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Abstract
The Netherlands experienced many problems for water management and agriculture, as a consequence of recent
droughts during summer. In this study, the effect of area-covering remotely sensed evapotranspiration as input
in a rainfall-runoff model is analysed, to improve water management systems of Dutch water authorities. . The
applicability of remotely sensed evapotranspiration (ETRS) as input for the hydrological model WALRUS is analysed
for three lowland catchments in the Netherlands (Hupsel Brook, Grote Waterleiding and Aa catchment). The
quality of ETRS was determined by comparing it with estimated reference evapotranspiration (by KNMI), potential
evapotranspiration (including LULC) and actual evapotranspiration simulated by the hydrological model. ETRS

was significantly lower than the reference and potential evapotranspiration during periods without precipitation and
higher than average temperatures, with a difference of ET -rates up to 2.5 mm/day. Spatial analysis of ETRS
showed significant spatial variability, however, no correlation was found with the land use land cover (LULC) in
the catchments. Low discharges occurred during the growing season of 2020, due to ET losses up to 494 mm.
The application of ETRS had no significant influence on the discharge simulations, even though the estimated ET
products differed significantly during the growing season of 2020. Due to the large spatial variability of ETRS, further
research is advised on the origin of the spatial variability.
Keywords: Evapotranspiration; Remote sensing; Lowland catchment; Hydrological model; WALRUS; Water balance
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1 | Introduction

1.1 Thesis context

The summer of 2018 in northwestern Europe was char-
acterized by long-lasting large-scale high-pressure condi-
tions, leading to dry and hot weather over large parts of
the continent [Philip et al., 2020]. It is expected that
as a result of global warming, similar weather condi-
tions are more likely to occur in the future [Klein Tank
et al., 2014]. According to the Dutch climate scenarios,
for each degree in temperature increase, the potential
evapotranspiration (ETpot) rises by approximately 2%
[Klein Tank et al., 2014]. As evapotranspiration (ET )
is a large component in the hydrological balance, there is
a demand for detailed and correct ET data for accurate
rainfall-runoff modeling.

ET is defined as the total water vapor flux that
leaves the system and includes the processes of soil evap-
oration, transpiration by plants, and evaporation of in-
tercepted water [Moene and Van Dam, 2014]. The ET
can be expressed as different concepts. In the Nether-
lands, the reference ET (ETref) is estimated by the
Royal Dutch Meteorological Institute (KNMI) using in-
situ measurements of global radiation and average daily
temperature that are measured at 35 stations. Subse-
quently, the ETref is calculated with the Makkink equa-
tion [Makkink and Van Heemst, 1956], which estimates
the ET of grass for Dutch summer conditions, without
water stress [Moene and Van Dam, 2014]. A correc-
tion between the reference crop (i.e. grass) and crop to
be investigated through a crop coefficient (Kc) results in
the (ETpot) [Bastiaanssen et al., 2005]. For applications
which include possible water stress, a final hydrological
reduction term is required to determine the actual ET
(ETact), which is assumed to be the real ET .

Instead of estimation methods of ETref , there are sev-
eral methods that measure ET in-situ, such as the eddy-
covariance method and lysimeters. However, the point-
scale footprint of these in-situ measurements results in
problems with heterogeneity, when applied to catchment
scale [Armstrong et al., 2019]. Consequently, both the
in-situ measurements, and the ETref estimated by KNMI
can only show the spatial distribution through inter-
polation methods [Hiemstra and Sluiter, 2011]. Since
the in-situ measurements of ET require a correction for
vegetation types, a lack of surface vegetation informa-

tion in rainfall-runoff modeling inputs may cause inac-
curate estimates of water balance components, which
decreases the performance of calibrated lumped rainfall-
runoff models [Zhang et al., 2009].

With the rapid development of remote sensing (RS)
technology, satellites and ET related products have
gained increasing attention over the last decade (e.g.
Wagle and Gowda [2019], Nouri et al. [2013]). The
application of remotely sensed soil moisture data has al-
ready been widely applied in rainfall-runoff models, to
improve discharge simulations. For example, Komma
et al. [2008] and Alvarez-Garreton et al. [2014] proved
that the use of assimilated soil moisture data improved
flood forecasting in Austria and a semi-arid catchment
in Australia.

In the Netherlands, steps have been made in apply-
ing remotely sensed data in operational water manage-
ment, such as the OWAS1S-project (Optimizing Water
Availability with Sentinel-1 Satellites). The project was
initiated with the aim to investigate the possibilities of
generating soil moisture maps with the integration of
the Sentinel-1 data, and local knowledge on soil physical
processes for optimizing water management of regional
systems [Pezij et al., 2016].

In addition to RS soil moisture, numerous algorithms
have been developed to estimate the ET based on satel-
lite imagery (ETRS) [Papadavid et al., 2013]. These
methods are becoming attractive to estimate ET , as
they cover large areas and can provide accurate and re-
liable estimates [Li et al., 2017]. Examples of such algo-
rithms are SEBAL [Bastiaanssen et al., 1998], MODIS
[Justice et al., 2002] and PROMET [Schneider, 2003].
Zhang et al. [2009] applied remotely sensed ETact data
for ungauged catchments in the southeast of Australia,
which proved that remotely sensed data can further im-
prove the prediction of runoff in ungauged catchments.

The water authorities in the east of the Netherlands have
shown interest in the application of ETRS in order to
further improve their water management systems. How-
ever, no study has yet been conducted on the application
of ETRS as input of a rainfall-runoff model, to predict
the discharge in catchments. The increasing occurrence
of droughts during the growing season [Hari et al., 2020]
poses new challenges for water authorities. High temper-
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atures and low precipitation rates increase the demand
for both domestic and agricultural (sprinkling) water us-
age. Simultaneously, the lack of precipitation during
droughts leads to lower soil moisture contents, which
results in decreasing ETact. However, increasing ETact
patterns have also been noticed [Teuling et al., 2013].

In this study, the Wageningen Lowland Runoff Sim-
ulator (WALRUS) is used to simulate the rainfall-runoff
process in the catchment of Hupsel Brook, Grote Wa-
terleiding and the Aa. WALRUS is a lumped rainfall-
runoff model, specifically developed for lowland catch-
ments with shallow groundwater [Brauer et al., 2014a].
Normally, the ETpot is used as input for the rainfall-
runoff model. In this study, ETRS is used as input to in-
vestigate whether this improves the performance of the
rainfall-runoff model. The ETRS product is distributed
by VanderSat under the name of SatData 3.0. This
product is also used to identify the effect of long periods
of drought on ETact and the resulting effect of increasing
demand of water by agriculture for the use of irrigation.

1.2 Research objective and questions

The aim of this study is to identify the applicability of
ETRS in the rainfall-runoff model WALRUS, instead of
the Makkink ETref estimated by KNMI. Different ET
products are compared and used as input for WALRUS.
In addition, spatial coverage of ET is used to acquire ad-
ditional knowledge on the spatial variability on a catch-
ment scale. The effect of land use on ETRS is analysed
in order to find patterns that describe the spatial vari-
ability of ETRS.
Following from this research objective, the following
main research question is formulated:

What is the effect of using area-covering ETRS data as
input for a rainfall-runoff model on the hydrological vari-
ables in a Dutch catchment?

In order to answer this question, the following sub-
questions are formulated:

� How does the ETRS compare with in-situ KNMI-
measurements and WALRUS simulated ETact.

� What is the spatial variability of ETRS?

� What is the correlation between the spatial variation
of ETRS and land use?

� What is the effect of using ETRS on the discharge-
and groundwater simulations in WALRUS?

1.3 Thesis outline

Chapter 2 describes the study area, and characteristics of
the three catchments. Also, the data sources and study
period are defined, and a description of the climatic sit-
uation is given. In chapter 2.3, a detailed explanation
on the methodologies is given. The results found in this
study are given in chapter 4. The results are discussed
in chapter 5, and linked with existing literature. The
final conclusions and answers to the research questions
are given in chapter 6.
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2 | Field site and data

2.1 Catchments

The study area of this research consists of three lowland
catchments in the Netherlands. Lowland catchments are
defined as areas with shallow groundwater tables [Brauer
et al., 2014a], of which the Hupsel Brook, Grote Water-
leiding and the Aa are examples of lowland catchments.
These catchments will be the focus of this study. Fig-
ure 2.1 illustrates the locations of the catchments in the
Netherlands, and elevation profiles for each catchment.

The three catchments differ significantly in size,
which is one of the reasons that these catchments are
chosen. The size of a catchment influences the response
time, which could result in different discharge responses
during precipitation events. In addition, data availabil-
ity was one of the criteria for the catchments. Meteo-
rological measurements from a nearby KNMI station, as
well discharge measurements have to be available for the
study period.

2.1.1 Hupsel Brook

The Hupsel Brook catchment is located in the east of
the Netherlands near the villages Eibergen and Groenlo.
The catchment has a surface area of 6.5 km2, and is
therefore the smallest catchment of the three. The el-
evations in the catchment vary between 22 and 35 m
+MSL (see figure 2.1). The average slope in this catch-
ment is 0.8%. The soil consists of a loamy sand layer
of 0.2-10 m thickness on an impermeable clay layer of
>20 m thickness [Brauer et al., 2018]. The catchment
has a single outlet where all water discharges out of the
area (see figure 2.1). The yearly average discharge at
this outlet is 0.06 m3s−1. The land use is about 59%
grassland, 23% maize, 3% forest, 2% built up, and 1%
surface water [Brauer et al., 2018]. The remaining 12 %
consist of infrastructure, grains, potato and the unclas-
sified ’other’ types. A map of the land use is illustrated
in appendix .7a.

2.1.2 Grote Waterleiding

The catchment of Grote Waterleiding is also located in
the east of the Netherlands, near the villages Lochem
and Borculo. This catchment has a surface area of 40.3
km2. The outlet of this catchment discharges into the
Twentekanaal, with a yearly average discharge of 0.3

Catchment Area [km2] Discharge [m3s−1]
Hupsel 6.5 0.06

Grote Waterleiding 40.3 0.3
Aa 836 8.0

Table 2.1: The three catchments used in this study, with
the surface area and yearly averaged discharge [WRIJ]

m3s−1. The river Berkel flows through the catchment,
but there is only limited interaction occurs between the
Berkel and Grote Waterleiding [WRIJ]. The Grote Wa-
terleiding crosses the river Berkel through a sifon. In
periods with low discharge, there is the possibility to let
water in through the Horstgoot to prevent periods of
no discharge [WRIJ]. Elevations in the catchment range
from 11 to 50 m +MSL. The high elevations are lo-
cated in the western part of the catchment, where the
Lochemse berg is found. The average slope of the catch-
ment is 0.5%. The soil consists mainly of loamy fine
sand, which is similar to the Hupsel Brook catchment.
The land use is about 62% grassland, 13% maize, 8%
forest, 2% built up, and 0.5% surface water. The re-
maining 14 % consist of infrastructure, grains, potato,
bush vegetation and the unclassified ’other’ types. A
map of the land use is illustrated in appendix .7b.

2.1.3 Aa

The Aa catchment is located in the province of North
Brabant, and is with its surface area of 836 km2 the
largest of the three catchments (see Figure 2.1). The
river Aa ends in Den Bosch, where it joins the river
Dommel. North of Den Bosch, the water is discharged
into the Meuse. The average discharge of the river Aa
is around 8 m3s−1. The soil consists mainly of sand
or loamy sands and the land surface is slightly sloping
to the north-west. The land use in this catchment is
mainly used for agricultural purposes [Versteeg et al.,
2009]. Specifically, 27% is used as grasslands, 17% for
maize, 12% is allocated to forest and nature reserves
and 13% is built-up area. Surface water cover 1.4%
of the catchment area. The remaining 30 % consist of
infrastructure, grains, potato, bush vegetation, heather,
peat and the unclassified ’other’ types. A map of the
land use is given in appendix .7c.
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Figure 2.1: Visualisation of the study area; a) location of the three catchments in the Netherlands. The colors
correspond to the three catchments: b) in red, the Hupsel Brook catchment, with KNMI weather station Hupsel
inside the catchment. c) In blue, the river Aa catchment with KNMI station Volkel outside of the catchment. d) In
green, the Grote Waterleiding catchment. The river Berkel flows through the catchment.
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2.2 Study period

The growing season starts the 1st of April, and ends the
30th of September. It is generally known as the time
period when the weather allows plants to grow. Increas-
ing temperatures, combined with the growth of crops
and vegetation, result in increasing ET -rates. There-
fore, this period of the year is of special interest in this
study.

2.3 Meteorological data

2.3.1 Weather stations

The Royal Netherlands Meteorological Institute (KNMI)
manages 34 automatic weather stations in the Nether-
lands, which measure various variables with an hourly
resolution [KNMI, 2021]. The meteorological data from
KNMI station Hupsel is used for the catchment Hupsel
Brook and Grote Waterleiding, and KNMI data from
Volkel is used for the Aa catchment. Among the mea-
sured data, precipitation (P ), reference evapotranspi-
ration (ETref) for a well-watered reference grass, tem-
perature (T ) and global radiation (Q) time series are
collected. P , T and Q are available in hourly time res-
olution. Daily ETref is aggregated to hourly resolution
using hourly data of global radiation, which is further ex-
plained in section 3.1.1. Figure 2.2 gives the time series
of P and T for the growing season of 2020.

2.3.2 Satellite data

In this study, a remotely sensed evapotranspiration
(ETRS) product will be used. This product is deliv-
ered by the company VanderSat in collaboration with
the University of Gent, and gives insight in the ETact of
agricultural fields, urban areas, forests and open water
[Vandersat]. The actual ETRS is computed from a po-
tential ET (ETpot,RS) using a vegetation stress factor
(S) and interception (ETint) as equation 2.1.

ETRS = ETpot,RS · S + ETint (2.1)

The product (ETRS) used in this study originates
from microwave satellite images with the relatively low
spatial resolution of 25x25 km, which are scaled up to a
higher spatial resolution of 100x100m. GLEAM (Global
Land Evaporation Amsterdam Model) is a set of algo-
rithms dedicated to the estimation of terrestrial evap-
oration and root-zone soil moisture from satellite data

[Martens et al., 2017b]. GLEAM is used to model the
ETRS and uses the Priestley and Taylor [Priestley and
TAYLOR, 1972] equation to calculate ETpot(RS), based
on temperature and radiation observations [Martens
et al., 2017a]. A brief description is given on the mea-
surement requirements for the GLEAM model.

The radiation inputs are based on measurements
from the Clouds and Earth’s Radiant Energy System
(CERES) on-board Terra and Aqua, which are glob-
ally available since the year 2001 on a 1 ◦ regular grid
[Martens et al., 2017b]. Air temperatures are derived
from measurements of the Atmospheric Infrared Sounder
(AIRS), which are available since 2003, also on a global
1◦ regular grid [Martens et al., 2017b].

This ETpot(RS) is converted to actual ETRS, by mul-
tiplying with a vegetation stress factor (S) [Martens
et al., 2017a]. S is calculated as a function of mi-
crowave vegetation optical depth (VOD) and root-zone
soil moisture [Martens et al., 2017a]. The microwave
VOD is based on retrievals from passive microwave sen-
sors using the Land Parameter Retrieval Model. The soil
moisture data is retrieved from the SMOS Level 3 soil
moisture produtct and the ESA Climate Change Initia-
tive soil moisture dataset.

Lastly, the precipitation interception (ETint) is
based on the analytical model by Gash [1979]. The
Tropical Rainfall Measurement Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA) 3B42v7 product
and the Multi-Source Weighted- Ensemble Precipitation
(MSWEP) data set are selected, both with a spatial
resolution of 0.25 ◦. For further details on the GLEAM
model, is referred to Martens et al. [2017b] and Martens
et al. [2018].

SatData upscaled the low resolution satellite im-
ages to a higher resolution of 100x100m. Subsequently,
the GLEAM-HR (GLEAM High Resolution) runs for
each 100x100m pixel. The latest version, SatData
3.0, recognizes four land use classfications based on
Sentinel-2 optical satellite images; 1) high vegetation,
2) low vegetation, 3) Bare soil and 4) open water. Each
pixel in the land use map contains fractions of each of
these four classes, ranging from 0 to 100%. The land
use map was created by aggregating 10m resolution
Sentinel-2 optical satellite images to the GLEAM-HR
resolution of 100x100m [Vandersat]. The fractions
of the four land use classes are derived from the 100
sub-pixels in the high-resolution source files [Vandersat].

Finally, this results in the daily ETRS that is used
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in this study. The final product, ETRS is obtained via
Meteobase [Meteobase]. In section 3.1, a more detailed
explanation is given about the analysis of this data.

2.4 Discharge data

Discharge data is available with an hourly resolution.
The discharge measurements from the outlets of the
three catchments are collected. For the Hupsel Brook
catchment and Grote Waterleiding, discharge is mea-
sured by water authority Rijn and IJssel [Waterschap Rijn
en IJssel, 2021]. The discharge measurements stations
for these catchments are respectivelyMeetstuw Hupselse
Beek - Overlaat and Debietmeting Grote Waterleiding.
The discharge of the Aa catchment is measured by the
water authority of Aa and Maas. The discharge is mea-
sured at the location ADM120 Oosterplas.

(a) KNMI Hupsel

(b) KNMI Volkel

Figure 2.2: Temperature and precipitation in 2020 mea-
sured at the Hupsel and Volkel meteorological stations,
and long-term (1991-2020) averaged T in red (dotted)

2.5 Land use

The ETRS data gives insight in the spatial variability of
ET , which can be compared and correlated with dif-
ferent types of land use. The newest version of the
Landelijk Grondgebruik Nederland (LGN) will be used,
namely LGN 2020. The resolution of this dataset is 25
x 25 m, and 48 land use types have been classified. The
land use data is distributed via the Wageningen Univer-
sity (Geodesk). In this study, land use types are com-
bined, and result in a total of 13 landuse classifications.
In figure 2.3, the distribution of landuse types for each of
the three catchments is illustrated. In Allen et al. [1998],
the crop factor has been defined and calculated for dif-
ferent land use types. As explained in the introduction,
the crop factor is used to calculate the ETpot.

Table 2.2: Cumulative daily amount precipitation (P )
and daily average temperature (T ) during the growing
season based on long-term (1991-2020) and the year
2020, measured at two KNMI-stations

KNMI station P (long-term) P (2020)
[mm] [mm]

Hupsel 375.9 251.1
Volkel 363.5 287.8

T (long-term) T (2020)
[◦C] [◦C]

Hupsel 14.9 15.5
Volkel 15.2 16.1

2.6 Climate

This study focuses on the growing season of 2020, which
was relatively dry, especially the months April and May,
in which a minimal amount of precipitation occurred
(see figure 2.2). A comparison of the year 2020 has
been made, with longterm precipitation and temperature
data, to illustrate the dryness of the year 2020. This is
illustrated in figure 2.4, where the longterm (1991-2020)
cumulative daily averaged P is compared with the cu-
mulative amount of daily P in the growing season of
2020, for KNMI Hupsel.

As already mentioned, the months April and May
were notably dry. In April and May, the amount of P was
respectively 9.0 and 10.6mm, whereas the long-term av-
erage amount of P was respectively 38.7 and 52.6 mm.
June 2020, on the contrary, was relatively wet due to
heavy, local showers [KNMI, 2020]. However, the precip-
itation was unequally distributed throughout the Nether-
lands, which results in large variability in the amount of
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Figure 2.3: Distribution of the different land use types for the catchments Hupsel (left), Grote Waterleiding (center)
and the Aa (right). The percentages higher then 5% are displayed in the piecharts.

Figure 2.4: Cumulative daily averaged precipitation (in mm) measured at the Hupsel meteorological station, for
long-term (in red) and for the year 2020 (in green)

rainfall in June. More specifically, the total amount of
rainfall at KNMI Hupsel was 82.9, whereas KNMI Volkel
measured a total of 142.2 mm. The months July, August
and September had lower amounts of P than average.
As a result, the total amount of P during the growing
season of 2020 is significantly lower than average. A
summary of the average values of P during the growing
season is given in table 2.2.

The green line in figure 2.2 illustrates the daily av-
eraged T at KNMI Hupsel (2.2a) and Volkel (2.2b),
whereas the red dots illustrate the long-term averaged
daily T . The month August draws special attention, as
the Netherlands was experiencing a heat-wave from the
5th until the 18th of August. Overall, the temperatures
during the growing season of 2020 were higher compared
to the long-term averaged. In table 2.2, a summary of
the average T values during the growing season is given.
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3 | Methods

This chapter covers the used data sources and the ap-
plied methods during this study. The study period is
introduced, followed by the description of the different
data sources. In section 2.6, the climatic conditions of
the three catchments are discussed and compared with
long-term (1991-2020) data. The methodology used to
answer the research questions starts with section 3.1.

3.1 Comparison of ET products

3.1.1 Data preparation

The analysis of data starts with structuring and com-
bining the different datasets. Hourly ETref rates are
calculated with daily ETref measurements and global ra-
diation, according to the following equation:

ETref,hour =
ETref,hour ·Q∗

hour

Q∗
day

(3.1)

Here, Q∗
hour is the hourly global radiation (W/m2)

and Q∗
day is the daily total amount of global radiation

(W/m2). The ETref,day is the daily amount of ET , as
estimated by the KNMI, whereas the ETref(hour) is the
ET with an hourly resolution. From now on, whenever
ETref is mentioned, it refers to ETref with hourly resolu-
tion. The ETpot is required to analyze the effects of land
use, and therefore a conversion from ETref to the ETpot
is needed. This conversion is performed with the crop
factor (Kc), according to Allen et al. [1998]. The crop
factors are derived from [Moene and Van Dam, 2014],
and an overview is given in appendix .1. The calculation
of ETpot is given in the form of an equation as:

ETpot = Kc · ETref (3.2)

The ETRS data is collected for each catchment, via
Meteobase [Meteobase]. The location of the boundary
of each catchment is required to select the raster cells
within the catchment boundary. As a result, the catch-
ment average ETRS is computed for each catchment. In
order to obtain the catchment-average ETRS, all ETRS
values per time-step are averaged.

Table 3.1: Overview of the ET products used in this
study

ET -product Estimation method Spatial information
ETref KNMI-station (Makkink) no
ETpot KNMI + crop factor no
ETact,sim WALRUS no
ETRS Satellites + GLEAM(-HR) yes

3.1.2 Evapotranspiration intercomparison

The ETref is subsequently calculated according to the
Makkink equation [Makkink and Van Heemst, 1956].
RS techniques compute ET via algorithms from the en-
ergy balance equation, without further need to consider
other complex hydrological processes, such as a correc-
tion for crop types (chapter 2.3). As a result, the error in
the quantification is not propagated into ET [Mohamed
et al., 2004]. However, the ETRS is a product from the
GLEAM(-HR) model, and thus, not a direct estimation
method for ET . The different estimation approaches be-
tween in-situ, and RS estimations cause inequalities in
the observations of ET . As differences between ETref
and ETRS can result from the fact that ETRS is the esti-
mated actual evapotranspiration, the ETRS is also com-
pared to the simulated ETact. This ETact,sim is modelled
in the hydrological model WALRUS, with ETpot as in-
put. Section 3.4 describes this process in more detail.
An overview of the used ET products is given in table
3.1, describing the used estimation method and whether
the product gives spatial information on catchment ET .

Statistical analysis

In order to identify the possible inequalities between the
ET datasets, a statistical analysis is performed. First,
four raster cells of 100x100 located above the KNMI me-
teorological weather stations are selected, and the result-
ing ETRS data is collected. These ETRS estimations are
compared with the estimated ETref of the meteorologi-
cal weather stations, to estimate the difference between
the products, at a field of reference grass. After that, the
four ET products are compared in time series. The sum-
mary statistics, i.e. mean, median, standard deviation,
minimum and maximum, are collected and compared.
Lastly, a linear regression analysis is performed. A linear
model is created which compares the ETref with mod-
elled ETact,sim, and ETref with ETRS. The descriptive
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statistics of this linear model give insight on the com-
monality of both measurement methods. It is, however,
possible that certain influential points in the time series
result in deterioration. Cook’s Distance is a method to
estimate the influence of data points when performing a
least-square regression analysis [Cook, 1977]. The for-
mula of Cook’s Distance is given below:

Di =

∑n
j=1(ŷj − ŷj(i))2

ps2
(3.3)

Cook’s distance Di of observation i (for i =

1, . . . , n) is defined as the sum of all the changes in the
regression model when observation i is removed from it.
Here, ŷj(i) is the fitted response value obtained when
excluding i, and s2 is the mean squared error of the
regression model.

3.2 Analysis of spatial and temporal
variability of ETRS

As KNMI estimates ETref in-situ, it is difficult to esti-
mate the ET on a spatial scale. With ETRS, however,
estimates of ET are made for pixels of 100x100m, which
offers the opportunity to calculate spatial variability of
ETRS on a catchment scale. Firstly, a basic statisti-
cal analysis is performed on the ETRS, where the mean
and standard deviation are calculated for each catch-
ment during the growing season of 2020. Secondly, a
geostatistical analysis is used to calculate the spatial
dependence and variability of ETRS. A semivariogram
cloud is an important tool for investigating the spatial
variability of the phenomenon under study [Gringarten
and Deutsch, 2001]. Therefore, a semivariogram is pro-
duced, based on the semivariance of ETRS, which is com-
puted by:

γ(h) = 1/2[z(xi)− z(xj)]2 (3.4)

Here, γ(h) is the semivariance, based on regional-
ized random variables (z(xi) and z(xj), for spatial po-
sitions xi and xj [Gringarten and Deutsch, 2001]. The
semivariogram is fitted with an exponential model. This
fitted semivariogram can be dissected into three ele-
ments: nugget, range, and sill. This results in a quantifi-
cation of the spatial variation of ETRS. The nugget-to-
sill ratio describes the short-distance variation relative to
the overall variation (sill). The spatial correlation length
is described by the range.

3.3 Effect of land use on ETRS

As explained in section 2.5, the LGN-dataset consists of
48 land use classifications. In this study, land use types
are combined, and result in a total of 13 land use classifi-
cations. In figure 2.3, the distribution of land use types
for each of the three catchments is illustrated. This
distribution is required for estimating the ETpot. Equa-
tion 3.2 describes how this ETpot is calculated with the
ETref and the crop factor (Kc). The crop factors are
specifically used with the Makkink ETref for crops in the
Netherlands, and is obtained from Moene and Van Dam
[2014] (appendix .1). Clulow et al. [2015] determined
the crop factors for peat in the Nkazana Peat Swamp
Forest, South Africa. Although climatic conditions of
that study are incomparable, these crop factor estima-
tions have been used. The contribution of peat, built-up
areas, heather, infrastructure and ’other’ are minimal, as
can be seen in figure 2.3. As no literature was found for
built-up, infrastructure, and ’other’, the Kc was esti-
mated as 1.0 (see appendix .1).

3.4 Hydrological model

A significant part of this study focusses on the influence
of different ET products on the performance of a hy-
drological model. In upcoming subsections, the input
of the hydrological model WALRUS, and its simulations
are discussed in more detail.

3.4.1 Model structure

WALRUS (Wageningen Lowland Runoff Simulator) is a
lumped rainfall-runoff model that is specifically designed
for application in lowland catchments and is designed by
Brauer et al. [2014a]. WALRUS accounts for processes
that are important for lowland catchments, which in-
clude; groundwater-unsaturated zone coupling, wetness-
dependent flow routes, groundwater-surface water feed-
backs, seepage and surface water supply [Brauer et al.,
2014a]. The WALRUS model is suited for the three
catchments, as the catchments satisfy the definition of
lowland catchments (see chapter 2).

WALRUS consists of a coupled groundwater-vadose
zone reservoir, a quickflow reservoir and a surface wa-
ter reservoir. The saturated and unsaturated zone are
coupled. A schematic overview of the model structure
is given in figure 3.1. In the land surface compartment,
P is divided between the different reservoirs. A fixed
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Figure 3.1: The model structure of WALRUS with the
following compartments: a land surface (purple), a soil
reservoir that consists of a vadose zone (yellow and red
hatched) and a groundwater zone (orange), a quickflow
reservoir (green) and a surface water reservoir (blue).
Fluxes are black arrows, model parameters brown dia-
monds and the states are in the colour of the corre-
sponding reservoir [Brauer et al., 2014a]

.

fraction is assigned to the surface water reservoir (PS).
The wetness index (W ) determines the distribution of
the remaining amount of P to the groundwater-vadose
zone reservoir (PV) and the quickflow reservoir (PQ).

The groundwater-vadose zone reservoir consists out
of the groundwater depth (dG) and storage deficit
(dV) respectively. The groundwater table responds to
changes in the unsaturated zone storage and deter-
mines, together with the surface water level, the amount
of groundwater drainage or surface water infiltration
(fGS). The quickflow reservoir level (hQ) determines
the amount of water which will eventually be trans-
ported towards the surface water via quick flow routes
(e.g. drain pipes, cracks in the soil). The water leaves
the quickflow and groundwater-vadose zone reservoirs
through evaporation and discharge by the surface wa-
ter. The discharge is computed from the surface water
level (hS) via a Q− hS-relationship. WALRUS requires
parameter values and meteorological forcing in order to
simulate discharge. Additionally, external fluxes can be
implemented in the model. The parameters are time in-
dependent, whereas meteorological forcing and external
fluxes vary in time.

3.4.2 Parameters

In order to run the model, hydrological properties of the
catchments are required. In appendix .1, a table contain-
ing all the variables, parameters and functions in WAL-
RUS is included. The parameter values are catchment
specific. For optimizing discharge predictions, WALRUS
requires calibration of three parameters: cW (wetness
index parameter), cG (groundwater reservoir constant)
and cQ (quickflow reservoir constant). Parameters of
the three catchments have already been estimated and
calibrated in previous studies: Brauer et al. [2014b] for
the Hupsel Brook, Heuvelink et al. [2020] for the Grote
Waterleiding, and Gerritsen [2019] for the Aa. The cali-
brated parameters require special attention, as the focus
on the growing season can impact certain parameters. In
table 3.2, the parameters used in WALRUS are given for
the three catchments. aS is the surface water area frac-
tion, cD is the channel depth, cS is the bankful discharge,
cV is the vadose zone relaxation time, and ST is the soil
type.

3.4.3 Meteorological forcing

In section 2.3, the meteorological data that is used as
input for the model is described. The initialization run
(9 months) and model base run, uses ETpot as input.
The ETRS model run, obviously, uses the ETRS as input.
In total, 9 model runs will be performed. An overview
of the model runs is given in table 3.3, including the
period of the model run, and which ET -product is used
as input.

Normally, the ETact in WALRUS is reduced based
on simulated storage deficit. For this, an evapotranspi-
ration reduction function is used, as described in Brauer
et al. [2014a]. This evapotranspiration reduction func-
tion will be switched off when the ETRS is used as input
for the WALRUS model.

Table 3.3: Overview of the model runs performed in
WALRUS. The initialization run considers the period
January 1st - September 30th 2020, i.e. 9 months. The
other two runs are performed over the growing season
(GS) of 2020.

Init. Base run ETRS
Period 9 months GS GS

Hupsel Brook ETpot ETpot ETRS
Grote Waterleiding ETpot ETpot ETRS

Aa ETpot ETpot ETRS
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Table 3.2: WALRUS parameters for the three catchments. An extensive overview of the variables, functions and
parameters is given in appendix .1

Catchment Model parameters Catchment characteristics
cW cG cQ cV cS cD as Soil Type Size
[mm] [106 mm h] [h] [h] [mmh−1] [mm] [-] [-] [km2

Hupsel Brook 356 5 3 0.2 n.a. 1500 0.01 Hupsel 6.5
Grote Waterleiding 240 20 35 10 3 2200 0.01 loamy sand 40.3
Aa 350 30 85 10 6 2250 0.01 loamy sand 836

Table 3.4: Additional forcing for the three catchments.
* only during the growing season, as stated by Gerritsen
[2019]

Catchment Additional forcing
fXG fXS

[mmh−1] [mmh−1]
Hupsel Brook 0 0

Grote Waterleiding 0 0.00912
Aa 0.015* 0.011

3.4.4 Surface water fluxes

The surface water fluxes are given in table 3.4. The
channels and river flowing through the catchment of
Grote Waterleiding and Aa influence the water balance.
The fluxes are displayed in hourly resolution, as the
model is performed with an hourly interval.

3.4.5 Initial conditions

The quickflow reservoir is initially empty. The initial
surface water level is derived from the first discharge
observation and the stage–discharge relation. For the
Hupsel Brook catchment, the function that defines the
stage-discharge relation is specifically defined, whereas
for the other catchments the bankfull discharge (cS) is
given. As the focus in this study is on the growing sea-
son, the initial groundwater depth has to be computed
for the first of April. The model is initialized with input
data starting the 1st of January. The output file de-
scribes the values for each variable, where the dG0, dV ,
hS and hQ are collected from. These values are used as
the initial conditions.

3.4.6 Analysis

The output of the hydrological model consists of time
series that illustrate the discharge (Q) and groundwater-
levels. The course of these variables is visually inspected
and compared. The performance of the hydrological
model and the runs that are performed needs to be
analysed. The simulated discharge is evaluated with

the Nash-Sutcliffe Efficiency (NSE) [Nash and Sutcliffe,
1970], which is defined by:

NSE = 1−
∑T

t=1(Qt
sim −Qt

obs)
2∑T

t=1(Qt
obs − Q̄obs)2

(3.5)

in which Q denotes the discharge at time step t, the
subscripts mod and obs stand for modelled and observed.
Q̄obs represents the mean of the observed discharge, and
T the number of discharge values. NSE values range
between -∞ and 1. Values smaller than 0 indicate that
the observed mean discharge is a better predictor than
the simulated discharge and values higher than zero in-
dicate the accuracy between the observed and simulated
discharges, with 1 as the perfect match.

A second method to analyse the performance of
the model, and to see whether ETRS results in better
estimates of Q is the water balance method. Ideally,
the water balance equals 0, which means that incoming
equals outgoing. In the form of an equation, this is as
follows:

∆S =
∑

P −
∑

Qobs−
∑

ET +
∑

fXG +
∑

fXS

(3.6)
Here, the sum of rainfall (P ), observed discharge

(Qobs), evapotranspiration (ET ), seepage flux (fXG)
and water supply flux (fXS) during the growing season
are used. For ET , the different ET products can be
used as input: ETref , ETpot or the ETRS.
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4 | Results

In this chapter, the results of this study are illustrated.
In section 4.1, the different ET products are compared.
In section 4.2 the spatial and temporal variability of the
remotely sensed ET product is analyzed. Section 4.3 fo-
cuses on the correlation between ETRS and the different
types of land use in the different catchments. Finally,
the results on the hydrological modelling in WALRUS
are described in section 4.4.

4.1 Comparison of ET products

A total of four ET products are discussed in this study;
the ETref (calculated with Makkink), ETpot (calculated
with crop factors), ETact (modelled in WALRUS) and
ETRS (ETact modelled by VanderSat). As ET is largest
during the growing season, the comparison is specifi-
cally performed for this period. First of all, the ETref is
compared with the ETRS raster data that are positioned
above the KNMI measurement station. Four raster pix-
els are selected that are located above the measurement
field. Table 4.1 illustrates the ET sum of the ETref and
ETRS of the field during the growing season of 2020.

The summed ETRS was lower than the measured
ETref . Table 4.1 shows that both methods result in a
difference of 10.6% and 12.4% for KNMI Hupsel and
KNMI Volkel, respectively. Whereas the ETref assumes
well-watered conditions during the entire growing sea-
son, the ETRS estimates the ET based on actual condi-
tions and land use. In figure 4.1, box-plots are illustrated
that compare the daily ET rates according to the differ-
ent ET products for the Hupsel Brook catchment. The
figures for the Grote Waterleiding and Aa catchment
are similar, and therefore illustrated in the appendix (.2,
.3). The daily average ET is lowest for ETact, followed
by ETRS. Even though both ETact and ETRS consider
both the different land use types and water availability,

Table 4.1: Comparison of ET during growing season
in 2020 at two meteorological weather stations. ETref
measured by KNMI and ETRS is the remotely sensed ET
product. ∆ indicates the difference (%) of ETRS relative
to ETref

ETref ETRS at KNMI station ∆
[mm] [mm] [%]

KNMI Hupsel 535 478 11
KNMI Volkel 564 494 12

Figure 4.1: Comparison of daily ET rates according to
different ET products, for the growing season of 2020.

Figure 4.2: Correlation of the different ET products, for
the Hupsel Brook catchment

the ET is not the same. For the Hupsel Brook, the av-
erage ETact is 2.17 mm/day, whereas ETRS averages
to 2.55 mm/day. For the Hupsel Brook and Grote Wa-
terleiding catchments, the difference between the daily
average ETact,sim and ETRS is respectively 0.38 mm/day

and 0.37 mm/day, which summed up to 69.5 mm and
67.7 mm for the growing season of 2020. This means
that the ETact,sim is lower compared to the ETRS. For
the Aa catchment, the ETRS was lower, and the differ-
ence summed up to a difference of 20.1 mm.

Figure 4.2 illustrates pairwise scatter plots of all
the variables as well as histograms, locally smoothed re-
gressions, and the Pearson correlation, for the Hupsel
Brook. The highest correlation (ρ = 0.98) is found
between ETref and ETpot. The highest correlation of
ETRS is found with ETact (ρ = 0.74). Regardless that
land use is included in the ETpot through the crop factor,
the lowest correlation is found between ETpot and ETRS
(ρ = 0.55). The ellipse visualizes the values around the
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Figure 4.3: Time series of different ET products during the growing season of 2020, for the Hupsel Brook catchment

(a) linear model ETref vs ETact (b) linear model ETref vs ETRS

Figure 4.4: Detection of influential points with Cooks Distance - Hupsel

mean with the axis length reflecting one standard devi-
ation of the x and y variables, with red center dot illus-
trating the mean of both x and y variable. The scatter is
highest for the comparisons with ETRS, with a deflection
downwards as ET -values become higher, especially for
the comparison with ETref and ETpot. These differences
can be partly explained when considering the time-series
of the ET products in figure 4.3.

In general, the four ET products follow a simi-
lar pattern throughout the growing season. However,
there are four periods in which the difference between
the ET is relatively large. These periods are highlighted
in blue in figure 4.3. During these time spans, the ETact
and ETRS behave differently, compared to ETref (and
ETpot). This is confirmed in figure 4.4, where the Cooks
Distance is illustrated. This measure detects influential
points in the regression model, as is described in more
detail in section 3.1.2. The linear regression models that
are assembled are ETref vs ETact (figure 4.4a) and ETref

vs ETRS (figure 4.4b).

At the first view, figure 4.4a shows more scatter
of the Cooks Distance values. However, the values are
a factor four lower compared to the Cooks Distance in
figure 4.4b. Significant influential points, i.e. points
that strongly influence the fitted values, are detected in
the period from the 25th of May until the 4th of June
(period A), and the 2nd until the 13th of August (pe-
riod C), mainly in figure 4.4b. Smaller peaks in the
Cooks Distance are observed in the period of 19 until 26

June (period B) and the 10th until the 24th of Septem-
ber (period D). Accordingly, these periods or events are
highlighted in figure 4.3.

Now that the periods are defined in which the ET
products show significant differences, further analysis is
required on the source of these differences. For this, the
precipitation and temperature dataset is evaluated dur-
ing the defined periods. In table 4.2, the total amount
of rainfall, and the average and maximum temperature
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Table 4.2: The amount of precipitation, average and
maximum temperature for the periods where the ET
products are different.

Period P mean T max T
[mm] [◦C] [◦C]

A 25 May - 4 June 12.2 16.1 21.1
B 19 - 26 June 0.5 20.3 24.1
C 2 - 13 August 7.7 22.6 27.1
D 10-24 September 1.9 15.3 21.3

during the different time spans are given. The time se-
ries of temperature and precipitation events during the
time spans is given in appendix .6. The graph with P
and T during the growing season of 2020 can be found
in figure 2.2, in section 2.6.

All periods are characterized by higher than average
temperatures, and an increasing trend in the tempera-
ture. Besides that, little or no precipitation occurred dur-
ing these periods. During period A and C, a precipitation
amount of respectively 12.2mm and 7.7mm occurred at
the end, after a period of dry and warm weather (table
4.2 and figure .6). Accordingly, the combination of a
period without rainfall and high temperatures, result in
a distinctive difference between the ET products. How-
ever, it is difficult to state whether one method or the
other approaches the true ET , as the methods are based
on assumptions and models. Therefore, a short analysis
on the different responses of the products is performed.

In general, the ETref , ETpot and ETact follow the
same pattern. The difference between ETref and ETpot
results from the crop factor (Kc), and both consider
well-watered conditions. During the periods with higher
than average T , and little or no P , the ETref and
ETpot estimate high ET -rates. This is also found in
the time series in figure 4.3. The ETact follows from
the aforementioned ET products, however considers
the conditions where deficiency of water could occur.
This shortage of water is also taken into account in the
ETRS, although this product does not follow a similar
pattern.

In period A and C, the ETRS is lower than from the
other methods. As the ETRS is estimated using remotely
sensed soil moisture images and surface temperatures,
the low ET -values are therefore assumed to be the result
of water deficiency in the topsoil, due to dry and warm
weather conditions. Especially the ETRS-product proves
to be sensitive to such weather conditions. In upcoming
sections, an analysis on whether this sensitivity has a

significant impact on the modelling performance of a
rainfall-runoff model is given.

4.2 Spatial and temporal variability of
RS ET

In section 4.1, the results focused on temporal variability
of the different ET products. For the ETRS-product,
the catchment average ET was used to illustrate the
temporal variability in e.g. time-series. This section
focuses on the analysis of the spatial variability of ETRS
during the growing season of 2020.

4.2.1 Spatial variability in the three
catchments

The daily ETRS of each raster cell resulted in basic statis-
tics for the three catchments (see table 4.3). The nu-
merical measures (mean, minimum, maximum, standard
deviation) have been calculated by combining all raster
cells, for all time steps, without averaging in space or
time. The resulting standard deviation of the Hupsel
Brook and Grote Waterleiding catchment are essentially
the same (respectively, 0.272 versus 0.274), whereas the
standard deviation is higher for the larger catchment Aa.

The ETRS is estimated with a daily resolution. For
each raster cell, the mean and standard deviation during
the growing season of 2020 have been determined (fig-
ure 4.5 and 4.6). The catchment average ETRS is re-
spectively 2.55 mm/d for the Hupsel Brook, 2.70 mm/d

for the Grote Waterleiding, and 2.51 mm/d for the Aa
catchment (table 4.3).

4.2.2 Frequency distribution

Table 4.3 illustrated the catchment average and stan-
dard deviation (sd) of ETRS. For each of the three
catchments, a frequency distribution of the cell-averaged
ETRS (figure 4.7) and the sd of each raster cell during
the growing season of 2020 (figure 4.8) was made.

The frequency distribution of ETRS for the Aa
catchment, follows an asymmetrical/bimodal distribu-
tion (figure 4.7c). The blue zones in figure 4.5c and
4.6c indicate significantly large areas where the average
ETRS is low, as well as low deviation. This is repre-
sented by the peak on the left of frequency distribution.
The Hupsel Brook and Grote Waterleiding catchments
have a frequency distribution that is skewed to the right
(figure 4.7 & 4.8). The blue dashed line indicates the
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(a) Hupsel Brook

(b) Grote Waterleiding

(c) Aa

Figure 4.5: The heterogeneity of daily average ETRS
during growing season of 2020

(a) Hupsel Brook

(b) Grote Waterleiding

(c) Aa

Figure 4.6: The heterogeneity of the standard deviation
of ETRS during growing season of 2020
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(a) Average ETRS [mm/d], Hupsel Brook

(b) Average ETRS [mm/d], Grote Waterleiding

(c) Average ETRS [mm/d], Aa

Figure 4.7: Frequency distribution of the average and
standard deviation of ETRS for the three catchments
[mm/d]. The ETref is indicated with the blue dashed
line

average ETref estimated by KNMI for the growing
season of 2020. As already stated in section 4.1, the
ETref is on average higher than the ETRS.

4.2.3 Geo-statistical analysis

If ETRS is spatially dependent, then pairs of points that
are closer in distance will have more similar values than
pairs that are farther apart. In other words, the semi-
variance is expected to increase as the distance increase.
This phenomenon is illustrated by a semivariogram (fig-
ure 4.9). The points in figure 4.9 represent the experi-

(a) Standard deviation of ETRS [mm/d], Hupsel Brook

(b) Standard deviation of ETRS [mm/d], Grote Waterleiding

(c) Standard deviation of ETRS [mm/d], Aa

Figure 4.8: Frequency distribution of the standard devi-
ation of ETRS for the three catchments [mm/d]. The
ETref is indicated with the blue dashed line

mental semivariogram, whereas the solid line is the fitted
exponential semivariogram model. The x-axis represents
the geographical distance (m), and the y-axis represents
the semivariance (mm2/d2). The nugget, sill and range
are a result of the fitted exponential semivariogram.
These elements have been calculated for the three catch-
ments based on the fitted exponential model (see table
4.4). The standard deviation (sdsill) is calculated by tak-
ing the square-root of the sill. The sdcalc is the calcu-
lated standard deviation from section 4.2.1. The stan-
dard deviations have similar values, which means that
the fitted exponential model managed to represent the
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Table 4.3: Basic statistics of spatial variability during the growing season of 2020

Catchment Mean (µ) min max sd (σ)
[mm/d] [mm/d] [mm/d] [mm/d]

Hupsel 2.55 1.41 3.48 0.27
Grote Waterleiding 2.70 1.39 3.69 0.27

Aa 2.51 1.09 4.09 0.46

Table 4.4: The geostatistical elements of the semivariograms for the three catchments, based on average ETRS and
standard deviation of ETRS

Nugget Partial sill Sill Range Nugget-Sill ratio sdsill sdcalc
Hupsel Average 0.00 0.07 0.07 359.94 0.00 0.27 0.27

SD 0.00 0.02 0.02 374.17 0.00
Grote Waterleiding Average 0.00 0.09 0.09 477.49 0.00 0.30 0.27

SD 0.00 0.02 0.02 434.59 0.05
Aa Average 0.05 0.17 0.22 1724.82 0.24 0.47 0.46

SD 0.01 0.03 0.04 2036.53 0.28

Figure 4.9: Experimental semivariogram and fitted ex-
ponential semivariogram model of average ETRS for the
Aa catchment

spatial variability. An overview of the six semivariograms
can be found in appendix .8

4.2.4 Spatial variability during periods of
interest

In section 4.1, four periods have been defined where
the ETRS was significantly lower than ETref . The anal-
ysis illustrated that all periods were lacking precipita-
tion, and the temperatures were high. Therefore, these
four periods require additional interest, to check whether
the lower than average ET is a result of e.g. outliers.
The average ETRS and the standard deviation have been
plotted for the Hupsel Brook catchment during period A
(25 May - 4 June) (figure 4.10). The range of the values
is similar to figures 4.5a and 4.6a. The figures concern-
ing the other periods of the Hupsel Brook catchment are
illustrated in appendix .9.

(a) Average ETRS [mm/d] during Period A for the Hupsel
Brook catchment

(b) Standard deviation of ETRS [mm/d] during Period A
for the Hupsel Brook catchment

Figure 4.10: Average and standard deviation of ETRS
[mm/d] during period A
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Figure 4.11: Violin plot illustrating the distribution ETRS for each land use classification. The boxplots (in white)
shows the median, 25th and 75th Percentile of the ETRS per landuse

4.3 Land use

Different types of crops, vegetation, or land use in gen-
eral, influence the amount of ET . Therefore, an analysis
has been performed on the correlation between land use
types and amount of ETRS. The land use maps are
given in the appendix .7. The analysis resulted in basic
statistics about the ETRS per type of land use (table
(appendix)). The resulting distribution of ETRS is illus-
trated for each land use type in the violin plot (figure
4.11).

4.4 Hydrological model

This part is about the hydrological modelling in WAL-
RUS. In total, 9 model runs have been performed, con-
sisting of three runs per catchment. The base run of 9
months started at January 1st, and lasts until the last
day of September. This model run is used to define the
initial groundwater level (dG0), dV , hS and hQ for the
three catchments on the 1st of April 2020. This resulted
in groundwater levels of 1.26, 1.27 and 1.38 m below
surface level for the Hupsel Brook, Grote Waterleiding
and Aa catchments respectively. The other model runs
(respectively Base run (g.s.) and ETRS) have been per-
formed on the period of the growing season (g.s.) 2020.
The ETRS model run has been performed with the re-
motely sensed ET data as input.

Table 4.6: The Nash-Sutcliffe Efficiencies of the 9 dis-
charge simulations. The initialization run started the 1st
of January 2020, whereas the base run (g.s.) and ETRS
model runs are during the growing season of 2020. G.s.
indicates growing season

NSE Init. Base run (g.s.) ETRS
Hupsel 0.54 0.26 0.10

Grote Waterleiding 0.34 -3.11 -2.95
Aa 0.76 -0.15 -0.58

The WALRUS model runs result in different simula-
tions of the various variables. In this study, the focus was
on the effect of using ETRS as input of the hydrological
model, on both discharge and groundwater simulations.
The simulations of discharge and groundwater levels dur-
ing the growing season are given for the three catch-
ments. Figure 4.12 illustrates the response of discharge
on the precipitation events during the growing season of
2020. The simulated discharge for the base run is given
in red, and the simulation with ETRS input data is given
in blue. The actual discharge, i.e. observed discharge, is
given in green. Similarly, the groundwater simulation for
the Grote Waterleiding is illustrated (figure 4.12b). As
a result of higher ET rates during the growing season
of 2020, the groundwater-levels gradually decrease. The
daily summed precipitation shows that certain amount
of rainfall result in changes of groundwater-level. From
the figure, the groundwater-level according to the mod-
elled base run and ETRS simulation can be compared.
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(a) Hupsel

(b) Grote Waterleiding

(c) Aa

Figure 4.12: Discharge model simulation (red and blue) and the observed discharge at the catchment outlet. The
daily summed precipitation is illustrated with the black columns.
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(a) Hupsel

(b) Grote Waterleiding

(c) Aa

Figure 4.13: Simulation of the groundwater levels for the three catchments. The daily summed precipitation is
illustrated with the black columns.
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Table 4.5: The water balance components with the summed values over the growing season of 2020.

P ETact Q fXG fXS dV hQ hS
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

Hupsel Baserun 251 398 6.6 0 0 -153 0 -1
RS 251 466 5.7 0 0 -219 0 -1

Grote Waterleiding Baserun 251 426 52.6 0 40 -187 0 -0.4
RS 251 495 51 0 40 -254 0 -0.5

Aa Baserun 288 478 73 66 48 -148 0 -0.4
RS 288 459 80 66 48 -137 0.1 -0.4

Up until July, the simulations are similar, where-after the
ETRS simulations starts decreasing.

The water balance demonstrates the amount of wa-
ter that leaves or enters the catchment. For each catch-
ment, the balance has been made for both the baserun
and the ETRS model run (4.5). Obviously, the change in
amount available water is negative for all simulations, as
the ET is higher compared to the incoming precipitation
during spring and summer. In this table, the ETact in-
dicates the simulated ET in WALRUS, which takes the
water-stress conditions into account.
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5 | Discussion

This section gives a more in depth interpretation and dis-
cussion of the results. Furthermore, the results from this
study are linked with existing literature, and it discusses
the effect of certain choices made during the process.
The discussion has the same structure as the results.

5.1 Comparison of ET products

In this study, four ET products were compared:
ETref (estimated by KNMI), ETpot (with crop factor),
ETact,sim (modelled actual ET in WALRUS) and ETRS
(remotely sensed ET -product by VanderSat). First, the
ET at two KNMI stations (Hupsel and Volkel) was com-
pared. There was a significant difference between the
estimated ETref at two KNMI stations, and the esti-
mated ETRS at the two KNMI stations, see table 4.1.
The ETref was considered to be a rough estimation of
evapotranspiration, which did not consider the variability
in Land Use Land Cover (LULC) and water availability.
This could be the cause of ETref being 10.5 % less than
ETRS at KNMI Hupsel, and 12.4 % at Volkel. More-
over, the modelled ETact,sim and ETRS were expected
to be similar, as in both products, the LULC and wa-
ter availability were included. The comparison of the
4 catchment-averaged ET products showed that daily
ET -values were not similar (figure 4.1). The difference
between the daily average ETact,sim and ETRS was 0.38
mm/day at maximum.

The estimations of ETact, i.e. modelled ETact,sim
in WALRUS and ETRS, would preferably be of the same
magnitude. However, results showed that the tempo-
ral variation of ETact,sim and ETRS was different (figure
4.1 and 4.3). Both variables are estimated via an indi-
rect method, which implies that the ETact has not been
estimated in-situ, with a specific device such as a lysime-
ter or the eddy-covariance method. As explained in the
introduction and methodology, to obtain the ETact,sim,
multiple steps have to be executed (chapter 1 and 2.3).
Potentially, the use of crop factors resulted in errors, due
to insecurities in the estimation and approximation of the
crop factors. Furthermore, the ETact,sim was modelled
in WALRUS, with use of the evaporation reduction fac-
tor [Brauer et al., 2014a], which is an approximation of
the relation of storage deficit and ET . This approxima-
tion of the evaporation reduction factor, as well as the

storage deficit is not perfect, and could therefore result
in under- or over-estimations of ETact,sim.

In principle, the estimated ETref is assumed to be of
good quality in the Netherlands, as the estimations are
performed by the Royal Dutch Meteorological Institute
[KNMI, 2020]. Moreover, Martens et al. [2018] com-
pared the GLEAM-HR ET -estimations with the in-situ
ETref from KNMI, which showed a median correlation
coefficient of 0.78 across for five measurement sites. In
turn, GLEAM-HR is used in the ETRS estimations by
VanderSat (see chapter 2.3). Results in this study, how-
ever, showed an average correlation between ETref and
ETRS of 0.60. Two critical points require attention con-
sidering the KNMI data; 1) The ETref consistently over-
estimates land evaporation, as the Makkink equation
only considers the atmospheric demand for water over
a reference grass, and does not account for any land
surface control over the flux. However, in areas with tall
vegetation such as deciduous and coniferous forest, un-
derestimations of ET are found [De Bruin and Lablans,
1998]. 2) The ETref is estimated only at the KNMI mea-
surement stations, of which there are 35 in the Nether-
lands. 3) ETref is estimated in-situ, which makes that
such observations only represent local processes, and can
rarely be extended to large areas to represent the catch-
ment heterogeneity [Kalma et al., 2008]. These critical
points result in potential errors in the catchment ET -
values, when ETref is integrated for a heterogeneous area
of land.

In contrast, the ETRS estimates the ET for raster
cells of 100x100 m based on remote sensing imagery
in the GLEAM model. Therefore, the ETRS is more
suited to give insight in the spatial variation of ET ,
and indirectly considers influencing factors such as land
use and water availability in the GLEAM model. How-
ever, the estimation of ETRS requires a variety of vari-
ables, based on remotely sensed observations (see sec-
tion 2.3.2). Therefore, it is worth noting that the model
parameterizations, model assumptions, and forcing data
in GLEAM-HR, and consecutively in the SatData 3.0
ETRS products can result in bias [Martens et al., 2018].
Furthermore, the GLEAM model distinguishes 4 land use
types for which different modules are used. For agricul-
tural areas, crop factors are determined based on satellite
imagery, and therefore deviate from the crop factors used
in the Makkink evaporation model [Vandersat]. Urban
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green patches are small scale and are omitted against
other types of land use, such as roads and rooftops,
which leads to an underestimation of the amount of veg-
etation in urban areas. According to Vandersat, the un-
derestimations of the amount of vegetation results in an
underestimation of the ETRS in urban areas. Further
discussion on LULC effects is given in section 5.3.

Before release of the ETRS-data for open access, a
reanalysis calculation is performed using the most reli-
able and validated data as possible. These datsets con-
sist of the reconstructed and validated precipitation data
from the KNMI and corrected images for a number of
satellite data sources [Vandersat]. The reanalysis cal-
culation of GLEAM-HR consists of dynamic datasets;
1) combined radar and weather station-measured pre-
cipitation produced by the KNMI. 2) An aggregation
of satellite-based surface temperature and interpolated
KNMI stations data. 3) soil moisture, 4) global ra-
diation, 5) Vegetation Optical Depth (VOD), 6) wind
speed, 7) air humidity, and 8) water temperature.

Therefore, the modelling of ETRS includes many
parameters that influence ET . This would improve the
quality of the estimated ETRS. However, no scientific
publication has yet been published on the quality and
validation of the ETRS estimations by VanderSat [Van-
dersat].

5.1.1 Periods of interest

During the analysis on the difference between the ET
products, four periods caught special attention as the
difference was relatively large between the ET products.
The cause of the large variety will now be discussed (sec-
tion 4.1).

Table 5.1 gives the long-term average monthly T ,
together with the average monthly T in 2020, and the
average T during the periods of interest. Accordingly, a
strong correlation was found between periods of higher
than average T and low precipitation rates. Therefore, it
is likely that P and T conditions have resulted in the dif-
ferences between the ET products, as water availability
is the limiting factor in ETact an ETRS. The difference
between the ET products was highest for the ETact and
ETRS, compared to the ETref and ETpot.

Periods with relatively high T and low P -rates, re-
sult in decreasing soil moisture content, especially in
the top soil. Balugani et al. [2018] described this phe-
nomenon for a semi-arid area. The evaporation of water
takes place at the vaporization plane, which is at the

Table 5.1: Long-term, monthly, and period average tem-
peratures for the Hupsel Brook catchment

Temperature
Month Long-term avg. 2020 avg. Period avg.
May 12.3 13.1 16.1
June 15.2 17.5 20.3
August 16.7 20.4 22.6
September 14.2 15.2 15.3

beginning of the ET -cycle, at the soil surface. As ET
progresses, liquid water flows upward due to capillary
flow, driven by the water pressure gradient. As a con-
sequence, the drying front, which marks the transition
between saturated and unsaturated zone, increases, and
the water table moves down. The vaporization plane
moves below the soil surface, and water starts evaporat-
ing below the soil surface, and then moves through the
dry soil layer. This stage is illustrated in figure 5.1. Veg-
etation types with a low rooting depths, such as grass,
may experience the effects explained by [Balugani et al.,
2018]. However, Buitink et al. [2020] showed that for the
2018 summer droughts in the Netherlands, decrease in
soil moisture proceeded into deeper layers with time, as
root water uptake shifted predominantly to those layers.
As the dry periods of 2020 were less extreme compared
to the 2018 summer drought, and the studied catch-
ments contain vegetation, the phenomenon explained by
Balugani et al. [2018] is assumed to be less relevant.

During the reanalysis of the ETRS, soil moisture
data is used to correct for the phenomenon explained
above. Even though the Dutch climate is not classified
as a semi-arid, the short periods of dry and hot weather
can result in the same phenomenon. The ETact was
modelled in WALRUS, and the effect of dry spells is con-
sidered in the groundwater-vadose zone (see figure 3.1).
Clearly, the ETref and ETpot estimate high ET -rates
due to the high temperature conditions. However, de-
creasing soil moisture content result in lower ET -rates.
The difference between the modelled ETact and ETRS
remains a point of discussion, as to which of the two
methods represent the ’true’ ET at best.

Another explanation of the low ETRS during the dry
periods lies in the plant physiology. Changes in stomatal
opening are a primary, rapidly occurring effect of drought
and heat stress in vegetation [Reynolds-Henne et al.,
2010]. Elevated temperatures were shown to result in
low air humidity, which negatively affects photosynthe-
sis. Plants therefore, have shown to close their stomata,
to prevent excessive loss of water [Schulze et al., 1972].



5.2. SPATIAL AND TEMPORAL VARIABILITY OF RS ET | 25

Figure 5.1: Schematics of the soil saturations during
stage two evaporation. The dashed grey line is the lin-
earization of the retention curve, the black curve is the
water saturation profile of the soil [Balugani et al., 2018]

The stomatal response to the high temperatures during
the dry periods of 2020 could therefore be an explanation
of the low ETRS rates.

5.2 Spatial and temporal variability of
RS ET

The comparison of the ET products was mainly focused
on the temporal variety of the estimations. Besides the
temporal analysis, the ETRS was used to analyze the
spatial variation of ET on a catchment scale. In this
section, the spatial variability of ETRS is discussed, and
possible weaknesses in the methodology are addressed.
In addition, possible environmental factors that influence
the spatial pattern of ETRS are mentioned based on ex-
isting literature.

5.2.1 Spatial variability of ET in three
catchments

For each raster cell with a resolution of 100x100 m, the
daily ETRS was estimated. Therefore, the basic statis-
tics that were shown in table 4.3 illustrate the variabil-
ity of ET in both time (days of growing season) and
space (raster cells in catchment). With an average ETRS
of 2.70 mm/d, the Grote Waterleiding had the highest

evaporation rate during the growing season of 2020. The
spatial distribution of the ETRS was mapped in figure
4.5, and shows that the Grote Waterleiding consists for
a significant percentage of values in the range of 2.8 -
3.2 mm/d, especially compared to the Hupsel and Aa
catchment.

The visual representation of the spatial variation
of ETRS in the Hupsel Brook catchment results in the
assumption that the ETRS is more homogeneously dis-
tributed, compared to the other catchments, with a sig-
nificant percentage of the average ETRS-values in the
range of 2.2-2.9 mm/d. However, the frequency dis-
tributions showed that especially the Hupsel Brook and
Grote Waterleiding catchment follow roughly the same
distribution. The spatial illustration of the standard de-
viation of ETRS shows that it is heterogeneously dis-
tributed. The standard deviation was used to identify
the temporal variation of ETRS for each raster cell. In
all catchments, areas with low average ETRS also have
a low standard deviation of ETRS (figures 4.5 & 4.6).

5.2.2 Linking spatial variability to
environmental factors

A quantitative comparison of the average ETRS and
standard deviation was illustrated in figure 4.7 and 4.8.
The distribution for average ETRS of the Hupsel Brook
and Grote Waterleiding catchment was left-skewed,
whereas the Aa catchment follows an asymmetrical dis-
tribution with two peaks. Miralles et al. [2011] applied
the GLEAM-model to analyse the land evaporation dis-
tribution on a global scale, and found that roughly 80%
of the contribution to ET results from plant transpi-
ration. Therefore, distribution differences between the
catchments could be linked to differences in land use be-
tween the catchments, as grasslands contribute for 60%
to the land use in the Hupsel Brook and Grote Water-
leiding catchments (figure 2.3). The effect of land use
was analysed in more detail, as it is an essential factor
in the calculation of ETpot, with the use of the crop
factor. A detailed discussion on the land use effects is
given in section 5.3. Other potential environmental fac-
tors are soil types, soil texture and geology, elevation
and groundwater levels. As the Aa catchment has the
largest catchment area, the ETRS could be influenced by
a more heterogeneous distribution of the environmental
factors. Ultimately, this would imply increased variabil-
ity of ETRS. In this study, a rough analysis was per-
formed on the correlation between the ETRS and the
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potential environmental factors. The three catchments
have similar soil textures for the top soils, specifically
fine and loamy sands (chapter 2). Furthermore, no
significant differences in the lowland catchments were
found concerning elevation differences and groundwater-
depths. Therefore, no evident result was found that
explained the difference between the frequency distri-
butions of the three catchments. Even though the low
ETRS contributes significantly to the asymmetrical dis-
tribution of the Aa catchment, no evidence was found
that the environmental factors caused the low ETRS.
A more in-depth study on the origin of ETRS’s spatial
variability is a valid topic for further research.

5.2.3 Geo-statistical analysis

Experimental variograms were computed for the aver-
age and standard deviation of ETRS, for all three catch-
ments. In this study, the experimental variograms were
fitted with an exponential semi-variogram model, which
resulted in geostatistical elements (table 4.4). The
nugget semi-variance expressed as ratio of the total semi-
variance (sill), enables comparison of the nugget effect
among the different statistical properties and the catch-
ments [Cambardella et al., 1994]. This nugget-to-sill
ratio is used to define distinct classes of spatial depen-
dence, as follows: if the ratio was < 0.25, the variable
was considered strongly spatially dependent; if the ra-
tio was between 0.25 and 0.75, the variable was con-
sidered moderately spatially dependent; and if the ratio
was > 0.75, the variable was considered weakly spa-
tially dependent [Cambardella et al., 1994]. All semivari-
ograms indicated strongly spatial dependence, except for
the standard deviation of ETRS for the Aa catchment,
which was qualified as moderately spatially dependent
(table 4.4). The average ETRS for the Aa catchment was
considered strongly spatial dependent, however, with ra-
tio of 0.24 it is close to the class of moderately spatial
dependence.

Webster and Oliver [2007] stated that sample vari-
ances of skewed variables are unstable. This means that
if the distribution of the variable is skewed, then the
confidence limits on the variogram are wider than they
would otherwise be, and as a result the semivariances are
less reliable. The frequency distribution of the Hupsel
Brook and Grote waterleiding catchment were slightly
left-skewed, however, the range of the ETRS is small.
For the Aa catchment however, the peak at low ETRS

explicitly resulted in a asymmetrical distribution. There-

fore, the statement on the spatial dependence for the
Aa catchment should be taken with care [Webster and
Oliver, 2007].

The range of ETRS implies that the length of the
spatial auto-correlation is longer than the size of the
raster cells [Chen and Feng, 2013], especially for the
Aa catchment. The explanation partly lies within the
difference in catchment area, as the range increases with
the catchment size.

5.2.4 Period of interest

The periods of interest were of importance, as the ET
products differed significantly from each other during
these time spans. Therefore, insight in the spatial distri-
bution of the ETRS was of interest. Figure 4.10 and .9
illustrated the spatial distribution of average and stan-
dard deviation of ETRS for the Hupsel Brook catchment.
Whereas the ETRS ranges from 1.6 to 3.5 averaged
over the growing season, the ETRS was lower during
period A (figure 4.10), C and D (figure .9). During pe-
riod B, the ETRS were significantly higher compared to
the average of the growing season. As discussed in sec-
tion 5.1.1, the ETRS responded differently to the P and
T conditions during the periods of interest. The phe-
nomenon explained by Balugani et al. [2018] resulted in
drops in evaporation, and thus lower ETRS-rates, for pe-
riod A, C and D. However, period B showed significantly
higher ETRS-rates. The Hupsel Brook catchment expe-
rienced an precipitation event with 46mm rainfall in 24
hours, on the 14th of June. Potentially, before and dur-
ing dry period B, the water availability was high due to
the amount of P in the previous days. This could have
resulted in higher soil moisture availability, and increased
ETRS-rates. In this study, no analysis was performed on
the linkage between soil moisture availability and ETRS.
However, this is recommended for further research, as
the soil moisture is an important input variable in the
GLEAM model [Martens et al., 2017a].

5.3 Land use

In this study, the LGN2020 dataset was used to analyse
the effect of land use on the spatial variability of ETRS.
The distribution of each of the 13 land use classification
was illustrated, combined with a boxplot indicating the
mean, and 1st and 3rd quantile (figure 4.11). However,
the mean ETRS showed no significant difference between
the land use types, even though this was expected due
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to the use of crop factors in the calculation of ETpot
(appendix .1). The mean ETRS for the LULC classes
ranged from 2.47 mm/day to 2.65 mm/day.

Vandersat stated that underestimations of ETRS in
cities occur due to underestimations of the vegetation
patches in urban areas. In addition, lower wind speeds,
lower albedo’s, and a limited storage capacity in the soil
result in lower ET rates [Vandersat]. Therefore, lower
ETRS were expected for urban LULC classifications, such
as built-up and infrastructure. However, no significant
difference of the built-up and infrastructure was found
compared to the other LULC classifications.

Already mentioned in 5.1, the GLEAM model con-
siders four land use classifications; high vegetation, low
vegetation, bare soil, open water. However, in this study,
the effect of ETRS was studied on 13 LULC classifica-
tions. As grass can be classified as low and forest as high
vegetation, the difference in ETRS is expected between
these two LULC classes. However, the mean ETRS was
2.52 mm/day for grass and 2.58 mm/day for forest.

Subsequently, the results were not as expected.
There are possible explanations, which will be discussed.
The discrete classification of land use in the LGN2020,
led to no significant results. The LGN2020 dataset con-
tained 48 different land use classes, which were aggre-
gated to 13 classes in this study. Potentially, combining
several land use classification decreased the differences
in the land use characteristics. Besides that, GLEAM
uses satellite-based maps of LULC that classify per pixel
the percentage of forest, short vegetation, bare soil and
water. The urban areas are not explicitly modelled in
any of the algorithms of GLEAM, but are associated
with a large fraction of bare soil and high land surface
temperatures. However, visual inspection of the satel-
lite maps showed that urban areas contain reasonable
surfaces with vegetation, such as bushes, trees and gar-
dens. Therefore, the effect of urban areas might have
been overestimated.

Other studies have showed succesfull results in link-
ing the ET variability to LULC properties such as Nor-
malized Difference Vegetation Index (NDVI) and Leaf
Area Index (LAI) which collectively express the percent-
age of leaf area covering the land to the total area of
cultivated land. Nsiah et al. [2021] estimated the spa-
tial distribution of ET within the Pra River basin in
Ghana, and also linked the ET to variables NDVI and
LAI. Nsiah et al. [2021] specified four land use classes,
among which: 1) water, 2) settlement, 3) forest and
4) logged forest. The results showed that uncultivated

forest and water bodies record high ET while settle-
ment and bare landscapes record low ET. Similar results
were found by Beg et al. [2016] at Tatra mountains in
southern Poland and Sun et al. [2011] in Shandong and
Jiangsu provinces, China. Therefore, a different method-
ology would result in better results with linking the ET
variability to LULC properties.

Currently, no literature was found with similar re-
sults for a humid climate in a lowland catchment as
found in Nsiah et al. [2021]. Therefore, further research
is desirable, in order to investigate the effect of LULC
on ET . If no significant results would come out of that
study, further research is required on the use of crop
factors for the calculation of ETpot.

5.4 Hydrological model

The performance of the WALRUS hydrological model
was examined with the Nash-Sutcliffe efficiency. These
values for each model run were given in table 4.6. The
model runs during the growing season of 2020, i.e. base
run and ETRS-run, showed a maximum NSE of 0.08
for the Hupsel base run. All other NSE-values were be-
low that, and thus classified as unsatisfactory [Yin et al.,
2017]. Potential explanations are discussed in this sec-
tion.

The WALRUS hydrological model is suitable for
lowlands where shallow groundwater and surface water
influence runoff generation [Brauer et al., 2014a]. The
catchment discharge is lowest during the growing season,
as a significant percentage of the stored and incoming
water leaves the system via evapotranspiration. These
low discharges were found for all three catchments (fig-
ure 4.12).

Figure 5.2 illustrates the 9 months initialization run
for the Aa catchment. The average discharge during the
months January, February and March, was 15.9 m3s−1

for the observed discharge and 21.7 m3s−1 for the mod-
elled base run. The growing season discharge is 6 times
lower compared to the discharge during January, Febru-
ary and March.

The 9 months initialization run had a very good per-
formance of the simulated discharge (table 4.6), even
though the mean discharge values differ significantly.
The relative difference between observed and modelled
discharge during the growing season is almost negligi-
ble in the 9 months run, which results in a very good
model performance. However, the difference in observed
and modelled discharge is not negligible for the grow-



28 | CHAPTER 5. DISCUSSION

Figure 5.2: Modelled base run and observed discharge for the 9 months initialization run, for the Aa catchment.

ing season model runs, as the discharge range is sig-
nificantly lower. This results in a unsatisfactory model
performance, according to the NSE-values. WALRUS
performs well with high discharge peaks during the win-
ter period, however, the model performance lacks in the
simulation of a dry growing season. Simulations during
wet growing seasons would potentially result in better
discharge simulations. However, as the effect of ET
on discharge is solely observed during periods of high
ET -rates, i.e. spring and summer, differences in model
performances due to different ET products would be
insignificant.

As the model performances are unsatisfactory for
the base run and ETRS-run, statements on whether a
certain ET -product results in better model performance
are difficult to make. Whereas the NSE-values of the
Hupsel Brook and Aa catchment were similar, theNSE-
value of the Grote Waterleiding model simulations was
lower. The meteorological data used for the Grote Wa-
terleiding was measured at KNMI-weather station the
Hupsel, and therefore questionable whether the mea-
sured data represents the meteorological conditions in
the Grote Waterleiding catchment. The Grote Water-
leiding simulated discharge increased in the beginning
of April, whereas this was not observed in the measure-
ments of discharge and precipitaiton . Even though the
initial conditions (dG0, dV , hS and hQ) on the 1st of
April were used as input, the fGS-flux (groundwater-
drainage) is large, and results in increasing discharge in
the first half of April.
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The aim of this study was to identify the applicability
of remotely sensed evapotranspiration (ETRS) in the
rainfall-runoff model WALRUS, instead of the indirect
point-scale measurements of reference evapotranspi-
ration (ETref) estimated by KNMI, for three lowland
Dutch catchments (Hupsel Brook, Grote Waterleiding,
Aa). The ETRS-product computed and reanalysed by
VanderSat was used, as the area-covering ET results
in insights of spatial variability. Water boards in the
east of the Netherlands had shown interest in the use
of ETRS, to improve their water management, as the
increasing occurrence of droughts during the growing
season poses new challenges.

The analysis of the different ET products indicated
that significant spatial and temporal differences in mea-
surements occur. Time series of the growing season 2020
showed similar patterns of the four ET products. How-
ever, during a period with high temperatures, and lack
of precipitation, the ETRS was significantly lower com-
pared to ETref . Even though WALRUS simulated actual
evapotranspiration (ETact,sim) and ETRS both consider
LULC and water stress effects, the estimated ET rates
were different. Literature showed that high tempera-
tures and lack of precipitation lead to decreased water
availability in the top soil, which would eventually lead
to significant drops in ET -rates.

Secondly, the ETRS was used to analyze the spatial
distribution of ET in the selected catchments. Areas
with low temporal average ETRS also have a low stan-
dard deviation. The spatial analysis showed a range of
1.5 mm/day in temporal averaged ETRS values. The
spatial variability was not correlated with such as soil
types, soil texture and geology, elevation and ground-
water levels. Furthermore, this study found no evidence
that the land use significantly influences the spatial vari-
ability of ETRS.

Finally, it has been proven that ET as input in
the rainfall-runoff model WALRUS, has no significant
influence on the discharge simulations. This was found
for the growing season 2020, which was drier than
average. During the growing season, the loss of water
due to evapotranspiration, combined with lack of
precipitation, strongly reduced the availability of water.
As a result, less water left the system via discharge.
For the lowland catchments, in a humid climate, the

use of an ET -product with catchment averaged values
in WALRUS is not required in order to obtain better
discharge simulations.

Future research should focus on the origin of the dif-
ferences between the ET products, and which one rep-
resents the ’true’ ET in a better way. Furthermore, the
factor(s) that result in the spatial variability remain un-
known, as no explanation was found for the spatial vari-
ability in the studied catchments. Therefore, a detailed
analysis is required to investigate the correlation with
certain environmental factors. While this study showed
no significant effect of land use on the ET , other factors
such as the NDVI and LAI could lead to more significant
results.
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Figure .1: Overview of variables, parameters and functions as given in [Brauer et al., 2014a]. All fluxes are catchment
averages, both external ones (including Q and fXS) and internal fluxes (which are multiplied with the relative surface
area of the reservoir in question). Note that dV, hQ and hS result from the mass balances in the three reservoirs,
while dG is only used as pressure head to compute the groundwater drainage flux. The names of the fluxes are
derived from the reservoirs (for example fXS: f stands for flow, the X for external and the S for surface water –
water flowing from outside the catchment into the surface water network)
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Figure .2: Time series of different ET products during the growing season of 2020, for the Grote Waterleiding
catchment

Figure .3: Time series of different ET products during the growing season of 2020, for the Grote Waterleiding
catchment
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Table .1: Crop factors (Kc) for the defined LULC classifications [Moene and Van Dam, 2014]. The star (*) defines
the land use types of which the crop factor was roughly estimated. Occurrence of these land use types was low, thus
limited impact was expected

Month Grass Maize Potato Beet Grains Forest Water Built up* Bush vegetation* Infrastructure* Heather* Peat* Other* Bare soil
April 1.1 0.5 0.5 0.5 0.8 0.9 1.3 1.0 1.0 1.0 1.1 1.2 1.0 0.5
May 1.1 0.7 0.7 0.5 1.0 0.8 1.3 1.0 1.0 1.0 1.0 1.3 1.0 0.5
June 1.1 1.0 1.1 0.9 1.2 0.9 1.3 1.0 1.0 1.0 1.0 0.9 1.0 0.5
July 1.1 1.3 1.1 1.1 0.9 0.9 1.3 1.0 1.0 1.0 1.0 0.9 1.0 0.5
August 1.1 1.2 1.1 1.2 0.5 0.9 1.2 1.0 1.0 1.0 1.1 0.8 1.0 0.5
September 1.1 1.2 0.7 1.1 0.5 1.1 1.2 1.0 1.1 1.0 1.1 0.8 1.0 0.5

Figure .4: Time series of different ET products during the growing season of 2020, for the Aa catchment

Figure .5: Time series of different ET products during the growing season of 2020, for the Aa catchment
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Figure .6: Precipitation events and daily average temperatures during four periods of 2020.
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(a) Hupsel Brook catchment (b) Grote Waterleiding catchment

(c) Aa catchment (d) Legend land use

Figure .7: Land use
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(a) Average ETRS, Hupsel Brook (b) Standard deviation of ETRS, Hupsel Brook

(c) Average ETRS, Grote Waterleiding (d) Standard deviation of ETRS, Grote Waterleiding

(e) Average ETRS, Aa (f) Standard deviation of ETRS, Aa

Figure .8: Experimental semivariogram and fitted exponential semivariogram model of average (a, c & e) and standard
deviation (b, d & f) of ETRS for the Hupsel Brook (a, b), Grote Waterleiding (c, d) and Aa (e, f) catchment
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(a) Hupsel POI 2 average (b) Hupsel POI 2 sd

(c) Hupsel POI 3 average (d) Hupsel POI 3 sd

(e) Hupsel POI 4 average (f) Hupsel POI 4 sd

Figure .9: Hupsel POI average and sd


