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Abstract: Untargeted metabolomics approaches deal with complex data hindering structural informa-
tion for the comprehensive analysis of unknown metabolite features. We investigated the metabolite
discovery capacity and the possible extension of the annotation coverage of the Feature-Based
Molecular Networking (FBMN) approach by adding two novel nutritionally-relevant (contextual)
mass spectral libraries to the existing public ones, as compared to widely-used open-source anno-
tation protocols. Two contextual mass spectral libraries in positive and negative ionization mode
of ~300 reference molecules relevant for plant-based nutrikinetic studies were created and made
publicly available through the GNPS platform. The postprandial urinary metabolome analysis within
the intervention of Vaccinium supplements was selected as a case study. Following the FBMN ap-
proach in combination with the added contextual mass spectral libraries, 67 berry-related and human
endogenous metabolites were annotated, achieving a structural annotation coverage comparable to or
higher than existing non-commercial annotation workflows. To further exploit the quantitative data
obtained within the FBMN environment, the postprandial behavior of the annotated metabolites was
analyzed with Pearson product-moment correlation. This simple chemometric tool linked several
molecular families with phase II and phase I metabolism. The proposed approach is a powerful
strategy to employ in longitudinal studies since it reduces the unknown chemical space by boosting
the annotation power to characterize biochemically relevant metabolites in human biofluids.

Keywords: human urine; liquid chromatography; untargeted mass spectrometry; computational
metabolomics; chemometrics; bioinformatics

1. Introduction

Untargeted tandem mass spectrometry (MS/MS) is one of the most widely used
analytical techniques in metabolomics, allowing for the generation of information-rich
mass spectral datasets and the identification of metabolic biomarkers in biological complex
mixtures [1,2], also thanks to the coupling with separation techniques such as liquid chro-
matography (LC). Despite the wide application of hyphenated LC-MS/MS platforms, the
annotation of biologically relevant metabolites (i.e., biomarkers) is strongly hampered by
the complexity of the metabolome and metabolomics data processing and annotation [3].
The annotation process is a pivotal step in untargeted metabolomics that often represents
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a bottleneck in the process of obtaining biological information and discovering biomark-
ers. To streamline the metabolite annotation process, metabolomics guidelines have been
proposed for the accurate identification and assignment of a metabolite feature [4,5], i.e.,
through peak picking, mass spectral deconvolution, determination of molecular ions by
adduct detection, and fragmentation pattern (MS/MS) analysis [6]. Despite these efforts,
the risk of missing relevant information and drawing incorrect conclusions remains rela-
tively high, due to incorrect MS and MS/MS interpretations when matching experimental
spectra with available spectral libraries. To aid in structural interpretation, the identifica-
tion of MS/MS spectral similarities within a given dataset can support the discovery of
structurally related metabolites, which plausibly share the same metabolic pathway and/or
substructure [7], thus strengthening the biological meaning of the annotations.

In this context, molecular networking (MN) has gained large attention, thanks to the
efficient and rapid identification of several molecular families within complex mixtures,
providing a visual overview of all the precursor ions, grouped according to their struc-
tural relationships, as deduced by their mass fragmentation spectra during an MS/MS
experiment [8]. MN uses an unsupervised vector-based computational algorithm to or-
ganize molecular ions (i.e., clusters or nodes) into a network of molecular families that
share spectral similarities among their MS/MS spectra. At the same time, structural
annotation is performed through the Global Natural Products Social Molecular Network-
ing (GNPS) bioinformatics platform [8], which is linked to many mass spectral libraries
available as public repository of mass spectra and metadata (i.e., GNPS-MassIVE). Con-
sidering the recent growth of public mass spectral libraries, it is expected an increase of
the annotation capability (level II or level III) of biologically relevant molecules in com-
parison with traditional biomarker discovery workflows [9]. MN has been applied in
several untargeted LC-MS/MS studies, mainly focusing on phytochemical composition
analysis [8], and less frequently on drug metabolism [10], and nutrimetabolomics [11] in
human biofluids.

Recently, MN has been extended by its combination with standard feature detection
tools into the Feature-Based Molecular Networking (FBMN) workflow that is capable
to resolve isomers and incorporate quantitative information (e.g., spectral counts, chro-
matographic peak areas, etc.), increasing the link between peak picking algorithms and
in silico annotation tools [12]. Until now, FBMN has been successfully applied in various
fields of metabolomics, allowing level II/level III identification of transformation prod-
ucts of organic micropollutants in water samples [13], native plant constituents [14–16],
and endogenous urinary metabolites [17]. However, mass spectral library matching is
generally performed by the comparison with mass spectral libraries containing MS/MS
spectra acquired under a wide range of instrumental conditions (e.g., time-of-flight, orbi-
trap, hybrid ion traps, etc.) and collision energies used, with different curation protocols
providing different mass accuracy levels [13,16], thus suffering from limited reliability of
the annotation due to differences in observed mass fragments and their intensity ratios.
This issue can be managed by implementing better contextualized libraries containing
reference spectra of study-related compounds and acquired under experimental conditions
equal to or comparable to the experimental data being analyzed. Finally, FBMN has the
hitherto unexploited potential in biomarker research to provide quantitative data of the
structurally annotated (and unannotated) features, thus complementing the traditional
biomarker discovery procedure with a chemometric protocol that allows establishing their
biological significance.

This research investigates the discovery capacity and the extension of the annotation
coverage of the FBMN approach, in comparison with a commonly adopted manual an-
notation of selected significant m/z features [18]. To this end, the FBMN workflow was
applied to deconvoluted and aligned high-resolution LC-MS/MS files of postprandial
urine samples from a two-arms intervention study on the intake of Vaccinium myrtillus
(VM) and Vaccinium corymbosum (VC) berry supplements. As far as we are aware, this
represents the first nutrimetabolomics application of FBMN to the identification of post-
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prandial endogenous and exogenous metabolites. The MS/MS spectra that were acquired
in both negative ionization (NI) and positive ionization (PI) data dependent acquisition
modes were compared with the available GNPS libraries. An extensive comparative
analysis was done to compare various FBMN parameter settings to arrive at optimal set-
tings for structural annotation purposes in the nutrimetabolomics setting. Furthermore,
to support automated nutrimetabolomics annotation workflows, two novel NI and PI
contextualized “Nutri-Metabolomics” mass spectral libraries were constructed and made
available uniquely on GNPS, each containing MS/MS spectra of about three-hundred
food-related human metabolites, acquired under the same mass spectrometric conditions
as the study samples. These mass spectral libraries are a fruit of several years of investi-
gations on human responses to dietary interventions at the Edmund Mach Foundation
(Italy), and include phase I and phase II human metabolites, as well as food constituents.
Special attention was given to microbial metabolites resulting from mixed human and
microbiome interaction such as small phenolic acids, phenylacetic acids, phenylpropionic
acids, indoles, and carbolines, as well as bile acids. Other classes include sulfate and
glucuronides conjugates of common food constituents such as caffeic acid glucuronide,
dihydroferulic acid sulfate, isoferulic glucuronide, etc. Several aroma compounds were
included to facilitate substructure matching, as those were observed in biological fluids in
conjugated form (monoterpenoids, safranal, furfuran, fenchyl alcohol etc.). Finally, the spec-
tral library offers specific advanced glycation end-products including pyrraline, furosine
and more.

In the current study, the mass spectral library creation aimed at increasing (i) the
accuracy in the annotation thanks to a better match of instrumental metadata such as
detector and collision energy, (ii) nutrimetabolomics knowledge on postprandial analysis of
biological samples and plant-based food intake. Additionally, the quantitative data within
NI and PI FBMN networks were exploited to gain insights into (i) metabolites characterized
by different postprandial kinetics and (ii) the relative dietary contribution of VM and VC
interventions of the identified metabolites.

2. Materials and Methods
2.1. Chemicals and Reagents

Full purchase details of solvents and standards used are reported in Section S1 of the
Supplementary Materials. The complete list of the reference standard adopted to build the
“Nutri-Metabolomics” libraries, in both NI and PI modes, is shown in the List of Reference
Standards used to build the libraries.xlsx file in the Supplementary Materials.

2.2. Study Design, Sample Extraction, and LC-MS/MS Analysis

The datasets analyzed in this research are part of a more comprehensive clinical
intervention trial, based on the hematic and urine biomarker discovery on the intake of
VM and VC [18,19]. Urine samples of each volunteer (n = 10 for each intervention) were
collected at baseline and 30, 60, 120, 240, and 360 min after VM or VC supplement intake.
Pooled urine samples were also collected 24 h and 48 h after supplement intake. Details of
supplements characterization (Table S1), as well as study design are reported in Section S2
of the Supplementary Materials. Urine samples were extracted and analyzed as reported
elsewhere [19]. The entire procedures of extraction and LC-MS/MS analysis of urine
samples are reported in Sections S3 and S4 of the Supplementary Materials, respectively.
The entire sample set was acquired in full scan mode, collecting high quality data for an
appropriate statistical analysis, as well as in data dependent acquisition (DDA) mode, to
leverage large quantities of MS/MS data for structural investigation preserving the kinetic
heritage of the study design.
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2.3. Data Pre-Processing

The full scan files were processed and analyzed as previously reported [18]. Ad-
ditionally, the data-dependent spectra files (including blanks) were converted from the
.raw to .mzML MS convert by ProteoWizard (https://proteowizard.sourceforge.io) (ac-
cessed on 15 April 2021). Further data processing was performed with MZmine 2 soft-
ware [20], separately for NI and PI datasets. Data pre-processing included the following
steps: mass detection, chromatogram reconstruction and deconvolution, isotope group-
ing, alignment and gap filling. Subsequently, the aligned feature lists were exported
as MS/MS files (.mgf format) and quantification tables (.csv format of aligned features
and related chromatographic peak areas), according to GNPS documentation on FBMN
(https://ccms-ucsd.github.io/GNPSDocumentation/) (accessed on 21 April 2021).

2.4. Data Availability: MassIVE Repository, Metadata and GNPS Jobs

Data in .mzML format are available on-line on GNPS infrastructure (MSV000088336).
The metadata describing file/sample properties were entered manually for all samples
and organized in two different files according to the acquisition polarity of the uploaded
MassIVE datasets, following the GNPS guidelines (https://ccms-ucsd.github.io/GNPS
Documentation/metadata/) (accessed on 21 April 2021). In detail, metadata consisted
of three descriptive categories, (i) spectrum file name (the same of acquired raw data),
(ii) type of supplement (VM or VC), and (iii) related time point after intake. These elements
are required to get a correct grouping within FBMN for quantitative analysis (see the
Metadata and Library Information.xlsx file in the Supplementary Materials). For the
upload on GNPS, metadata files were converted to .tsv files. The FBMN analysis are
available at the following links:

• PI: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a981ebd40809453ebe1524ff1
fc8e265 (accessed on 27 June 2021).

• NI: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a239e71bb2045c292c4c96
f4501249c (accessed on 27 June 2021).

2.5. “Nutri-Metabolomics” Library Building and Implementation

The analytical standards used to build the in-house libraries were acquired in the
same MS/MS conditions as study samples (replicated three times), which are reported in
Section S4 of the Supplementary Materials. GNPS provides a platform to build MS/MS
spectral libraries, requiring good quality MS/MS spectra and annotation spread sheets
containing key and machine-readable descriptors such as file name, compound name,
SMILES, InChiKey, PubMed. To build the library, only pure analytical standards were used,
thus no putative or un-known compounds are present in the files. Two annotation spread
sheets were built in NI and PI, containing 319 and 339 injected compounds, respectively
(see the Metadata and Library Information.xlsx file in the Supplementary Materials). Anal-
ysis of standards included their separation on the chromatographic column; however, a
retention time match is not supported in GNPS and therefore this information was used
manually when needed. The “Batch Validator Workflow” [21] step was run to evaluate
the correct match between spreadsheets (dropped as .csv files), and original spectra. The
completed libraries can be found in the public spectral library collection of GNPS named
as “Nutri-Metabolomics”.

2.6. Molecular Networking Analyses

Molecular networks were obtained following the online workflow on the GNPS web-
platform (https://gnps.ucsd.edu/) (accessed on 21 April 2021). FBMN was performed
adopting the most suitable basic and advanced networking options, selected through
the recommended network qualitative optimization by classical MN (see Section 3.1), for
NI and PI dataset exported from MZmine 2 software. The detailed investigation of MN
options is reported in Section S5 of the Supplementary Materials. The most appropriate
input parameters were set as follows: NI were analyzed using precursor ion mass tolerance

https://proteowizard.sourceforge.io
https://ccms-ucsd.github.io/GNPSDocumentation/
https://ccms-ucsd.github.io/GNPSDocumentation/metadata/
https://ccms-ucsd.github.io/GNPSDocumentation/metadata/
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a981ebd40809453ebe1524ff1fc8e265
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a981ebd40809453ebe1524ff1fc8e265
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a239e71bb2045c292c4c96f4501249c
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a239e71bb2045c292c4c96f4501249c
https://gnps.ucsd.edu/
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(PIMT) and fragment ion mass tolerance (FIMT) equal to 0.1 Da and 0.01 Da, respectively.
The other parameters were set as follows: minimum matched fragment ions = 3, networking
cosine score > 0.6, library cosine score > 0.5, and minimum library shared peaks = 3. PI
dataset was processed adopting PIMT = 0.05, FIMT = 0.05, minimum matched fragment
ions = 3, networking cosine score > 0.5, library cosine score > 0.3, and minimum library
shared peaks = 3. Network analysis and quantitative results were investigated and exported
adopting Cytoscape environment [22]. Moreover, unknown nodes were annotated with
putative molecular structures by manual annotation based on: (i) mass difference between
identified and unknown node, (ii) precursor ion mass accuracy, and (iii) fragmentation
patterns in MS/MS spectra (see Section S6 of Supplementary Materials).

2.7. Analysis of Postprandial Kinetics

Reinjection of the entire dataset in DDA fashion enabled the exploitation of post-
prandial kinetics data. To extract the postprandial information from FBMN, the Pearson
product-moment correlation (PPMC) analysis was performed, using the “corrplot: A visu-
alization of a correlation matrix” package implemented in R (https://cran.r-project.org/)
(accessed on 28 July 2021), thus estimating the linear correlation between the mean chro-
matographic peak area of identified nodes and time points. The quantitative FBMN data
used for the correlation analysis were extracted from the “node table” of the Cytoscape
environment, built using the loaded metadata for both NI and PI datasets. Statistically
significant (p-value ≤ 0.05) PPMC coefficients (r) were used to discriminate early (1–2 h
postprandial) from late (approximately 4 h and more postprandial) occurring postprandial
metabolites, which are commonly considered as the result of phase II or phase I metabolism,
respectively [23]. Accordingly, positive and negative r-values indicated nodes associated to
phase I (late postprandial) and phase II (early postprandial) metabolism, respectively. A
limitation of using PPMC within FBMN was the absence of sample normalization as this
functionality is currently not available. Findings from this step were compared to those
obtained through the PPMC analysis of longitudinal variations of the chromatographic area
of aligned features (i.e., outside FBMN), as a control strategy. It should be highlighted that,
although the PPMC coefficients can be associated with the metabolism phase, its relation
to the specific food intake remains elusive without further biochemical interpretations.
Simultaneously, full scan data underwent the conventional data processing, as previously
described [17]. Briefly, biomarkers of food intake in postprandial responses were selected
by applying selected R packages to full scan data [24], according to the following two-step
procedure: (i) verification of increasing trend along time points and (ii) calculation of
AUC curves and intra-intervention discrimination. Statistically significant features were
annotated manually with use of on-line spectra databases such as mzCloud and HMDB.
Details of this procedure are reported in Section S5 of Supplementary Materials.

3. Results and Discussion

The NI and PI datasets were treated following the workflow illustrated in Figure 1,
which integrates the PPMC analysis of postprandial kinetics within the FBMN environment.
However, since FBMN extracts only the mean values of the chromatographic area as quan-
titative data for PPMC analysis, thereby losing knowledge of inter-individual variability,
the variance of metabolite feature abundance among volunteers was investigated at each
time point as a control, before applying the FBMN workflow. Accordingly, the coefficient
of variation (CV%) of chromatographic areas of each aligned feature within a same time
point was calculated, highlighting a strong variability (CV% approximately in the range
of 30–300% and median higher than 100% in most cases). These findings highlighted the
importance of evaluating the results of PPMC analysis at the population level.

https://cran.r-project.org/
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Networking and the “Nutri-Metabolomics” mass spectral libraries that were manually curated.

3.1. Optimization of the Input Parameters for Network Analysis

Before running FBMN, various networking basic and advanced options must be
investigated to find out the most suitable parameters to perform the MN analysis. To
properly evaluate the effect of input parameters, the total number of nodes (precursor
ions with identical fragmentation pattern, i.e., consensus spectrum), edges (i.e., node
connections related to structural similarities), identified compounds (IDs, i.e., annotated
through spectral library matching), and spectral families (i.e., the groups or clusters, also
referred as molecular families), were analyzed in both NI and PI datasets and the results
are reported in Figure S1 of the Supplementary Materials. In this regard, increasing PIMT
value, the number of nodes, edges, and spectral families decreased, whereas the number of
IDs showed a predominantly increasing trend, mainly due to the less strict conditions as
consensus spectra got merged (i.e., considering different isobaric compounds as one) at
increasing PIMT. Hence, to keep a reliable number of nodes and spectral families without
significantly affecting the number of IDs, PIMT was set at 0.1 Da and 0.05 Da for NI and
PI, respectively. FIMT exerted an effect on the output variables like that of PIMT, except
for the total number of edges, which increased by increasing values of FIMT. Due to the
loss of accuracy in node networking for high FIMT, values of 0.01 and 0.05 were chosen
for NI and PI datasets, respectively. The number of minimum matched fragment ions was
set at 3 for both NI and PI for two reasons: (i) Its increase exerts a significant reduction of
the number of nodes with an ID and their reliability, (ii) many food-derived metabolites
have only a few characteristic mass fragments. Cosine scores for networking and library
matching affected mainly the number of spectral families and of IDs, respectively. A
good compromise between these two outputs was obtained by setting the networking and
library matching cosine score thresholds at 0.6 for NI and 0.5 for PI. Finally, the number of
minimum library shared peaks was set at 3, because higher values of this parameter were
responsible for a drastic reduction of IDs, similarly to what was observed for the number of
matched fragments.
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3.2. FBMN Annotation of NI and PI Datasets

FBMN workflow applied to NI and PI datasets combined with aligned feature lists
and quantitative tables exported from data pre-processing, was able to remove the 57% and
27% of NI and PI redundant IDs (i.e., artefacts like duplicated features) found by classical
MN, respectively.

As first result, the effect of including context specific “Nutri-Metabolomics” mass
spectral libraries in the annotation workflow was evaluated by applying the FBMN protocol
in their presence and absence (i.e., GNPS libraries “only”). Indeed, substantial advantages
were observed upon using the dedicated mass spectral libraries, i.e., the increase of (i) 20%,
48%, in the number of IDs (Figure S2A) and (ii) 62.5%, 34%, in the number of IDs with a
mass error < 5 ppm (Figure S2B), for NI and PI datasets, respectively. Additionally, the use
of the “Nutri-Metabolomics” libraries solved two mis-annotations (i.e., incorrect annotation
of nodes) in the NI datasets. These results highlight the importance of applying the FBMN
annotation strategy in combination with contextual libraries, i.e., containing true reference
standards that are relevant for the application of interest and analyzed under the same
instrumental conditions adopted for the analysis of real samples.

The FBMN network of the NI dataset consisted of 545 nodes and 799 edges, with a
total number of connected components equal to 307, corresponding to 65 spectral families,
whereas molecular networking of the PI dataset resulted in 5079 nodes and 6904 edges,
with a total number of connected components equal to 3543 (i.e., 663 spectral families). The
ID lists obtained from the library matching in both NI and PI datasets contained 39 and
384 unique annotated compounds, respectively, which were checked for mass accuracy to
be around or lower than 5 ppm. Table S2 (see Section S5 of the Supplementary Materials)
reports the metabolites identified by library matching (based on cosine score similarity) of
nodes within and outside molecular families (the latter are typically called singletons) from
both NI (24 IDs) and PI (43 IDs) datasets, characterized by the lowest mass error (∆ ppm).

Even though the FBMN approach has specific methodological inputs and results that
differentiate it from commonly used workflows in untargeted nutrimetabolomics, it is
interesting to compare the discovery capacity and annotation coverage obtained with other
approaches. For this purpose, the FBMN was compared against two widely used annotation
protocols: (i) MZmine Library Search and (ii) statistical-based feature selection followed
by manual annotation (see Section S5 of the Supplementary Materials) [18]. It should
be emphasized that the compared workflows differ substantially as per their rationale.
MZmine Library Search workflow matches each row of the NI and PI feature lists (used also
for FBMN) against the imported spectral library. To make a consistent comparison with the
annotation performed with FBMN, the “ALL-GNPS” library was used. The conventional
protocol aims at selecting only statistically significant m/z features from full scan data,
followed by manual annotation using the MS/MS spectra often obtained in targeted mode.
In contrast with the presented approaches, FBMN explores all available MS/MS data from
the DDA metabolomics profiles (taking advantage of all structural annotations that can
be made), annotating them against mass spectral libraries. Only then, further statistical
analysis is performed to discover their potential postprandial relevance. Thus, the direct
comparison of these annotation and prioritization workflows is not and will never be
straightforward; yet, here we highlight some relevant aspects.

Table 1 shows the final number of IDs found adopting the three approaches. MZmine
Library Search workflow provided the metabolite annotation with 26 and 49 unique IDs
in NI and PI datasets, respectively, with cosine similarity scores (isotopic pattern at full
scan level) higher than 0.7. The number of IDs identified by this approach was comparable
with the results of the applied FBMN workflow, and several metabolite categories were
commonly annotated by the two procedures (data not shown), such as hippuric acids,
catechols, and derivatives of phenylacetic acid, coumaric acid, indoles, and hydroxyben-
zoic acid. However, due to the format of our data unsuitable for MS/MS-based mass
spectral matching within MzMine (i.e., incomplete mass lists for the MS/MS scans), the
MZmine-based approach relied on precursor m/z and isotope pattern matching, thus
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possibly resulting in a less reliable annotations due to the limited structural informa-
tion. The statistical-based/manual annotation method resulted in 50 and 106 statistically
significant m/z features in PI and NI datasets, respectively, corresponding to 24 metabo-
lite features after manual checking. Manual structure elucidation putatively identified
18 metabolites (12 in NI and 6 in PI datasets), while 6 metabolites remained unknown (see
Table S3). Using FBMN, a higher number of metabolites was putatively annotated, i.e.,
24 IDs in NI, and 43 IDs in PI, when compared to the statistical-based/manual annota-
tion approach. These differences were due to both (i) the automatic query (intrinsic of
FBMN) of all publicly available mass spectral libraries, including “Nutri-Metabolomics”
ones, and (ii) the different strategies to select the metabolite features to be annotated.
In fact, the conventional approach processes the NI and PI datasets to highlight physio-
logically relevant features, before their annotation is performed by unqueried matching
with analytical standards available in on-line spectral libraries. On the contrary, FBMN
automatically generates a list of IDs, which is then refined by applying, for example, a
mass accuracy threshold, in combination with the use of mass spectral similarity scoring
(i.e., modified cosine score), as presented in this study. Despite these methodological
differences, hydroxyhippuric acid and dihydrocaffeic acid glucuronide were identified
with both approaches. Moreover, the conventional postprandial analysis confirmed the
FBMN identification of structurally-related metabolites significantly altered upon berry
intake, belonging to furoic and abscisic acid derivatives, hydroxy and/or methoxy benzoic
acids. By contrast with FBMN, the conventional protocol for postprandial analysis iden-
tified the metabolite categories of valerolactone and valeric acid derivatives (see Section
S5 and Figure S3 of the Supplementary Materials), which are well-known colon-derived
catabolites of flavanols [25]. These metabolite features were found also inside the FBMN
molecular networks; however, they were not structurally characterized as such, due to their
absence in the “Nutri-Metabolomics” and other mass spectral libraries. These findings high-
lighted the importance of expanding the coverage of online spectral repositories to boost
metabolite annotations.

Table 1. Number of IDs annotated by Feature-Based Molecular Networking (FBMN) of NI and PI
datasets, including the developed “Nutri-Metabolomics” mass spectral libraries, in comparison with
the annotation performed with (i) MZmine Library Search using GNPS compatible mass spectral
libraries (ALL_GNPS, https://gnps-external.ucsd.edu/gnpslibrary) (accessed on 5 September 2022)
and with (ii) the statistical-based approach followed by manual annotation, reported in Section S5 of
the Supplementary materials.

Number of IDs NI PI

MZmine 1 26 49
Statistical-based approach & manual annotation 12 6

FBMN 24 43
1 Library search performed at full scan MS level using m/z and isotope pattern matching.

3.3. VM and VC Relative Contributions to the Postprandial Metabolome

Categorization of NI and PI metadata based on VM and VC interventions (see
Section 2.4 for details) allowed for the separate storage of spectral counts (i.e., the number
of mass spectra recorded for a node) of each ID precursor ion. This information was used
here for assessing the VM and VC relative contributions of each ID to the postprandial
metabolome, by the representation of a pie chart (see Figures 3 and 4 in Section 3.5). More-
over, a preliminary and descriptive contribution to the annotated urinary metabolome
of VM and VC interventions can be estimated. Interestingly, VM and VC interventions
exhibited an opposite feature occurrence in the two ionization datasets, highlighting the
importance of investigating both polarity modes. In detail, NI IDs resulted in a higher
postprandial occurrence after the intake of VC supplement (62 ± 6% vs. 38 ± 4% for VC and
VM), whereas for PI dataset, a slight predominance was found for VM (54 ± 2% vs. 46 ± 2%
for VM and VC).

https://gnps-external.ucsd.edu/gnpslibrary
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3.4. PPMC Analysis of Postprandial Kinetics

Longitudinal data analyzed by FBMN approach allows for additional data exploration
to highlight the specificity of food intake as well as the “background” metabolism, since
no feature selection is performed. Accordingly, the PPMC analysis was performed on
the mean values of chromatographic area of each ID as a function of time. Following
this analysis, 65.7% of the annotated metabolites (i.e., 44 IDs on a total of 67) showed
a statistically significant trend approximating an increasing or decreasing postprandial
response, thus highlighting the reliability of this approach. Among the significant correlated
metabolites, 35 IDs showed a positive coefficient (r-values) and were therefore associated
to phase I metabolism, whilst 9 IDs were characterized by negative r-values, suggesting a
phase II metabolism. Figure 2A,B illustrates two representative postprandial trends of IDs
corresponding to significant negative and positive r-values, respectively.
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The remaining 23 metabolites exhibited a non-linear and not significant trend, as
shown in the two representative examples of Figure 2C,D. The postprandial behavior of
these IDs cannot therefore be assigned through this approach and requires a qualitative
investigation (plots of chromatographic areas vs timepoints) and/or a dedicated treatment
outside the FBMN environment.

As stated above, these results were based on the correlation analysis of mean values of
chromatographic areas, i.e., without considering the dispersion of individual data around
the mean. To evaluate the impact of the extent of this dispersion on the statistical signifi-
cance of linear correlations, the data obtained for each volunteer and for each annotated
feature were submitted to PPMC analysis outside the FBMN environment (i.e., using the
data from MZmine feature lists). For 25 IDs out of the 44 IDs found to be significant based
on mean chromatographic areas, the statistical significance of the r-values was confirmed,
notwithstanding the high variability observed in the peak area datasets. These results
encourage the applicability of the postprandial analysis proposed here at least as a first
immediate screening of the postprandial behaviour of annotated metabolites, capturing
their metabolic trends over time. It is of note that this approach would produce more
accurate results when a lower dispersion of individual data around the average value is
observed; and to achieve this, increasing the sample size may be of help.

3.5. Nutrimetabolomics Outcomes from FBMN Molecular Networks

Figure S4 of the Supplementary Materials shows representative examples of the
structural modification involved in phase I and II metabolism of well-known VM and VC
native constituents [26], in association with the annotated metabolites and their significant
PPMC r-values.

Accordingly, potential metabolic modifications such as conjugations (e.g., glucuronida-
tion) and additions (e.g., methylation) should be expected to undergo in-source hydrolysis
and dissociation, leading to accurate annotations, but losing a relevant structural informa-
tion. To limit these drawbacks, a robust network inspection was performed to ensure a
reliable annotation.

Within NI dataset (24 IDs, see Table S2), four singletons were identified through
spectral matching with a good mass accuracy: azelaic acid, galacturonic acid, glutamine,
and ethoxy-oxobutenoic acid. The occurrence of galacturonic acid and glutamine can
be addressed to in-source dissociation of glycosidic and peptidic bonds of metabolite
conjugations. Figure 3 illustrates the molecular families in which at least one of the
remaining 20 metabolites was annotated. These metabolites were grouped according to
their postprandial kinetics, as assessed by statistically significant r-values. In Figure 3, the
structure of unknown nodes labelled with a gear was proposed as level III identification by
the analysis of their MS/MS spectra the hypothesized scheme of fragmentation (Figure S5
of the Supplementary Materials).

About the 50% of the identified structures was characterized by molecular scaffolds
related to cinnamic and dihydrocinnamic acids. Interestingly, among unknown nodes,
a relevant number of putative glucuronide derivatives was easily recognized by the oc-
currence in the MS/MS spectra of peaks at m/z 175.02 and 113.02, typical of glucuronic
acid (Figure S5).

Two nodes highlighted in one box in Figure 3 were recognized as a molecular family
related to abscisic acid glucuronide derivatives. The ID occurring in this family, was at
first addressed as dihydroxy-diphenylphenoxy-trihydroxyoxane-carboxylic acid, with
a mass error of about 128 ppm. However, the inspection of its MS/MS spectra (see
Figure S6 of the Supplementary Materials) led to a more accurate putative annotation of
this node as methoxyabscisic acid glucuronide (∆ = 2.6 ppm). In addition, the hypothesized
structure of the linked node was consistent with abscisic acid glucuronide (Figure S5),
which was already putatively identified in a previous study by a conventional annotation
workflow [18].
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Figure 3. Extracted molecular families of identified metabolites in negative ionization mode listed in
Table S2, belonging to the category of (poly)phenolic compounds, abscisic acid, and their glucuronide
or sulfate derivatives. Dashed boxes group the identified metabolites according to phase I and II
metabolism following PPMC analysis. The “gear” symbols refer to the putative structure identified
by manual investigation as reported in Section 2.6 of the main text. Statistically significant Pearson
correlation coefficients (r) are reported. Edge labels refer to the mass difference between two nodes.

Among the identified molecular families in the NI dataset, some of them exhibited
a mixed metabolic contribution (i.e., phase I–II). In detail, isoferulic acid glucuronide
showed a positive and significant PPMC correlation (r = 0.757), but was linked with a node
exhibiting an opposite postprandial behavior (peak area vs. time points, data not shown),
thus suggesting a phase I-II mixed contribution.

An analogous mixed metabolic contribution can be also proposed for the abscisic
acid spectral family since the methoxyabscisic acid glucuronide is most likely associated
to phase I due to the methylation of the hydroxyl group, whereas the node putatively
associated to the glucuronide derivative of abscisic acid, is related to phase II.

The molecular family containing hydroxyphenyl propionic and hydroxy-methoxy
cinnamic acids was characterized by peculiar structural relationships and depicted a hetero-
geneous metabolic contribution. In fact, the postprandial analysis of the identified nodes
evidenced a phase I expression (0.348 < r < 0.940) for most metabolites [19,27], with the
only exception of hydroxyphenyl propionic acid, for which a phase II metabolism can be
suggested, based on its r-value (−0.415). Even though this metabolic association to phase II
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metabolism is apparently questionable due the lack of a conjugated group, the analysis of
the full scan spectra evidenced an in-source fragmentation of the sulfate derivative of the
hydroxyphenyl propionic acid (m/z = 263.02 Da), thus confirming the phase II metabolic
attribution. A detailed analysis of this molecular family evidenced also that the compound
annotated as hydroxy-methoxycinnamic acid probably underwent in-source dissociation,
since in the same tR range, an ion at m/z 273 fragmented in m/z 229.02 and m/z 193.05,
corresponding to losses of 44 Da (neutral loss of CO2) and 80 Da (loss of SO3). These
findings suggested that the annotated compound was conjugated with sulfate. The other
spectral family associated with the phenylpropionic scaffold also included metabolites
associated with both phase I (i.e., enterolactone and hydroxyphenylpropionic acid) and
phase II (i.e., dihydrocaffeic acid glucuronide) [28]. A clearer postprandial kinetics was
highlighted for the molecular family of dihydroxyphenyl propanoic acid glucuronide,
being addressed as phase II (r = −0.302) metabolites [26]. Several sulfate metabolites
occurred in the same molecular family, belonging to the categories of dihydrocinnamic
and vanillic acids, phenolic derivatives, and indoles. Thanks to the analysis of postpran-
dial profiles and in agreement with literature findings [29,30], the molecular scaffolds of
the identified molecules are probably related to the activity of the gut microbiota. The
metabolites occurring in this spectral family can be addressed to the phase I metabolism
(0.526 < r < 0.700). Ultimately, it should be emphasized that some IDs belonging to the
abovementioned molecular families showed structural similarities with previously an-
notated compounds. For example, compounds 4 and 5 of the NI dataset (Table S2), are
characterized by retention time and MS2 fragments like those reported for the related
glucuronidated conjugates found in urine by Ancillotti and co-workers [19].

In the PI dataset, twenty-four singletons were identified. In detail, several metabolites,
annotated as (poly)phenolics and phenolics derivatives, were linked to phase I metabolism
(e.g., dihydroxy-trimethyl-isochromenone, trihydroxybutyrophenone, and dihydroresver-
atrol) and with mixed contribution of phase I-II (e.g., cinnamic acid and hesperetin) by
PPMC analysis. Other plant endogenous compounds, annotated with high accuracy, did
not show any significant PPMC. Among them, β-glucopyranosyl-tryptophan and furaneol,
as well as abscisic acid and nerol, which are well-known food-intake biomarker [31,32],
and plant constituents [33,34], respectively. Some human endogenous compounds were
also annotated (i.e., alpha-CEHC, ethylindole carboxylicacid, folinic acid, formylkynure-
nine, indole acetic acid, sebacic acid, ketodeoxycholic acid, keto-octadecadienoic acid,
and hydroxy-methoxybenzophenone), exhibiting different trends against time points
(−0.645 < r < 0.958), thus resulting in a complex metabolic output potentially associated
with the investigated interventions, or resulting from background diet. Finally, PI mode
exhibited three singletons that matched the NI annotations (i.e., azelaic acid, furoylglycine
and enterolactone) and postprandial behavior interpretation based on PPMC analysis, being
their longitudinal trend characterized by high and positive r-values (0.640 < r < 0.967).

The other annotated compounds occurred inside molecular families (Table S2), al-
lowing for identifying interesting metabolites. Figure 4 displays the molecular families
occurring in the PI dataset with the unknown nodes labelled by “gear” symbols for which
were provided hypothesized structures (Figure S7 of the Supplementary Materials). The
match with the PI “Nutri-Metabolomics” library identified two nodes as isomers of vanillic
acid at different retention times, whereas the remaining nodes were putatively addressed
as protocatechuic acid derivatives with high mass accuracy (from −3.26 to −0.06 ppm), by
structural elucidation (Figure S7). This molecular family resulted the only one with mixed
phase II-phase I contributions. In fact, vanillic acid was characterized by a statistically
significant negative r-value, suggesting its direct origin from the supplements intake [35],
whereas the two hypothesized protocatechuic acid derivatives exhibited an increasing
signal around 6–24 h when their signals were plotted manually, probably originating
from microbiota activity [30]. Most identified molecular families were related to phase I
metabolism (0.441 < r < 0.930) and, interestingly, several identified and hypothesized node
structures can be addressed as metabolite of the native polyphenols occurring in the bilberry
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and blueberry supplements [30]. Furthermore, derivatives of phloroglucinol carboxylic
acid (i.e., hydroxy-dimethoxyphenyl-ethanone), cinnamic acid (i.e., coumaric acid, methyl-
cinnamate, ferulic and isoferulic acid), and mandelic acid (i.e., methoxy-hydroxymandelate)
were recognized. A deeper network inspection revealed the occurrence of in-source frag-
mentations of the conjugation of cinnamic acid derivatives. In detail, at the same tR value
of the compound annotated as ferulic acid (tR = 5.14, m/z = 177.05), the feature at m/z
252.09 fragmented originating ions at m/z 177 (methoxycinnamic moiety) and at m/z 85
(H4SO3+H+ sulfate moiety), suggesting that the annotated compound is a sulfate conjugate.
Similarly, vanillic acid (tR = 3.65, m/z = 169.05) could be addressed as sulfate conjugated,
since a feature at tR = 3.7 and m/z = 261 was characterized by fragments at m/z = 99
(H3SO4

+) and at m/z=122 (probably benzoic acid). Finally, the compound annotated as
isoferulic acid (tR = 4.91, m/z = 177.05), coeluted with a feature at m/z = 263, which is prob-
ably a derivative of dihydrocaffeic acid sulfate (annotated in NI dataset), thus supporting
the sulfated conjugation of isoferulic acid. Three additional interesting spectral families
were identified as β-carboline derivatives (i.e., tetrahydroharmane carboxylic acid and
tetrahydro-β-carboline carboxylic acid), previously identified in serum samples from this
study [18], xanthine pathway metabolites (i.e., dimethyl-uric acid, caffeine), and terpene
derivatives (i.e., curcumenol). Regarding xanthine derivatives, even though the identifica-
tion of uric acid derivatives is in accordance with literature [36], the occurrence of caffeine
has never been reported in association with berries consumption and could be attributed
to the consumption of caffeine-rich foods before the fasting period foreseen in the study
design and/or within the period of pool samples collection [37]. Additionally, caffeine was
annotated with ∆ = 6.1 ppm by matching with the Massbank mass spectral library, which
includes 64 spectra for caffeine acquired in heterogenous instrumental conditions. Thus,
caution should be paid on this annotation. Curcumenol and its hypothesized sesquiter-
pene derivative were reported in this study as well as dihydroxy-trimethyl-isochromenone
and ligustilide isomers (however; they were hardly related to the intake of bilberry and
blueberry), as well as dihydroxy-trimethyl-isochromenone and ligustilide isomers. Finally,
Gamma-CEHC, an endogenous metabolite of vitamin E [38], occurred inside molecular
families, exhibiting a significant and positive r-value (0.441), representing a first report in
relation to berry consumption.
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PPMC analysis. The “gear” symbols refer to the putative structure identified by manual investigation
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4. Conclusions

This research investigated for the first time the applicability of the FBMN approach in
combination with mass spectral libraries relevant to nutrikinetic studies as well as PPMC
analysis to boost the structural annotation of postprandial urinary metabolites and to
explore their nutrikinetic behavior within a two-arm intervention study on the intake of
VM and VC supplements, as a relevant nutrimetabolomics application.

By using the FBMN approach, 24 and 43 metabolites were annotated with high mass
accuracy in NI and PI mode, respectively. The comparison with widely used annotation
protocols underlined the great potential of the FBMN workflow in providing the basis
for an automated exploratory data analysis workflow resulting in a comprehensive and
accurate annotation coverage. The proposed workflow offers a wider exploration of the
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urinary metabolome and allows for a prioritization strategy based on qualitative informa-
tion. Additionally, the reliability of the presented approach was confirmed by the annota-
tion of biochemically relevant metabolite categories across the three different annotation
protocols followed.

The quantitative information introduced by FBMN approach provided an estimation
of the impact of the two bilberry intakes on NI and PI datasets. Furthermore, the PPMC
analysis of the chromatographic areas of each identified mass feature in relation to the
postprandial timepoint proved to be a successful strategy to assess the kinetic shape
recognition related to phase I/phase II metabolism of IDs.

It can therefore be concluded that future integration of contextual mass spectral
libraries and PPMC analysis within the FBMN environment would be useful for nu-
trimetabolomics studies, as well as for other omics applications, where boosting annotation
rates and streamlining the metabolite selection procedure are key for the data interpretation.
Furthermore, it was demonstrated that the automated FBMN approach offers a versatile
and scalable alternative to existing approaches that handle untargeted metabolomics pro-
files of biofluids for biomarker discovery. Finally, our work clearly evidenced the need
for curated and contextualized mass spectral libraries that are fundamental for successful
metabolite identification and thus biochemical interpretation of metabolomics profiles.
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