30 Gaussian 0.2637009102350866 7.460292316377346 14737.95277647152
09 16 14 30 Gaussian 0.12070570181266374 3.8803942298854714 26886.115866050284
09 16 15 30 Spherical 0 0.8736970027965618 21773.242909155284
09 16 16 30 Gaussian 0.12677691243585748 1.245509377145921 20533.580575573003
09 16 17 30 Gaussian 0.0017874138371281416 0.3431519389715304 43539.271130886715
09 16 19 30 Exponential 0.006366800661046432 0.20296853554254746 10040.19342816082
09 16 20 30 Gaussian 0.12970931028015686 1.5118032402853658 12541.559615457067
09 16 21 30 Matern 0.0012597294450217005 9.058470793890745 2709841.8817998916
09 16 22 30 Spherical 0.18440828652878072 0.601403015697427 7144.354520752205
09 16 23 30 Gaussian 0.5576238821231458 3.9313058407765746 8596.33953645466
09 17 00 00 Gaussian 0.019604087125814573 0.8256597446108036 24673.3260360379
09 17 01 00 Matern 0.05604881898064395 0.6070461944041768 3965.4216360624146
09 17 02 00 Matern 0.10235082419006127 1.1498197398448495 19284.541979975143
09 17 03 00 Matern 0.01692236682721618 0.4575199216562882 49837.723942886405
09 17 04 00 Matern 0.10139952701197621 1.0655541734244538 12399.655465494316
09 17 05 00 Gaussian 0.07136610032108003 1.8982208520659591 18047.52068389618
09 17 06 00 Gaussian 0.031319585233449514 0.9219926911391315 24525.87716114735
09 17 07 00 Matern 0.0115371241690275 0.47433387768298485 55075.81092062763
09 17 08 00 Gaussian 0.09718390315855681 0.5393010939922279 18707.16454715752
09 17 09 00 Spherical 0 10.755185280117685 5608.241939169323
09 17 10 00 Gaussian 0.008761721460975674 0.47896930333057297 36755.85057466649
09 17 11 00 Matern 0.009604279727517703 0.38372320243591523 59075.08963734897
09 17 12 00 Gaussian 0.06431960289345262 1.7203501475205432 35682.146691086156
09 17 13 00 Gaussian 0.0701472954065501 1.4642890101662656 46283.54510391105
09 17 14 00 Matern 0.01977275083793046 0.5910799290115457 48154.59113810638
09 17 15 00 Matern 0.001328003211138066 0.6090382308988371 133495.50982236487
09 17 16 00 Matern 5.44093090158777 5.44093090158777 52481.320630991075
09 17 17 00 Spherical 1.9099384370946728 6.153556410903861 5527.497341698233
09 17 18 00 Gaussian 0.0017770394387856478 0.5056035583156617 28406.869858486865
09 17 21 00 Matern 4.649773477272244e-4 0.336318003452068 93017.19152861505
09 17 22 00 Spherical 0 2.442093143996777 5711.68011908497
09 17 23 00 Matern 0.07164188896000516 1.4713545593785904 10417.281864143004
09 17 00 30 Spherical 0.0778346421612881 0.42708414088626845 14555.474284530817
09 17 01 30 Spherical 0.06868264177172258 1.0574185502736386 20035.22892401423
09 17 02 30 Matern 0.04264517289065021 0.7713125825460352 29465.93948947446
09 17 03 30 Matern 0.005559971825853433 0.5886601508016434 43694.47663600873
09 17 04 30 Matern 0.2661798991271013 5.071373248974309 15148.454229795823
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09 17 05 30 Gaussian 0.013800172570686078 0.6026944276231493 44781.95076768043
09 17 07 30 Gaussian 0.1822687886308093 1.05714125521867 15640.516986522098
09 17 08 30 Gaussian 3.1176589707931264 122608.99948892496 23793320.903864257
09 17 09 30 Matern 0.30935285088491465 2.7056742918517127 10290.418761950072
09 17 10 30 Matern 2.5383699223239235e-4 0.6223619535047227 46279.25282650647
09 17 11 30 Gaussian 0.07449269948343094 0.5909275222747615 41296.188385858506
09 17 12 30 Gaussian 0.05039766234351575 3.20911665932465 42947.43916557151
09 17 13 30 Gaussian 0.034870927932473254 1.205034405523964 47430.09734777981
09 17 14 30 Matern 0 1.2208656457146685 276109.8451040436
09 17 15 30 Matern 0.015442307240381217 12.184050674879353 2306175.2953646034
09 17 16 30 Matern 1.5219859917297045 8.814425978792864 8350.898070892572
09 17 18 30 Matern 0.0012777948746909196 0.08118074041808314 35303.11951509534
09 17 20 30 Matern 0.0011557630354518433 0.1056003566463532 80964.3479281099
09 17 22 30 Matern 0.3362482028545626 3.9198047800299873 5600.849945538584
09 17 23 30 Matern 0.0030585605610411893 0.18034863797205775 31658.49347717342
09 18 00 00 Matern 0.018630861493938645 0.30757745078661447 13589.867294327327
09 18 01 00 Gaussian 9.842103555712828e-4 0.09235975047806541 83620.23878378449
09 18 02 00 Matern 0.011759287449905759 0.24905085824886888 390523.22078412725
09 18 03 00 Gaussian 0.047893558148774155 0.5432326999256056 11970.979465265276
09 18 04 00 Gaussian 0.07523221018716486 0.7721760872198851 8433.2690678792
09 18 05 00 Gaussian 0.12643556050300703 0.71824992242145 13665.71413183987
09 18 07 00 Matern 0.053509690958318944 0.5311554713927645 14997.561629818232
09 18 08 00 Matern 0.05758758059928959 0.5869162050729152 8688.07395770549
09 18 09 00 Matern 0.04989119070212046 0.4366884148553105 7137.602033199394
09 18 10 00 Matern 0.01891929761368872 0.7220737746885656 37878.862054078745
09 18 11 00 Matern 0.0017636667410771808 4.440932476296048 744524.5427673823
09 18 12 00 Matern 0 0.44150355922419643 13200.567840368616
09 18 13 00 Matern 0.02337095949370199 4.297376735570598 196200.62094163624
09 18 14 00 Matern 0.04817494498632661 2.5921108927194125 82500.72778279989
09 18 15 00 Matern 0.02621978104974294 7.241017253672776 673216.1309333289
09 18 16 00 Gaussian 0.0025191661533738832 0.5913196581611858 50143.1165766948
09 18 17 00 Gaussian 5.872783514066073e-4 0.20967761002004973 70052.54554711074
09 18 19 00 Gaussian 0.010388017265601183 0.7027420583707918 73521.99530482468
09 18 20 00 Matern 0.011237237268814319 0.7898383543009939 56803.137729360555
09 18 21 00 Matern 0.006954085138245042 0.259723567051555 37799.65627860041
09 18 22 00 Matern 0 7.465834075618857 1968.6593824184527
09 18 23 00 Spherical 0.5791370473745403 7.8171884297103205 17226.818688996693
09 18 00 30 Gaussian 0.012836635119379965 0.1770576998929455 14971.114921755721
09 18 02 30 Matern 0.05869593104081579 0.24563526286462067 17346.820538077995
09 18 03 30 Spherical 0.052188735492383585 0.5333856748894908 19203.456622124424
09 18 04 30 Spherical 0 0.8164121043867002 25261.203607074727
09 18 05 30 Matern 0.12360044972365274 0.5052423685062346 9852.325508395132
09 18 06 30 Matern 0.014535247709443111 0.2037958253884233 13067.740864206555
09 18 07 30 Matern 0.04904546992322212 0.5216669735564596 9558.665604249918
09 18 08 30 Matern 0.07328700970048382 0.34283515812171195 9596.383073678087
09 18 09 30 Gaussian 0.08434921854075199 1.3260391110657266 15398.509382949365
09 18 10 30 Matern 0.0063375625666485065 1.2059151718985333 41584.208695222274
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09 18 11 30 Matern 0 1.101097431590669 81720.22452210746
09 18 12 30 Matern 0.0633466001093679 1.8114495220447653 114329.20116258747
09 18 13 30 Matern 0.11544504147924162 5.820123905228986 266842.3527003298
09 18 14 30 Matern 0.06984308627284562 4.323958833629083 258555.45157712052
09 18 15 30 Spherical 0.0033658940584012464 12.953195264418964 11720998.217605209
09 18 16 30 Matern 0.0019670085978487706 0.20249376357446086 63958.08575181162
09 18 18 30 Matern 0.008614725397000188 0.5991595781598082 73731.33069601822
09 18 19 30 Gaussian 0.0011659483141111646 0.08096811111283121 76323.3048498064
09 18 20 30 Matern 0.012730387770643269 1.6180282045636605 51217.899232435375
09 18 21 30 Matern 1.9996221776728904 3.6687390684102708 143828.94021867603
09 18 22 30 Spherical 5.049850482773225 7.063416575986819 7716.918634020897
09 19 00 00 Gaussian 0.019797245490140496 1.2568929902896175 26355.703212026317
09 19 01 00 Matern 0.06899089685730235 0.8634248638595542 10122.183232657597
09 19 02 00 Matern 0.008080768391645215 0.3503752518831477 90552.2476314028
09 19 03 00 Matern 0.007065197455622464 0.32675080687587943 29671.88400271949
09 19 04 00 Matern 0.009875480388367192 1.5353819188998319 15333.133469162798
09 19 05 00 Gaussian 0.3026559197343126 1.9100762808875007 22171.431614726152
09 19 06 00 Gaussian 0.01645468055833708 1.475612315321865 39201.46290075405
09 19 07 00 Spherical 3.4622714721097014 8.180739946702207 5125.76543866575
09 19 08 00 Matern 2.630099369086186 3.515346140484216 31194.853696767073
09 19 09 00 Gaussian 0.062380187130612566 2.0003236142585585 34134.959116157384
09 19 10 00 Gaussian 0.05693665892490365 2.4574848005752816 34274.71614572726
09 19 11 00 Gaussian 0.0982161630861799 3.0301390892037205 33480.79520576668
09 19 12 00 Gaussian 0.12185915703460193 5.775115743970616 42823.571672114136
09 19 13 00 Gaussian 0.23151363095319133 4.7405196834727885 16340.374980779112
09 19 14 00 Matern 0.10827972501784554 3.1141726338572293 43928.31538113319
09 19 15 00 Gaussian 0.07151854493807089 0.9258612154399323 13011.397226802705
09 19 16 00 Gaussian 0.22068570353959313 2.674231296931478 20476.231780083283
09 19 17 00 Gaussian 0.19700975423055048 0.410917141181537 26731.290861307112
09 19 18 00 Spherical 0.20955816698818885 2.8898987264411873 5507.468600676413
09 19 19 00 Matern 0 0.426774711524469 41477.900134546966
09 19 20 00 Matern 1.0507695782499484e-4 0.6539830143431639 30303.503014001562
09 19 21 00 Gaussian 0.038315449037406454 1.2542842757214427 25726.87115720619
09 19 22 00 Spherical 2.687639853216663 8.96778426902262 7878.225205221274
09 19 23 00 Gaussian 0.14827296265804815 3.7093317630382097 18553.941936586307
09 19 00 30 Gaussian 0.007696832574420968 0.30051172236888724 31621.786724369515
09 19 01 30 Matern 0.057490944484730716 0.32166028152479575 9870.189232864312
09 19 02 30 Matern 0.00955522197762097 0.5659393001598564 38444.12335804846
09 19 03 30 Matern 0.027020461598791023 1.0925367989120456 14239.043378550034
09 19 04 30 Gaussian 0.019425434705320176 1.6840414750822943 22599.054415478025
09 19 05 30 Gaussian 0.0954486295230612 1.7482229551520503 27549.162049723363
09 19 06 30 Matern 1.5652307852483156 2.8422629719075925 174018.4740005117
09 19 07 30 Matern 0.1953493948786753 4.704564078393187 9624.847698681036
09 19 08 30 Gaussian 0.028247747877858147 1.5879680330690162 44311.8599866238
09 19 09 30 Gaussian 0.024893293687383293 2.260146573484708 34135.259331543515
09 19 10 30 Gaussian 0.08666239734756853 3.028749413030554 27660.209101342225
09 19 11 30 Gaussian 0.0659816001088736 4.032484178781777 42923.89216174248
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09 19 12 30 Matern 0.18812093869634344 5.054189179292675 39784.4836427338
09 19 13 30 Gaussian 0.19964159150852132 5.500781049562925 23783.186568515215
09 19 14 30 Matern 0.09901204405865822 1.6826959211844381 16470.047938041822
09 19 15 30 Matern 0.03405543814375654 1.7388255831602477 17920.822025882455
09 19 16 30 Gaussian 0.24937555491704938 1.8161547180513358 22311.716311766686
09 19 17 30 Spherical 1.4332396767507485 9.4402542736817 12387.351640115592
09 19 19 30 Gaussian 0.013567673567282945 0.73993949864134 23130.479291301504
09 19 20 30 Matern 0.0011327649410850483 0.628335464255655 39645.446415011946
09 19 21 30 Spherical 0.6942163265364991 2.6674958402953473 6694.544202088519
09 19 22 30 Matern 0.18973304233537439 5.4099057067764695 12880.742667820825
09 19 23 30 Gaussian 0.16195226387585734 5.008256514628221 22961.579858303623
09 20 00 00 Gaussian 0.047076780640183176 1.9174614395618685 24519.15297265944
09 20 01 00 Matern 0.02665162860111574 0.38972229303740563 19154.681012186138
09 20 02 00 Matern 0 0.48800823833247287 2904.8134804490583
09 20 03 00 Spherical 0 4.595574254808019 3373.0348524624114
09 20 04 00 Matern 0.15973576911697873 1.5345987017809826 16486.715411786
09 20 05 00 Matern 0 0.7532931822583573 1192.133086597116
09 20 06 00 Gaussian 1.1431611576892904 1.8932705205595406 8655.658613071668
09 20 07 00 Spherical 0.008486200417859968 0.10817237735372923 57238.62241536371
09 20 08 00 Matern 0.11048581784613425 0.2077216929054031 42891.72645199338
09 20 10 00 Gaussian 0.23066474964413952 3.3222693619037726 12444.1110135563
09 20 12 00 Gaussian 0.08064573211915987 1.7581082811468607 53054.416075804445
09 20 14 00 Gaussian 0.004508880699299586 0.10264324470507767 17579.38784547792
09 20 15 00 Gaussian 0.0034319442485960545 0.3414655854346783 58936.67071207835
09 20 16 00 Gaussian 0.01523190626070853 1.0318007021520126 60591.35424249302
09 20 17 00 Matern 0.01515755435544875 390.74991660803136 56545060.083438516
09 20 19 00 Matern 7.029849952277487e-4 0.14501082193159756 147148.86205709862
09 20 00 30 Gaussian 0.034271428812797516 0.8352033399897368 18481.20548892252
09 20 01 30 Matern 0.004332574164407728 1184.5069033114528 15302556.178590545
09 20 02 30 Matern 0 5.767514930949129 2053.523056938436
09 20 03 30 Spherical 1.4699066952726665 5.3085512417474305 5507.073993860306
09 20 04 30 Gaussian 0.1511715478107978 0.3838701744228702 23626.389915624986
09 20 05 30 Spherical 0.8433936238709547 4.770493625348545 7310.472313539542
09 20 06 30 Spherical 0 1.7404239542314037 35842.55275511632
09 20 07 30 Spherical 0 0.07190755941932842 98908.92725725625
09 20 08 30 Matern 0 6.4755774007736635 1937.3537339550892
09 20 09 30 Gaussian 0.05230009396048997 0.5826769304101691 16742.30411268084
09 20 11 30 Gaussian 0.022298305682479924 1.381892477979014 36828.83904373766
09 20 12 30 Gaussian 0.04608085739043403 1.089082685633306 64273.62307114145
09 20 14 30 Gaussian 0.03396409339062696 0.4741799827363769 12390.93557780357
09 20 15 30 Gaussian 0.01874991813461311 0.8842029550163576 62907.683997199805
09 20 16 30 Matern 0 2.129397496287227 347338.21170804446
09 20 17 30 Matern 0.034134754034628574 68.02999422383733 3887572.5313999197
09 20 18 30 Matern 0.0038029175237447484 0.4141984053527101 165293.01170279566
09 21 04 00 Spherical 1.2891677085995712 5.798522035066699 7522.8930936936895
09 21 08 00 Matern 0.0010244342113148092 0.3068144577890016 159488.57947839558
09 21 10 00 Matern 0.0014105757725991904 43.39402999622677 5176090.288843799
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09 21 14 00 Matern 0.003415159934859697 0.11803285568164405 113894.399606502
09 21 15 00 Matern 0.0032528654974497266 0.31685926487149296 132198.260775203
09 21 17 00 Matern 7.597814398065275e-4 0.251436281504776 135594.1884621588
09 21 19 00 Matern 0.0027284909997556187 0.4991373222627825 180839.89413239408
09 21 20 00 Matern 0.00414749083293049 121.64430665466992 12241935.382459862
09 21 21 00 Matern 0.00734907028952401 0.3116099015169749 76516.24642535669
09 21 23 00 Matern 8.001881510131956e-5 1.314686748475384 334154.01563565026
09 21 03 30 Spherical 0 2.3796702343148963 10340.40802309965
09 21 04 30 Spherical 0.21439910299358944 3.880122980536312 12438.25816784835
09 21 09 30 Matern 5.220554880459316e-4 0.45736812869822174 206373.2644875221
09 21 14 30 Matern 0.006414137573483952 0.3106307913859964 118442.6789823176
09 21 16 30 Matern 7.263850463953915e-4 0.17454820062399948 70352.74331256516
09 21 17 30 Matern 4.729776395960167e-5 0.4808348694333304 137803.740202766
09 21 18 30 Matern 6.600454728950624e-4 0.13315421135681485 90370.05553981518
09 21 19 30 Matern 0.0012759262970206036 25386.748244259317 149148072.29201415
09 21 20 30 Gaussian 0.01648184872873789 0.40937772754261753 88553.65028314557
09 21 22 30 Matern 2.819336187168547e-4 2.306087911317457 2461310.444661656
09 21 23 30 Matern 6.678956476482835e-4 0.3513781229322068 52721.11430685695
09 22 00 00 Exponential 0.018354591861478236 9.428280416163542 2721918.340128933
09 22 01 00 Gaussian 0.011494403326794096 0.22501619635687942 25333.890791410573
09 22 02 00 Matern 0 4.08114813390813 1668.2217357819723
09 22 03 00 Matern 0 1.1066763859703335 2131.5985256927584
09 22 05 00 Matern 6.158909090160806e-4 0.5513414215374002 81767.29516290227
09 22 06 00 Matern 0.0047078272951906076 0.1950122773825816 50568.21781389551
09 22 07 00 Matern 0.0032015960278400147 84.1454791689496 49637766.618373886
09 22 08 00 Matern 0.00473035642911489 0.19068969184987342 54671.46465605411
09 22 10 00 Matern 7.3662088724516e-4 2.8699046063785385 987956.5408656739
09 22 11 00 Matern 0.00477266314290517 0.5738974975599666 125731.0000588058
09 22 12 00 Gaussian 0.007908636478837543 0.9735158489854561 71867.69376870096
09 22 14 00 Gaussian 0.03481127336469722 1.8309165950504187 82900.57175903239
09 22 15 00 Matern 0.0045775537342557186 2.345438207405138 68460.75746988512
09 22 16 00 Gaussian 0.051593567573532735 1.9147399739233446 58876.261343097154
09 22 17 00 Matern 0.030063271393393935 1.9173232454418787 104725.46302002219
09 22 18 00 Matern 0.008286414254321146 1.0608943198444765 154973.0294016264
09 22 19 00 Gaussian 0.003239596951416818 0.570993317345389 108638.10867277396
09 22 20 00 Gaussian 0.016060722757950122 0.11897560936725088 20127.430537261596
09 22 21 00 Matern 0.001311540307025776 0.08528939806744902 127208.05462464676
09 22 23 00 Gaussian 0.018111496556925066 0.848069912153214 10205.23621910423
09 22 00 30 Matern 0.05828758663531457 0.3846604811453984 16354.589408503196
09 22 01 30 Gaussian 0.0307970884413708 0.46565112842105427 15885.180337467877
09 22 02 30 Matern 0 6.074841614718401 948.7268465927023
09 22 03 30 Matern 0.00158837292945012 0.5426684212999817 62946.008688143505
09 22 05 30 Matern 0.007739731116125603 0.21185447283815823 55894.1437359004
09 22 06 30 Spherical 0.003891414621445552 3.0294427695246626 2262266.9448245675
09 22 07 30 Matern 0.0018707653486737693 0.8711439618063445 370073.2479882154
09 22 08 30 Matern 0.0016808452870735314 0.0643892893732794 35573.38498041951
09 22 09 30 Matern 0.0011271126017526026 5.612061522254031 1001103.3260079838
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09 22 10 30 Matern 7.574488294597336e-4 11.13736461025116 2454093.149528559
09 22 11 30 Matern 0.0010893656173111726 0.8479055981203121 111696.43891459538
09 22 12 30 Matern 0.010511937848442716 0.9067054559798474 36976.12178704665
09 22 13 30 Matern 0.02853292240708203 1.4636635772880286 66572.90126742466
09 22 14 30 Matern 0.00989773179069998 2.1891288407558838 75242.96591619693
09 22 15 30 Matern 0.038980996174575865 2.3385684025604077 67069.15753035249
09 22 16 30 Matern 0.07481572531304781 1.8337699611461615 72035.85602523279
09 22 17 30 Matern 0.03377095513109552 1.647782859132522 110003.35023702926
09 22 18 30 Gaussian 0.002812277233066645 0.5130317959004618 91214.02622742234
09 22 19 30 Matern 0.007819193991581055 140.98626852432034 53595590.971953586
09 22 20 30 Matern 8.239104498277074e-5 0.06330987404521343 157790.24041342366
09 22 21 30 Matern 8.972224662760559e-4 0.019851235668033117 112884.6057210643
09 22 23 30 Matern 0.03276981183425738 0.23845848103811407 9971.638508457052
09 23 04 00 Gaussian 0.029391121033973445 0.2441167920486472 15563.716631426776
09 23 05 00 Gaussian 0.002550167764334291 0.12547536993546693 22040.218330150034
09 23 06 00 Matern 1.7082249195544898e-4 3.10679147834842 2241361.213532208
09 23 08 00 Matern 0 5.795066273109794 230.93825758229568
09 23 09 00 Gaussian 0 8.026353268409574 2663.1443833485596
09 23 10 00 Matern 0.0356697524709061 4.90401600480206 8311.314284602164
09 23 11 00 Matern 0.10248226211800258 4.482967389595753 10502.163981257127
09 23 12 00 Matern 1.9490815493143059 8.913351613509922 11342.094948902759
09 23 13 00 Spherical 0.5003518594368769 8.7435316186201 11144.972369328412
09 23 14 00 Spherical 1.9663396557289214 7.887024027394452 6424.141659364913
09 23 15 00 Matern 2.8765698152938057 10.019717807084026 32777.52304725358
09 23 16 00 Gaussian 1.152937125734201 10.6510344428196 9571.13393867164
09 23 17 00 Gaussian 1.2210808490197915 8.71907900536246 11042.971865754665
09 23 18 00 Gaussian 1.0817357974742068 9.79271091361899 14489.866767839167
09 23 19 00 Spherical 1.0676280812127192 8.260283120584127 33552.31683347502
09 23 20 00 Matern 1.192396165008309 8.347610361877033 30492.651253606335
09 23 21 00 Spherical 1.189537496335853 5.799824833724662 9714.829208216472
09 23 22 00 Gaussian 2.74627227755712 2.74627227755712 52048.29657395149
09 23 23 00 Matern 2.3336589620508477 2.3336589620508477 52048.29657395149
09 23 02 30 Matern 5.365329822944007e-4 0.1835625009225899 30832.41516437088
09 23 03 30 Gaussian 0.0031564999524579702 0.13178242371001442 55190.4311874949
09 23 04 30 Gaussian 0.04322335894935637 0.4145865975035346 16884.334968130923
09 23 05 30 Matern 6.0477344253201775e-5 0.14772495144386003 96075.0677688935
09 23 06 30 Matern 0.0034170999597060536 0.33865039229112415 42801.06713791585
09 23 07 30 Matern 2.9835469532302814 3.446021043550885 137910.10562345406
09 23 08 30 Matern 0 3.926484091108798 5625.570971769766
09 23 11 30 Matern 1.3363369743800795 6.963474994275881 11860.584560078905
09 23 12 30 Matern 0.0694365566901451 8.589560330939435 10382.123523605504
09 23 13 30 Spherical 1.9168613311355402 8.880522610850086 14765.418041347117
09 23 14 30 Matern 0.4208700863928568 10.706519787516093 5388.419471464339
09 23 15 30 Matern 0.2574393779367094 9.115411193502341 18587.16143411853
09 23 16 30 Matern 0.8223494671264446 10.417532900893669 10438.67161646997
09 23 17 30 Matern 1.5910902129262565 8.150237276528772 27136.716431947025
09 23 18 30 Spherical 0.5617160132137217 9.189299633169842 28679.274517297
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09 23 19 30 Matern 1.601361652934459 8.287391845265022 15278.07141230284
09 23 20 30 Exponential 0.20331062216433707 7.546666265104672 12284.976449410138
09 23 21 30 Spherical 1.9568065284637481 3.588880066015702 5001.91991140048
09 23 22 30 Matern 2.408920926857902 2.408920926857902 52048.29657395149
09 23 23 30 Spherical 1.919772984414915 3.402339664638588 5512.508166274655
09 24 00 00 Spherical 1.1614059102090692 4.600571327470081 8470.233220527856
09 24 01 00 Gaussian 0.29992725640781653 4.569336642793847 16254.124287344706
09 24 02 00 Matern 1.7144199286481396 9.525508369468612 5658.856657964458
09 24 03 00 Matern 0.05322829672799222 6.66372783510456 5585.6510795287195
09 24 04 00 Matern 0.628675841725945 7.3436329589506855 3758.6955918165213
09 24 05 00 Matern 0.8557711010954407 8.610633778537126 25481.500710797987
09 24 06 00 Matern 0 3.8413618689623648 7530.091603173101
09 24 07 00 Matern 0.5954453964956329 3.5242307244369355 12005.984436320623
09 24 08 00 Matern 1.244268629245773 4.002539479379513 13821.307860949035
09 24 09 00 Gaussian 0.8931022717478335 6.647926631571626 13797.751076894003
09 24 10 00 Matern 0.06263133579733181 3.928531656365689 9316.750509087096
09 24 11 00 Spherical 0.16436245024701646 2.361366394502106 113418.72271793596
09 24 12 00 Matern 0.15193873129721797 2.1712484015286244 25704.87107489138
09 24 13 00 Spherical 0.3958657610660607 4.961786192691815 19142.96040057096
09 24 14 00 Gaussian 1.2517687706632805 5.22693806689402 17815.19898669685
09 24 15 00 Matern 1.7241302914018206 4.535770827641457 19949.29321337974
09 24 16 00 Matern 0.25307626179375187 2.8036649102315945 48337.872077771375
09 24 17 00 Spherical 0.010233544361350924 0.5277428374471792 252942.2988873097
09 24 18 00 Matern 0.007051192533304171 1.3637538710291761 331121.30801336124
09 24 19 00 Matern 0.005442308770238621 1219.051565674222 435125370.4000765
09 24 20 00 Matern 0 1.5223509113029108 1687.9693054590232
09 24 21 00 Gaussian 1.3074412077251671 4.4500157304206756 7208.074056293827
09 24 22 00 Matern 1.8048776315208845 5.174641952875002 8117.806131740699
09 24 23 00 Gaussian 0.6616011791311781 1.870324548187427 33238.1321834213
09 24 00 30 Spherical 0.9406271452551592 4.400322680966685 13266.324438367048
09 24 01 30 Spherical 0.9346900922668703 6.5132378245787494 43940.104056974145
09 24 02 30 Spherical 0.23862715968446782 8.256217508499244 9521.439733015113
09 24 03 30 Spherical 0.8943209513899046 5.2305925935709325 9284.08099372351
09 24 04 30 Matern 0.041314337952407396 9.203820478527462 2985.763904538681
09 24 05 30 Matern 0.12767879069340568 5.305219965032866 12944.490071051228
09 24 06 30 Exponential 0.27296535263114347 5.035347254345563 7989.959417696343
09 24 07 30 Matern 0.9107543183434573 3.2748542177037003 33112.55631758801
09 24 08 30 Spherical 0.8410279960884763 4.291131377496091 36381.1862393631
09 24 09 30 Matern 0.7217933759252269 5.046322298066345 12562.725782345038
09 24 10 30 Matern 0.34127749780787336 2.876549133987227 45369.68604291366
09 24 11 30 Spherical 0.05517734556723571 2.337842365528462 56132.48814230197
09 24 12 30 Spherical 0.6721312200881101 3.8060527415049865 14322.778776086434
09 24 13 30 Matern 0.5366929732890571 3.1510153991075986 8893.967670523187
09 24 14 30 Gaussian 1.733064327637733 6.1888957748724405 22317.54560266421
09 24 15 30 Spherical 0.3810453261974518 4.11012535315474 79387.35393529471
09 24 16 30 Matern 0.11549366080102648 1.4228298807364639 64506.4059129473
09 24 17 30 Gaussian 0.011517967424160393 0.6088530250787704 106665.46875867936
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09 24 18 30 Matern 0 14.147662219678923 3793193.3282846496
09 24 20 30 Spherical 0 4.096974873200154 5205.864656475771
09 24 21 30 Matern 0.06721370998220155 2.9322618314051314 5764.259530358321
09 24 22 30 Spherical 0.7866614503050898 3.283835000522243 11586.29266278565
09 24 23 30 Gaussian 0.058367623024813874 1.7537145151105895 47443.35475126869
09 25 00 00 Matern 0.11112949302513045 1.1464801003502099 52902.52312498349
09 25 01 00 Matern 0.4497093341264559 7.524051866258803 6766.144595687171
09 25 02 00 Spherical 0.6092325676192655 4.734241644255314 12013.857029604336
09 25 03 00 Spherical 0.6807368998962157 6.6832678265006695 14280.963396981551
09 25 04 00 Gaussian 0.3674230120686503 1.5925173093418796 14707.944214440053
09 25 05 00 Spherical 0 1.8581689468684364 5693.871483280049
09 25 06 00 Spherical 0.7993216582759387 5.2642968953878375 6696.503813999811
09 25 07 00 Spherical 0.6206503143379928 5.081269241427252 13051.214077938106
09 25 08 00 Gaussian 0.020871286146637216 0.977431920396539 17329.547849780174
09 25 09 00 Gaussian 0.024436876069346334 0.8935220606564357 27296.011967218543
09 25 10 00 Spherical 1.7846755913794066 5.122186878095053 6935.356455099231
09 25 11 00 Gaussian 1.2429913460191537 9.61856636614236 13494.253238934547
09 25 12 00 Spherical 2.721134087679743 4.7557958220795635 40752.09555776302
09 25 13 00 Gaussian 0.37498034401247177 5.2602793020063645 22144.581813860885
09 25 14 00 Gaussian 0.14173847938191594 4.142325683318109 55195.61828189117
09 25 15 00 Matern 0.02302358614694804 2.982625590991946 95210.16587579639
09 25 16 00 Matern 0.11229937793801599 2.936789631207628 113824.17425386336
09 25 17 00 Gaussian 0.09933136997448183 2.8128888966905774 90406.18222619448
09 25 18 00 Matern 0.019254749764641102 2.66345759985023 66283.28663392144
09 25 19 00 Matern 0.027045324777286744 1.4171978785578914 48121.472395767065
09 25 20 00 Gaussian 0.006177794683222593 0.20083299601313573 26628.50571656748
09 25 00 30 Spherical 0 3.4449776512422896 5336.552569659161
09 25 01 30 Matern 0.26926703794147716 6.240065812746762 3816.863533498444
09 25 02 30 Matern 0.8995412061742701 2.889909782517507 5463.067883625532
09 25 03 30 Gaussian 0.5418149907352549 3.8010824410993425 9252.25280132892
09 25 04 30 Matern 0 2.2105860139406133 1398.185979142086
09 25 05 30 Gaussian 0.27625823602034755 2.5562219945923768 18025.391724372676
09 25 06 30 Matern 1.249851875157783 4.958655826478467 7936.711809352712
09 25 07 30 Gaussian 0.06263702077929648 2.262697964812878 11723.386871061502
09 25 08 30 Gaussian 0.09443939225557987 0.9498126421069795 29828.450148154963
09 25 09 30 Spherical 0.3688797010730522 1.3152185971059938 7922.186819830244
09 25 10 30 Spherical 0.11272381745037649 8.741430003676651 23499.94575605305
09 25 11 30 Gaussian 2.583190787302449 6.536671145871017 15919.043984396167
09 25 12 30 Spherical 1.1195612301707314 4.96796466859074 46826.029604474796
09 25 13 30 Gaussian 0.26742741117604407 3.9696059389235585 20565.39254937122
09 25 14 30 Matern 0.09379961745059306 3.6785991093502703 81298.65032501043
09 25 15 30 Matern 0.06554604918272947 2.911651821106617 106453.48760416068
09 25 16 30 Matern 0.060735248999832875 47.6670948548346 1666798.1352372896
09 25 17 30 Gaussian 0.05101468336915924 3.1563516430002725 78521.8592491623
09 25 18 30 Matern 0.03590365582822388 2.1041729310326924 57565.44920677068
09 25 19 30 Matern 0.021144337639045916 0.6595319484921871 38559.57709957419
09 25 20 30 Matern 9.376995417723158e-4 0.040502749355097505 121306.70495987959
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09 26 12 00 Gaussian 0.006534102667830396 0.6065136112402293 74542.81225825472
09 26 13 00 Matern 0.022622490149670205 1.0646713918304143 78048.73482238321
09 26 14 00 Matern 0.012880320011752728 1.140241738481867 88757.62363684966
09 26 15 00 Matern 0.00812764916781018 3.0872679092412976 431965.827813334
09 26 16 00 Matern 0.03349109549928136 1.109100208843376 557701.1104610754
09 26 17 00 Matern 0.021102488173080722 0.6753661452000964 109594.17070467293
09 26 18 00 Matern 0.00676959800911888 0.5380463746481197 91932.56527324117
09 26 21 00 Matern 0.004116641188886403 0.09763723428546715 38917.01081564442
09 26 22 00 Gaussian 0.012124421782912786 0.3060946672468172 39173.17495651904
09 26 23 00 Gaussian 0.011563748386327002 0.33106575986487846 44970.88975798637
09 26 11 30 Matern 0.006684691161663697 0.4156748490127123 73304.26159638923
09 26 12 30 Gaussian 0.007304229983834171 0.7845441281832098 77202.67904481008
09 26 13 30 Gaussian 0.014737401606559798 0.7549506559511243 87387.91314528661
09 26 14 30 Gaussian 0.009922413398138562 1.0233590152885905 102064.63192269082
09 26 15 30 Matern 0.00861980132670415 0.8387646042637052 128827.36261355437
09 26 16 30 Matern 0.037035595252295724 0.4010979985068594 114302.64650876146
09 26 17 30 Matern 0.016274487904473414 0.5142388375196744 105277.54781735859
09 26 18 30 Matern 0.004806095879212328 0.3151501179610345 100689.68492763772
09 26 20 30 Matern 0.0033566927658159906 0.03291084438110032 127992.85172311479
09 26 21 30 Gaussian 0.005147848041648822 0.1297961202891217 34167.96023284726
09 26 22 30 Gaussian 0.011567722962077719 0.3475827611244136 42176.306686630385
09 26 23 30 Gaussian 0.008758207740631315 0.2679628043821891 46421.4828183056
09 27 00 00 Gaussian 0.00899801793819921 0.3104878497990403 44161.71880193018
09 27 01 00 Gaussian 0.007848838820167642 0.22285955295758364 42359.454759834975
09 27 02 00 Gaussian 0.0062408798541484 0.236144700713719 38406.10265067725
09 27 03 00 Gaussian 0.004499018670324215 0.12337774601551917 33687.36010300833
09 27 04 00 Gaussian 0.0038596447759201083 0.2034155736635496 38366.16465639322
09 27 06 00 Matern 3.6099468683690393e-4 6.250391763535279 2437382.935897483
09 27 12 00 Matern 0.013268347431979697 499.15127913708574 38798746.77896619
09 27 13 00 Matern 0 5.689346571374861 523338.9336156271
09 27 14 00 Matern 0.012920193659803287 3.0831324760397707 116815.38714586203
09 27 15 00 Matern 0.012703351111271858 0.8404551451143729 57861.839564624286
09 27 16 00 Gaussian 0.05223983554362331 3.6413740105942494 27753.205255790548
09 27 17 00 Matern 0.321014403832097 5.960398878097246 11696.17001688862
09 27 18 00 Spherical 1.728027013890657 4.519245722719074 13132.605402473553
09 27 19 00 Gaussian 0.014042508647945684 0.13458184457372177 13366.67608820944
09 27 20 00 Matern 0.003161756884407139 0.13865713061642684 89979.99902633028
09 27 00 30 Gaussian 0.002311271243874518 0.14099014889564493 48391.080154446456
09 27 01 30 Gaussian 0.008555600387926122 0.28663269770571603 39867.438667435476
09 27 02 30 Gaussian 0.0024453726724383003 0.12481144245199952 37690.678471930216
09 27 03 30 Gaussian 0.006961749802035402 0.21075808265899146 37470.90037927519
09 27 11 30 Matern 0.005561226773681745 118.754144060016 4218635.463927403
09 27 12 30 Matern 0.005625152401996056 23.612881775656632 1909898.488307224
09 27 13 30 Matern 0.00534334127048233 3.6452220789872314 108532.62336917764
09 27 14 30 Matern 6.608367947531686e-4 1.6695117943113615 175651.27137653623
09 27 15 30 Spherical 0 1.3467677987937408 84149.0401236793
09 27 16 30 Gaussian 0.252708713238906 5.979623132881582 21006.359341228097
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09 27 17 30 Spherical 0.5611566520625599 5.812266789599337 15215.648505304705
09 27 18 30 Matern 0.4460091735378397 2.3804156518164596 2032.0096172681347
09 27 19 30 Matern 0.004533947244828175 0.2656254325343996 77035.21737362826
09 28 02 00 Matern 0.020234215780989957 0.1374432562382781 22744.97123541692
09 28 03 00 Matern 0.04784564447349277 0.3391036519096159 28666.718661674644
09 28 04 00 Matern 0.03306607832442428 0.19393198924382904 31238.71901466519
09 28 05 00 Gaussian 0.03236127855193611 0.35056143729623046 29953.84522426406
09 28 06 00 Matern 0.06819458728601557 0.4491921424166789 26528.689068019063
09 28 07 00 Matern 0.01671164666017482 0.14784323789867998 38078.07251212748
09 28 08 00 Matern 0.0012884140785773314 19.98225954135552 3136688.767392331
09 28 09 00 Matern 0.002119033174942321 791.9762325226757 80356844.69258845
09 28 10 00 Matern 0.06892093544632329 2966.793448172426 33722936.13612171
09 28 11 00 Matern 0.06626116381908818 2.2694644794386085 165727.88195987142
09 28 12 00 Matern 0.019353009146067513 1.1724973864362336 76745.98294216984
09 28 13 00 Gaussian 0.1519583136034309 3.8597236092848806 21249.46653496912
09 28 14 00 Matern 0.36199167482996386 9.995331023853732 15809.910957321848
09 28 15 00 Gaussian 6.0216583937126105 15.4034896970057 22878.622290873052
09 28 16 00 Matern 0.6124873646927357 5.823654041642802 12566.553198577454
09 28 17 00 Spherical 0.776515890554948 1.5383075406471174 10674.884859106256
09 28 18 00 Gaussian 0.003956115140258215 0.6919656782642476 151539.47081404965
09 28 19 00 Matern 0.03695381758233472 68.0792512066363 17669810.16785989
09 28 20 00 Matern 0 13.648290275664994 6793004.882077542
09 28 21 00 Matern 0.01741862354539654 15.16577075779546 11812979.436817253
09 28 22 00 Spherical 0.1505216122630336 1.162729988745398 154407.41683988133
09 28 23 00 Spherical 0 3.229528828091309 109194.91711944576
09 28 02 30 Gaussian 0.052667372916975326 0.30538595247153294 19829.31450280889
09 28 03 30 Matern 0.01305485392915241 0.2286596428426926 25929.25219447974
09 28 04 30 Spherical 0.027489598616339376 0.38906867485500957 49751.0019271802
09 28 05 30 Gaussian 0.06219006908367282 0.40043490922633845 24008.68065390396
09 28 06 30 Matern 0.05484150177738929 0.31613986711705266 27800.269302920835
09 28 07 30 Matern 0.0013591672724357132 1614.3039045145101 118161364.48552665
09 28 08 30 Matern 0.0011448726290669774 16.85552836271548 2623822.2208525026
09 28 09 30 Matern 0.025299481402382647 154.4381289415854 30568011.432085518
09 28 10 30 Matern 0.020913744605647894 37.053784094099086 2126301.1458304687
09 28 11 30 Matern 0.028319538405041027 2.423186753949613 201243.32429680682
09 28 12 30 Matern 0.0016210030746500472 1.3110389722762241 57375.04233093868
09 28 13 30 Gaussian 0.3131525229759112 5.6802781128668 19354.86705068909
09 28 14 30 Matern 0.39048789443549775 12.276423966874665 10006.704794061841
09 28 15 30 Matern 0 13.542199778054679 16895.7737591166
09 28 16 30 Matern 2.605143760765631 4.1037032154010085 4421.204976224167
09 28 17 30 Matern 0 0.38708840038331305 98300.11057611625
09 28 18 30 Matern 0.02395287049233408 0.764913800616055 114166.44917910978
09 28 19 30 Matern 0.0683725611182541 64.62077184314333 14334723.214746084
09 28 20 30 Matern 0.03915281845707544 51.22396736256926 19773997.060638156
09 28 21 30 Matern 0.11711922264151886 1.6173690078001544 81741.2687503644
09 28 22 30 Matern 0.08337642682727686 2.4619622935927836 43277.405863729095
09 28 23 30 Gaussian 0.048928312802281756 3.2270253844048478 53163.779746889006
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09 29 00 00 Matern 0.03730469119608989 1.2989440854884537 39937.816831169235
09 29 01 00 Matern 0.08225583612121481 1.1894832111692393 87558.49921801468
09 29 02 00 Matern 0.07030445309257932 1987413.682669369 905578187.9751499
09 29 03 00 Matern 0.010689402697721114 2274.169165481115 207098846.08526778
09 29 04 00 Matern 0.009078174287234494 1.7002035217904417 288698.92243425635
09 29 05 00 Matern 0.01604754360196256 0.933864665321227 47461.0389270102
09 29 06 00 Matern 0.02008672655858285 0.9408199348758729 41389.16377075334
09 29 07 00 Matern 0.01745381006528882 0.6796235189134205 39703.916193196135
09 29 08 00 Matern 0.00525284472271006 0.3726648103437292 32682.968350898485
09 29 13 00 Gaussian 3.0850127249571765e-4 0.09875429019339262 72139.20795746484
09 29 14 00 Gaussian 0.016160459128989 0.9597666254227208 62633.197282184534
09 29 15 00 Gaussian 0.03901375333808988 1.1463106611824148 62543.91983456337
09 29 17 00 Gaussian 0.04163684334359011 8.319018866027935 12036.76112560767
09 29 18 00 Matern 0.09601158506275546 3.4819199002656163 29865.206237534905
09 29 19 00 Gaussian 0.024868279465160993 3.7718406314487924 61963.996788529
09 29 20 00 Matern 0.0011624465339015765 3.6775693640933182 115772.22486917097
09 29 21 00 Matern 0.03909205132026278 4.014063596304025 93854.95716118174
09 29 22 00 Matern 0.04701007425023849 3.6493266554201536 74155.24036102746
09 29 23 00 Matern 0.11962534541991925 3.864721474659424 109345.13186136089
09 29 00 30 Matern 0.030126581557406586 0.774125926379661 34133.068386631334
09 29 01 30 Matern 0.011525786506879746 111.14825289474975 26609698.844714712
09 29 02 30 Matern 0.044515060943364326 1442.6170772662292 60367731.542484656
09 29 03 30 Matern 0.016820914321482555 3.2966020130757543 552277.5156747338
09 29 04 30 Matern 0.03212576497871141 1.1726558175561999 99119.33483315028
09 29 05 30 Matern 0.016032821159616902 0.9082452888941321 42060.477935808485
09 29 06 30 Gaussian 0.015550194128379264 0.7420541031385341 67794.267356361
09 29 07 30 Matern 0.01322106173284186 0.46621404034443437 32476.211593859385
09 29 08 30 Matern 0.008672257378281173 0.164933676609855 34443.44893025911
09 29 13 30 Gaussian 0.0037807997964972085 0.32766924453986573 65247.65579186342
09 29 14 30 Gaussian 0.021277651289089955 1.343842169836974 62820.59940891542
09 29 15 30 Matern 0.01010846321096629 0.5110330170220139 35488.01248168992
09 29 17 30 Gaussian 0.33395066646583005 6.384071456202847 17517.724064706093
09 29 18 30 Gaussian 0.02561149325570769 5.061360131145913 67688.72720896048
09 29 19 30 Matern 0.019651270484279382 4.34521709804637 109037.29807498273
09 29 20 30 Matern 0.007550752733392669 3.7950272127621556 116157.97166269734
09 29 21 30 Matern 0.010384381582005713 3.7291922208225925 95440.19141055107
09 29 22 30 Matern 0.05067747466042634 4.456989345841006 77644.17836693375
09 29 23 30 Matern 0.11661438777818259 4.190383888800171 311436.7730204485
09 30 00 00 Matern 0.03738134991783178 57.22981548358988 137010598.41537315
09 30 01 00 Gaussian 7.367352865522093e-5 0.3220417084882015 84422.86405384367
09 30 10 00 Matern 6.217485560434744e-4 12.167901517369176 1723697.5722930708
09 30 11 00 Matern 5.248621397548217e-4 0.8355053283462545 224235.0445815155
09 30 12 00 Matern 0.0024150113122426912 0.37804795260547924 57863.648899189466
09 30 13 00 Matern 0.012019758327289624 0.8268635496666803 38879.783880372284
09 30 15 00 Gaussian 0.4124776050753226 4.760138021425107 14730.460039985413
09 30 16 00 Spherical 1.204833145073028 8.151786308909763 18552.833515034654
09 30 17 00 Spherical 2.024571766729958 5.837214647255413 23188.30957990148
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09 30 18 00 Matern 0.17934094355799882 6.854910863904765 75455.5861464124
09 30 19 00 Matern 3.608224395437469 6.513968911282317 49496.75476168134
09 30 20 00 Matern 0 4.505752333359115 3472.9857250550717
09 30 21 00 Gaussian 3.2597365154744904 3.2597365154744904 52048.29657395149
09 30 22 00 Matern 0 0.5871182661249729 1748.1549149507484
09 30 00 30 Matern 0.1383122844163948 0.9470044045014334 130911.15581579352
09 30 01 30 Matern 0.017365381866653182 0.06832690792567286 164352.37571909244
09 30 10 30 Matern 7.393091747334054e-4 4253.262373335592 38247054.79414531
09 30 12 30 Matern 0.009785962914284026 1.0138688540882372 48813.3238726512
09 30 13 30 Matern 0.018588956351191416 2.08992302336551 13785.214930735881
09 30 15 30 Spherical 1.1144763335130188 7.725750166697938 14038.298350486553
09 30 16 30 Spherical 0.25737824890733035 7.887029335111917 19124.541975796557
09 30 17 30 Gaussian 1.7974921425530483 4.617236122488284 12840.292169191865
09 30 18 30 Matern 1.2349097604467827 8.810126651222058 268894.14144961553
09 30 19 30 Matern 2.98872185814467 5.9296879558051305 60075.81705401792
09 30 20 30 Gaussian 3.5194541076065486 3.9100953535519754 7362.554057054762
09 30 21 30 Matern 0 1.7723890241166826 1705.0598006186872
10 01 01 00 Matern 5.4612163481340646e-5 0.08503270932884581 134376.3950659847
10 01 05 00 Gaussian 0.023758905638433574 0.07182715753659082 22295.888260045234
10 01 06 00 Matern 0.052930751917485454 0.15334864278154597 21527.387189052213
10 01 10 00 Matern 0.031028775311748285 0.031028775311748285 52048.29657395149
10 01 11 00 Spherical 0.050225715755139365 0.2566797345612427 15158.66313098858
10 01 12 00 Spherical 0.032287009384978735 0.21157530735190422 8465.506908270068
10 01 13 00 Gaussian 0.03716080238290754 0.4791437008110319 46757.66779513139
10 01 14 00 Gaussian 0.12450069812514086 2.634868051247932 39000.71354009104
10 01 15 00 Gaussian 2.361663542158582 8.275613737021768 11587.597219823705
10 01 16 00 Gaussian 0.4768108266919377 7.278315863679024 16271.809223293247
10 01 17 00 Matern 0.04537283486088378 4.819427384127921 44774.84283423693
10 01 18 00 Matern 2.0064868399015583 14.854189140491632 6243.954109838663
10 01 19 00 Matern 2.1601469824750335 9.27359550679722 4932.220249920076
10 01 20 00 Gaussian 0.22145259575072823 4.296587004860873 24885.522189929543
10 01 21 00 Matern 0.02926728808848971 0.8072461668728843 41546.35882858289
10 01 22 00 Gaussian 0.030285415674182355 1.1581506949547151 37956.87584807961
10 01 23 00 Matern 0.0023294721598577685 0.6615417076950645 30726.268078653266
10 01 05 30 Gaussian 0.05249897112591672 0.14916534553959693 24413.074514746713
10 01 10 30 Gaussian 0.0036891668960675663 0.17679642871913515 11610.991568812533
10 01 12 30 Spherical 0.007255712867116669 0.11099586661599804 101815.4892352959
10 01 13 30 Gaussian 0.08747110194945223 1.3769319942810287 37779.465766295994
10 01 14 30 Gaussian 0.26496294030670275 4.272514330220983 15373.291944931949
10 01 15 30 Gaussian 2.210824021199471 10.381209312572281 14439.53687919155
10 01 16 30 Gaussian 0.17485489576250018 5.272958269894925 26175.039886662253
10 01 17 30 Gaussian 0 7.444914096036645 2479.2613742935737
10 01 18 30 Matern 1.1566274594290487 11.557002652918364 5170.1692759700745
10 01 19 30 Spherical 1.4748352378202543 4.998559824188108 48903.28093121271
10 01 20 30 Matern 0.30662761262049887 2.000628962648215 17053.893365808555
10 01 21 30 Gaussian 0.013080473947724401 0.8800549034759351 42508.20611831988
10 01 22 30 Matern 0.009122334315478648 1.0456963912925754 31384.363272739305
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10 01 23 30 Spherical 8.869934961079877e-4 0.07005512873065997 85894.57605431722
10 02 04 00 Matern 0 0.1839225411592642 84895.9749278011
10 02 05 00 Matern 0.0319890008990418 0.5414795699279694 200159.3361971751
10 02 06 00 Exponential 0.012869546183576061 16.133728698255723 5211554.451119574
10 02 15 00 Matern 0.0019506776147396746 0.2898860396298925 69344.9997486739
10 02 16 00 Gaussian 0.002958095881377676 0.4464352375259863 45765.694981957924
10 02 17 00 Matern 0 1.4884408666082152 259316.28796658493
10 02 23 00 Matern 0.0020130504870459103 0.1777633856824915 50869.662939294256
10 02 04 30 Matern 0.0020201453295419724 0.3655847307471977 126866.55721699509
10 02 05 30 Matern 0.018923576915543645 2.9549249140662193 1096040.2483584422
10 02 06 30 Matern 0.026366448161834272 1.0254692914371215 528124.4723039669
10 02 14 30 Matern 0.001111800912423838 0.08795566572836772 72284.53252760648
10 02 16 30 Exponential 0.0010910147594610114 126.81921556237461 55908371.26904817
10 02 17 30 Matern 0 0.9808417889127622 193922.70688851128
10 02 22 30 Matern 0.0023735980777019666 0.1629085237238696 52743.742670618994
10 03 04 00 Matern 0.17846154507158724 0.778267617372042 30832.702236030975
10 03 05 00 Matern 0.1581584719739962 0.7171062865910588 27176.069286727183
10 03 06 00 Gaussian 0.13975729121112276 0.6004549367117432 22753.947125590672
10 03 07 00 Matern 0.11178228910811637 0.18711534295605847 35608.078288280536
10 03 11 00 Matern 0.00222606295768361 1.4997637679875904 203660.38503168646
10 03 12 00 Matern 0 1.3901373117672682 224554.5817400517
10 03 13 00 Matern 0.2555006296289448 1.5999781201114989 63399.49749482975
10 03 14 00 Matern 0.2039224069479943 2.4677947921719796 16089.69759408667
10 03 15 00 Matern 0.10054107914630826 2.556601336777682 21545.191622262475
10 03 16 00 Gaussian 0.677787886946088 7.455549187859541 32769.572219712325
10 03 17 00 Matern 1.0894271464737901 6.025482513694104 21776.580096941332
10 03 18 00 Spherical 0.7241983682243712 4.077313106624795 15717.790313559906
10 03 19 00 Matern 1.7288606203826136 2.510876821559111 2727.2232739161927
10 03 20 00 Gaussian 0.25289433330336436 2.1985025292836453 36568.544570309416
10 03 21 00 Matern 0.2511183612927385 1.7731234155619984 35161.99282182603
10 03 22 00 Gaussian 0.013732164894994167 2.323684806133842 17051.228404768823
10 03 23 00 Gaussian 0.16215195888693545 1.0956337679982306 18544.838643281582
10 03 04 30 Gaussian 0.18319817969788643 0.8000133629510813 29209.459481706475
10 03 05 30 Gaussian 0.1480685200232457 0.7233305423694316 27319.011391051263
10 03 06 30 Matern 0.1766247143257712 0.43014541278438473 26108.66673317192
10 03 10 30 Matern 0.09426379842994961 204.33794809869792 3766673.0658678645
10 03 12 30 Matern 0.00992078356866224 1.7559602987325638 80261.31487694012
10 03 13 30 Matern 0.21951521217002326 1.5346471433372357 21306.3432543901
10 03 14 30 Matern 0.19386069537311668 3.899864838661116 25671.651566003642
10 03 15 30 Matern 0.8883956836774942 4.7659900060384235 23221.74106104229
10 03 16 30 Gaussian 1.2103807505405093 7.6745305889751485 36625.43941388414
10 03 17 30 Matern 1.2709647987433412 5.855609999717645 11642.130813512658
10 03 18 30 Matern 1.118105419885747 4.237168607438296 12340.332797700634
10 03 19 30 Matern 0.3212764272046553 2.0911597313006407 43831.55712637539
10 03 20 30 Gaussian 0.25268100883654854 2.4005291271109224 42709.700105109536
10 03 21 30 Gaussian 0.29447453937764534 1.1360852549791152 19586.55532955081
10 03 22 30 Gaussian 0.012039504507416223 2.251764313346663 17365.258281249022
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10 03 23 30 Spherical 0 0.16000047157067165 51162.04741286561
10 04 00 00 Gaussian 0 0.8250351521165215 36069.75569867342
10 04 01 00 Gaussian 0.3467412886953562 0.5760871178868328 7723.016501899176
10 04 02 00 Spherical 0 2.875094890428795 8610.59747662315
10 04 12 00 Matern 0.16497779507081797 1.3613543674894748 45612.19524070163
10 04 13 00 Matern 0 0.5524973730650767 27162.70838717049
10 04 14 00 Gaussian 0 0.0691267633223854 17641.172105833473
10 04 15 00 Gaussian 0.1633104680258894 0.8988706973717595 27348.568473574614
10 04 16 00 Gaussian 0.10902159964581463 2.576214133467704 31118.988712979255
10 04 17 00 Matern 0.1907056212183338 3.48218646628926 41815.656951335295
10 04 18 00 Matern 0.3170344805433747 2.1835864732077925 43483.22010969567
10 04 19 00 Matern 0 3.5099603494915566 85335.31389829465
10 04 20 00 Matern 0.3695427468492504 1.3389756907053365 40514.8518042922
10 04 21 00 Matern 0.045350492435505305 0.6091077803666458 26516.622869353072
10 04 01 30 Gaussian 0 2.659208420886435 3419.968119210158
10 04 02 30 Gaussian 0 2.094338407474486 2789.733217857815
10 04 12 30 Matern 0.38314381941854275 1.4892314292681268 50231.815911923244
10 04 13 30 Gaussian 0.007190812753488348 0.5008285849524331 19576.496145130663
10 04 14 30 Matern 0.09479660341490206 0.7014955706130916 37806.044572332816
10 04 15 30 Gaussian 0 2.941491395658371 27957.150257318695
10 04 16 30 Matern 0.27825665989856363 2.7929513024762267 25050.374092148068
10 04 17 30 Matern 0.22388363426201954 3.0099548003728156 39790.792504767036
10 04 18 30 Spherical 0.45811337971839405 2.145638964444848 100930.40378028573
10 04 19 30 Spherical 0.1290407179881433 2.3293050004154505 97009.8772704212
10 04 20 30 Matern 0.1399242341796242 1.1594017120832159 22816.389835192993
10 04 21 30 Matern 0 0.3114803692823429 48569.18087874378
10 04 22 30 Gaussian 0 0.3554335472057895 53741.30614207952
10 05 00 00 Matern 0 0.30452731682807055 8974.622987666082
10 05 12 00 Matern 0.0031136041603015154 0.2779042869775526 209148.2847117068
10 05 13 00 Matern 9.702445712155598e-5 0.19131130273961955 150039.7624014909
10 05 15 00 Gaussian 0.06894310097677499 1.9081918202866945 42183.22310707844
10 05 16 00 Gaussian 0.043826453866488375 4.877579928101031 41780.617322137376
10 05 17 00 Gaussian 0.015670590243719973 3.88075185918588 35475.64677015398
10 05 18 00 Matern 0.0031424598941389805 0.6134415209560956 73519.9422798123
10 05 19 00 Gaussian 0.0047525210331106306 0.7294286999201728 69884.89213218295
10 05 20 00 Matern 0 1.2910727900888632 397617.23919541336
10 05 21 00 Matern 0.0017892697598379228 0.15614381968029908 52334.39488021303
10 05 23 00 Matern 0.0015241516543392898 3.1494888837500845 1067026.557341073
10 05 13 30 Matern 0.005471380930438471 0.18643632945087052 65722.30549023529
10 05 14 30 Matern 0.008691868286224962 1.296776280445522 52373.535338345115
10 05 15 30 Gaussian 0.08979287953357609 4.102329301347668 37880.2176519321
10 05 16 30 Gaussian 0.017539312120375815 4.2559623236837725 37133.47256794912
10 05 17 30 Gaussian 0.009684516898237223 1.8374825552678036 43470.5388397648
10 05 18 30 Matern 0.0026291987637845245 0.5642011984226555 80919.54832374083
10 05 19 30 Matern 4.333682053674695e-4 0.7730237777173715 135373.34670625953
10 05 20 30 Matern 0.007944515014613907 0.34613191195847143 61345.307314858685
10 06 03 00 Matern 5.106106077348851e-4 0.7198712111265032 181800.4935431812
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10 06 06 00 Matern 0.013634365521490546 29.38773243780946 6318082.904204048
10 06 07 00 Matern 0.019996216014357922 126.901920626954 38801326.34007088
10 06 08 00 Matern 0.003328092054356876 3.7978757768903315 3853263.829421897
10 06 12 00 Gaussian 0.008616222174300208 0.8095948087188155 20057.429671104786
10 06 13 00 Gaussian 0.09652992817512172 2.0106627463540874 21636.59753013755
10 06 14 00 Gaussian 8.101247173222236 8.101247173222236 52048.29657395149
10 06 15 00 Matern 0.22667653827878778 10.249335288137159 2769.341134101046
10 06 16 00 Matern 3.109334356778181 8.337071253163312 19989.00829672751
10 06 17 00 Spherical 2.586364913239018 6.549627163604024 47284.35542356578
10 06 18 00 Spherical 1.3667995269924467 6.087356452790269 75501.91631575735
10 06 19 00 Gaussian 0.9005865474502288 2.1146178717026762 74837.62323715974
10 06 20 00 Gaussian 0.009286589849233305 0.6932042542799949 71148.52470308663
10 06 02 30 Matern 6.124327079401268e-4 12.298310026092162 2172234.648359034
10 06 03 30 Matern 3.420390928442288e-5 0.3372560829731147 160046.294989769
10 06 05 30 Gaussian 0.001377911245535645 0.02209065766091241 56005.579501835826
10 06 06 30 Matern 0.01868104643529954 490.2148455103195 63388754.76310063
10 06 07 30 Gaussian 0.01705291437590056 2.4991033653528683 731896.1142446504
10 06 11 30 Gaussian 0.005414811572441987 0.2267857419321212 79214.84681131018
10 06 12 30 Gaussian 0.01567355946085592 1.1923659360538987 23041.604483234947
10 06 13 30 Gaussian 0.14088344970566782 3.35880223662179 16454.395734658574
10 06 14 30 Matern 0 16.010970273782554 2350.2959937633705
10 06 15 30 Gaussian 3.6695194932200916 8.87979358288317 13468.13463489468
10 06 16 30 Spherical 3.0635787325713015 7.057647014000574 67054.749130487
10 06 17 30 Matern 1.902383288989267 6.774946003555857 24287.906685589733
10 06 18 30 Spherical 1.096792485404977 3.965383715847393 85463.65888752829
10 06 19 30 Gaussian 0.014625370959134125 1.311897519541964 71279.61125185051
10 06 20 30 Gaussian 0.004069016750201505 0.0750847078116335 66358.77518878228
10 07 11 00 Matern 0 0.34857717876413524 3455.5736024510816
10 07 12 00 Matern 0 0.07522113283001611 1717.373414160682
10 07 13 00 Matern 0.008021717641193233 0.9901470456516831 112340.36215612489
10 07 14 00 Gaussian 0.01133137365797566 0.7993601419144676 109843.91666376685
10 07 15 00 Gaussian 0.018255903853262926 0.7677510784730027 47715.576648527924
10 07 16 00 Matern 0.03452483806404855 0.8142881102958158 60382.87944398114
10 07 17 00 Matern 0.10324546660426516 164.32146930949855 32282832.377283216
10 07 18 00 Gaussian 0.007509880478231326 1.4375780307971642 45279.34912076392
10 07 19 00 Matern 0.03240971798573126 1.9577128917073214 34178.47969470601
10 07 20 00 Gaussian 0.07922130298955202 4.069337386018671 12487.975314289471
10 07 22 00 Matern 0.21118187785212997 10.006224523661588 22037.918632621655
10 07 23 00 Gaussian 1.5994310478227107 8.513934773079436 13811.724074030566
10 07 10 30 Spherical 0.022868192621231426 0.11439222461931121 7677.990439298904
10 07 11 30 Gaussian 0 0.28766717600206776 2752.537821740809
10 07 12 30 Matern 0.0045300950351746935 0.6538838813250926 146936.97027375552
10 07 13 30 Gaussian 0.009644151475550141 0.6086920668702227 97199.71296349855
10 07 14 30 Matern 0.018513320640630247 0.8018599856638341 105705.76187605593
10 07 15 30 Gaussian 0.024683377109847044 0.800056388964287 47073.358646937144
10 07 16 30 Exponential 0.0724089585876409 5.987268328548921 394725.9208644823
10 07 17 30 Gaussian 0.030884486467236186 1.6348652532469945 42370.55548584835
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10 07 18 30 Matern 0.014111524825344737 1.4518425262535053 42794.49372515608
10 07 19 30 Matern 0.05875375885239316 3.0700167777683807 22273.326987808523
10 07 20 30 Gaussian 0.01610128039180536 6.276648080662449 13074.448434996744
10 07 21 30 Matern 0.15371561093333033 10.829362810341872 3256.942317711059
10 07 22 30 Matern 1.383605160309046 10.689914767784776 15653.382711925675
10 07 23 30 Matern 0.27047767071347 5.745478010350533 2878.0679135807873
10 08 00 00 Matern 2.1422687988955604 3.0964042570543953 107278.06615067234
10 08 01 00 Matern 0.04964205232248133 1.4919386949957854 75633.93732171835
10 08 02 00 Matern 0.007066415544962833 0.9736859059721251 83917.9691135784
10 08 03 00 Matern 0.0037001814311360846 0.16551402163354825 60158.3635803329
10 08 06 00 Gaussian 2.3320562147541302e-4 0.18895553504965298 150433.23442592582
10 08 14 00 Matern 0.002537770846826123 0.2780779500387385 84818.5343015875
10 08 15 00 Matern 0.008385959613959831 0.5850812388533227 61935.88186524002
10 08 16 00 Matern 0.0564721116080921 1.3935465342847266 91506.03786569198
10 08 17 00 Gaussian 0.06139820698509251 2.0508485149665696 48099.818762677794
10 08 18 00 Matern 0.06368443532526695 2.8469501450943038 61382.824720132776
10 08 19 00 Matern 0.13914344728144085 3.016574475701205 54316.94048282731
10 08 22 00 Matern 0 0.12420381587591578 114666.96888744809
10 08 00 30 Gaussian 0.03229346237245713 2.1411096761548314 67902.62795441083
10 08 01 30 Matern 0.01651636932650616 1.197848008504054 72572.53332602956
10 08 02 30 Matern 0.004005298692957918 0.39082756669115115 73039.66767230043
10 08 05 30 Matern 0.003069828986786739 0.5347261897436348 156558.0290600224
10 08 14 30 Matern 0.0028385566406516167 0.4300665817204036 66735.04875390344
10 08 15 30 Matern 0.02142238450005122 0.39354038730254387 80987.68746018966
10 08 16 30 Matern 0.03509446834761933 2.9462211468093025 154356.6883375405
10 08 17 30 Gaussian 0.07224093583206127 1.9992261459466891 49551.2831139481
10 08 18 30 Matern 0.06956364181640558 3.3826833160694902 56687.816480737056
10 08 19 30 Matern 0.014978390980316643 1.2872354589576012 35994.48337662567
10 09 04 00 Matern 0 0.1311051267934963 130691.70568201205
10 09 15 00 Gaussian 0.00651440070261658 0.9617062159329863 70300.69311666056
10 09 16 00 Gaussian 0.04404436244930254 3.025191615819052 66319.37256327987
10 09 17 00 Gaussian 0.08469989277669769 5.095507385596119 50419.38858473455
10 09 18 00 Matern 0.08695281637182999 5.0334683661010695 61121.087792772305
10 09 19 00 Gaussian 0.04514508431092629 3.3660260942700364 57097.21941895934
10 09 20 00 Gaussian 0.016859070422960122 2.16347984133957 70956.06195388942
10 09 21 00 Gaussian 0.00807970057896903 0.6203186635089414 52040.146488553204
10 09 22 00 Matern 0.0011588446072687282 0.11043999659838631 35922.209392058336
10 09 03 30 Matern 0 0.09364274649814311 134964.924075583
10 09 04 30 Matern 0.0014733253006746075 0.10273221004972426 91652.47765086596
10 09 15 30 Gaussian 0.019916745839140014 2.2804158700508212 67137.53569921125
10 09 16 30 Gaussian 0.06680533992961533 4.413810008855386 61918.64229805003
10 09 17 30 Gaussian 0.07975830434592535 4.561264922835645 46903.60995428759
10 09 18 30 Matern 0.05026221848733997 4.643038228391191 63512.98217179856
10 09 19 30 Gaussian 0.03307001413062904 2.3482322922910677 66623.17024566531
10 09 20 30 Gaussian 0.01929891581077417 1.1626843630917247 63294.02537770159
10 09 21 30 Gaussian 0.00739889446606217 0.33522384484376183 49657.30133291504
10 10 00 00 Matern 0.0031260142874698026 0.09084811255903093 149913.05954722853
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10 10 01 00 Matern 0 0.08810687099993061 87355.77554557884
10 10 07 00 Matern 9.50977252674178e-4 2.7739470141381695 1059682.9129973312
10 10 13 00 Matern 0.004284530409747536 0.09858218384153794 68138.3595060519
10 10 14 00 Gaussian 0.035663292239887213 0.7701353731210122 77899.87553349443
10 10 15 00 Matern 0.03392944526415513 1.8497626621025023 73755.8806695633
10 10 16 00 Matern 0.010524885289314917 4.991786606202403 264005.8689654208
10 10 17 00 Matern 0.03812300486626516 4.374281560426433 87364.54772884776
10 10 18 00 Gaussian 0.03810934451248594 1.679437092809841 42781.85556875126
10 10 19 00 Gaussian 0.009300974202768873 1.479289274572385 49147.444535270355
10 10 20 00 Gaussian 0.010881624461403358 1.6695170323599522 49043.41887177317
10 10 21 00 Gaussian 0.035817246476773625 1.3348068431005922 58899.30214795914
10 10 22 00 Matern 0.0010995385289018205 0.1747669511483776 88526.32086031149
10 10 01 30 Matern 1.2926746685423063e-5 0.1927577856425212 51174.04430695313
10 10 12 30 Spherical 0 0.0358146439381715 164762.36876205727
10 10 13 30 Gaussian 0.009858031469860841 0.36424339827232266 69411.27976251369
10 10 14 30 Matern 0 1.1405161422542356 54819.35245139265
10 10 15 30 Matern 0.08050731875838495 3.832640208538973 231942.29744968837
10 10 16 30 Matern 0.024697318712252232 3.496550108211922 98953.64270819779
10 10 17 30 Matern 0.060216016460799555 3.163123214534251 40182.745742786086
10 10 19 30 Gaussian 0.00347984582334931 2.1230531311434118 52565.11999379165
10 10 20 30 Matern 0.05389914225611267 1.6879075759755704 46735.89759267305
10 10 21 30 Matern 0.008825397943529652 0.30145922345100623 62786.45630179834
10 11 01 00 Matern 0.005998958260373808 0.2875483417477372 94656.82051207441
10 11 02 00 Matern 0.011280723990768049 0.7330243136679316 133391.9513542718
10 11 03 00 Gaussian 0.007487271083472704 0.6919698892648347 110831.6797628374
10 11 04 00 Matern 0.00888970496094999 0.26808502861179273 112747.15024659885
10 11 05 00 Matern 0.03543104773858028 0.31845152842472335 162781.58680457485
10 11 06 00 Spherical 0.0311417773767313 0.11507781712962345 8866.662775713961
10 11 07 00 Spherical 3.519748433990559e-4 0.5092230129582836 2821992.5465808185
10 11 09 00 Gaussian 4.633475830560147e-4 0.06974213290063994 77215.11288720595
10 11 10 00 Matern 0.007882451049244333 2.7168896517124757 1448475.7325023653
10 11 11 00 Matern 0.06977753334042554 0.5392741349758244 9661.660038576387
10 11 12 00 Gaussian 0.33782524830669836 1.5369210038060754 13317.754207576018
10 11 13 00 Matern 0.2093646174668126 5.44318358890774 17585.576255895605
10 11 15 00 Gaussian 0.218872179119834 6.432489177230399 28045.516337145484
10 11 16 00 Matern 0.7440688670333689 4.561386020448963 17291.873172705382
10 11 17 00 Matern 2.7701782711474663 4.160043460459094 4974.467232406958
10 11 18 00 Gaussian 2.9907283929555346 3.172837615581098 4711.535426862839
10 11 19 00 Spherical 0.5416488612758014 1.0115717912346032 10344.400941970473
10 11 20 00 Spherical 1.0488267339027622 1.4923462942272123 8224.947380279993
10 11 21 00 Matern 0.0020393915735193264 0.6041897453799164 91604.25095256322
10 11 22 00 Matern 0.003958034628651865 0.4823176185006949 84981.49407927206
10 11 23 00 Matern 0.0088900540075293 0.379814581338208 128461.13450317652
10 11 01 30 Gaussian 0.015567561696061338 0.6281021106056578 131864.48361797558
10 11 02 30 Gaussian 0.013343758203796885 0.5856399088344793 96221.54608066624
10 11 03 30 Gaussian 0.011053899965466766 0.5052251980286181 105189.42626863447
10 11 04 30 Matern 0.0016874971248946266 0.3088393364730095 122247.189433521
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10 11 05 30 Spherical 0.016379387108926412 0.0911226608562628 6348.145767311208
10 11 06 30 Matern 0.005740496864243756 0.17073436887857735 142540.79439672772
10 11 09 30 Gaussian 8.108593764491531e-4 0.10786295074525964 98830.6576045069
10 11 10 30 Spherical 0.01777863562215222 1.5840108505156318 600739.7911597666
10 11 11 30 Matern 0.15138887329891945 1.0395841075215293 12838.140860762658
10 11 12 30 Gaussian 0.26665554468711733 2.5710378719468476 14106.067006545332
10 11 13 30 Gaussian 0.06554171042623838 6.7160738474556 19581.52393570643
10 11 14 30 Gaussian 0.14335765977985584 6.381383056882307 28047.95935028272
10 11 15 30 Matern 0.29197028250467594 5.77021819413312 21382.68011253194
10 11 16 30 Gaussian 1.2332299628019385 4.4815932287232485 10271.723429269372
10 11 17 30 Matern 3.453625039376253 4.308962122573776 15323.415034582858
10 11 18 30 Spherical 1.4486126786571916 1.832927946150788 9042.238319301727
10 11 19 30 Matern 0.6696718980848294 1.1735609343358022 5295.813174665491
10 11 20 30 Spherical 0.7485857556735938 1.2252637260585555 8888.088117377829
10 11 21 30 Gaussian 0.009337479659576667 0.44063910403241574 79983.07199613194
10 11 23 30 Matern 0.009158012036774205 10.427866797385935 2406848.0288290596
10 12 04 00 Matern 1.5383989584127233e-4 0.1041007950111921 115004.51571237114
10 12 12 00 Spherical 0.048847001109433213 0.2096203912933588 12461.543993343868
10 12 13 00 Matern 0.06761875628383035 0.4046659316551184 108374.95559263333
10 12 14 00 Matern 0.022483010143495512 1.3454109122954425 54555.63561868316
10 12 15 00 Gaussian 0.011882585840785744 4.2662412782080015 23232.00588807093
10 12 16 00 Gaussian 0.1106811242506547 5.712188092760884 21854.960091317476
10 12 17 00 Matern 0.1564923249390624 6.3585591676234925 30679.359312241424
10 12 18 00 Matern 3.7945819373052085 5.5705354581482425 61873.10467805849
10 12 19 00 Spherical 0 5.21146045240515 118653.6979703675
10 12 20 00 Matern 0.029809002323313776 3.6636954462706153 77753.72067831105
10 12 21 00 Matern 0.013203743722880901 3661.095711581722 132036195.3413361
10 12 22 00 Matern 0 0.2678160893159283 151062.40480947983
10 12 04 30 Gaussian 0.002617809033457425 0.050315192890495665 90632.69987340784
10 12 11 30 Spherical 0.044895727974243155 0.08900453315684945 12979.652469684497
10 12 13 30 Spherical 0.003535173087320143 0.5227456422728881 155889.49158285485
10 12 14 30 Gaussian 0.04504810519515065 2.2941279678589734 27811.370935195897
10 12 15 30 Gaussian 0.08101559845556784 5.002466604212468 21441.760912858772
10 12 16 30 Gaussian 0.09897076967676578 6.445341051065697 27224.0371215361
10 12 17 30 Gaussian 1.4688470317449882 6.756840990038168 47083.675864761324
10 12 18 30 Spherical 1.364328009799264 5.402054036014759 90058.46035348976
10 12 19 30 Gaussian 0.01855857286635817 3.9077687878636627 53703.440885564174
10 12 20 30 Exponential 0.028195097705078248 9.723669979030896 479788.64334496146
10 12 21 30 Matern 0 4.70152742703779 1214188.2706647322
10 13 02 00 Matern 0.0013214704174527192 0.177049010646197 65268.23364680092


