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Testing Model Fit in Path Models with Dependent Errors Given Non-Normality,
Non-Linearity and Hierarchical Data

Jacob C. Doumaa and Bill Shipleyb

aWageningen University; bUniversit�e de Sherbrooke

ABSTRACT
We provide a generic method of testing path models that include dependent errors, nonlinear func-
tional relationships and using nonnormal, hierarchically structured data. First, we provide a decompos-
ition of the causal model into smaller, independent sets. These sets can be modeled independently of
each other with methods that respect the type of data in these sets. Second, we introduce copulas to
model the dependent errors between non-normally distributed variables. Our method yields identical
results as classical covariance-based path modelling when meeting its assumptions of linearity and
normality, outperforms classical SEM given nonlinear functional relationships, and can easily accom-
modate any parametric probability function and nonlinear functional relationships.
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1. Introduction

Path modeling is an important statistical technique in many
domains of science allowing one to model the multivariate
dependency between variables based on an a priori causal
hypothesis (Grace, 2006; Kline, 2005; Shipley, 2016) and to
test if the dependencies in observed values in a multivariate
observation are consistent with the postulated causal struc-
ture. Observed variables can depend on each other in three
different ways: (i) an observed variable is directly or indir-
ectly causing another (i.e., causal relationships), (ii) two
observed variables are associated because they share com-
mon observed causes, and (iii) an observed variable is asso-
ciated to another but not via the first two ways. The first
two dependencies are represented using single-headed
arrows (!) and the latter dependency is represented using
bidirected arrows ($). These bi-directed arrows represent
so-called correlated errors or free covariances. In this paper,
we refer to these as “dependent errors” because the depend-
encies are not necessarily linear and based on normally dis-
tributed variables.

One can choose from two different approaches when fit-
ting path models, each with their pros and cons. First, one
can use classical structural equations modelling (SEM) with-
out latent variables (Bollen, 1989) to test path models
including correlated errors. Here, the consistency of the
data with the hypothesized causal structure is tested by
comparing the model-implied covariance matrix to the
observed covariance matrix of all variables in the path
model via a likelihood ratio test. The model parameters are
simultaneously optimized such that the model-implied

covariance matrix is as similar as possible the observed
covariance matrix while respecting the constraints implied
by the hypothesized causal structure and captured by covari-
ance algebra (Bollen, 1989). Classical SEM assumes a multi-
variate normal distribution with mutually independent
observations and linear relationships between the variables.
Much effort has gone into relaxing these assumptions and
to develop indices that are robust against violations (e.g.,
Browne, 1984; Kenny & Judd, 1984; Oberski, 2014; Satorra
& Bentler, 1994; Wall & Amemiya, 2001). To date, a generic
solution to simultaneously deal with non-linearity, non-nor-
mality and non-independence of observations is lacking.

The second class of approaches that can be used to fit
path models are piecewise structural equations models.
Piecewise SEM can easily accommodate non-linear relation-
ships, non-normally distributed variables and data with hier-
archical data structures. Key to this approach is that the
consistency of the path model to the data is tested through
a series of local tests (Shipley, 2009; Shipley & Douma,
2020, 2021). However, this approach can only be applied to
path models without dependent errors, i.e., path models that
can be represented by a Directed Acyclic Graph (DAGs).
Pearl (2009) has shown that the multivariate probability dis-
tribution generated by the causal model (topology) of a
DAG can be decomposed via the Markov decomposition
into the product of a series of univariate probability distri-
butions conditional on their parents irrespective of the func-
tional forms of these univariate probability distributions.
This allows one to partition the causal model into sets of
variables that can be modeled independently of each other
upon conditioning because the parameters in each set can
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then be independently estimated from parameters in other
sets. These univariate probability distributions can easily
capture nonlinear relationships, non-normally distributed
errors and hierarchical designs. The fit of the model to the
data can be assessed in two ways. First, one can obtain the
likelihood of the full model by summing of the likelihoods
of the univariate distributions and compare this to the likeli-
hood of a saturated model using a likelihood ratio test
(Shipley & Douma, 2020). When all variables are normally
distributed and all relationships are linear, this leads to
identical results as classical SEM. Alternatively, one can test
a series of independence claims that result from the DAG to
obtain a global metric of model fit (Shipley, 2009). The
hypothesized model predicts which variables will be inde-
pendent of each when conditioned on their respective
parents if the hypothesized structure is correct. This test
applied to DAGs is called the d-sep test, and was recently
extended so it can test the structure of path models with
dependent errors (i.e., an m-sep test; Shipley & Douma,
2021). To date, no solution is available for estimation of the
path coefficients of such a path model when accounting for
non-linearity, non-normality and hierarchical designs.

This paper provides two contributions: (i) we provide a
convenient decomposition of an acyclic causal graph involv-
ing only observed variables but including dependent errors
into smaller sets of variables that can be modeled independ-
ently of each other, allowing piecewise estimation; (ii) we
show that the dependent errors between non-normally dis-
tributed variables can be modeled with copulas. The paper
presents a proof of concept and identifies practical issues to
be solved when doing piecewise estimation of path models
with correlated errors.

The paper proceeds as follows. First a decomposition of a
path model with dependent errors is given. Second, we
explain how to model multivariate distributions through
copulas. Third, a likelihood ratio test is proposed to test the
consistency of the path model with the data. Fourth, we
illustrate our methodology with two case studies. We con-
clude with a practical step-by-step description of the proced-
ure and identify practical issues when doing piecewise
estimation of path models with correlated errors.

2. Decomposition of the Path Model with
Correlated Errors into Independent Sets

To model a set of variables that are non-normally distrib-
uted or relate non-linearly to each other, it is convenient to
reduce the complexity of the multivariate models to be fitted
as much as possible. As stated before, reducing the complex-
ity of a DAG is straightforward. The joint probability distri-
bution of n variables that is generated by a DAG can be
decomposed through a local Markov decomposition into the
product of the n univariate probability distributions (Pearl,
2000, 2009). The likelihood of a variable is fully described
by modelling the effect of its causal parents (i.e., its direct
causes in the DAG) on the variable. Such a decomposition
is not possible for path models with dependent errors
because pairs of variables possessing such dependent errors

have at least one common parent that is latent and one can-
not condition on such a latent. This next section explains
how to obtain an alternative decomposition that is appropri-
ate for acyclic path models with dependent errors and that
reduces to Pearl’s (Pearl, 2009) decomposition when
dependent errors are absent. To explain the decomposition,
we first introduce some terminology.

Here, graphs containing a mixture of directed arrows and
bi-directed arrows, and having no cyclic relationships, are
called mixed acyclic graphs, MAGs (Richardson & Spirtes,
2002; Shipley & Douma, 2021). A MAG consists of vertices
(V), and edges (E) that connect the vertices to each other.
Once a vertex is associated with a set of observational units
then it is also a variable, and we will use “vertex” and
“variable” interchangeably. Its edges come in two forms:
directed arrows (!) representing a causal relationship and
bidirected arrows ($) representing unresolved causal relation-
ships (dependent errors). MAGs are derived from DAGs with
latent variables, in which the bidirected arrows (v $v) repre-
sent two vertices in the MAG that are adjacent to each other
due to marginalizing over a latent vertex (Pearl, 2009;
Richardson & Spirtes 2002; Shipley & Douma, 2021).
Marginalizing over a variable (Z) in a multivariate probability
distribution P(X, Z) means summing (or integrating) the prob-
abilities of X over all values of Z: PðXÞ ¼Pi PðX, ZiÞ. In this
paper, we will only consider MAGs obtained after marginaliz-
ing over latent vertices and so we will only consider MAGs
having either directed or bidirected edges. Further details
about the properties of MAGs are given in Appendix S1.

Vertices joined by a bidirected edge (Vi $ Vj) mean that
Vi does not directly cause Vj, and Vj does not directly cause
Vi, but that there is a dependency between Vi and Vj due to
a common latent cause of both. A vertex Vi that connects to
X with a bidirected arrow (Vi $ X) is called the spouse of
X. Vertices that have an arrow (Vi!X) pointing into X are
called the parents of X, and X is their child. The ancestors of
X are all vertices that can reach X by directed paths, includ-
ing X itself. A collider vertex Z along a path between two
other vertices is a vertex that has arrows pointing into it
from both directions. For a MAG this implies Vi! Z Vj,
Vi! Z $Vj, Vi$ Z Vj, or Vi$ Z$Vj. A non-collider ver-
tex Z along a path between two other vertices is then of the
form: Vi! Z!Vj, Vi Z Vj, Vi Z!Vj, Vi$Z!Vj, or
Vi Z$Vj. Given a MAG, a path p between two vertices is
m-connected (i.e., information flows between the two verti-
ces) given a set of vertices Z if (Richardson &
Spirtes, 2002):

i. every non-collider on the path is not in Z, and
ii. every collider on the path is in Z or has an ancestor

in Z.

If every path between the two vertices is not m-connected
then the two vertices are m-separated; otherwise the two verti-
ces are m-connected. Richardson and Spirtes (2002) has pro-
ven that m-separation between the two vertices in the graph
implies conditional independence of the two variables in the
resulting probability distribution. To partition the MAG into
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sets that can be modeled independently of each other we use
the m-separation criterion to find subsets of observed varia-
bles that are independent of each other given the appropriate
conditioning sets. We call a set of variables that cannot be
decomposed any further a district set, D.

The district sets of a MAG are defined as follows (Evans &
Richardson, 2014). For a graph G with vertices V, form the
induced bidirected graph G’ by removing all unidirectional
arrows between pairs of vertices while maintaining all bidir-
ected arrows. All Vj that can be reached from Vi (including
Vi) in G’ by traversing over the paths in G’ while ignoring the
directions of the arrowheads define the district set Di of Vi.
There are as many district sets as there are vertices in the
MAG, but these district sets are not necessarily unique; two
district sets, Di and Dj are not unique if Di ¼ Dj. Let the set of
unique district sets in G’ be D ¼ {D1,… ,Dk}

A graph G will consist of k� n unique district sets,
where n is the total number of vertices in G. If the MAG is
also a DAG, then each vertex forms a unique district set.
All unique district sets that contain only one vertex can be
modeled with a univariate distribution and are independent
of all other unique district sets when conditioned on its
respective parents. When a unique district set contains mul-
tiple vertices, a multivariate distribution is needed that
accounts for the interdependencies between the vertices.
Each unique district set is independent of all other unique
district sets when its vertices are conditioned on their
respective exogenous parents. The exogenous parents of a
unique district i, epa(Di), are the set of parents of any ver-
tex in district set i that are not, themselves, members of dis-
trict set i. Appendix S1 gives the proof and application of
this claim, examples, and an R-script with the factoriza-
tion algorithm.

Finally, the joint probability distribution over the entire
set of variables in a MAG can be decomposed into the
product of a series of probability distributions involving
only variables in each unique district as follows:

p Vi, . . . ,Vnð Þ ¼
Yk
i¼1

piðDijepa Dið ÞÞ (1)

In the special case in which the MAG does not contain
any bidirected edges ($), there are as many unique districts

as there are variables, each unique district is Di ¼ {Vi},
every parent of a vertex is an external parent, and the
decomposition reduces to the Markov decomposition given
by Pearl (Pearl, 2009):

p Vi, . . . ,Vnð Þ ¼
Yn
i¼1

piðV ijpa Við ÞÞ (2)

The above decomposition maybe useful to speed up the fit-
ting of path models with dependent errors, as the resulting
subgraphs each have fewer parameters than the total graph,
and can be fitted and optimized independently of each other.
This may lead to faster parameter optimization (Bellman,
1957), and it could be useful for optimizing parts of the graph
with respect to the functional forms chosen or the parametric
distributions, without having to worry that this affects other
parts of the graph. Finally, the decomposition holds for any
graph written as a MAG and is therefore applicable to clas-
sical path models as well as Bayesian belief networks.

We present two case studies to illustrate the applica-
tion of the algorithm. Figure 1 shows an arbitrary
example of a MAG and the resulting district sets. Y and
Z will be modeled using a multivariate distribution con-
ditioned on their respective external parents (X and W
respectively). The other variables can be modeled with
univariate distributions conditioned on their external
parents. Likewise, Figure 2 shows a more complex
example of a MAG taken from the literature (Scherber
et al. 2010) containing six district sets, of which two dis-
trict sets each contain three variables.

Our piecewise model M contains a vector of parameters
h ¼ θ1, . . . , θp

� �
: This model gives the multivariate prob-

ability distribution, or probability density function,
pMðVjhÞ, of this set of random variables V¼ {V1,…Vn}.
The likelihood of this model for h given the data (V) is
LMðhjVÞ where LMðhjVÞ ¼ pMðVjhÞ: If the values of the
parameters h are chosen to maximize this likelihood, then
this gives the maximum likelihood LMðĥjVÞ: Given
Equation (1), the log likelihood of the model M is equal
to the sum of the log likelihoods of each of the k unique
district sets; in this equation the notation hi and Vi refer
to all of the parameters and variables involved in the ith

submodel.

Figure 1. A hypothetical path model with directional paths (arrows) and correlated errors (bidirected arrows) (a), and unique district sets of variables (colors/
shaded boxes) whose loglikelihoods can be summed (b), and the univariate and bivariate regressions to be fitted (c).
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logðLM hMjVð Þ ¼ log
Yk
i¼1
Li hiVið Þ

 !
¼
Xk
i¼1

log Li hiVið Þð Þ

(3)

3. Copulas Explained

The n vertices that reside in one unique district set must be
modeled as a joint probability distribution. However, com-
plex multivariate distributions arise when variables are non-
normally distributed. Although well-defined multivariate
distributions are sometimes available, this often not the
case. When this occurs, copulas can be used. A copula
decomposes the joint distribution of n variables into the
product of the n marginal distributions of the variables plus
a copula that describes the dependence between the n varia-
bles (Sklar’s theorem, Sklar, 1959). A copula is a multivari-
ate cumulative distribution function with uniform margins,
i.e., on the interval [0, 1]. Appendix S2 provides a more
detailed description of copulas and an illustration in R of a
gaussian copula. The probability distribution of any random
variable can be made uniform by feeding it into the cumula-
tive distribution function from which it was generated (a
probability integral transform). By doing so, information

about the characteristics of this distribution is lost (such as
its moments) and what remains is only the dependence
structure between the variables on [0, 1]n. As such, the cop-
ula can link arbitrarily distributed variables and specifies the
degree of monotonic dependence (see Figure 3 for a concep-
tual illustration). If a variable is endogenous and therefore
has parents then its cumulative distribution can be obtained
after regressing the variable on its parents, and use these
regression parameters to feed into a cumulative distribution
function where its parameters are the same as obtained in
the regression (Hofert et al., 2018).

3.1. Two Important Technical Notes

Although Sklar’s theorem of decomposing the joint prob-
ability distribution holds for any joint distribution, the cop-
ula function is not always differentiable or cannot always be
conveniently estimated. Differentiating the copula (which is
a cumulative distribution) into a probability density function
is convenient because then it can be used for maximum
likelihood estimation of its parameters (Hofert et al., 2018).
Therefore, in practice, a limited number of conveniently
defined copulas are frequently used (Hofert et al., 2018).
These copulas do not necessarily exactly decompose the

Parasitoids Carnivores Omnivores

Plant biomass Herbivores

Dead biomass Plant diversity

Sap Macrofauna Herb. macrofauna

Pred. macrofauna

e1 e2 e3

e4

e6

e7

e5

e8

e9

Figure 2. Path diagram representing the relationships between organism from different trophic levels ultimately as a function of plant diversity. Solid one-direc-
tional arrows represent causal relationships. Double-headed arrows represent dependent errors between variables. The path diagram is partitioned into district
sets, and are represented by different colours. Full details of the study can be found in Scherber et al. (2010).
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joint likelihood of n variables, but rather approximate it;
like the normal distribution is often used to approximate
normal-looking data, and the beta distribution is used to
model data between 0 and 1.

In Figure 4 different copulas are shown that have differ-
ent properties. For example, the Gumbel copula allows for
strong right tail dependence, the Clayton copula has strong
left tail dependence, and the Gaussian copula has symmetric
tail dependence. One can choose between the different cop-
ulas, based on the observed properties of the data, or by
considerations of model fit (Genest & Favre, 2007). Only
the gaussian copula can be easily extended to >2 dimen-
sions, and we therefore recommend it as the preferred
choice. If other copulas are chosen, they can be made multi-
dimensional through a graphical method called vines. See
Appendix S2 for more details on vine copulas (section
‘multivariate copulas’) and Appendix S3 for a script in R to
make a visual assessment of tail dependence.

The margins of the copula function are assumed to be
uniform and continuous on the interval [0, 1]. If the cumu-
lative distribution functions that are used to transform a

variable to uniform margins are continuous, the copula is
uniquely defined. However, when the margins are defined
as count distributions (e.g., a Poisson distribution), the cop-
ula is not unique because the probability integral transform
returns a countable number of values on the interval [0, 1].
This may lead to biased estimates of the copula dependence
parameter (Genest & Ne�slehov�a, 2007; Trivedi & Zimmer,
2017). In practice, for Poisson and negative binomial dis-
tributed variables, this does not lead to problems except
under certain conditions. Trivedi and Zimmer (2017)
showed that the dependence parameter between two
Poisson distributed variables can be quite accurately esti-
mated when their means are larger than 1.05. When these
variables are functions of covariates the problem virtually
diminishes and means of at least 0.15 can be estimated
accurately. This is because the copula function will have
predicted means as input, and these are continuous. We are
not aware of studies that have investigated the identification
issue for dependent Bernoulli or binomial variables in prac-
tice, but we refer to Masarotto and Varin (2012) who apply
copula regressions to discrete data, including binomial data.

Figure 3. Conceptual illustration of the copula. The bottom left graph shows two correlated variables: a gamma distributed variable (histogram in top left) and a
normally distributed variable (histogram in bottom right) on their original scales. After feeding the marginal distributions into their respective cumulative distribu-
tions (solid black lines), two correlated uniform distributions are left (vertical grey bars). The resulting two uniform distributions have the same rank correlation
(top right) as the untransformed variables. The resulting two uniform distributions are modeled with a copula (a Gaussian in this example). After Meucci (2011).
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4. Maximum Likelihood Estimation of a Copula

Although the copula approach allows one to separate the
dependence between variables from their marginal distribu-
tions, the dependence parameters cannot be estimated inde-
pendently of the parameters of the marginals, because the
parameter estimates of the marginal distribution affect the
parameter estimates of the copulas (Appendix S2). For this
reason, it is necessary to simultaneously optimize both the
marginal distributions and their associated copulas.

When the number of variables in the path model
becomes large, or the model becomes complex for other rea-
sons, simultaneous optimization of the marginals and the
copula parameters through maximum likelihood estimation
may fail (Joe & Xu, 1996; Joe, 2005). Currently it is an open
question how many variables a copula regression can con-
tain while still being able to numerically optimize it (but see
Oh & Patton, 2017). If the optimization fails, it is proposed
to estimate the marginals and the copulas in a two stage
procedure (called inference from margins; IFM). First, the
parameters of the marginal distributions are estimated with
maximum likelihood. Thereafter, the copula parameters are
estimated with the uniformized margins given the maximum
likelihood parameters of the marginals. After having these
estimates one can proceed in two ways. Preferably one uses
the estimates obtained from the two-stage estimation as
starting values for the simultaneous optimization. In case
that this fails, one uses IFM without the simultaneous opti-
mization afterwards. The advantage of IFM is that one only
needs univariate models for the margins. For example, one
could fit (generalized) linear mixed effect models on the
margins and estimate the correlation between variables with
a copula afterwards (Ferreira et al., 2019).

The ease of the IFM approach comes at the cost of the
precision, thus the standard error, of the estimated parame-
ters. IFM has been shown to produce parameter estimates
that converge to the true parameter value with increasing
sample size (consistency, Joe & Xu, 1996; Ko & Hjort,
2019). Practical guidelines for when IFM can be safely used
at relatively low sample sizes (50-200) are, to the best of our
knowledge, missing but the simulation study described
below gives some insights. Furthermore, the average

deviation between the estimated parameter value and the
true parameter value, i.e., parameter bias, was found to be
low for large sample sizes (i.e., asymptotic efficiency), but
usually the deviations were larger than for simultaneous
estimation (Joe, 2005) and the asymptotic efficiency was
found to be low when dependence between variables was
strong (Joe, 2005). A final drawback of the IFM approach is
that the standard error of the copula parameter will be
underestimated and thus cannot be used for inference on
the significance of the copula parameters (Hofert et al.,
2018). Bootstrap estimates can be used to create standard
errors for the copula parameters (Ferreira et al., 2019).

5. Testing the Consistency of the Path Model to
the Data

To test whether the patterns of dependence that are
observed between the variables are consistent with the pat-
terns of dependence that are implied by the hypothesized
path model, and to test whether any deviations between
these can reasonably be ascribed only to random sampling
variation, the likelihood ratio test (LRT, Wilks, 1938) or the
m-sep test (Shipley & Douma, 2021) can be used. For
the LRT, if the hypothesized causal structure has generated
the data, then twice the difference between the likelihood of
the hypothesized and a saturated model will asymptotically
follow a v2 distribution with the degrees of freedom equal
to the difference in number of free parameters between the
hypothesized and the saturated model (Wilks, 1938). A satu-
rated model is a path model with no missing arrows
between the variables, hence saturated. See Shipley and
Douma (2020) for a more detailed description of how to
define the saturated model for DAGs.

Defining a saturated model for non-normally distributed
variables and for non-linear relationships between variables
is less straightforward than in classical SEM. In classical
SEM one assumes that variables are linearly related to each
other, and that variables are normally distributed. Given
these assumptions, a path model consisting of free covarian-
ces between all variables—which is the saturated model in
classical SEM—is always the model with the highest

Figure 4. Simulated dependence between two variables U1 and U2 assuming a Normal, Gumbel and Clayton copula respectively. The latter two show stronger
dependence at the upper and lower tail respectively.
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likelihood and returns the same likelihood as a saturated
model with only directed paths. This is because a multivari-
ate normal distribution is closed under conditioning
(Devroye & Lehn, 2010); i.e., the distribution resulting after
conditioning on a variable is still normal. As a result, it
does not matter in terms of likelihood whether one fits a
bivariate normal, or the product of two normals with one
normal conditioned on the other (Devroye & Lehn, 2010).
However, for non-normal variables, or for variables that
relate non-linearly to each other, this cannot be done.
Therefore, a saturated model with only dependent errors is
not necessarily the model with the highest likelihood. Thus,
when using non-linear relationships, or employing general-
ized linear models (GLMs) that use a link function other
than the identity link one cannot simply use a saturated
model that assumes dependent errors between all variables.

We therefore propose to define the saturated model as a
path model equal to the hypothesized model plus bidirected
arrows joining pairs of variables that are not joined by an
edge (directed or bidirected arrows) in the hypothesized
model. Systematic deviations in the maximum likelihood of
the hypothesized path model to the saturated model will be
due to misspecifications of the hypothesized model due to
missing paths. Of course, as is always the case in any statis-
tical test, a lack of significant deviation of the hypothesized
model to the saturated model does not ‘prove’ that the
hypothesized model captures the right causal structure, only
that the data do not provide sufficient evidence to reject the
model (see simulation study below).

The alternative to the method described here, i.e., com-
paring the maximum likelihood of the hypothesized model
to the maximum likelihood of a saturated model, is to use
the m-sep test described in Shipley and Douma (2021). The
m-test does not require a saturated model, which is an
advantage when fitting more complicated path models, but
tests only the causal structure of the model, not details
about the functional form of the cause—effect links.

5.1. Case Study 1: A Simulation Study with a
Numerical Example

To illustrate the fitting of a path model with dependent
errors, we generated 100 observations following the path

model in Figure 1. The generating equations for each vari-
able are listed in Table S4.1 in Appendix S4 (R-code is
shown in Appendix S5). Three estimation techniques were
used: (1) the piecewise copula method; (2) inference from
margins (estimating the margins for all variables, followed
by the estimation of the copula for Y and Z); (3) classical
maximum likelihood SEM (that estimates the model implied
variance-covariance matrix and the free model parameters
simultaneously). The latter is possible since we assumed that
all variables were normally distributed and related linearly
to each other. Next, we fitted the saturated model and the
baseline model to the data. The saturated model and the
baseline are equivalent for linear path models with multi-
variate normal distributions.

The piecewise copula method, using a gaussian copula to
model correlated errors, produced the same likelihood for
the hypothesized and the saturated model as did classical
SEM, in contrast to the estimates by the method of infer-
ence from margins (Table 1). As a result, the chi-square test
to test for difference between the hypothesized and saturated
model were equivalent for the piecewise copula method and
the classical SEM, but not for the method of inference from
margins. However, all methods showed that the tested
causal structure was consistent with the data according to
the likelihood ratio test (X2

ML¼ 5.782, df ¼ 10, p-val-
ue¼ 0.833 for classical SEM and the copula method and
X2
ML¼ 8.128, df ¼ 10, p-value¼ 0.616 for the method of

inference from margins). When, instead, Z!Y is incorrectly
used rather than Z$Y, all three methods strongly rejected
this model. Again, classical SEM and the copula method
produced the same results according to the likelihood ratio
test (X2

ML¼ 70.21, df ¼ 10, p-value ¼ 4.04e-11).
Next, we simulated from the same causal model (Figure

1), but variables X, V, Z and Y were respectively lognor-
mally, Poisson, beta and gamma distributed and we assumed
a non-linear relationship (exponential) between W and the
gamma distributed variable Z, a Michaelis-Menten relation-
ship between X and Y (Y¼ aX/(bþX) and a Ricker func-
tion between V and Z (V¼ a�Z�(exp(�b�Z)), Table S5.3 in
Appendix S5 for the generating equations). All other varia-
bles were normally distributed, and a Gaussian copula was
used to model the dependent error between Y and Z. To
test if the hypothesized model was consistent with the data,
we compared the log-likelihood of the hypothesized model
with the saturated model (model #4 in Table 2) following
the procedure outlined in the section above and in
Appendix S4. We also tested two alternative models that
contained errors. First, we replaced the dependent error
(Y$Z) by a path from Z to Y (Y Z). This model required
its own saturated model (model #5). Second, we removed
the dependent error between Z and Y. This second model
has the same saturated model as our hypothesized model.
Table 2 reports the results of the overall model statistics.
The hypothesized model was consistent with the data as evi-
denced by a non-significant Chi-square test using a satu-
rated model (X2

ML¼ 2.55, df ¼10, p-value ¼ 0.99). The path
model with an incorrect path Z!Y produced a p-value of
0.30 (X2

ML¼ 11.84, df ¼10, p-value ¼ 0.30). The model with

Table 1. Loglikelihood of the path model presented in Figure 1 (generating
equations in Table S4.1 in Appendix S4) obtained from classical SEM, the
piecewise copula and the method of inference from margins (IFM).

Variable i Classical SEM Piecewise copula Piecewise copula IFM

G – �132.45 �132.45
X – �138.161 �138.161
W – �139.488 �139.488
Y,Z – �255.87 �145.859

�146.667
35.458

V – �145.81 �145.81
Full model �811.779 Ri ¼ �811.779 Ri ¼ �812.972
Saturated model �808.889 �808.889 �808.908
The piecewise copula method calculates a loglikelihood for each set. The
method of inference from margins calculates a loglikelihood for each variable
and the copula. The loglikelihood of the saturated model is given in the bot-
tom row and cannot be decomposed further.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 7

https://doi.org/10.1080/10705511.2022.2112199
https://doi.org/10.1080/10705511.2022.2112199
https://doi.org/10.1080/10705511.2022.2112199
https://doi.org/10.1080/10705511.2022.2112199
https://doi.org/10.1080/10705511.2022.2112199
https://doi.org/10.1080/10705511.2022.2112199


an incorrect missing edge between Z and Y was clearly
rejected (X2

ML¼ 75.77, df ¼11, p-value ¼ 9.61e-12).
To understand the behaviour and compare the power of

the saturated model to detect misspecifications in the path
model we compared our proposed saturated model
approach to existing approaches. As result, we tested and
compared seven different approaches: (1) A saturated model
as used in classical SEM; (2) as 1 but with Satorra-Bentler
as robust test statistic; (3) as 1 but with mean-variance scal-
ing as robust test statistic; (4) a saturated model using bidir-
ected arrows between each pair of variables that do not have
a path between them in the hypothesized path model by
copulas. See Appendix S4 Figure S4.2 for an illustration.; (5)
a saturated model using bidirected arrows between each pair
of variables that do not have a path between them in the
hypothesized path model by copulas and using IFM; (6) A
saturated model using directed arrows between each pair of
variables that do not have a path between them in the
hypothesized path model, following. See Appendix S4 Figure
S3 for an illustration; (7) the m-sep test, following Shipley
(2009) and Shipley and Douma (2021) for details.

With each method, the fit of three different hypothesized
path models to the data were tested: (1) a path model corre-
sponding to the path model that was actually used to gener-
ate the data; (2) a path model similar to Figure 1 but with a
directed path from Z to Y instead of a bidirected arrow; (3)
a path model with a missing path between Z and Y.

The simulated data sets were always generated according
to the path model shown in Figure 1 and had different sam-
ple sizes (50, 100, 200, 500, 1,000) per simulated data set.
Additionally, three different sets of generating equations
were used to generate the data, varying in complexity. First,
we simulated all data assuming only linear relationships and
normally distributed variables (Table S4.1 in Appendix S4)
because we expect the results of our approach to be identi-
cal to the classical SEM. Second, we relaxed the assumptions
of linearity and made three out of four relationship non-lin-
ear (Table S4.2 in Appendix S4). Third, we introduced both
non-linear and non-normally distributed variables (Table
S4.3 in Appendix S4). Each simulation was repeated 2000
times to obtain the rejection rates.

From the simulation study we conclude that when varia-
bles are normally distributed and have linear relationships
with their parents, all approaches tested converge to the 5%
rejection rate, with exception of the saturated model with
inference from margins (#5). When using IFM rejection rates
are 1.5-2 times higher compared to the simultaneous

estimation. The saturated model approach proposed in our
study gives identical results as classical sem. When relaxing
the assumptions of normality and linearity, the classical sem
approach gives substantially higher rejection rates than the
theoretical 5% (>51%) with the robust estimators performing
better compared to the standard chi-square estimators
(>41%) but still showing substantial type I errors. In contrast,
the saturated model approach with copula (#4) and the m-sep
test behave comparably when assessing the fit of hypothesized
path models to the data, and converge at large sample sizes at
a rejection of 5% when the hypothesized model is correct, and
higher rejection rates when the hypothesized model is incor-
rect. The saturated model approach with directed paths did
not perform as well as the approach with bidirected arrows,
and the rejection rates depended on the direction in which
the arrows were specified. When the path model does not
conform with how the data was generated then the rejection
rates went up in all methods tested. Overall, the copula
method and the m-sep test performed best across cases con-
taining non-linear relationships and nonnormal relationships,
and have to be preferred over the saturated model made from
adding directed paths to pairs of variables that do not yet
have an edge between them.

All simulations were performed in R. The classical SEM
model was fitted with the R-package lavaan (Rosseel, 2012).

5.2. Case Study 2: Effect of Plant Diversity on
Multitrophic Interactions

The second case study illustrates our approach on data col-
lected in a long term ecosystem experiment (Jena, Germany,
Scherber et al. 2010). The aim of this experiment is to explore
the long-term effects of plant diversity on ecosystem proc-
esses. Different numbers of perennial plant species were sown
in different plots, and in each plot the abundance of different
organismal groups from different trophic levels were meas-
ured. The interdependency between the different organismal
groups was modeled through a structural equation model
with only measured variables. In the original analysis, all vari-
ables were log transformed and scaled to [0,1] prior to ana-
lysis, and linearity and normality was assumed. However,
some variables representing abundance were measured on a
count scale while others were measured on a continuous scale,
and variation was heterogeneous across the predictors.
Additionally, some relationships were non-linear.

Table 2. Model statistics of path model presented in Figure 1. Model statistics based on 100 observations generated according to the equations shown in Table
S4.3 Appendix S4.

No. LL AIC BIC LRT

1. Hypothesized model �1127.96 2283.93 2320.4 Model 1 vs 5: X2ML ¼ 2.55, df ¼10, p-value ¼ 0.99
2. Alternative model 1 �1156.55 2347.10 2391.39 Model 2 vs 6: X2ML¼ 11.84, df ¼10, p-value ¼ 0.30
3. Alternative model 2 �1164.57 2359.15 2398.23 Model 3 vs. 5: X2ML¼ 75.77, df ¼11, p-value ¼ 9.61e-12
4. Saturated model 1 �1126.69 2293.37 2345.47
5. Saturated model 2 �1150.63 2357.26 2430.21

Loglikelihood (LL), Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC) and the Likelihood ratio test (LRT). The likelihood ratio test compares
the hypothesized model to a saturated path model. Each hypothesized model has its own saturated model as explained in the main text; hypothesized model
(#1) is compared to saturated model 1 (#4), and alternative model 1 to saturated model 2 (#5). The first alternative model (#3) had a directed path from Z to Y
instead of a correlated error between Z and Y. The second alternative model (#3) had no edge between Z and Y. The latter model has the same saturated
model as model #1. Bold values highlight the most parsimonious model according to AIC and BIC.
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We used the same path diagram that was found to be
consistent with data in the original analysis for our analysis
and fitted it with piecewise SEM while accounting for non-
linearity and non-normality. First, for each variable univari-
ate regressions were fitted with probability distributions
depending on the type of data (negative binomial distribu-
tion for counts, and a Gamma distribution for continuous
variables as we observed increased variance with increased
values of that variable), and different non-linear functions
were fitted and compared. The functional forms that lead to
the lowest AIC were used in the full path model. Second,
the factorization algorithm was applied to identify the dis-
tricts sets. If variables were connected to each other through
dependent errors a gaussian copula was used. The consist-
ency of the path model to the data was tested both using
the saturated model approach and the m-sep test. Through
the partitioning to district sets, six parameter sets containing
respectively 14, 12, 6, 5, 3 and 2 parameters were fitted
instead of fitting 42 parameters at once. The whole fitting
procedure is described in detail in Appendix S7. The result-
ing path diagram is shown in Figure 2, and the regression
equations are shown in Table 3. The path model was con-
sistent with the data, both according to the likelihood ratio
test (X2 ¼ 2.21, df ¼ 27, p-value ¼ >0.99) as well as the m-
sep test (C¼ 51.27, k¼ 54, p-value¼ 0.58).

6. Proposed Procedure and Practical
Recommendations

Below we outline a step-by-step description of the procedure
to fit path models with dependent errors using the approach
outlined in this paper and the R functions that could be
used in each step. Appendix S6 applies each step below to
case study 2.

Step 1: Define a path model containing directed and/or bi-
directed edges. One can make a DAG or MAG with the R-
package ‘ggm’ (Marchetti, 2006).

Step 2: Decide which test to use to test the consistency of
the model with the data. One can either use the m-sep test

(move to step 3) or the saturated model approach (move
to step 4).

Step 3: Obtain the independence claims resulting from the
hypothesized path model. Next, test each independence
claim, collect p-values and test whether the data is consist-
ent with the hypothesize causal structure (see Shipley,
2009; Shipley & Douma, 2021 for a detailed description of
the procedure). If the hypothesized structure is consistent
with the data, move to step 4, otherwise go to step 1 and
revise the hypothesized path model. To obtain the inde-
pendence claims of a MAG one can use the functions
“basiSet.mag” from the R-package CauseAndCorrelation
(https://github.com/BillShipley/CauseAndCorrelation).

Step 4: Partition the MAG into district sets. Here on can
use the function “districtSet” from the package
CauseAndCorrelation. The subgraphs to be fitted including
the exterior parents can be obtained through the function
“districtGraph” from the package CauseAndCorrelation.
Move to Step 5.

Step 5: If a district set contains only one variable one can
proceed with fitting a univariate regression with the
parents being the independent variables. The choices of
the distributional forms the functional relationships follow
the same decisions as for generalized (non-)linear (mixed
effect) modelling, i.e., one can have a priori reasons to
choose certain parametric distributions or functional
forms, or one chooses distributions and functional forms
that lead to a good fit (Bolker et al., 2009; McCullagh &
Nelder, 1989; Zuur et al., 2009). Non-parametric functions
can be used as long as they can be optimised in the max-
imum likelihood framework. See Bolker, 2008 for a good
guide on which functional forms and parametric distribu-
tions to choose.
If a district set contains multiple variables, the recom-
mended procedure would be to first fit the univariate
regressions of the variables in the district (based on the
same considerations as given above), choose a copula func-
tion to link the variables. Different copula functions can
be chosen. See Hofert et al. (2018) for examples and
Appendix S3 for how to assess the degree of tail depend-
ence. Calculate the correlation of a pair (i.e., the residuals

Table 3. Non-linear equations with MLE parameters estimates associated to variables in the path model presented in Figure 2.

Variable Equation

Parasitoids (P)� NB (l ¼ exp(4.18þ 7.67e-04�Hþ 1.30e-03�PB), k¼ 1.54)
Carnivores (C)� G (l¼ 2.37�PB0.13þ0.27�H0.28, s¼ 4.90)
Omnivores (O)� G (l ¼ exp(2.92þ 2.94e-03�C), s¼ 7.75)
Plant biomass (PB) G (l¼ 171.87�PD0.28 , s5 57.57)
Herbivores (H)�� G (l¼ 165.18�PB0.16þ78.00�PD0.56 , s¼ 71.67)
Dead biomass (D) G (l¼ 1.64�PB0.30þ1.22�PD0.22, s¼ 3.95)
Sap. macrofauna (S)�� NB (l ¼ exp(1.77þ 1.50e-2�D), k¼ 1.94)
Herb. macrofauna (HB)�� NB (l¼ 3.15þPD0.24, k¼ 1.07)
Pred. macrofauna (PB) NB (l¼ 1.28�SB0.75 þ 4.41�HB0.54, k5 1.12)
Plant diversity (PD) NB (exp(2.42), k¼ 0.75)
e1 �� e2� 0.40
e1 �� e3� 0.14
e5 �� e8�� 0.20
e7 �� e9�� 0.32

Different distribution functions were used depending on the variable (G¼Gamma distribution, NB¼Negative binomial distribu-
tion). Four correlated errors were fitted, represented in the table by e �� e. Bold values represent MLE estimates that are sig-
nificantly different from zero. �, and �� in the first column (“Variable”) represent respectively two district sets that were
simultaneously fitted with the regressions and a gaussian copula linking the variables through dependent error.
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of the) variables using a rank correlation. Construct a like-
lihood function that contains the variables in the district
and the dependent errors through the copula (See
Appendix S2 for an example). Use the estimates of the
univariate regressions, and the dependence parameters as
starting values for the optimisation. Providing good start-
ing values is particularly important when the district set
contains a large number of variables. This may happen
when one assumes that exogenous variables are dependent
on each other. Copulas can be fit using various packages
in R (Hofert et al., 2020; Nagler et al., 2021; Nagler &
Vatter, 2022) , but to date, to the best of our knowledge,
no convenient R packages exist that can flexibly fit copula
regressions.
Repeat the above for all district sets and finally sum all the
loglikelihoods of the district sets.

Step 6: If one has chosen to compare the fit of the hypothe-
sized model to the data using the saturated model
approach proceed as follows. Combine the likelihood func-
tion of all districts sets to one likelihood function and esti-
mate in the same optimisation step the dependencies
between variables that do not have a directed path or bi-
directed path between. The number of parameters that are
additionally estimated with a hypothetical model with n
variables are (n�n-n)/2-p-z with p the number of directed
paths and z the number of dependent errors. Obtain the
loglikelihood of the saturated model. Use the likelihood
ratio test to compare the logLikelihood of the hypothesized
with the log Likelihood of the saturated model.

Step 7: If the hypothesized model appears to be consistent
with the data, report the path coefficients, dependent
errors, their standard errors and significance.

7. Discussion

This paper has made two contributions: Firstly, we give a
Markov decomposition of the multivariate probability distri-
bution and associated likelihood that is generated by path
models with dependent errors into sets of variables (unique
districts) that can be modeled independently of each other.
Secondly, we used copulas to model the dependent errors
between non-normally distributed variables. Together, these
advances provide a generic solution to causal modelling of
observed variables that are not normally distributed, are not
linearly related to each other, or for which observations are
not mutually independent. Importantly, it allows the user to
tailor the probability distributions and functional forms
according to their hypothesis or data.

Piecewise estimation is not common practice in path
modelling, even though it has advantages compared to sim-
ultaneous estimation. Factorizing the graphs into independ-
ent subsets is frequently done in the domain of Bayesian
networks represented as DAGs (e.g., Liu et al., 2012; Pearl,
2009). Evans and Richardson (2014) have provided an algo-
rithm for discrete data that partitions MAGs into even
smaller subsets than the method that we proposed, but this
partitioning cannot be applied to continuous distributions.
Decomposing the path model into unique districts has two

advantages: First, it may ease model fitting since the com-
plexity of the full path model is reduced to subgraphs of
smaller size. For example, Table 2 provides a separation of
the full model likelihood into the likelihood of each unique
district set, which gives insight in the contribution of each
variable to the full model likelihood. Second, it may
improve the estimation of the path coefficients and the
dependent errors because the appropriate estimation meth-
ods can be used for each unique district set. Also, each
unique district set can be optimized independent of other
district sets by comparing different functional forms and
probability distributions.

To test the consistency of the hypothesized path model
with the data we have introduced the saturated model. The
saturated model was constructed by adding dependent
errors (i.e., bidirected arrows) to each pair of variables in
the hypothesized path model that are not already joined by
an edge. We compared the performance of this method to
existing approaches. The saturated model approach gener-
ated as expected identical results as with classical SEM. The
copula saturated model method and the m-sep test per-
formed best across cases containing non-linear relationships
and nonnormal relationships, and have to be preferred over
the saturated model made from adding directed paths to
pairs of variables that do not yet have an edge between
them. The difference in rejection rate between these satu-
rated models diminishes when the non-normal distributions
become more symmetric (see Appendix S4).

Despite that the copula method obtains slightly better
rejection rates compared to the m-sep test (at least, in the
simulations used here), the m-sep method is more conveni-
ent to use. The m-separation claims of the m-sep test only
involve univariate distributions, and only if the path model
is not rejected does one proceed to model the functional
links between the variables including the fitting the copulas.
This two-step approach may be a particularly attractive
option when fitting mixed effect models that would require
a saturated model that may be difficult to fit. In contrast,
the saturated model approach requires that all variables are
modeled simultaneously which may involve a lot of parame-
ters. The latter may cause optimization problems when the
saturated model contains a large number of parameters.
Application of this approach to real data is needed to iden-
tify the conditions when the saturated model can be fit-
ted anymore.

The disadvantage of the m-sep test is that it is sometimes
more cumbersome to include non-linear relationships in the
independence claims. Both the m-sep test and the saturated
model approach make assumptions on the functional form
of the relationships. This is comparable to when applying
classical SEM that assumes linearity to data that contains
non-linear relationships.

The use of copulas to model dependent errors has three
main advantages. First, as indicated, it allows one to model
the dependence between variables that are not-normally dis-
tributed. This may be especially relevant for distributions
with strong kurtosis (Hoogland & Boomsma 1998). Second,
since copulas have probability density functions, this allows
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maximum likelihood estimation of the copula parameter,
and hence a likelihood can be calculated for the full model.
As a result, the chi-square test and model selection techni-
ques such as AIC and BIC can be used to test for differen-
ces in and parsimony of the causal structure and
specification of the path model. Third, one can choose
among copulas to be able to account for types of depend-
ency between variables, e.g., to account for stronger left or
right tail dependence (Figure 4).

Copulas have been used frequently in the literature, in
particular in the domain of economics (e.g., Anderson et al.,
2016; Genest & Favre, 2007; Popovic et al., 2018). However,
there is currently a lack of practical guidance on which cop-
ula to choose, under which conditions copulas can be applied
to discrete data, when inference from margins can safely be
used, and when numerical optimisation of copula (regression)
is not possible anymore. Our simulations showed that IFM is
inferior to simultaneous optimization and suggests that the
latter should be preferred. We expect that practical experience
and more extensive simulations studies may identify cases
when copulas have added benefit over classical SEM
approaches with robust statistics. Additionally, copulas have
not often been applied in a mixed model framework, allowing
for random effects (but see Ferreira et al., 2019; Zhang et al.,
2020 and Appendix S7). More research is needed to identify
the maximum complexity that can be fitted within the copula
framework in terms of the number of dependent variables
and their random effects. Even though canned copula solu-
tions to model dependent (mixed effect) regressions do not
exist yet, the rapid developments we have seen in fitting com-
plex univariate mixed effect models make us optimistic that
these will become available in near future.

To the best of our knowledge, we are the first to use copu-
las to model dependent errors in a SEM without latents.
However, copulas have also been used to include latent varia-
bles and fit measurement models, i.e., models with latent and
non-normally distributed indicator variables (Brechmann &
Joe, 2014; Krupskii & Joe, 2013; Murray et al., 2013). So far,
applications of copulas in SEM with latent variables have been
scarce (but see Braeken et al., 2013). However, our work
together with the cited work, may offer a generic solution to
relaxing the assumptions of classical SEM.
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