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Propositions 

 

1. Environmental data enables spatio-temporal extrapolation of crop variety performance. 
(this thesis) 

2. Model predictions of genotype performance are useless without uncertainty 
quantification. (this thesis) 

3. Neglecting the role of nutrition in vitiligo pathogenesis hinders long-term results.  

4. Scientific research in Latin America is hampered by cultural collectivism. 

5. Major green-house gas emission reductions will be achieved by celebrating United 
Nations Climate Change Conferences outdoors. 

6. Population-wide access to safe mobility and transportation is a fundamental pre-
condition for social inclusion. 
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Summary 
Field crop production depends on environmental conditions, which vary across space and 
time. Climate change has increased the uncertainty about weather and environmental 
conditions. Therefore, farmers need information about which crop variety is adapted to local 
growing conditions. Also, farmers need to consider factors that go beyond productivity, such 
as market requirements and socioeconomic context. Such information about varieties is often 
lacking for farmers, especially in developing countries, and even for agricultural extension 
agents who assist farmers in decision-making. This information is also useful for crop 
improvement programs, which aim to develop new varieties with improved adaptation traits. 
The information relies on data from variety evaluation trials, which are resource-intensive 
exercises which usually generate a large amount of data. However, these data are often not 
fully taken into account to generate information that is useful for farmers, extension agents 
and breeders. Data synthesis could help to extract more value from existing data by 
aggregating trial datasets, enriching them with complementary data and generating actionable 
information. This thesis treats the development of new data synthesis methods that (1) 
account for environmental characteristics to provide better information supporting decision 
making in crop variety evaluation, and (2) make a more efficient use of crop variety 
evaluation data. 

Chapter 2 is a literature review of the state of the art of data synthesis in crop variety 
evaluation, identifying the major constraints and knowledge gaps. Data from evaluations of 
crop varieties are produced every year around the world. The advent of digital technologies 
has increased the capacity of generating, processing, and storing data from agricultural 
experimentation. However, in some cases the data from agricultural experiments is 
incessantly piling up exceeding the analytical capacity. In other cases, the data is used once 
for a particular study and then remains dormant in storage devices. The literature review 
revealed that one of the main obstacles to integrate data from different variety evaluations is 
the heterogeneity among datasets, with different scales, data format and experimental 
designs. After reviewing the existing methods used in data synthesis, rank-based methods 
were identified as the most promising for the aggregation of heterogenous datasets and 
considering the environmental conditions in the analysis of crop variety performance. This 
is enabled by converting numerical measurements into rankings and applying statistical 
models for ranking data, which allows the use of environmental data as covariates. 

Chapter 3 presents the application of the data synthesis approach to datasets produced with 
the triadic comparison of technologies (tricot) evaluating common bean (Phaseolus vulgaris 
L.) genotypes in four countries in Central America (Costa Rica, El Salvador, Honduras, and 
Nicaragua). In this case, the data synthesis has the aim to predict the best performing 
genotypes across the target region under different climatologies. The results show that it is 
possible to make such predictions by aggregating trial data from different organizations. Data 
were standardized to some extent because they were generated with the same approach 
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(tricot), but even then some data preparation is required, especially due to differences in 
genotypes names among trial datasets. A mapping approach was applied for the presentation 
of predictions, helping to visually interpret the results. A key contribution of this chapter is 
the quantification of uncertainty of model predictions within two complementary 
dimensions: (1) ranking probabilities and (2) environmental coverage of sampling data 
compared to the are covered by predictions. 

Chapter 4 demonstrates how the data synthesis methodology can be applied to the analysis 
of data from different studies, which have different experimental designs, only partially 
overlap in evaluated varieties and have done measurements on different scales, using 
different measurement methods. This study focused on the reaction of Musa genotypes to 
black leaf streak disease (BLSD). This study converted several heterogeneous variables 
referring to a single phenomenon (BLSD incidence) to rankings. This is a strategy for data 
aggregation and analysis that has been earlier proposed and demonstrated by Simko and 
Linacre (2010); Simko and Pechenick (2010). The study presented in Chapter 4 further 
expanded this approach by analyzing the effect of climatic factors (precipitation, temperature, 
and relative humidity) on the reaction of Musa genotypes to BLSD. The results show that 
this kind of analysis allows to identify the differential response of the evaluated genotypes 
according to main climatic differences across regions. This study also demonstrates that 
making the trial data available through public repositories allows the integration and further 
(re)analysis, producing new insights supporting decision making. 

Chapter 5 describes the R package gosset, developed to support data synthesis workflows in 
crop variety evaluations. The workflows implemented in the case studies of Chapters 3 and 
4 were documented as R code and published in GitHub, accompanying the scientific papers 
of Chapters 3 and 4. Documenting the workflows and publishing the computer code allows 
its peer review, contributing to research reproducibility and scientific rigor, but also enables 
more efficient workflows allowing to reuse the computer code and follow a verified 
workflow. The documented workflows from the case studies were used to design a general 
workflow, identifying functionality that could be implemented as software tools. The main 
stages identified in the data synthesis workflow in crop variety evaluation are: (1) data 
management and preparation, (2) model validation, and (3) results presentation. The software 
tools were developed in the R environment for statistical computing and released as the R 
package gosset in the Comprehensive R Archive Network and its development version is 
available in GitHub, allowing code revision, reuse, and collaboration. The package gosset 
provides functionality that supports the three stages in the data synthesis workflow.  

Chapter 6 describes the R package ag5Tools, which provides functionality to download and 
extract data from the Copernicus AgERA5 database, supporting stage 1 in the data synthesis 
workflow. Climatic data used as model covariates were fundamental applying the data 
synthesis approach in Chapters 3 and 4. The R package ag5Tools has been released in the 
Comprehensive R Archive Network and the code is available in GitHub. 
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Chapter 7 provides a general discussion of the main findings and the perspectives about the 
future work related to this thesis. This thesis contributes a new approach of data synthesis in 
the context crop variety evaluation, providing new methods that produce information to 
support decision making and at the same time an innovative way to optimize the use of data 
from agronomic and crop science experiments. 
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1.1 General introduction 
Field crop production is intrinsically dependent on environmental conditions, which change 
across space and time. Climate change imposes challenging conditions to farmers, increasing 
uncertainty about weather, and the occurrence of extreme and devastating events (IPCC, 
2022; Lesk et al., 2016). Decision making about which variety to plant is critical for farmers 
to successfully adapting crop production to environmental conditions (Bustos-Korts et al., 
2019). Agricultural extension services aim to provide information and recommendation to 
farmers to improve their productivity (Anderson & Feder, 2007). A key element of those 
recommendations is which variety to plant, to achieve better results including adaptation to 
environmental conditions. Plant breeders develop new varieties aiming to deliver improved 
genetic material with better adaptation traits and higher productivity (Malosetti et al., 2013). 
Therefore, farmers, agricultural extension agents and plant breeders require information to 
support their decision making. 

Crop varieties are evaluated mainly in field trials, often at several locations with different 
environmental conditions (Lecomte et al., 2010). Field evaluations of crop varieties are 
conducted around the world by both public and private organizations, producing substantial 
amounts of data (Yan, 2014b). The adoption of advanced digital technologies in agricultural 
experimentation has increased the capacity of generating field trial data (Janssen et al., 2017; 
Moore et al., 2021). For instance, by the time of publication of this thesis, the CGIAR 
platform GARDIAN accounts 26,474 datasets stored in 21 repositories. The increased 
capacity to generate, store and process crop variety trial data has enabled the application of 
analytical approaches based on ‘big data’, such as machine learning (Breiman, 2001), in 
contrast with the conventional statistical approaches which are mainly based on small-sample 
statistics. However, data from crop variety evaluations is often not fully utilized to generate 
information required by farmers, extension agents and plant breeders. Even when the trial 
data is used, it is often not re-used and then stored or even discarded without further utility. 
Trial data is costly to generate (Lecomte et al., 2010), requiring more efficient ways to extract 
more value per collected data unit. A suboptimal use of data creates a lack of trust at different 
levels in agricultural research. Participatory on-farm trials have the potential to provide more 
tailored solutions and recommendations to farmers. But if data collected in participatory 
research is not turned into useful information for farmers, they will not find a benefit in 
investing time and resources in more experiments. Furthermore, deficient information about 
variety performance may worsen the already slow variety adoption by farmers. Funding 
organizations will be averse to invest further resources generating and collecting data that is 
not converted into real solutions to farmers and the society in general. 

Data synthesis can help to maximize the value from existing data integrating datasets from 
crop variety evaluations. In this thesis, data synthesis refers to the integration of data to 
generate new knowledge and insights (Carpenter et al., 2009; Pickett et al., 2007; Pillemer & 
Light, 1980), in contrast to other applications in which data synthesis refers to generating 
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synthetic data (Barth et al., 2018; Zhang, 2018). Systematic reviews and meta-analyses are 
the most common applications of data synthesis. Meta-analysis has been widely applied to 
human health, but also to other fields such as ecology, plant pathology and animal science 
(Philibert et al., 2012). In the case of crop variety evaluation, meta-analysis has focused 
mainly on variety performance in terms of yield and often without explicitly considering 
environmental factors. Decision making in crop variety evaluation involves several 
interconnected factors, such as climate, soil, pest and diseases, farmers preferences and 
needs, and market requirements. Data synthesis for crop variety evaluation should go beyond 
conventional meta-analysis, by integrating multiple types of data.  

The integration of trial data from different sources is a complex task, because the data is often 
in different formats and measurement scales (Simko & Pechenick, 2010). Therefore, a data 
synthesis approach for crop variety evaluation requires a new methodological design. This 
new design should be accompanied by data availability, which is often constrained by 
deficient data sharing and management practices (Hyman et al., 2017; Moore et al., 2021). 
Data is often not made available by researchers or institutions because they do not find a 
direct benefit in it and it requires additional investments of time and resources (Diekmann, 
2012; White & van Evert, 2008). Overcoming the resistance to data sharing requires tangible 
evidence of its benefits, instead of forcing its implementation. Demonstrations of feasibility 
of data synthesis, taking advantage of existing data and revealing new insights could 
encourage both scientists and institutions to actively engage in data sharing.  

As a data-driven and computer-aided approach, data synthesis in crop variety evaluation 
requires well documented workflows, along with verifiable and reusable computer code. 
Documenting computer-based workflows enables reproducible and verifiable research 
results, but also can lead to the design of generalized workflows and required computer code. 
Generalized computer code can be implemented and released as software tools, supporting 
future applications of data synthesis in crop variety evaluation. 

This thesis starts addressing the need of a new data synthesis approach by generating new 
insights in the current limitations and possibilities in the area of data synthesis applied to crop 
variety evaluations (Chapter 2), providing two case studies where the new data synthesis 
approach is applied (Chapters 3 and 4), and documenting the data synthesis workflow and 
developing software tools supporting future applications of the new data synthesis approach 
(Chapters 5 and 6). 

1.2 Research objectives 
The main objective of this thesis is to develop data synthesis methods producing location-
specific information of crop variety performance, that helps decision makers involved in crop 
variety evaluation processes and make better use of collected data. To that aim, this thesis 
addresses the following specific research objectives: 
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1. To describe the state of the art of data synthesis methods used in crop variety evaluation 
identifying the major constraints and knowledge gaps. 

2. To design and implement a data synthesis approach that characterizes environmental 
adaptation of crop varieties in time and space, and assess its strengths and limitations 
through two case studies. 

3. To design and document reproducible synthesis workflows for crop variety trial data. 

 
1.3 Thesis outline 
This thesis is structured in 7 chapters. Chapter 1 presents the introduction, main research goal 
and research objectives. Figure 1.1 shows how Chapters 2 to 6 contribute to address the 
research objectives and how these objectives depend on each other. 

 

Figure 1.1 Relationship among Chapters 2 to 5 and the research objectives 

 

Chapters 2 to 6 present how the research objectives were addressed. In Chapter 2 a literature 
review was conducted identifying the main elements required for data synthesis in crop 
variety evaluation, such as data types and models.  

In Chapter 3, the data synthesis approach was applied to participatory on-farm trials 
established in four countries in Central America (Costa Rica, El Salvador, Honduras, and 
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Nicaragua), to predict the top-three performing genotypes across the study region. A spatial 
mapping approach was used to visualize the model predictions along with its estimated 
uncertainty.  

In Chapter 4, the data synthesis approach was applied to trial data from multiple sources, 
with different scales, experimental designs and partial overlap among evaluated genotypes, 
to assess the effect of climatic factors on the reaction of Musa genotypes to black leaf streak 
disease. 

Chapter 5 describes the R package gosset, developed to support the data synthesis workflow. 
The documented data synthesis workflows, implemented in Chapters 3 and 4, were used to 
design a general workflow which can be applied in future data synthesis. The core 
functionality identified in the generalized workflow was implemented as an open-source 
software and released for public access and free of costs.  

Chapter 6 describes the R package ag5Tools, developed to support downloading and 
extracting climatic data from the AgERA5 dataset, which is fundamental for the use of 
climatic model covariates in data synthesis for crop variety evaluation approach. 

Chapter 7 presents a general discussion summarizing the main findings and reflecting on the 
main weaknesses, finishing with a perspective of potential research lines for future work, 
based on the identified study weaknesses and remaining knowledge gaps. 
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Abstract 
Crop varieties should fulfill multiple requirements, including agronomic performance and 
product quality. Variety evaluations depend on data generated from field trials and sensory 
analyses, performed with different levels of participation from farmers and consumers. Such 
multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these 
data should be optimized. Data synthesis can help to take advantage of existing and new data, 
combining data from different sources and combining it with expert knowledge to produce 
new information and understanding that supports decision-making. Data synthesis for crop 
variety evaluation can partly build on extant experiences and methods, but it also requires 
methodological innovation. We review the elements required to achieve data synthesis for 
crop variety evaluation, including (1) data types required for crop variety evaluation, (2) main 
challenges in data management and integration, (3) main global initiatives aiming to solve 
those challenges, (4) current statistical approaches to combine data for crop variety 
evaluation and (5) existing data synthesis methods used in evaluation of varieties to combine 
different datasets from multiple data sources. We conclude that currently available methods 
have the potential to overcome existing barriers to data synthesis and could set in motion a 
virtuous cycle that will encourage researchers to share data and collaborate on data-driven 
research. 
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2.1 Introduction 
Farmers, especially smallholders in developing countries, are facing ever more challenging 
production conditions and product requirements. Extreme weather events are on the rise as 
one of the effects of climate change (Coumou & Rahmstorf, 2012; Lesk et al., 2016). 
Emerging pests and diseases, as well as declining soil fertility, are also constraining farm 
productivity. Evolving crop production practices require the development of new genotypes 
that meet specific agronomic traits (Collard & Mackill, 2008). Markets are also evolving, and 
taste preferences need to be considered if new crop varieties are to easily find their way to 
the consumer (Dawson & Healy, 2018). Furthermore, there is growing knowledge of the 
different product needs and preferences relative to gender, which are influenced by their 
different roles in the value chain, differences in access to land and other inputs and 
differences in decision-making power (Christinck et al., 2017). There is also an increasing 
interest in more sustainable crop production systems, which would require a redesign of the 
whole food system and the role of players involved, including breeders (Lammerts van 
Bueren et al., 2018). Crop improvement aims to address the multiple challenges faced by 
farmers through delivering improved varieties (Malosetti et al., 2013). However, simply 
using the most recently released variety will not always lead to improvement, as breeding 
cannot address all requirements in all contexts. Decision-makers involved in crop 
improvement, including breeders, agronomists and farmers, evaluate multiple aspects and 
trade-offs relevant to the context in which they use the varieties. Crop variety evaluation is 
critical in decision-making in crop variety release, crop seed marketing or distribution and 
generating crop variety recommendations for farmers. 

Crop variety evaluation is mainly conducted through field trials (Fig. 1), which are expensive 
and time-consuming (Kipp et al., 2014; Lecomte et al., 2010; Tenkouano et al., 2012). The 
limitations in resources, space, time and the required logistics in field trials also make it 
almost impossible to test all the varieties of interest in the same trial or in all the possible 
environments (Lecomte et al., 2010; Simko et al., 2012; Singh et al., 2014). Crop variety 
evaluation usually considers yield as the main trait while disease resistance and climate 
adaptation are secondary traits. Other characteristics of interest in crop variety evaluation, 
such as product quality and consumer preferences, are obtained through quality assessments 
and sensory evaluations, which are also expensive (Tomlins et al., 2004). An exception in 
terms of costs of data relevant to crop variety evaluation is climatic data, which acquiring 
costs have been decreasing due to advances in remote sensing and computational power. 
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Figure 2.1 NARITA hybrid field trials in Mbarara, Uganda, mulched with swamp grass to reduce weeds 
and soil moisture loss. Photo credit: Bioversity International/L. Machida 

Crop variety evaluation has not always kept pace with the growing complexity of agricultural 
production and the growing availability of data. As a data-driven type of research, crop 
variety evaluation can benefit from multiple revolutions occurring in several fields such as 
genomics, phenomics, big data and machine learning(Bolger et al., 2019; Esposito et al., 
2020; Tardieu et al., 2017; van Etten, Steinke, et al., 2017). These revolutions are driven by 
increased data storage and computing capacity, the availability of sensors, improved DNA 
sequencing technologies and new field data collection approaches, such as high-throughput 
and high-precision field phenotyping and crowdsourcing (Chawade et al., 2019; Esposito et 
al., 2020; Reynolds et al., 2020; Tardieu et al., 2017; van Etten, Beza, et al., 2019). This has 
caused not only a quantitative leap in data volumes but also a shift to ‘big data’ approaches 
that move beyond small-sample statistics to data analysis based on machine learning 
(Breiman, 2001; Ersoz et al., 2020; Thessen, 2016; van Etten, Steinke, et al., 2017). While 
there are multiple examples of useful applications of big data analysis in agriculture 
(Kamilaris et al., 2017; Liakos et al., 2018), such cases are still few compared to other 
industries (Kamilaris et al., 2017). 

Specifically, crop variety evaluation has taken little advantage of the potential benefits of 
data synthesis. Data synthesis allows the combination of data from different sources, 
producing new information and knowledge to support decision-making (Carpenter et al., 
2009; Pickett et al., 2007; Pillemer & Light, 1980; Wyborn et al., 2018). 

Interest in the value from combining and (re)using datasets in agriculture has grown, 
supported by open data and data sharing initiatives (Leonelli et al., 2017). As new analytical 
technologies and methods become available, legacy data could be reanalyzed (Hampton et 
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al., 2013; White & van Evert, 2008). Data synthesis can improve the efficiency of data use 
in crop variety evaluation by combining and repurposing new and legacy data from field 
trials, environmental measurements, farmer requirements and consumer preferences (Figure 
2.2). In the agricultural sciences, it has so far mainly taken the form of meta-analysis 
(Krupnik et al., 2019; Philibert et al., 2012). 

 
Figure 2.2 Different elements and processes involved in data synthesis for crop variety evaluation 

Data synthesis can play a role in different functions of crop variety evaluation. The selection 
of genotypes to be released as cultivars can benefit from data synthesis to assess genetic gain 
(progress over time) (Streck et al., 2018), to benchmark against other breeding programs, to 
improve accuracy through multi-season assessments and to predict performance beyond the 
trial environments. The latter involves analyzing a combination of variety trial data and 
environmental data (Hyman et al., 2013). The analysis of trial data can be made more accurate 
when data from the last trial season is combined with historical variety performance data 
(Arief et al., 2015). 

To release a new variety, breeders need to evaluate the proposed genotypes against existing 
varieties in a country or region. Data synthesis could facilitate enriching data from trials 
including the new varieties with data on the past performance of the older varieties to gain 
accuracy (Damesa et al., 2017). Seed companies need to assess variety performance to take 
seed production and marketing decisions. Service providers, such as agro-input suppliers, 
cooperatives, agricultural extension organizations and NGOs, need to make 
recommendations to farmers, considering the multiple dimensions of variety performance 
(and trade-offs between these dimensions) in different environments and under different 
types of crop management. Information from existing crop trials to formulate 
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recommendations is often used for this end. Such an analysis of existing data could benefit 
from data synthesis if the data that is available comes from different sources. Some service 
providers produce their own data about on-farm variety performance to generate 
recommendations or refine existing ones, which could also benefit from data synthesis to 
combine the new data with existing data. In many contexts, variety evaluation is done in a 
fragmented way (Rangarajan, 2002), which can preclude centralized coordination or 
standardization of data collection and weakens variety evaluation as each entity assesses 
genotype by environment interactions in a limited set of environments. Data synthesis could 
help to gain a better understanding of genotype by environment interactions across space and 
time. Flexible data synthesis could take advantage of heterogeneous data from different 
actors in the seed sector and provide value to the several functions that variety evaluation 
plays in each step of the crop improvement cycle. 

A clearer perspective on data synthesis for crop variety evaluation is needed to achieve these 
potentials. Here, we review the literature relevant to data synthesis for context-specific 
decision-making in variety management. The objective of this article is to provide an 
overview of the required elements, current approaches and research gaps in data synthesis 
for crop variety evaluation, focusing on decision-making for variety pre-release and post-
release. We limit ourselves to these later stages of the breeding process, and therefore, we do 
not cover the genomic and high-throughput phenotyping data. Even though these types of 
data are clearly part of the data revolution in crop improvement, they generally concern early 
and intermediate stages of the breeding process. We briefly refer to high-throughput field 
phenotyping data, as it has the potential to support later stages of the breeding process. In 
Section 2.2, we discuss the types and sources of data that are required. In Section 2.3, we 
discuss how data synthesis relies on proper data management, including sharing data across 
different trials and the compatibility of datasets. Data synthesis requires not only combining 
datasets to assess variety performance but also beyond assessing average performance, a 
careful analysis of how different genotypes respond to diverse environments and match the 
preferences of farmers, consumers and other stakeholders. Therefore, in Section 2.4, we 
review how data analysis is currently dealing with the end-users, their context and what is 
still lacking to evaluate crop varieties through a data synthesis approach. In Section 2.5, we 
review existing data synthesis approaches used in crop improvement and assess how they can 
be enhanced to include use context. In Section 2.6, we present our conclusions and 
recommendations. 

2.2 Data required for crop variety evaluation 
In this section, we describe the data types required by a data synthesis approach for crop 
variety evaluation. Field trial data are important to analyze the phenotypic response of a given 
genotype, to the environmental characteristics of the testing location and, in some cases, to 
management practices. Not only yield but also product quality is considered in variety 
evaluation. The evaluation of crop varieties also involves data about the preferences of 



Data synthesis for crop variety evaluation. A review

13

  

 

farmers obtained from participatory and on-farm trials, and consumers, obtained from 
sensory evaluations. 

2.2.1 Agronomic performance data 

Agronomic performance data are collected from field trials, which can be set up in several 
ways depending on the context and purpose. A rough classification of contexts includes (1) 
public international breeding programs (e.g., breeding programs within the CGIAR, (2) 
private breeding programs at commercial seed companies and (3) agricultural research at 
national or regional level, conducted by National Agricultural Research Systems, often in 
partnership with International Agricultural Research Organizations. 

Field trials of breeding programs are usually known as performance trials or yield trials, given 
the importance of yield as the main trait (Acquaah, 2012). There are two main types of yield 
trials: (1) breeder trials and (2) official trials (Acquaah, 2012). Breeder trials aim to assess 
the performance of a set of genotypes to decide which ones should be released as cultivars 
(Priyadarshan, 2019). An official variety trial is part of the variety release and registration 
process, which varies among countries, but in most of the cases, it is conducted by an 
independent body, such as an official seed agency or under the jurisdiction of a variety release 
committee. Depending on the stage of the breeding process, the breeder’s trials can be divided 
into preliminary yield trials (PYTs) and advanced yield trials (AYTs) (Priyadarshan, 2019). 
A PYT often concerns many genotypes (and few replications), whereas an AYT evaluates a 
small number of genotypes (selected from the PYT), with more replications over different 
environments, and during several years (Priyadarshan, 2019). In this review, we are focusing 
on data generated from AYT. Crop variety trials can also be established to test improved 
varieties to be recommended to farmers (Yan, 2014b). Both for breeding and to generate 
variety recommendations, field trials aim to evaluate varieties in different environments, 
where the environment is considered a combination of location and season (Acquaah, 2012). 
For this purpose, crop variety trials can be established mainly in three different levels of 
combination of location and season: (1) a single location in a single season, (2) multiple 
locations in a single season and (3) multiple locations in multiple seasons (Yan, 2014a). Crop 
variety trials can also be established in a centralized or decentralized system. The centralized 
approach involves on-station trials; it is the conventional approach for many crops and 
contexts. Decentralized methods include establishment of trials at farm locations, with 
different levels of participation from farmers. As not only biophysical factors determine the 
suitability of a variety, it has been suggested that the concept of environment should be 
extended to include the socioeconomic context of the target location (Desclaux et al., 2008). 
Participatory plant breeding and participatory varietal selection methods aim to better 
consider farmers’ preferences and context in order to increase the adoption of improved 
varieties (Ceccarelli & Grando, 2007; Weltzien & Christinck, 2017). These approaches often 
include participatory on-farm trials, which may produce insights that are complementary to 
insights derived from conventional trials (Atlin et al., 2001; Coe, 2007; Coe, 2002). Although 
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farmers’ participation is commonly associated with on-farm trials, farmers can also be 
involved in on-station trials. Participatory varietal selection (PVS) can be done through 
mother-baby trials, where the mother trial includes the full set of testing genotypes and the 
baby trial only includes a subset of test genotypes alongside the control genotype (Snapp, 
2002; Virk et al., 2009). On-farm trials may produce unbalanced data, due to differences in 
the particular conditions of farmers’ fields and the limited availability of seeds of the new 
varieties (Virk et al., 2009). 

Data collected from field trial evaluations typically include trial design, the trial location, the 
date of establishment, trial management, evaluated genotypes and observations of the target 
traits (e.g., yield). Observations of the target trait can be either measured or estimated and 
should be ideally referenced to the observation date and to the phenological stage of the plant 
during observation (Billiau et al., 2012; Germeier & Unger, 2019; White et al., 2013). For 
instance, the second phase of the International Musa Testing Program (IMTP) used the 
following attributes (Orjeda, 2000): genotype, time from planting to shooting (days), time 
from shooting to harvest (days), time from planting to harvest (days), height of the 
pseudostem at shooting (cm), height of the following sucker at harvest (cm), bunch weight 
(cm), number of hands per bunch (hands), total number of fingers per bunch (fingers), 
average fruit weight (g) and leaf emission rate. 

Technological innovations allowed the development of new methodologies for collecting 
data from field trials. These include high-throughput field phenotyping methods supported 
by satellite imagery or data from unmanned aerial vehicles (UAVs) and proximal 
phenotyping (Chawade et al., 2019). 

Given the multiple context and evaluation objectives, each organization conducting crop 
variety trials may use its own experimental design and employ different methods and 
technologies for collecting, storing and publishing and/or sharing data. In Section 2.3, we 
review potential obstacles for data integration resulting from these differences. Furthermore, 
the diversity of goals and evaluation methodologies also produce different approaches to 
analyze collected data. We review these in Section 2.4. 

2.2.2 Environmental data 

To analyze the phenotypic response of genotypes to the testing environment, a fundamental 
step is to characterize the environment. The environment is the first source of yield variability 
in plant breeding trials (Chenu, 2015). Hence, environmental data are required to characterize 
the trial location and to understand its influence on the performance of tested genotypes in 
that particular location. It is known that the use of environmental data as model covariates 
analyzing multi-location trial data improves the degree of accuracy in the prediction of 
genotype performance (Piepho et al., 1998; Piepho, 2000). A recent study by van Etten, de 
Sousa, et al. (2019) demonstrated an improvement in variety recommendations using 
seasonal climate data as model covariates. Xu (2016) proposed to consider all environmental 
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factors affecting growth and production of plants through an approach called ‘envirotyping’. 
Environmental data can be collected at trial sites directly. But even if environmental data 
were not collected during trials, geolocating trial sites allows enriching the dataset with 
existing environmental data. Adding environmental data to legacy trial data allows 
comparisons among trials conducted at different locations. Some types of environmental data 
are increasingly available through open and public repositories (Hyman et al., 2013). For 
instance, data on rainfall, temperature, elevation and soils are openly and freely available 
from open and public databases such as Climate Hazards Group InfraRed Precipitation with 
Station data (CHIRPS) (Funk et al., 2015), MODIS Land Surface Temperature (Wan et al., 
2015), Hole-filled SRTM for the globe version 4 (Jarvis et al., 2008) and SoilGrids (Hengl 
et al., 2017). The European Centre for Medium-Range Weather Forecasts (ECMWF), 
through the Copernicus Climate Change Service (C3S), provides a comprehensive collection 
of climatic datasets, including the recently deployed ‘Agrometeorological indicators from 
1979 to 2018 derived from reanalysis’, known as AgERA5. Available climatic data can be 
used to calculate climatic indices (Table 2.1), which were proven to be useful as model 
covariates in the analysis of crop variety trials (Kehel et al., 2016; van Etten, de Sousa, et al., 
2019). Even though climatic data opens a wide range of possibilities for crop variety 
evaluation, the resolution of available data has to be carefully considered (Parkes et al., 2019). 
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Table 2.1 Temperature and precipitation indices commonly used as covariates in crop variety 
trial analyses. Adapted from van Etten, de Sousa, et al. (2019) and Kehel et al. (2016) 

Environmental Index Unit 

Maximum daytime temperature °C 

Minimum daytime temperature °C 

Maximum nighttime temperature °C 

Minimum nighttime temperature °C 

Mean difference between daily maximum temperature and daily minimum temperature °C 

Number of days with maximum temperature > 30 °C days 

Number of nights with maximum temperature > 25 °C days 

Maximum length of consecutive days with precipitation < 1 mm days 

Maximum length of consecutive days with precipitation ≥ 1 mm days 

Number of days with precipitation > 5 mm days 

Number of days with precipitation > 10 mm days 

Maximum 1-day precipitation mm 

Maximum 5-day precipitation mm 

 

2.2.3 Food quality and consumer preference data 

Sensory and nutritional evaluation has received more attention in recent decades, countering 
the narrow focus of crop improvement on yield, disease resistance and uniformity (Folta & 
Klee, 2016). At present, consumer markets are evolving, with consumers seeking additional 
product qualities such as nutritional and sensorial characteristics (Folta & Klee, 2016). Food 
quality involves both objective and subjective analyses, involving measurements of contents, 
texture as well as sensory analyses. Sensory evaluation is formally defined as ‘a scientific 
discipline used to evoke, measure, analyze, and interpret reactions to those characteristics of 
foods and materials as they are perceived by the senses of sight, smell, taste, touch, and 
hearing’ (Anonymous, 1975; Stone et al., 2012). Consumer preference data are obtained from 
sensory evaluations by panels of regular or specialized consumers, with different methods, 
such as descriptive analysis or rapid sensory evaluations (Dawson & Healy, 2018). Sensory 
and hedonic (i.e., related to pleasant or unpleasant) experiences cannot be measured directly 
and should be inferred from descriptive or numerical representations (hedonic scales) of 
subjects’ responses (Lim, 2011). There are four main types of scales used in hedonic scaling, 
which are presented in Table 2.2. 
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Table 2.2 Types of scales used in hedonic scaling. Adapted from Stevens (1946) and (Lim, 
2011) 

Scale Basic empirical operation Number usage Permissible 
statistics 

Example scale 

Nominal 
Determination of equality 
(categorization) 

As labels 
Non-parametric: 
number of cases; 
Mode 

1: good, 

2: bad 

Ordinal 
Determination of greater or 
less 

To recognize the 
rank order 

Non-parametric: 
median; percentiles 

Rank rating 

 

Interval 
Determination of equality of 
intervals or differences 

To represent 
degrees of 
differences 

Parametric: mean; 
standard deviation 

Category scale 

Ratio 
Determination of equality of 
ratios 

To represent 
relative 
proportions 

Parametric: log 
mean; standard 
deviation 

Labelled affective 
magnitude scale 
(LAM); labelled 
hedonic scale 
(LHS) 

 

The 9-point hedonic scale developed by Peryam and Girardot (1952) is the most widely used 
method for scaling consumer preference and food acceptability (Lim, 2011). It is composed 
of the following values and their correspondent description: 9, like extremely; 8, like very 
much; 7, like moderately; 6, like slightly; 5, neither like nor dislike; 4, dislike slightly; 3, 
dislike moderately; 2, dislike very much; and 1, dislike extremely (Peryam & Girardot, 1952). 
More recently, other scaling methods have been proposed, such as the labelled affective 
magnitude (LAM) scale (Schutz & Cardello, 2001) and labelled hedonic scale (LHS) (Lim 
et al., 2009). This diversity of measurement scales can pose a challenge to combine data from 
different sources, such as different laboratories testing food quality, or a sensory evaluation 
with farmers testing different varieties as part of a breeding process. 

Agronomic performance, food quality and preference data are still expensive and complex to 
acquire and manage. In contrast, weather and soil data are increasingly available at 
significantly reduced costs. More effort is required to improve the efficiency in data use in 
the evaluation of crop varieties. The higher availability of weather and soil data can motivate 
and increase data reuse, repurposing legacy crop variety trial data by adding environmental 
data to extract new insights. 

2.3 Data management challenges 
As a data-driven research, data synthesis requires availability of the data to be reused. It also 
requires careful data management to integrate data of heterogeneous nature from different 
sources and formats, as described in Section 2.2. Here, we discuss the challenges in data 
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management that are relevant to data synthesis for crop variety evaluation, the main efforts 
to address these problems and further research needs. 

2.3.1 Main barriers for data availability and integration 

Data should be available to be integrated and then synthetized using formal statistical 
techniques. However, data are still rarely shared for reuse, especially in the case of raw data 
from variety trials. Diekmann (2012) and (Williams, 2012) found that researchers are often 
unwilling to share raw data out of concern about data being taken out of context, which could 
lead to incorrect results and misinterpretation. Authors may also oppose freely releasing data 
that cost them substantial work and resources, whereas they may be more willing to share 
data with colleagues Diekmann (2012). 

In addition to cultural constraints, technical challenges arise for data sharing among both 
individuals and institutions. It has been a common practice for researchers and research 
centers to develop their own system for storing data, mainly because they do not trust global 
repositories with which they do not have a direct relationship and for which long-term support 
may not be guaranteed (Leonelli et al., 2017). This has resulted in a myriad of individual 
databases that are neither open nor compatible among research centers. This not only inhibits 
collaboration among scientists but also promotes duplication of efforts and increases costs, a 
luxury that the scientific community cannot afford in times of scarce economic resources for 
agricultural research. 

In cases when data are available, data integration sometimes encounters problems due to lack 
of standardization in terms of syntax, semantics and structure. Crop variety trial datasets are 
often very heterogeneous in terms of quantity, quality, types and formats (Hyman et al., 2017; 
Leonelli et al., 2017). Individual trial designs and observational methods vary according to 
the specific purpose of trials (Section 2.2). This lack of standardization of crop variety trial 
data makes it difficult to compare results between trials and to reuse datasets with traditional 
tools (Leonelli et al., 2017; Rijgersberg & Top, 2000). Combining crop trial datasets often 
presents the following problems: (1) incomplete or inexistent overlap among evaluated 
accessions across trials, (2) measurements based on different rating scales and (3) the use of 
different methods for observing the same trait (Simko & Pechenick, 2010). Methods to solve 
the problem of measurement in different rating exist such as the threshold model (Hartung & 
Piepho, 2005), but it does not solve the problem of partial overlap among tested varieties in 
the different trials. In Section 2.5, we explore and evaluate how different data synthesis 
methods deal with this kind of problems. 

The dearth of relevant data in the public domain limits the possibilities of data synthesis, as 
it provides a large initial cost of assembling, cleaning and reformatting data. For individual 
data synthesis efforts, this initial investment may be relatively very high, even though it could 
be worthwhile if data can be repurposed more than once. Furthermore, practices limiting data 
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reuse go against the aim of science of building universal knowledge, in which public funds 
play a fundamental role. 

2.3.2 Efforts to overcome data management problems 

Several international agricultural research organizations have made efforts to address the 
barriers of poor data availability and data format incompatibilities (Germeier & Unger, 2019; 
McLaren et al., 2005; Ritchie, 1995). Several global funders of agricultural research are 
increasingly seeking mechanisms to guarantee that research investments generate benefits 
for smallholder farmers in developing countries (Dalrymple, 2008). Global open data and 
sharing initiatives aim to facilitate data accessibility, allowing the generation of new 
knowledge (Wilkinson et al., 2016). With valuable contributions from diverse partner 
organizations, CGIAR centers have been developing information systems and platforms, 
aiming to integrate heterogenous data sources to support crop improvement research (Hyman 
et al., 2017; McLaren et al., 2005). Examples of this type of systems are the International 
Crop Information System (ICIS) and its derivatives, the International Rice Information 
System (IRIS) and the International Maize Information System (McLaren et al., 2005; 
Shrestha et al., 2010). The recently created CGIAR ‘Platform for Big Data in Agriculture’ 
aims to materialize the potential of big data–related methods and technologies to improve 
agricultural production. Outside the CGIAR system, agricultural researchers and 
organizations are also endeavoring to construct better ecosystems of data and methods. Table 
2.3 contains a compilation of the main international initiatives on standardization and data 
sharing. Data standardization and sharing systems include online databases such as AgTrials, 
YamBase, CassavaBase and MusaBase, which all implement ontologies to standardize 
vocabularies and terminologies (see Table 2.3). Ontologies formally define the relationships 
among concepts within a given domain (Matteis et al., 2013). Similar approaches have also 
been proposed by other authors. For instance, Rijgersberg and Top (2000) proposed data 
model templates—a generalization of data models—to achieve a balance between 
standardization and flexibility. See Spyns et al. (2002) for an overview of specific differences 
between data models and ontologies. Germeier and Unger (2019) applied a modelling 
approach that goes further than data models, considering also statistical models in the 
implementation of a phenotyping information system. Efforts to standardize phenotyping 
data include the Minimal Information About Plant Phenotyping Experiment (MIAPPE) 
(Ćwiek-Kupczyńska et al., 2016; Krajewski et al., 2015; Papoutsoglou et al., 2020). Efforts 
to standardize data from field experiments include the International Consortium for 
Agricultural Systems Applications (ICASA) standard, initially developed by the 
International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) and updated 
by ICASA (White et al., 2013). 
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Table 2.3 Main international initiatives to increase data sharing and standardization in 
agriculture 

Initiative URL 

AgTrials http://agtrials.org 

AgroPortal http://agroportal.lirmm.fr 

Breeding Application Programming Interface (BrAPI) https://brapi.org 

Breeding Management System https://bmspro.io  

CassavaBase https://www.cassavabase.org 

Crop Ontology http://www.cropontology.org 

GARDIAN http://gardian.bigdata.cgiar.org 

Global Open Data for Agriculture and Nutrition (GODAN) https://www.godan.info 

Global Trial Data Management System https://research.cip.cgiar.org/gtdms 

Integrated Breeding Platform https://www.integratedbreeding.net 

MIAPPE https://www.miappe.org  

MusaBase https://musabase.org 

Sol Genomics Network https://solgenomics.net 

YamBase https://yambase.org 

 

The FAIR (findability, accessibility, interoperability and reusability) guiding principles are 
intended for producing and publishing data, aiming to facilitate and enable data sharing and 
reuse (Wilkinson et al., 2016). To achieve these principles, a set of mechanisms is considered. 
These include unique and persistent identifiers, a standardized communications protocol and 
the use of domain-specific standards for both data and meta-data. 

Despite these efforts, recent literature indicates that there are still serious challenges in 
implementing data standardization and sharing. About 85% of the more than 35,000 records 
in the AgTrials database contain only meta-data; hence, those interested in the underlying 
data should contact the original data provider (Hyman et al., 2017). Problems persist on both 
the supply and demand side. It has been found that researchers are often reluctant to use data 
produced by others because there is no guarantee about the quality (Diekmann, 2012). Data 
standards are now available (Table 2.3), but it is still difficult to persuade the agricultural 
research community to adopt the suggested standards. The lack of flexibility to adapt to 
scientific progress is indeed one of the arguments stated against standards (Germeier & 
Unger, 2019). For both new and legacy data, standardization requires considerable efforts, 
which will not immediately pay off, hindering its implementation. In addition, the efforts 
required for processing datasets with the accompanying meta-data to facilitate open access 
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and use by others are often not acknowledged (Diekmann, 2012; White & van Evert, 2008). 
From 112 surveyed users of the AgTrials platform, 34% considered that their data are 
incorrectly organized to be shared publicly (Hyman et al., 2017). In the cases where data are 
shared, it is mostly not through global repositories but rather as supplementary data on the 
journal website where associated articles were published (Williams, 2012). Sharing data as 
supplementary materials on a journal website would be adequate if journals followed 
commonly agreed guidelines, such as the FAIR principles. Although there has been an 
increase in data shared by researchers during the recent years, there is a still a lack of 
awareness and hence compliance with FAIR principles (Mark et al., 2018). 

2.3.3 Further work to improve data availability and data integration 

We identified barriers for data availability and data integration. The main efforts to stimulate 
data open access and repurposing have focused on compliance with standards and data 
sharing as a goal. Given the modest progress so far, we suggest that this focus be 
complemented with efforts to make data sharing more appealing, by the stimulation of data 
demand for data synthesis. This might set in motion a virtuous cycle of collaboration around 
data synthesis, providing clear incentives in the form of authorships on joint publications and 
citations to datasets (Figure 2.3). 

 
Figure 2.3 A virtuous cycle set in motion by data synthesis 

Therefore, we posit a need for simple methods that can deal with highly heterogeneous 
datasets to start to show the potential benefits of data synthesis (see Section 2.5). Ecology 
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research is a concrete example of how increasing the number of datasets, publications and 
collaboration among larger groups of scientists through meta-analysis can result in even 
larger collaborative initiatives which enhance the scope and potential impact of research 
(Cadotte et al., 2012). Data journals may help to boost this kind of data-centered collaboration 
(Candela et al., 2015). This could provide further motivation and feedback to continue the 
consensus building processes around data management. 

2.4 Analysis of different types of data 
Data synthesis requires the combination and analysis of different types of data as described 
in Section 2.2. Here, we review current approaches to combine those types of data and 
research gaps to achieve data synthesis for crop variety evaluation. 

2.4.1 Multi-environment trial analysis 

As we discussed in Section 2.2, the most basic evaluation of genotypes is the assessment of 
their agronomic performance, such as plant growth parameters, yield, plant reaction to 
diseases and tolerance to climate conditions (e.g., tolerance to drought, cold and flooding), 
among others. This type of evaluation is conducted through field trials, which can be 
established in different ways. Conventional trials are usually established in research stations 
under controlled conditions. Trials can also be established on farms and involve different 
levels of farmer participation, from limited participation as observers to full participation as 
citizen scientists (Ceccarelli, 2012; Ceccarelli et al., 2009; van Etten, Beza, et al., 2019). 
Combinations are also possible, such as on-station trials with some level of farmer 
participation. Regardless of the trial design, the idea is to establish trials at different locations 
for several growing seasons. The combination of location and time is known as the ‘testing 
environment’, and the trials are known as ‘multi-environment trials’ (METs). Multi-
environment trials are conducted to evaluate the suitability of crop genotypes for different 
agroecological conditions (van Eeuwijk et al., 2005). 

Genotype × environment (G × E) interaction is the relative difference in phenotypic response 
that a group of genotypes expresses depending on the environmental conditions (de Leon et 
al., 2016). Hence, G × E assessment requires the evaluation of a minimum of two different 
genotypes in at least two different environments (Kang, 1997). The phenotypic response of 
a genotype to the environment is described by a function known as the reaction norm (Bustos-
Korts et al., 2019). When the reaction norm lines of evaluated genotypes in different 
environments are not parallel, there is presence of G × E (Bustos-Korts et al., 2019). 
Especially in conventional breeding, G × E is considered a challenge by breeders due to its 
implications for genotype selection (Kang & Gorman, 1989). Aiming for more specific 
adaptation, decentralized breeding programs take advantage of G × E instead of diminishing 
the effects (Ceccarelli, 1989). 

There are different statistical models for G × E analysis. For an overview, we refer to recent 
reviews such as the work of Malosetti et al. (2013), van Eeuwijk et al. (2016) and Bustos-
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Korts et al. (2019). Most of the statistical models for G × E analysis can be interpreted as 
(phenotypic) response functions for each genotype to environmental variables (van Eeuwijk 
et al., 2005). Therefore, G × E analysis represents a combination of two of the data types 
presented in Section 2.2: the agronomic performance data and the environmental data. 

Data from multi-environment trials are usually summarized in two-way tables of means, with 
genotypes as rows, and environments as columns (Malosetti et al., 2013). Two major groups 
of statistical models for the analysis of G × E can be identified: (1) methods that only use the 
two-way table of means and environmental information are included only implicitly (usually 
as dummy variables) and (2) methods that use additional information, explicitly included as 
genotype and/or environment covariates (temperature, rainfall, etc.) (Malosetti et al., 2013). 
Examples of G × E models from the first group include additive models (ANOVA), 
regression on the mean (Finlay & Wilkinson, 1963; Yates & Cochran, 1938), additive main 
effects and multiplicative interaction (AMMI) models (Gauch, 1992) and the genotype + 
genotype × environment (GGE) model (Yan et al., 2000). Since they only require a two-way 
table of means as input, these models are considered to be good for descriptive and 
explorative purposes, but not for explaining G × E (Malosetti et al., 2013). The second group 
of models includes factorial regression, partial least squares regression, structural equation 
models and mixed effect models. Factorial regression allows the use of environmental or 
genotypic variables as covariates to explain G × E but has the limitation that only permits 
one dependent variable at a time (Vargas et al., 2007). Another limitation of factorial 
regression is its difficulty in dealing with multi-collinearity when several covariates are used 
(Vargas et al., 1999). For these cases, partial least squares regression is a more convenient 
approach, as it can easily handle multiple explanatory variables (Vargas et al., 1999). When 
the cause-effect analysis of G × E is aimed for, partial least squares regression becomes 
inadequate, and methods such as structural equation modelling are more suitable (Vargas et 
al., 2007). 

Mixed-effect models are one of the most used approaches for analyzing G × E, and they are 
usually implemented using either single-stage or two-stage analysis (Möhring & Piepho, 
2009). Single-stage models analyze data from individual plots, in which the residual effects 
and the G × E effects are estimated simultaneously (Smith et al., 2005). In contrast, two-stage 
models include a first stage in which design features and spatial variation are modelled using 
data from individual trials. Next, the second stage involves fitting an overall mixed model to 
the genotype by environment adjusted means obtained from stage 1 (Malosetti et al., 2013; 
Smith et al., 2005). The analysis can be extended to more than two stages, in which case the 
approach is more commonly known as stage-wise analysis (Damesa et al., 2017; Piepho, 
Möhring, et al., 2012). Although single-stage analysis is preferred from a theoretical point of 
view, two-stage analysis is less demanding in terms of computation requirements and 
provides similar results to single-stage when appropriate weights are selected (Malosetti et 
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al., 2013). Therefore, most of G × E models are implemented using a two-stage approach 
(Malosetti et al., 2013). 

There are situations where non-parametric methods, such as rank-based methods, are more 
convenient (Elias et al., 2016). This type of non-parametric methods has been used mainly to 
rank genotypes at specific locations (Elias et al., 2016) and has a set of advantages that 
include no specific modelling assumption about the distribution of the effects and are easy to 
implement and interpret (Huehn, 1990). Non-parametric models are considered a useful 
option when the interest is focused on the ranking of genotypes rather than to evaluate the 
level of difference on performance between genotypes (Brancourt-Hulmel et al., 1997). In 
the context of selection in breeding and evaluation programs, Huehn (1990) considered the 
rank order of genotypes to be the most important information. 

Other G × E models go beyond statistical analysis and integrate knowledge on crop 
physiology and expert assessments. For instance, Theobald et al. (2002) proposed the use of 
a Bayesian model to incorporate expert knowledge about the analyzed crop. In a bibliometric 
analysis, van Eeuwijk et al. (2016) identified an important growth in the application of both 
mixed models and crop growth models, especially after 2005. A crop growth model 
incorporates plant physiological aspects, along with the genotype and environment, in the 
analysis of interactions that produce a phenotype (van Eeuwijk et al., 2016). Furthermore, 
crop growth models also allow to consider the effect of cropping systems (intercropping, 
fertility management, etc.) on G × E (Jeuffroy et al., 2014). 

One of the goals of crop growth models for variety evaluation in multi-environment trials is 
to improve the characterization of the environment (Jeuffroy et al., 2014). For example, 
Tesfaye et al. (2016) combined geospatial analysis with crop modelling (1) to characterize a 
maize growing environment in Southern Africa (Malawi, Mozambique, Zambia and 
Zimbabwe) and (2) to evaluate the variety performance of five new drought-tolerant varieties 
across the aforementioned region. The environmental characterization was conducted using 
a standardized precipitation index, and it focused on the frequency of drought occurrences 
rather than drought severity (Tesfaye et al., 2016). To evaluate the variety performance of 
new varieties, maize yields were simulated using the Crop Estimation through Resource and 
Environment Synthesis (CERES)-Maize model. Simulated relative yields of five drought-
tolerant varieties outperformed the commercial check variety across many environments, but 
not in all (Tesfaye et al., 2016). 

Jeuffroy et al. (2014) reviewed the use of crop growth models in variety performance 
prediction and concluded that although their use is increasing, they are still not mainstream 
for variety evaluation. For mechanistic models to have predictive power to distinguish 
between varieties, information is needed on the processes or the underlying genotypic factors 
that give rise to these differences. Some information can be derived from existing trial data 
through model fitting, but overfitting often occurs. Acquiring additional data to estimate crop 
model parameters directly is often costly or not possible retrospectively in a data synthesis 
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context. Jeuffroy et al. (2014) argue that cost-benefit considerations to assess the value of 
additional information are important. On the one hand, crop growth modelling generally 
focuses on a narrow set of variables (mostly yield). Yield is an important input into crop 
variety recommendations, but other aspects cannot be ignored, including the user perspective 
(see Section 2.4.2). Their relative complexity makes their application often difficult. One 
possibility is to use (at least initially) very simple crop models and build up their complexity 
gradually (Shorter et al., 1991). Another option is to generate intermediate variables that can 
be used in statistical models or machine learning approaches (see Feng et al. (2019)). 

2.4.2 Evaluation in target environments and including user requirements 

The current challenges in agricultural production are more likely to be addressed by locally 
adapted solutions that consider both environmental and socioeconomic information (van 
Etten, Beza, et al., 2019). The socioeconomic context of the target environment should be 
considered to match both farmer and consumer preferences. Socioeconomic data like human 
population, welfare and transportation infrastructure have been proposed for targeting 
genotypes to environments, but such recommendations mostly concerned logistics planning 
on germplasm deployment (Hyman et al., 2013). While this kind of socioeconomic data is 
indeed important, other types of data, such as consumer preferences, should also be 
considered. For example, Desclaux et al. (2008) proposed that, in addition to the usual 
biophysical and management factors, the environment should be a wider concept that also 
includes actors, markets, regulations and societal dynamics. 

Participatory on-farm trials aim to take the variety trials closer to the target environments and 
user requirements (Ceccarelli & Grando, 2007). On-farm trials can provide much 
information, ranging from biophysical performance to economic assessment (Franzel & Coe, 
2002). In this type of trials, the concept of environment in a G × E analysis is extended to 
include socioeconomic factors, besides the usual biophysical variables (Coe, 2002). Data 
collected from on-farm participatory trials is often in the form of ratings or rankings, 
requiring different statistical models to conduct G × E analysis (Coe, 2002). For example, 
Coe (2002) proposes to analyze ratings using proportional odds, and rankings with the 
Bradley-Terry model (Bradley & Terry, 1952). An extended Bradley-Terry model can 
incorporate covariates (Coe, 2002; Dittrich et al., 1998). As discussed before, the possibility 
of including covariates is especially relevant when location-specific information is to be 
extracted from the experimental data. It has been shown that environmental covariates can 
improve predictions of variety performance (Piepho et al., 1998; Piepho, 2000). For data 
synthesis, in cases when environmental data is not collected as part of the crop trial, 
environmental covariates can be linked to experimental data through geolocation, as shown 
by Lobell et al. (2011), van Etten, de Sousa, et al. (2019) and others. 

An extended version of the Plackett-Luce model (Luce, 1959; Plackett, 1975) recently 
implemented by Turner et al. (2020) includes the use of model-based recursive partitioning 
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(Strobl et al., 2011), allowing the incorporation of covariates for predicting rank orders. 
Hence, subgroups of rankings with significantly different worth parameters are identified 
based on covariates (Turner et al., 2020). van Etten, de Sousa, et al. (2019) recently used this 
model to analyze data from on-farm participatory trials in three countries, successfully 
identifying environmental covariates that consistently influence variety performance across 
several seasons. 

2.4.3 Multi-dimensional assessment for decision-making 

An overall evaluation of varieties requires joint analysis of several traits, from both 
biophysical and socioeconomic perspectives. Different approaches have been proposed to 
handle multi-criteria prioritization on ranking varieties according to different traits of interest. 
Abeyasekera et al. (2002) developed a methodology to combine scores and rankings assigned 
by farmers evaluating bean (Phaseolus vulgaris) varieties, using a weighted index, which 
allows the farmer’s preference to be captured, thus combining multiple criteria. The work of 
Abeyasekera et al. (2002) considered the farmers’ preferences in terms of not only agronomic 
criteria (yield, pest resistance, etc.) but also non-agronomic criteria, such as taste, 
marketability and cooking time. Waldman et al. (2014) used choice experiment models to 
estimate farmers’ preferences of perennial pigeon pea. Smith and Fennessy (2011) applied 
the PAPRIKA (Potentially All Pairwise RanKings of all possible Alternatives) method 
(Hansen & Ombler, 2008) to assess the relative importance of traits on the improvement of 
perennial pasture species. The PAPRIKA method asks participants to compare pairs of 
options (varieties) and select one. It assumes full transitivity to reduce the number of pairs 
compared. In other words, when A > B and B > C, the model assumes A > C. An alternative 
method for priority setting is AgroDuos (Steinke & van Etten, 2017), which is similar to 
PAPRIKA but integrates the concept of gamification to increase participants’ engagement 
(Deterding et al., 2011), while it does not require interactive updating of questions and can 
therefore be used without a digital device or Internet connection. 

Farmers’ comprehensive evaluations of the total value of a variety can also be derived from 
on-farm trials. For example, the ‘tricot’ (triadic comparisons of technologies) approach 
proposed by van Etten, Beza, et al. (2019) integrates farmers’ feedback on variety evaluation 
as a ranking of varieties, based on their overall appreciation of the varieties. In the tricot 
approach, each farmer receives three packages of seeds, each with a different variety of the 
crop (van Etten, Beza, et al., 2019). Each farmer ranks the three varieties from best to worst, 
according to overall performance, considering traits such as pest resistance and yield (van 
Etten, Beza, et al., 2019). Rankings of varieties directly evaluated by farmers in on-farm trials 
are aggregated by rank aggregation models (see Section 2.5.1). 

Recent work of van Etten, de Sousa, et al. (2019) is an example of how a rank-based model 
was applied to consider several criteria, such as disease resistance, yield and farmer 
preferences into a single judgement, in combination with local environmental conditions in 
the analysis crop variety trials. The work of van Etten, de Sousa, et al. (2019) includes three 
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independent studies in three countries: Ethiopia, India and Nicaragua. For brevity, we focus 
on the case of Nicaragua, where varieties of common bean were evaluated in 842 plots. An 
extended version of the Plackett-Luce model, implemented in the PlackettLuce package 
(Turner et al., 2020), was fitted for the trial data collected from on-farm trials, which were 
established following the tricot approach (van Etten, de Sousa, et al., 2019). The Plackett-
Luce model estimates a worth parameter that represents the log probability of each evaluated 
element (a crop variety in this case) to be ranked first. Environmental conditions of the trial 
locations were included into the model using climatic indices (Table 2.1) as model covariates, 
through model-based recursive partitioning, implemented in the PlackettLuce package as 
Plackett-Luce trees. The use of climatic variables as model covariates led to the identification 
of environmental factors that influenced the probability of a variety performing better than 
the other varieties tested in the trials (see Figure 2.4 for an example). 

 
Figure 2.4 Plackett-Luce tree of farmer-participatory tricot trial data in Nicaragua. The probability of 
each variety to perform better than the others in the trial is presented on the horizontal axis. Grey vertical 
line represents the average probability of better performance (1/number of evaluated varieties). From 
the study of van Etten, de Sousa, et al. (2019, p. 4196, CC BY-NC-ND) 
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The evaluations mentioned above focus on average performance of varieties, but other 
approaches focus on the variation in performance across seasons to assess farmers’ risks. It 
has been shown that multi-environmental trial data from several seasons can be used to 
propose variety portfolios to reduce risk and maximize farmers’ profits (Nalley et al., 2009; 
Nalley & Barkley, 2010; Sukcharoen & Leatham, 2016). These studies all focus on yield as 
the main evaluation criterion. Fadda and van Etten (2019) proposed the adaptation of 
portfolio selection theory from financial asset management field, based on the portfolio 
management method developed by Dembo and King (1992). Instead of recommending a 
single variety, a portfolio of varieties is recommended based on calculations of the expected 
regret (Fadda & van Etten, 2019). This method does not require absolute (yield) data and can 
also be applied to ranking data. This is interesting for progress in data synthesis, as ranking 
methods can play a role in combining datasets from different sources (see Section 2.5.1). 

2.5 Data synthesis approaches 
In the previous section, we reviewed methods for the analysis of different data types used for 
crop variety evaluation. In addition to that, data synthesis involves integration of datasets 
from heterogenous sources. For instance, datasets come from several research programs, each 
one with diverse types of data formats, measurement units and experimental designs. 

Data synthesis for crop variety evaluation has followed two main lines of research: rank 
aggregation and network meta-analysis. In the remaining part of this section, we review 
relevant examples from both rank aggregation and network meta-analysis, to finally weigh 
their advantages, disadvantages and existing gaps towards a data synthesis methodology for 
crop variety evaluation. 

2.5.1 Rank aggregation methods 

Rank aggregation methods are rank-based non-parametric statistical methods that allow for 
aggregation of results from individual studies to obtain one consensus ranking (Lin, 2010; 
Yu et al., 2019). They have been applied to several fields including advertisement research, 
psychology, Internet search engines and biological studies (Lin, 2010). Rank aggregation 
methods are suitable for high-level meta-analysis, where aggregation of different raw data is 
not feasible (Lin & Ding, 2009). They also provide more statistical power than individual 
analyses (Lin, 2010; Simko & Pechenick, 2010). This coincides with one of the widely 
argued characteristics of meta-analysis (Cohn & Becker, 2003). 

Simko and Pechenick (2010) proposed to use rank aggregation methods to combine 
heterogenous data from independent plant breeding trials. Simko and Linacre (2010) 
demonstrated how the Rasch model (Rasch, 1960) can be used to combine heterogeneous 
data. The Rasch model is, in principle, very similar to the Luce model (Luce, 1959; Rasch, 
1960) (Rasch 1960; Luce 1959). 
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Simko and Linacre (2010) presented four different real datasets as case examples; for brevity, 
we only focus on one of the datasets, containing data of potato chip quality evaluations. The 
analysis of this dataset implies two main constraints already mentioned in Section 2.3: (1) 
data measurements in different rating scales and (2) only partial overlap among tested 
varieties. Potato chip quality data were collected from online databases of 10 different 
laboratories. As we described in Section 2.2, assessment of food quality and consumer 
preferences can be done using several rating scales. In the case of quality assessments of 
potato chips, Simko and Linacre (2010) explained that it is a common practice that each 
laboratory uses a different rating scale such as one of the following: (1) a rating scale of 5, 9 
or 10 categories (the number is subjectively selected by each laboratory; lower values 
indicate higher quality of potato chip); (2) a measurement of the potato chip color using 
specialized equipment with values ranging from 0 to 100 (higher readings indicate a lighter 
color of potato chips, which is a desired trait); and (3) a percentage of chips passing a given 
quality test defined by the laboratory. In this example, it was not specified which rating scale 
was used by each laboratory in each test, but indeed different ranges of values exist across 
the different tests. 

The data of potato chip quality assessments collected from 10 different laboratories were 
aggregated into one dataset. The aggregated dataset contained 63 cultivars over 157 trials, 
with only partial overlap among evaluated cultivars. For instance, only one cultivar was 
evaluated in 154 trials, while only seven cultivars were evaluated in a single trial (Simko and 
Linacre 2010). The resulting matrix contains 994 data points, around 10% of the expected 
total data points (9891) that would have resulted if all the varieties had been evaluated in all 
the trials (Simko & Linacre, 2010). The original ordinal ratings are replaced for relative 
rankings (Simko & Linacre, 2010). The relative rankings were used to calculate an overall 
performance rating, by means of an extended version of the Rasch model (Linacre & Wilson, 
1992; Simko et al., 2012). In this case, the extended version of the Rasch model allowed to 
compare 63 cultivars, even when not all were tested in the same trial. 

Interestingly, rank aggregation has also found a direct application in variety trials, such as 
the work of van Etten, de Sousa, et al. (2019) presented in Section 2.4. The successful 
application of rank-based methods in both trial analysis and meta-analysis shows that this is 
an interesting way forward in data synthesis for variety evaluation. 

2.5.2 Network meta-analysis 

Commonly used meta-analysis methodologies, especially in the medical sciences, are often 
based on pairwise comparison of treatments, usually in the form of an intervention against a 
control or placebo (Lumley, 2002; Tonin et al., 2017). Network meta-analysis (Lumley, 
2002) allows the comparison of multiple treatments, even when some of them have never 
been compared directly in trials (Tonin et al., 2017). Although network meta-analysis is 
commonly used in medical sciences, it has also been used recently in other fields such as 
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plant pathology (Madden et al., 2016). Network meta-analysis is also known by several other 
terms, such as ‘multiple treatments meta-analysis’ and ‘mixed treatment comparison’, which 
are often used interchangeably (Salanti, 2012). 

As explained by Tonin et al. (2017), the approach evolved from the initial work of Bucher et 
al. (1997) on ‘adjusted indirect treatment comparison’, which was called ‘network meta-
analysis’ after the improvements made by Lumley (2002), and later evolved to ‘mixed 
treatment comparison’ by Lu and Ades (2004). A distinctive characteristic of network meta-
analysis is the case when both direct and indirect comparisons are available for a given pair 
of treatments. In this case, evidence from both direct and indirect comparisons is used to do 
a mixed treatment comparison (Figure 2.5), hence the alternative name (Dias & Caldwell, 
2019). For more details about related terminology on mixed treatment comparisons, we refer 
to Salanti (2012) and Coleman et al. (2012). 

 
Figure 2.5 Example of a network of treatments (varieties) allowing direct and indirect comparisons. 
Adapted from Dias and Caldwell (2019). MD, mean difference 

Network meta-analysis can be implemented with two different types of models: (1) contrast-
based models, also known as conditional models, in which the treatment effects per trial are 
estimated as a contrast relative to a baseline treatment to subsequently analyze all the 
contrasts across studies, and (2) arm-based models, also known as unconditional models, in 
which the treatment summaries per trial are analyzed in a two-way linear mixed model 
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(Madden et al., 2016; Piepho, Williams, et al., 2012). Arm-based models are commonly 
applied for the analysis of multi-environment crop variety trials (Section 2.4) (Albert & 
Makowski, 2018; Damesa et al., 2017; Piepho, 1997). As explained in Section 2.4, it is 
possible to use single-stage or two-stage analysis in linear mixed models, although for 
network meta-analysis, a single-stage analysis might be constrained by the availability of 
data from individual primary studies, rather than usual summary results such as the estimated 
effect sizes (Madden et al., 2016). 

Both frequentist and Bayesian approaches can be applied to network meta-analysis (Tonin et 
al., 2017), although the Bayesian approach seems to be more popular (Piepho, Williams, et 
al., 2012). Network meta-analysis usually includes the use of network diagrams, where the 
nodes represent the compared elements (e.g., treatments or varieties), and the lines (edges) 
connecting the nodes represent the direct comparison of elements, to evaluate network 
connectivity. This is relevant in network meta-analysis, especially because poorly connected 
networks might provide less reliable results compared to a strongly connected network 
(Tonin et al., 2017). It is also possible the computation of ranking probabilities for each 
treatment to be assigned a particular position in a ranking from best to worst (Tonin et al., 
2017). 

Based on yield data obtained from 28 published papers selected through a systematic 
literature review, Laurent et al. (2015) applied both direct and indirect comparisons in a meta-
analysis for ranking crop species based on yield. Direct comparisons compare crops which 
were grown at the same site and in the same year, whereas indirect comparisons compare 
crops grown at different sites or in different years, using a third crop grown at all sites as a 
reference (Laurent et al., 2015). In this case, only results from experimental sites were 
considered (no farmers’ fields), resulting in a database containing 856 records of yield for 36 
crop species (Laurent et al., 2015). Mean yield was estimated using a linear mixed effect 
model, with a log transformation to normalize the yield data (Laurent et al., 2015). For the 
direct comparison, four crops species (Miscanthus × giganteus, Panicum virgatum, 
Triticosecale, Salix) were selected to be used as reference crops, as they were included in the 
higher number of comparisons with other crops for the same site-years (Laurent et al., 2015). 
A model was fitted for each reference crop using restricted maximum likelihood. Then, yield 
ratios of the mean yield of each evaluated crop (except reference crops) to the mean yield of 
a reference crop grown in the same site and year were calculated (Laurent et al., 2015). 

Since direct comparison allows to compare only a limited number of species, indirect 
comparison was used to compare the yields of a crop of interest, Miscanthus × giganteus, to 
yields of crops that were not grown in the same site-years as the crop of interest. Three 
reference crops were selected for the indirect comparison: Panicum virgatum, Triticosecale 
and Salix. Therefore, Miscanthus × giganteus was compared to crops not grown in the same 
site-years, by indirect comparison using the reference crops, allowing to include more crop 
species than using direct comparison only. 
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Albert and Makowski (2018) recently published a paper describing the use of Bayesian mixed 
treatment comparison models for ranking crop species. According to Albert and Makowski 
(2018), the dataset used is the same as that analyzed in Laurent et al. (2015), although they 
also indicate that 639 yield observations were analyzed, which are less than the 856 yield 
data observations analyzed in Laurent et al. (2015). Mixed treatment comparison combines 
direct and indirect evidence (Dias & Caldwell, 2019). Five different models were fitted 
(Table 2.4), of which four were contrast-based models and one was an arm-based model. 
According to Albert and Makowski (2018), the Bayesian contrast-based models (1 to 4) are 
variants of the model presented by Dias et al. (2010), while the arm-based is a Bayesian two-
way model. The model estimation was done using Markov chain Monte Carlo simulations, 
while model assessment was made using the deviance information criterion (DIC), in which 
the models with the lowest DIC are preferred (Albert & Makowski, 2018). Compared to the 
rankings obtained by Laurent et al. (2015) using direct and indirect comparison, the results 
are very similar for the two species with higher yields (Pennisetum purpureum and Arundo 
donax) when compared against Miscanthus × giganteus. 

Table 2.4 Description of models used by Albert and Makowski (2018) 

Model number Model type Effect Variance DIC 

1 Contrast-based Fixed Common residual  912 

2 Contrast-based Random Common residual  348 

3 Contrast-based Random Species-specific residual 287 

4 Contrast-based Random Study-specific residual  214 

5 Arm-based        Two-way model 348 

 

2.5.3 Assessment of available data synthesis methods 

The methods reviewed above address the challenge of combining crop variety trial data from 
multiple and independent sources. In Section 2.3, we presented a set of challenges identified 
by Simko and Pechenick (2010) that arise when aiming to combine data from different trials. 
Here, we assess both rank aggregation and network meta-analysis as solutions to those 
problems. Additionally, we provide an overview of the relative strengths and weaknesses of 
data synthesis methods. 

2.5.3.1 Partial overlap in evaluated accessions between trials 

The problem of partial overlap in the varieties evaluated across trials can be solved by 
exploiting the capacity of rank aggregation methods to handle partially ranked lists, although 
the specific approach depends on the particular rank aggregation method. For example, some 
models are based on pairwise comparison such as the Bradley-Terry model, while others 
allow multiple comparisons, such as models based on the Plackett-Luce model. In the case 
of network meta-analysis, the problem of partial overlap is solved by indirect comparison. 
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For example, in Figure 5, items B and C are indirectly compared with A. Examples are 
Laurent et al. (2015) and Albert and Makowski (2018) who used reference crop species to 
allow the comparison of crop species not tested in the same trial. 

2.5.3.2 Measurements based on different rating scales or different methods 

Rank aggregation methods solve the problems of measurements in different rating scales or 
traits evaluated with different methodologies, replacing the original raw data from each trial 
by relative rankings (Simko et al., 2012; Simko & Piepho, 2011). In the work of Laurent et 
al. (2015) and Albert and Makowski (2018) this was no issue, however, because the data 
from the different yield studies were in the same units, tons of dry matter per ha per year 
(Laurent et al., 2015). Network meta-analysis and meta-analysis, in general, can deal with 
measurements in different units by estimating either the standardized mean difference or the 
response ratio (Borenstein et al., 2009; Makowski et al., 2019; Murad et al., 2019). 

2.5.3.3 Relative strengths and weaknesses of data synthesis methods 

There are a few studies applying either rank aggregation or network meta-analysis to crop 
variety evaluation. Future studies will need to consider the relative merits of each. 

Network meta-analysis can provide absolute values (yield differences in tons per hectare), 
which is difficult to obtain with rank-based models. Even so, the item ‘worth’ estimated by 
the rank-based methods is linearly correlated with the underlying latent variable (for 
example, yield) (Coe, 2002; Fadda & van Etten, 2019). Also, in theory, it should be possible 
to combine ranking data and continuous variables in the same model (Böckenholt, 2004), but 
this is still challenging in practice, as such models have not been implemented in general use 
software. 

A useful output that can be obtained from both rank aggregation and network meta-analysis 
is ranking probabilities, the probability of each variety to be ranked first. Ranking 
probabilities are related to the concept of reliability in plant breeding, the probability of 
outperforming a check variety (a reference; for example a previously released variety, 
commonly used variety or market leader). The concept of reliability was proposed by 
Eskridge (1990) in the context of crop improvement as a ‘safety-first’ approach, with 
subsequent applications by Eskridge and Mumm (1992) and Eskridge (1997). 

Data synthesis approaches should consider the ease of use and interpretation by decision-
makers in crop variety evaluation. In that sense, the complexity of network meta-analysis can 
lead to confusion on model implementation and interpretation (Madden et al., 2016). This 
complexity might be a barrier to its wider adoption as a tool for data synthesis in crop variety 
evaluation, just like the low level of expertise of users, is limiting the uptake of more 
sophisticated G × E analysis methods (Lecomte et al., 2010). Rank aggregation methods 
might be easier to implement but have implicit trade-offs such as information loss and less 
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power to detect existing differences if compared to parametric methods (Sabaghnia, 2016; 
Simko & Linacre, 2010; Whitley & Ball, 2002). 

2.6 Conclusions and recommendations 
We structure this section around three main statements based on our review, which derive 
conclusions from our main findings and translate these into recommendations. 

2.6.1 Elements for a data synthesis approach are available and aligned around 
ranks and reliability 

Based on our review, we assert that the main elements are available for data synthesis as an 
overarching approach that integrates different components, such as data, models and 
knowledge from experts (farmers and breeders), to efficiently extract useful information to 
support decision-making. We remarked in Section 2.5 data synthesis methods that have been 
tested, exist and can integrate well with existing trial analysis approaches. In particular, rank-
based approaches fit within a conceptual framework to analyze variety superiority based on 
reliability (probability of outperforming a check). A rank-based framework would be able to 
make versatile use of data from different sources, without complex transformations or 
doubtful assumptions, and would facilitate the integration of objective measurements and 
preference data. 

2.6.2 Data synthesis should progress from general to specific and from simple 
to complex 

Explicit crop growth modelling has been proposed more than once as a way forward to 
integrate different types of data into a single conceptual framework for the evaluation of 
variety performance. However, model building starting from a detailed crop model is not 
parsimonious and does not build up complexity in a gradual way. For many crops, growth 
models are not available, hence requiring a large upfront investment in basic 
(eco)physiological research to enable model building. Also, as shown in Section 2.4, it seems 
that progress in this field is mainly theoretical, and that practical advances are limited. Even 
for the attempts that result in generalizable results, the focus is solely on yield and excludes 
user perspectives. For crop variety evaluation, it seems more logical to start with the ‘big 
picture’ and work down to the details based on better information indicating where the largest 
gain in accuracy can be obtained (Section 2.4). This may involve some type of explicit, 
physiological modelling, but perhaps of a limited number of aspects, not requiring a fully 
fledged crop growth simulation model. Therefore, we think that a further investment in 
simpler methods is warranted. This may be less stimulating from a basic research point of 
view but may give rise to new questions and priorities and give a better sense of the societal 
relevance and external validity of data synthesis efforts. 
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2.6.3 Use cases can spur further data sharing and model development 

Our review shows that engaging the research community in data sharing is a major challenge 
(Section 2.3). Most efforts, however, have focused on the supply side: by 
encouraging/obligating researchers to share data and by providing the infrastructure to do so. 
While these efforts are certainly important, in crop science, few concomitant efforts have 
looked at the prospects of successful use of shared data that would drive citations of data 
papers, shape collaborations around data analysis, and increase researchers’ motivation for 
further sharing. Success may at least partially be the result of a siphon effect: some early use 
cases can perhaps inspire other researchers to engage in sharing and start a virtuous cycle, as 
described in Section 2.3. Therefore, investment in a few use cases that use relatively simple 
methods to show the potential benefits of data synthesis for crop variety evaluation is needed. 
Our review has shown that those methods are available in principle (Section 2.5). Even so, 
they need a modest investment to be adapted and demonstrated for this field of application. 
Next steps would involve stepwise refinements to address components of variety 
performance that substantially improve the accuracy of predictions. Close collaboration with 
the decision-makers interested in such evaluations could also spur further interest in this area 
of research and demonstrate the relevance of further investment. 
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Abstract 
Location-specific information is required to support decision making in crop variety 
management, especially under increasingly challenging climate conditions. Data synthesis 
can aggregate data from individual trials to produce information that supports decision 
making in plant breeding programs, extension services, and of farmers. Data from on-farm 
trials using the novel approach of triadic comparison of technologies (tricot) are increasingly 
available, from which more insights could be gained using a data synthesis approach. The 
objective of our study was to present the applicability of a rank-based data synthesis approach 
to several datasets from tricot trials, to generate location-specific information supporting 
decision making in crop variety management. Our study focuses on tricot data from 14 trials 
of common bean (Phaseolus vulgaris L.) performed between 2015 and 2018 across four 
countries in Central America (Costa Rica, El Salvador, Honduras, and Nicaragua). The 
combined data of 17 common bean genotypes were rank-aggregated and analyzed with the 
Plackett-Luce model. Model-based recursive partitioning was used to assess the influence of 
spatially-explicit environmental covariates on the performance of common bean genotypes. 
Location-specific performance was predicted for the three main growing seasons in Central 
America. We demonstrate how the rank-based data synthesis methodology allows integrating 
tricot trial data from heterogenous sources to provide location-specific information to support 
decision making in crop variety management. Maps of genotype performance can support 
decision making in crop variety evaluation, such as variety recommendations to farmers and 
variety release processes. 
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3.1 Introduction 
Reliable location-specific information supports better decision making in crop variety 
management, especially under increasing climate variability. On-farm trial data are 
expensive to obtain and limited by different factors, such as institutional reach into certain 
areas, availability of seeds, staff, and other resources. It is possible to aggregate data from 
individual trials to gain insights into variety performance at broader temporal and spatial 
scales. This can help to gain insights on using varieties across broader areas as climates shift, 
and to avoid simplistic assumptions about variety environmental adaptation based on rough 
adaptation zonation approaches. Data synthesis is needed for this and can lead to new insights 
into a genotype × environment interaction (G × E) under real farming conditions, as trial data 
can be combined with environmental data, which is increasingly available. Novel data 
synthesis approaches can extract information from crop variety evaluations to support critical 
decision making in crop variety management (Brown et al., 2020). In their review, Brown et 
al. (2020) have proposed rank-based methods as a way forward in data synthesis, because it 
allows for flexible aggregation of heterogenous data collected using different measurement 
scales. Rank-aggregation methods have been proposed for the meta-analysis of data from 
crop genetic resources evaluations by Simko and Pechenick (2010) and Simko and Linacre 
(2010), with further developments by Simko et al. (2012). This involves converting 
numerical data to relative ranks and applying a statistical model suitable to ranking data, such 
as the Plackett-Luce model (Luce, 1959; Plackett, 1975).  

Rank-aggregation as a data synthesis method involves no data conversion if ranking data are 
analyzed, which are collected in on-farm trials, such as the triadic comparison of technology 
options (tricot) and comparable formats (Coe, 2002; van Etten, Beza, et al., 2019). The tricot 
methodology involves farmers participating as citizen scientists, evaluating sets of three 
genotypes in their own farms (van Etten, Beza, et al., 2019). Farmers growth the varieties in 
small trial plots and rank the varieties accordingly to different traits, such as yield, disease 
resistance, market value, and the overall performance of the genotypes (van Etten, Beza, et 
al., 2019). The use of rankings implies an inherent loss of information when compared to 
measurements in a continuous scale using specialized instruments (Coe, 2002). However, 
collecting data in ranking format allows the participation of a larger number of farmers and 
a reduction in the costs of the experiments compared with other participatory methods (Coe, 
2002; van Etten et al., 2020). Since the data are in ranking format, it should be analyzed with 
an appropriate statistical model, such as the Plackett-Luce model (Luce, 1959; Plackett, 
1975).  The tricot methodology is increasingly used for different crops by several 
organizations in Africa and Latin America, producing considerable volumes of data. van 
Etten, de Sousa, et al. (2019) applied the Plackett-Luce model to analyze the variety 
performance of red common bean (Phaseolus vulgaris L.) varieties in Nicaragua. That 
analysis determined the influence of environmental factors on variety performance using 
model-based recursive partitioning in combination with the Plackett-Luce model (Turner et 
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al., 2020; Zeileis et al., 2008). The current study explores combining data from several trials 
executed by different organizations in multiple locations, following a data synthesis strategy 
as described in Brown et al. (2020). Applying a data synthesis approach to tricot data 
overcomes some of the limitations for data synthesis identified by Brown et al. (2020), such 
as incompatible data formats, scales, and experimental designs. Still, aggregating tricot data 
drawn from trials established by different organizations requires effort. Several elements can 
be adopted from the existing work on tricot, but an additional investment is required 
especially when characterizing uncertainty of model predictions, complementing the 
Plackett-Luce tree model. In this paper, we describe this new approach and apply it to a 
dataset on common bean from Central America.  

Here, our main objective is to present the applicability of a rank-based data synthesis 
approach to several datasets from tricot trials, to generate location-specific information 
supporting decision making in crop variety management. The proposed approach is 
demonstrated with red common bean genotypes, which were evaluated by four teams of five 
different organizations in a series of tricot trials in four countries in Central America (Costa 
Rica, El Salvador, Honduras, and Nicaragua). 

The specific objectives are to: (1) integrate data from tricot trials produced by different 
organizations at different locations and seasons; (2) identify the environmental factors 
affecting the performance of the evaluated genotypes; (3) predict the best performing 
genotypes for each main planting season in the study region; and (4) assess the uncertainty 
and applicability of model predictions. 

3.2 Materials and Methods 
3.2.1 Tricot Trial Data 

We obtained data from 14 on-farm trials across Central America (Figure 3.1). Each trial is a 
set of incomplete blocks located on farms that test a set of genotypes in a single area and 
within the same agricultural season.  The trials were executed by four teams of five different 
organizations working in the field across four Central American countries. Key 
characteristics of the datasets are provided in Table 3.1.  All trials followed the tricot citizen 
science approach, described by van Etten, Beza, et al. (2019). This consists of an incomplete 
block design with blocks of size three, the use of ranking as a farmer-centric data collection 
approach, and the intensive use of digital tools to streamline the process. Each tricot plot is 
an incomplete block set of three red common bean genotypes, which were grown and 
evaluated by farmer citizen scientists. Genotypes include both released varieties and 
experimental lines. Packages of bean seeds were delivered to farmers without disclosing the 
names of the genotypes; bags with the genotypes were labelled as A, B and C. Each farmer 
assessed the three genotypes and provided feedback by ranking the genotypes. Farmers 
evaluated plant foliage, plant height, reaction to pests and diseases, drought tolerance, yield, 
market value, and taste, and also gave their overall judgment considering all the traits. In our 
work, we analyzed the ranking data generated from the overall performance of the genotypes. 
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The data collection card used is provided in the supplemental Figure S1. Each organization 
collected the data and then uploaded it to the ClimMob digital platform (van Etten, Quirós, 
et al., 2017). 

 

Figure 3.1 Location of tricot trials (identified by Trial ID) in Costa Rica (CRI), El Salvador (SLV), 
Honduras (HND), and Nicaragua (NIC). Symbol shapes indicate the organization that established and 
managed the trials 
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Table 3.1 Trial identifiers, managing organization, country, average planting date, and 
sample size of plots by trial 

Trial ID Organization a Country Planting date b n c 

CRI_05_2018 INTA – UCR Costa Rica 2018-05-21 14 

CRI_10_2017 INTA – UCR Costa Rica 2017-10-19 46 

CRI_12_2017 INTA – UCR Costa Rica 2017-12-08 41 

CRI_12_2018 INTA – UCR Costa Rica 2018-12-15 23 

HND_05_2017 FIPAH – PRR  Honduras 2017-05-22 87 

HND_06_2017 FIPAH – PRR   Honduras 2017-06-05 17 

HND_10_2016 FIPAH – PRR  Honduras 2016-10-16 37 

HND_10_2017 FIPAH Honduras 2017-09-20 714 

HND_SLV_09_2015 CATIE Honduras – El Salvador 2015-09-24 31 

NIC_06_2016 CATIE Nicaragua 2016-06-22 59 

NIC_09_2015 CATIE Nicaragua 2015-09-23 178 

NIC_09_2016 CATIE Nicaragua 2016-09-17 33 

NIC_12_2015 CATIE Nicaragua 2015-12-16 484 

NIC_12_2016 CATIE Nicaragua 2016-12-27 107 
a INTA, Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, Costa Rica; UCR, 
Universidad de Costa Rica; CATIE, Centro Agronómico Tropical de Investigación y Enseñanza; FIPAH, Fundación 
para la Investigación Participativa con Agricultores de Honduras; PRR, Programa de Reconstrucción Rural – 
Honduras; b Median; c Number of plots in each trial. 

The use of the ClimMob digital platform helped to standardize the data, making it compatible 
to be aggregated. However, the datasets still required some data curation before aggregating 
them to conduct the data synthesis. One important data preparation step involved checking 
variety names across datasets. In Central America, the same genotypes are generally released 
under distinct variety names in different countries (Rosas, Beaver, Beebe, et al., 2004). To 
allow data aggregation, the genotype names were translated into experimental line names 
(Table 3.2). The resulting dataset revealed partial overlap in the varieties tested across the 
different trials, but we removed genotypes that were tested only in one trial to avoid highly 
unbalanced comparisons across trials. This reduced the number of genotypes from 27 to 17. 
The data were aggregated using a rank-aggregation approach (Turner et al., 2020). Data were 
prepared with the R package gosset (de Sousa et al., 2022) for their use in the R package 
PlackettLuce (Turner et al., 2020). 

In most of the cases, trial plots had geographic coordinates, as these were part of the tricot 
data collecting process. In cases when the geographic coordinates were not registered, we 
assigned the median value of geographic coordinates of remaining plots in the same 
community where the trial was conducted. Each trial plot data point should include the 
planting and harvest dates. To identify outliers of planting dates we set a threshold of 40 days 
above or below the median of each trial and replaced the outliers by the median planting date 
of the corresponding trial. We also identified outliers for the length of the growing period, 
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with 60 days as the lower limit and 120 as the upper limit and discarded any data point outside 
these limits. 
Table 3.2 Experimental line names and variety names used in each country after variety 
release, along with references used to make the translation for red common bean genotypes 
evaluated in tricot trials in Central America 

Experimental name Variety name (Country*) Reference 

429 DFSZ 15094-39-4 INTA Ferroso (NIC) Llano et al. (2013) 

703-SM 15216-11-4-VB Chepe (HND) JC Rosas, personal communication, 11 May 2020 

ALS 0532-6 Tolupan Rojo (HND) Feed the Future Legume Innovation Lab and USDA 
(2018) 

BCR 122-74 Experimental line JC Rosas, personal communication, 11 May 2020 

BFS 47 Experimental line JC Rosas, personal communication, 11 May 2020 

BRT 103-182 Experimental line JC Rosas, personal communication, 11 May 2020 

EAP 9508-93 Cedron (HND) PRR-FIPAH (2019) 

EAP 9510-77 Amadeus 77 (HND) 

INTA Rojo (NIC) 

Cabécar (CRI) 

CENTA Sand Andrés (SLV) 

IDIAP R3 (PAN) 

Rosas, Beaver, Beebe, et al. (2004)  

IBC 301-204 INTA Centro Sur (NIC) 

Paraisito Mejorado 1 (HND) 

Feed the Future Legume Innovation Lab and USDA 
(2018); Rosas and Escoto (2011) 

IBC 302-29 Paraisito Mejorado 2 Don Rey 
(HND) 

Feed the Future Legume Innovation Lab and USDA 
(2018) 

IBC 308-24 Amilcar 58 (HND) Feed the Future Legume Innovation Lab and USDA 
(2018) 

MHC 2-13-49 Experimental line JC Rosas, personal communication, 11 May 2020 

MIB 397-72 Honduras Nutritivo (HND) Rosas et al. (2016) 

MPN 103-137 INTA Precoz (NIC) JC Rosas, personal communication, 11 May 2020 

SJC 730-79 Rojo Chorti (HND) 

CENTA EAC (SLV) 

Feed the Future Legume Innovation Lab and USDA 
(2018); JC Rosas, personal communication, 11 May 
2020 

SRC 2-18-1 DEORHO (HND) 

CENTA Nahuat (SLV) 

INTA Matagalpa (NIC) 

Feed the Future Legume Innovation Lab and USDA 
(2018); JC Rosas, personal communication, 11 May 
2020 

SX 14825-7-1 INTA Fuerte Sequia (NIC) 

Campechano JR (HND) 

Ferrufino (2014) 

Feed the Future Legume Innovation Lab and USDA 
(2018) 

*CRI, Costa Rica; HND, Honduras; SLV, El Salvador; NIC, Nicaragua; PAN, Panama. 
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3.2.2 Environmental data 

The main abiotic limiting factors for common bean production are drought, heat stress, and 
low soil fertility (Beebe, 2012). In Central America, heat stress particularly limits production 
in the lowlands (Beebe, 2012; Beebe et al., 2011). We accessed publicly-available data 
repositories to obtain rainfall, temperature, and soil data. An initial set of climatic data were 
obtained from the “Agrometeorological indicators from 1979 to present derived from 
reanalysis” dataset, also known as AgERA5 (Hendrik Boogaard & Gerald  van der Grijn, 
2020; Copernicus Climate Change Service, 2020). Climatic variables and indices were 
computed following Kehel et al. (2016), Aguilar et al. (2005) and Challinor et al. (2016), 
using the R package climatrends (de Sousa, van Etten, et al., 2020). Table 3.3 describes 
variables and indices from Aguilar et al. (2005) and Kehel et al. (2016), which were used 
without major modifications. The climatic indices listed in Table 3.4 are based on Challinor 
et al. (2016), with thresholds adapted to common bean. Both temperature-based and rainfall-
based climatic variables and indices were computed for the whole span of the growing season 
(i.e., from planting to harvest) of each trial plot. Additionally, temperature-based variables 
and indices were computed for the three phenological stages: vegetative, flowering, and grain 
development. Summarized variables and indices by trial location for the three phenological 
stages are provided in supplemental Table S2, to describe the climate variability among 
locations. The phenological stage definitions were according to de Medeiros et al. (2016) and 
Fernández de Córdova et al. (1986).  
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Table 3.3 Climatic indices that have a possible influence on bean variety performance. 
Adapted from Aguilar et al. (2005) and Kehel et al. (2016) 

Covariate Description Unit 
minDT Minimum daytime temperature °C 

maxDT Maximum daytime temperature °C 

minNT Minimum nighttime temperature °C 

maxNT Maximum nighttime temperature °C 

DTR Diurnal temperature range: mean difference between daily maximum 
temperature and daily minimum temperature 

°C 

SU Summer days: number of days with maximum temperature > 30 °C °C 

TR Tropical nights: number of nights with maximum temperature > 25 °C °C 

WSDI Maximum warm spell duration, consecutive days with temperature > 90th 
percentile 

days 

CSDI Maximum cold spell duration, consecutive nights with temperature < 10th 
percentile 

days 

T10p 10th percentile of night temperature °C 

T90p 90th percentile of day temperature °C 

MLDS Maximum length of consecutive days with precipitation < 1 mm days 

MLWS Maximum length of consecutive days with precipitation ≥ 1 mm days 

R10mm Number of heavy precipitation days 10 > = rain < 20 mm  days 

R20mm Number of very heavy precipitation days rain > = 20 mm days 

Rx1day Maximum 1-day precipitation mm 

Rx5day Maximum 5-day precipitation mm 

R95p Total precipitation when rain > 95th percentile mm 

R99p Total precipitation when rain > 99th percentile mm 

Rtotal Total precipitation (mm) in wet days, rain > = 1 mm 

SDII Simple daily intensity index, total precipitation divided by the number of 
wet days 

mm/days 

SRF Daily solar radiation flux J 
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Table 3.4 Climatic sensitivity indices, thresholds, and references used to adjust the thresholds 
to common bean requirements. Adapted from Challinor et al. (2016) 

Index Description Threshold (°C) Reference a  
5 High-temperature stress using daily mean 

temperature, expressed as the percentage 
number of days a certain threshold is 
exceeded. 

Min = 19 

Max = 25 

Agtunong et al. (1992) 

hts_max High-temperature stress using daily 
maximum temperature. 

Min = 26 

Max = 32 

Gross and Kigel (1994) 

hse Heat-stress event, expressed as the 
percentage of the number of days in which 
a certain threshold is exceeded for at least 
two consecutive days. 

> 35 Gross and Kigel (1994) 

a For threshold adjustment. 

For soil variables (Table 3.5) we used data from SoilGrids250m version 2.0 from four depth 
layers, 0‒5 cm, 5‒15 cm, 15‒30 cm, and 30‒60 cm (Poggio et al., 2021). We selected the soil 
horizons following Ho et al. (2005). Soil water content was extracted from the Global High-
Resolution Soil-Water Balance (Trabucco & Zomer, 2019), and averaged across the growing 
season of each trial plot. 

Table 3.5 Description of soil variables retrieved from SoilGrids250m version 2.0 (Poggio et 
al., 2021) 

Variable Description Units 

cec Cation Exchange Capacity of the soil cmol(c)/kg 

cfvo Volumetric fraction of coarse fragments (> 2 mm) cm3/100cm3 
(vol%) 

clay Proportion of clay particles (< 0.002 mm) in the fine earth fraction g/100g (%) 

nitrogen Total nitrogen (N) g/kg  

phh2o Soil pH in water  pH 

sand Proportion of sand particles (> 0.05 mm) in the fine earth fraction g/100g (%) 

silt Proportion of silt particles (≥ 0.002 mm and ≤ 0.05 mm) in the fine earth 
fraction 

g/100g (%) 

soc Soil organic carbon content in the fine earth fraction g/kg 

ocd Organic carbon density kg/m³ 
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3.2.3 Plackett-Luce Model 

The statistical model applied to analyze the rankings of genotypes is an extension of the 
Plackett-Luce model (Luce, 1959; Plackett, 1975), implemented in the R package 
PlackettLuce (Turner et al., 2020). The Plackett-Luce model is a classic approach to analyze 
ranking data, based on Luce’s axiom of choice (Luce, 1959; Turner et al., 2020). The version 
implemented in the PlackettLuce package is a generalization of the Plackett-Luce model, to 
allow handling of ties and partial rankings (Turner et al., 2020). For a given set S of J 
genotypes,  

� � �𝑖𝑖�,, 𝑖𝑖�, … . , 𝑖𝑖�� 

The probability that an element ij is selected from S is denoted by: 

��𝑖𝑖���� �
𝛼𝛼��

∑ 𝛼𝛼����
 

Where αi ≥ 0 represents the worth of the genotype i. A genotype with higher worth value is 
more likely to be preferred over other items with lower worth. The worth parameter values 
are estimated by maximum likelihood (Turner et al., 2020). Considering genotypes, A, B, 
and C, A ≻ C ≻ B denotes that A is ranked higher than C, and C is ranked higher than B. To 
have finite maximum likelihood estimates, the network of wins and losses produced by the 
rankings needs to be strongly connected (Turner et al., 2020). A strongly connected network 
is when a path of wins and losses exists, either directly or indirectly, between every pair of 
items (Turner et al., 2020). Figure 3.2 shows the strongly connected network of genotypes 
evaluated in the tricot trials. The location of the nodes in Figure 3.2 is automatically 
determined by the Fruchterman-Reingold  algorithm (Fruchterman & Reingold, 1991). The 
Fruchterman-Reingold is a force-directed placement algorithm, which tries to optimize the 
location of the nodes for visualization purposes following two principles: (1) Connected 
nodes should be drawn next to each other, (2) Nodes should not be drawn too close to each 
other (Fruchterman & Reingold, 1991). Therefore, genotypes which were compared directly 
in the tricot trials will likely be nearer than those which were not. Figure 3.2 was made with 
the R package GGally, which uses the Fruchterman-Reingold algorithm implemented in the 
R package sna (Butts, 2020; Schloerke et al., 2021). 
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Figure 3.2 Connectivity network of genotypes evaluated in the tricot trials. The arrows indicate wins 
(outgoing) and losses (incoming) among genotype pairs. The graph drawing algorithm places directly 
compared genotypes close to each other (Fruchterman & Reingold, 1991). 

3.2.4 Model-based Recursive Partitioning with Plackett-Luce trees 

The original Placket-Luce model does not account for external factors that may influence the 
probability of an item to be preferred (Turner et al., 2020). To consider environmental factors 
in the model, we used an extension in which the Plackett-Luce model is combined with 
model-based recursive partitioning (Zeileis et al., 2008). It is implemented as Plackett-Luce 
trees in the R package PlackettLuce (Turner et al., 2020). The method involves the following 
four steps, from Turner et al. (2020) and Zeileis et al. (2008): 

1) A Plackett-Luce model is fitted to the complete dataset. 

2) The stability of worth parameter values, as influenced by the covariates, is assessed 
for each covariate. 

3) If a significant instability is detected, the data is partitioned by the covariate with 
the strongest instability, based on a cut-point providing the highest improvement of 
the model fit. 

4) Steps 1-3 are repeated for each branch of the tree until no more instabilities are 
detected, or if the resultant partitions are smaller than a given size threshold. 

 

3.2.5 Model selection and validation 

We first applied a forward variable selection with blocked cross-validation to select variables 
that are generalizable across the study region (Roberts et al., 2017). We used blocked cross-
validation using trials as blocks, further referred to as Leave-One-Trial-Out cross-validation 
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(LOTO-CV). This partitioning structure aims to account for the geographical and temporal 
heterogeneity posed by the aggregation of several tricot trial datasets. We assume that each 
trial represents a particular combination of location and time, in some way equivalent to an 
environment. This is also motivated by the complex arrangement of planting seasons 
(Primera, Postrera, & Apante) across Central America (Table 3.6). Similar blocking 
strategies have been recently applied to validate predictive models of genotype performance 
(Neyhart et al., 2021).  

Models implemented with the recursive partitioning framework can be tuned by adjusting 
the alpha hyperparameter that conditions the tree size (Hothorn et al., 2006). Low alpha 
values may result in low power for detecting dependencies between the covariates and the 
response variable (Hothorn et al., 2006). To overcome this, Hothorn et al. (2006) suggest 
setting a very large value for the alpha hyperparameter to assure that any dependence is 
detected. Therefore, we used a large alpha value (α = .9) in the forward variable selection to 
ensure that most dependence is detected. Over-fitting is prevented by subsequent pruning the 
final tree, using the Akaike information criteria (AIC) (Akaike, 1974). We used the resulting 
Plackett-Luce tree to predict variety performance in the subsequent analysis steps (Section 
3.2.7). A potential limitation of a single tree is its instability, which can be overcome using 
ensembles of trees (Strobl et al., 2009). On the other hand, a single tree is more interpretable 
than ensembles (Strobl et al., 2009). Here, we present our approach using a single tree to 
facilitate interpretation and conceptual clarity. In future work, potential instability can be 
addressed by using ensembles. 

Since Plackett-Luce trees are fitted by maximum likelihood, we used the model deviance as 
the goodness of fit metric, computed on the hold-out data within the cross-validation 
procedure. To provide a more interpretable metric, we also computed McFadden’s pseudo-
R2 (McFadden, 1973). As an accuracy metric, we calculated Kendall’s W (Kendall & Smith, 
1939) with the R package DescTools (Signorell et al., 2021). Kendall’s W measures the 
concordance between the observed and the predicted rankings. As each trial has a different 
sample size, we calculated weighted averages of Kendall’s W and McFadden’s pseudo-R2 

using the test fold size as weights. To evaluate for remaining spatial structure not accounted 
for in the model, we subjected models with two other sets of covariates to cross-validation 
for comparison: (1) a model with selected covariates by the forward selection plus 
geolocation covariates, and (2) a model with only geolocation covariates. We followed van 
Etten, de Sousa, et al. (2019) for the selection of geolocation covariates: latitude, longitude, 
longitude + latitude and longitude – latitude (rotated axes). 
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Table 3.6 Planting seasons for common bean in Central America from different studies 

Geographic area  Planting season name Planting time frame Study 

Central America Primera April (García-Solera & 
Ramírez, 2012) 

Postrera August ‒ September 

Apante or Winter December ‒ March 

Nicaragua Primera May (Gourdji et al., 2015) 

Postrera September 

Apante November 

Honduras Primavera or Primera May 15 – June 20 (Escoto, 2013) 

Postrera or Segunda End of August ‒‒October 

Postrera tardía or Apante November ‒January 

Costa Rica* Huetar Norte End of November to beginning 
of January 

(Hernández Fonseca, 
2009) 

Brunca 1 May 

Brunca 2 End of September to end of 
October 

Chorotega 1 November ‒ December 

Chorotega 2 September ‒October 

Valle Central and 
Puriscal 

September 15 – First week of 
October 

Turrialba December 

Costa Rica Brunca 1 May (Vargas et al., 2018) 

Brunca 2 October 

Huetar Norte November ‒December 

*In Costa Rica, seasons are usually named as Primera and Segunda, with changes in the time frame of 
Segunda depending on the region (JC Hernandez, personal communication, 4 May 2021). 

 

3.2.6 Modeling and predicting planting dates 

We extracted climatic indices to predict genotype performance for the growing period 
observed in each trial plot. To make predictions of variety performance for unobserved 
locations, the growing period for these locations needs to be predicted. Predefined planting 
calendars are often used in agricultural modeling, but this can lead to unrealistic results, as 
planting dates change across seasons. Farmers usually decide when to plant based on their 
experience and seasonal weather patterns. Here, we used survival analysis (Kleinbaum & 
Klein, 2012b) to estimate unobserved planting dates for each planting season in the study 
region. We fitted a Cox proportional hazard regression model with time-dependent 
covariates, an extension of the original Cox model (Cox, 1972; Therneau & Grambsch, 
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2000). Given a subject i, the hazard function assumed in the Cox proportional hazard 
regression model is:  

𝜆𝜆�(�) = 𝜆𝜆�(�)𝑒𝑒��(�)𝛽𝛽 

Where λ0 is the hazard baseline function, and Χi(t) is the vector of time-varying covariates for 
subject i and β is the vector of coefficients (Therneau & Grambsch, 2000). 

To fit the Cox regression model, we used the R package survival (Therneau, 2021). Survival 
analysis needs to define the observation period for modeling. For each season, we defined 
the start of the observation period as 1 April for the Primera season, 1 August for the Postrera 
season and 1 October for the Apante season. These dates correspond to roughly one month 
before each season is expected to begin. The end of each observation period is defined by the 
latest observed planting date of each season in the aggregated dataset. Previous studies have 
found that growing seasons follow rainfall patterns in Central America (Alfaro et al., 2018; 
García-Solera & Ramírez, 2012; Gourdji et al., 2015). In the case of the Primera season, 
farmers wait for the onset of the rainy season after the dry season. On the other hand, during 
the Segunda rainy season, farmers look for short dry periods that facilitate planting. 
Therefore, we selected the following variables that putatively influence bean planting dates: 
daily precipitation (DP), daily accumulated precipitation (DAP), and daily solar radiation 
flux (DSRF).  

For each Cox regression model, one for each planting season, we first applied a stepwise 
model selection by AIC, using the function step available in base R (R Core Team, 2022a). 
To assess the model’s goodness of fit we used the proportional hazard assumption test 
implemented in the function cox.zph of the survival package (Therneau, 2021), which is the 
approach proposed by Grambsch and Therneau (1994). The proportional hazard assumption 
test is passed when the p value of the chi-square statistic for each variable in the model is 
nonsignificant (Kleinbaum & Klein, 2012a). The prediction ability of the model is assessed 
by the c index, which is the probability of concordance of the observed survival against the 
predicted survival (Harrell, 2015; Harrell et al., 1982). We predicted survival curves with 
covariate data for the target locations, and for each of the past 20 years that were subsequently 
used in the prediction of genotype performance. From each predicted survival curve, we 
extract the number of days that intersect the survival curve at 0.25 survival probability, hence 
0.75 probability to plant the day after that number of days. We choose this late cutoff to avoid 
undefined values in the predicted survival curve, which can be potentially caused by 
unfavorable weather conditions. This number of days is subsequently added to the start date 
of the corresponding observing period to obtain the planting date. The end date of the growing 
period is calculated by adding the average number of days of the growing season observed 
in the sampled trial data. 
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3.2.7 Predictions of Genotype Performance 

Several studies have proposed using environmental covariates to account for G × E in the 
analysis of multi-environment trials (Piepho et al., 1998; van Eeuwijk et al., 1996). 
Predictions of genotype performance at new locations are less common, but recent studies 
have demonstrated it feasibility (Buntaran et al., 2021; van Etten, de Sousa, et al., 2019). To 
provide a visual representation of the spatio-temporal information generated by the model 
predictions, we applied a spatial mapping approach. 

We defined the target region to predict the genotype performance as the whole area covered 
by Costa Rica, El Salvador, Honduras, and Nicaragua. We made a base raster layer as a 
template for the predictions, using the same spatial resolution of AgERA5, approximately 11 
km × 11 km. Cell-wise predictions were produced for each planting season for the whole 
study region, covering the four countries included in the modeling stage. To obtain a temporal 
representation of current climatic conditions, we predicted genotype performance for each of 
the past 20 years (2000 – 2019 inclusive) and then averaged the predicted performance to 
have a representative prediction for each planting season. For each of the 20 years, we 
predicted the growing seasons using the Cox proportional hazard regression model described 
in Section 3.2.6. The climatic data were extracted for the periods corresponding to each of 
the predicted growing seasons (i.e., from planting to harvest), to compute the climatic 
variables and indices selected in the forward selection process, described in Section 3.2.5. 
We created a raster map with each cell containing the experimental line names of the top-
three performing genotypes according to the averaged predictions.  

We provided the ranking probabilities of a genotype to be in its current position and not in 
any other position, in the event that the trial is repeated. To this end, we calculated the 
probability of each genotype to be in the top three or not. The procedure is summarized as 
follows: 

1) We fitted a Plackett-Luce tree with the entire aggregated observed dataset. 

2) For each of the resulting nodes in the tree obtained under 1, we extracted the 
worth estimates and the quasi-standard errors (Firth & De Menezes, 2004), 
using the qvcalc function, available from the PlackettLuce package. 

3) For each node, we determined the probability for each rank position for each 
genotype. This can be done analytically; however, we used a Monte Carlo 
strategy for convenience. We drew one million samples for each genotype from 
a normal distribution centered on their worth, with the quasi-standard error as 
its standard deviation, using base R function rnorm. Then we converted the 
sampled worth values to ranks. 

4) We calculated relative frequencies of rank from the simulated ranks. 
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5) For each of the cells in the target raster, we predicted in which node each cell 
falls for each season, using the model fitted in step 1. 

6) Using the outputs from steps 4 and 5, we computed the probabilities for each 
genotype to be either in the top three or not. 

Therefore, the top-three best-performing genotypes referred to previously are the three 
genotypes with highest ranking probabilities of being in the top three. 

The R package terra was used for handling raster format data (Hijmans, 2021). The maps 
were plotted using the R packages ggplot2 (Wickham, 2016) and sf (Pebesma, 2018). Data 
for mapping the administrative boundaries were obtained from the GADM database 
(Hijmans, 2010). 

 

3.2.8 Uncertainty assessment of model predictions 

To estimate the uncertainty of predicted rank probabilities, we calculated the normalized 
entropy of the rank probabilities for the genotypes with higher probability of being in the top 
three. We followed Wu et al. (2021), who characterize uncertainty in ranking probabilities 
using  Shannon’s entropy,  defined as follows: 

𝐻𝐻𝑃𝑃𝑃𝑃 𝑃 �−�𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃 log� 𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃
�

���
 

For the case of genotype rankings, P(x = i) is the probability of genotype x to be ranked in 
position i in a given trial. In our case, we focused on the probability of genotypes being in 
the top-3, so we used the following equation. 

𝐻𝐻(𝑥𝑥) = −(𝑃𝑃(𝑥𝑥 𝑥 𝑥) log� 𝑃𝑃(𝑥𝑥 𝑥 𝑥) +𝑃𝑃(𝑥𝑥 𝑥 𝑥) log� 𝑃𝑃(𝑥𝑥 𝑥 𝑥)) 
 

The unit of entropy depends on b, which is the base of the logarithm (Wu et al., 2021). We 
used the common base-2 logarithm, where the unit of entropy is the bit. The entropy is 
normalized to range between 0 and 1, by dividing the range of maximum and minimum 
entropy for the number of n elements in the ranking (Wu et al., 2021). An entropy value of 1 
represents high uncertainty. 

3.2.9 Applicability assessment of model predictions 

To assess the applicability of model predictions from an environmental perspective, we 
calculated the area of applicability (AOA) as described by Meyer and Pebesma (2021). This 
provides geographic boundaries to separate areas where the relationship learned by the model 
with the training data can be extrapolated from those that cannot (Meyer & Pebesma, 2021). 
Furthermore, the AOA identifies the areas where the model performance estimated with 
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cross-validation applies (Meyer & Pebesma, 2021). The AOA is derived from the 
dissimilarity index (DI), which is the distance in the multidimensional space of the predictor 
variables between training data and new data from locations used for predictions (Meyer & 
Pebesma, 2021). The AOA is binary outcome calculated after applying a threshold on the DI. 
Cell points that surpass the threshold are labeled as 0, and otherwise as 1. The threshold on 
the DI is defined by the maximum DI of the training data in the cross-validation, considering 
only the data points that do not occur on the same fold. Hence the same blocking structure of 
the cross-validation folds is used in the calculation of the DI, and subsequently in the derived 
AOA. We calculated the AOA with the function aoa implemented in R package CAST 
(Meyer, 2018).  

3.3 Results and Discussion 
3.3.1 Model selection and validation 
The forward variable selection procedure selected the following variables: WSDI, R20mm, 
T10p, hts_mean_19_flo. The model with environmental covariates produced better cross-
validated values of deviance, pseudo-R2 and Kendall’s W values compared to the baseline 
model without covariates (Table 3.7). The models that include geolocation covariates 
produced a worse fit compared to the model with environmental covariates. Therefore, the 
model with environmental covariates effectively accounts for the spatial structure of the 
aggregated dataset.  

Table 3.7 Deviance, pseudo-R2 and Kendall’s W comparing four models, no covariates, 
environmental covariates, covariates and geolocation, and geolocation only 

Model Deviance Pseudo-R2 Kendall’s W 

No covariates 6183     0.6679   0.5203 

Environmental covariates 6033      0.6831 0.5215 

Environmental covariates + geolocation  6393      0.6590    0.5146   

Only geolocation 6350     0.6596   0.5122 

The AIC-pruned tree using all the data (Figure 3.3) makes a split based on the warm spell 
duration index (WSDI), which is the number of days with temperature above the 90th 
percentile (de Sousa, van Etten, et al., 2020). Terminal nodes 2 and 3 in Figure 3.3 present 
the estimated worth values for the different resulting sub-sets of data after the split with 
variable WSDI.  Node 3 presents the genotypic worth values for all plots with conditions of 
more than 4 days with temperature higher than the 90th percentile. In these warm conditions, 
the top three genotypes are: IBC 308-24, MHC 2-13-49 and SX 14825-7-1. The genotype 
IBC 308-24 was released in Honduras as Amilcar 58 (Feed the Future Legume Innovation 
Lab & USDA, 2018). In the case of genotype MHC 2-13-49, it is an experimental line 
developed mainly for resistance against web blight [Thanatephorus cucumeris (Frank) Donk] 
(Rosas, unpublished data, 2022). The genotype SX 14825-7-1 was released in Honduras in 
2011 as “Campechano JR” and in Nicaragua as “INTA Fuerte Sequía”. It was selected within 
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a community-based participatory plant breeding program in Honduras and it is well-adapted 
to high temperature conditions (Vargas et al., 2011). 

 

Figure 3.3 Plackett-Luce tree plot of the model fitted with aggregated data from all the trials. The x 
axis indicates the worth parameter estimates in logarithmic scale, which are the probabilities of each 
genotype to be ranked first. The bars represent quasi-standard error, and the central vertical gray bar is 
the zero intercept for each node. WSDI, warm spell duration index. Color codes for genotypes; red = 
experimental line, gray = released variety. 

While some genotypes were not grown and evaluated together in the field, as shown in Figure 
3.2, the Plackett-Luce tree model with environmental covariates allows to make those 
comparisons considering the different environmental conditions among trial locations. 

Figure 3.3 shows the presence of G × E between the two sets of environments differentiated 
by the Plackett-Luce tree model. For example, the experimental line BRT 103-182 performed 
well in the less warm conditions (node 2) but poorly in the warmer conditions (node 3). 

In general terms, the split made by WSDI is consistent with existing knowledge about the 
effect of high temperature on the performance of common bean genotypes (Beebe, 2012; 
Beebe et al., 2011). van Etten, de Sousa, et al. (2019) did a preliminary study of a subset of 
the data (the trials in Nicaragua only) and identified maximum night temperature (maxNT) 
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as the major factor influencing differences in common bean genotype performance. The 
interpretation of van Etten, de Sousa, et al. (2019) was that the main difference between 
varieties was their level of heat stress tolerance. We identified a similar effect of heat stress 
in our study. There is a weak, positive correlation between WSDI and maxNT (r = 0.09, p = 
1 × 10-04). The current analysis has not identified additional environmental factors. The 
current dataset is larger than that of the Nicaragua study but also holds more varieties. Also, 
WSDI may be more generalizable across geographical space than maxNT or may capture 
other environmental influences beyond heat stress. In future applications, more covariates 
and interactions between them could be identified using machine learning methods (for 
example, using Plackett-Luce Forests, ensembles of trees). 

3.3.2 Survival analysis to predict planting dates 
The coefficients estimated by the Cox regression model for the three seasons are presented 
in Table 3.8. For instance, in the case of the Primera season model, a mm change in the daily 
accumulated precipitation is associated with around 0.5% increase in the probability of 
planting. The variable importance is described by the magnitude of the Z value, and the 
exponentiated coefficients provide the multiplicative effect of each covariate on the estimated 
risk (Therneau & Grambsch, 2000).  

Table 3.8 Estimated Cox regression model coefficients for the three planting seasons 

Season model variable  coef   exp(coef) se(coef)  Z p 

Primera  DAP  0.005 1.005 4.968×10-04  10.83 2×10-16 *** 

Postrera  DP  0.008  1.008 0.004  2.047       0.0407 * 

 DSRF  8.930×10-08 1.000 1.622×10-08  5.505 3.69×10-08*** 

Apante  DP -0.051   0.95  0.013 -3.854 1.161×10-04*** 

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 
probability level. 

For the Primera season, the stepwise model selection removed daily precipitation (DP), 
keeping only daily accumulated precipitation (DAP) as covariate in the model. In the case of 
the Postrera season, the stepwise model selection suggested all the three variables should be 
kept in the model. However, we detected a large violation of the proportional hazard 
assumption. We overcame this by removing DAP from the Postrera season model, keeping 
daily solar radiation flux (DSRF) and DP. This improved the model from the initial fit, with 
a modest improvement in the ability of prediction and only a moderate violation of the 
proportional hazard assumption (Table 3.9). The final model for the Apante season only has 
DP as covariate after applying the stepwise model selection. 
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Table 3.9 Results of the proportional hazard assumption tests for the three models (Primera, 
Postrera, Apante) 

Season model covariates χ2 df p 

Primera  DAP 1.76 1 0.18 

 Global a 1.76 1 0.18 

Postrera DP 0.583 1 0.4450 

 DSRF 10.223 1 0.0014 

 Global a 12.901 2 0.0016 

Apante DP 6.12 1 0.013 

 Global a 6.12 1 0.013 

a Global is a global test with all variables. 

The Cox regression model of the Primera season has a c index of 0.808 (SE = 0.03) — 
considered a good prediction ability — while the Postrera and Apante models have c index 
values of 0.563 (SE = 0.012) and 0.625 (SE = 0.013) respectively, which are relatively low, 
but still better than using a fixed planting date.  

For the Primera season, it makes sense that accumulated precipitation influences farmers’ 
decision to plant, because generally farmers wait until the onset of the rainy season. The 
Postrera season starts before the second peak of the bimodal rainfall distribution (Alfaro et 
al., 2018; García-Solera & Ramírez, 2012). As this occurs during the rainy season, farmers 
need to identify a time window of sunny days to plant. For the Apante season model, the 
influence of daily precipitation might be linked to the drier conditions of this season, hence 
farmers wait to notice some stability of precipitation to decide to plant.  

We consider our results a good first approximation to model planting dates in function of 
observed data and climatic covariates. Previous studies have applied survival analysis to 
seasonal forecasting (Maia & Meinke, 2010). However, to the best of our knowledge, the 
approach presented here is the first application of a Cox model with time-dependent 
covariates to predict crop planting dates. Further refinement is required in this research field, 
such as adjustment in terms of optimal starting point of observation, required sample size, 
and selection of additional covariates. This was not the main objective of the present work, 
and the approach might be considered as an ad-hoc solution to the problem of obtaining 
planting dates to be used as inputs in the genotype performance model. We believe that our 
findings can support further exploration and development of the application of survival 
analysis to model planting dates, especially when the alternative is the use of unrealistic fixed 
planting dates. 
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3.3.3 Maps of Predicted Genotype Performance  
The average estimated performance of common bean genotypes across the four countries in 
the study region for the Primera, Postrera, and Apante seasons is presented in Figures 3.4a, 
3.5a, and 3.6a, respectively. Figures 3.4b, 3.5b and 3.6b present the normalized entropy for 
the ranking probabilities. Low entropy values represent areas where the predictions of 
ranking probability have low uncertainty. For instance, genotypes predicted to be in the top-
three for a given area with low entropy have a high probability to be in the top three in a long 
series of repetitions of the same experiment. Figures 3.4c, 3.5c and 3.6c present the area of 
applicability (AOA), which differentiates areas where model predictions are supported by the 
sample data from those in which they are not. For the three seasons, a group of seven 
genotypes is in the top three (Table 3.10); within that group, ranking positions swap 
depending on the season and the location. A consistent pattern across the seasons is that areas 
in which the top three is either SRC 2-18-1 ≻ SX 14825-7-1 ≻ ALS 0532-6 or SRC 2-18-1 
≻ ALS 0532-6 ≻ SX 14825-7-1 have the lowest entropy and good AOA. Therefore, these 
two predicted rankings are the most reliable across seasons. The predictions are also 
consistent with the known traits of the genotypes. For instance, genotypes ALS 0532-6 and 
SX 14825-7-1 are tolerant to drought and heat, while genotype SRC 2-18-1 is tolerant to heat 
(Table 3.10). These three genotypes seem to perform well across the Central America Dry 
Corridor. 

Differences in entropy values seem to be driven by the representativeness of genotypes in 
each of the trials. For instance, Costa Rica presented the highest levels of entropy compared 
with the rest of Central America. Genotypes SX 14825-7-1 and SRC 2-18-1 were not 
evaluated in Costa Rica. On the other hand, areas with relatively high entropy in El Salvador, 
Honduras, and Nicaragua are those in which BCR 122-74 is present in the top three, which 
was only evaluated in Costa Rica. ALS 0532-6 is in the top three in areas with lowest entropy, 
and was evaluated in 10 of the 14 trials (Figure 3.7). 

The AOA values that indicate the areas in which the model predictions cannot be applied 
correspond to locations well known to be unsuitable for common bean production because 
of the unfavorable climatic conditions. Many of these locations are within conservation areas. 
For instance, Costa Rica’s Talamanca Mountain range was identified as having no 
applicability of the models in the three seasons. In this case, the environmental constraints 
are the high altitude, cold temperatures and humid conditions (Oostra et al., 2008). Another 
example is the Indio Maíz Biological Reserve in Nicaragua. This area is very humid, with 
annual precipitation of more than 4000 mm, consisting of tropical forest and swampland 
(Jordan et al., 2019). We mapped all modeling results for demonstration reasons, also 
covering the area of no applicability, but in future applications these areas can be masked. 
Overall, the AOA maps show that the trials jointly cover most environmental conditions 
under which bean growing occurs in Central America. This is an indication of the potential 
of aggregating trial results across space and time to make predictions across the whole region. 
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In the case of the Primera season, in a large portion of the predicted area the top-three 
genotypes are SX 14825-7-1 ≻ SRC 2-18-1 ≻ BCR 122-74. The exception is Costa Rica, 
where genotype SRC 2-18-1 is not in the top three in a large part of the country. From an 
environmental perspective, the largest unrepresented area delimited by the AOA (Figure 
3.4c) is Costa Rica’s Talamanca Mountain range, described above.  

 
Figure 3.4a Map of genotypes with the higher probability of being in the top three across the study 
region for the Primera season. Figure 3.4b Normalized entropy (0-1) of the genotypes with higher 
probability of being in the top three; the legend scale is constrained to easily visualize the differences. 
Figure 3.4c Area of applicability (AOA) for the Primera season; areas in red denote no applicability of 
the model.  

For the Postrera season, Figure 3.5a shows that areas in which the top three are SX 14825-7-
1 ≻ SRC 2-18-1 ≻ BCR 122-74 are similarly large to those predicted for the Primera season, 
but the areas where the top three are SRC 2-18-1 ≻ SX 14825-7-1 ≻ ALS 0532-6 are larger 
in El Salvador, Honduras, and Nicaragua. This area has the lowest values of entropy, 
indicating that these genotypes have a high probability of not being outperformed by other 
genotypes (Figure 3.5b). The AOA for the Postrera season has a similar pattern compared to 
the Primera season, with an additional small area in Honduras with environmental conditions 
not covered by the trials (Figure 3.5c). 
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Figure 3.5a Map of genotypes with the higher probability of being in the top three across the study 
region for the Postrera season. Figure 3.5b Normalized entropy (0-1) of the genotypes with higher 
probability of being in the top three; the legend scale is constrained to easily visualize the differences. 
Figure 3.5c Area of applicability (AOA) for the Postrera season; areas in red denote no applicability 
of the model. 

The map of predictions of the top-three genotypes for the Apante season shows a major 
difference with the Primera and Postrera seasons. In this case, in most of the area the top 
three are SRC 2-18-1 ≻ ALS 0532-6 ≻ MHC 2-13-49 (Figure 3.6a). Relative to Primera and 
Postrera, a much larger area has genotype MHC 2-13-49 ranking third in the top three. Still, 
the areas with the lowest entropy (Figure 3.6b) are those in which the top three are SRC 2-
18-1 ≻ SX 14825-7-1 ≻ ALS 0532-6 (Figure 3.6a). Therefore, the main difference in terms 
of entropy for the Apante season seems to be presence of either MHC 2-13-49 or ALS 0532-
6 in the top three. The genotype MHC 2-13-49 was only evaluated in Costa Rica (Figure 3.7). 
In areas where this variety is among the top three, entropy values are higher compared to 
areas in which ALS 0532-6 is among the top three. The latter variety has less uncertainty 
associated with it, as it was evaluated in 10 out of 14 trials across the four countries. The 
AOA for the Apante season is similar to the one for the Postrera season, with an increase in 
Honduras for areas in which the environmental conditions were not represented in the trials. 
These areas mainly correspond to the locations of the Pacayita Volcano Biological Reserve, 
the Opalaca Biological Reserve and the Cacique Lempira Señor de las Montañas Biosphere 
Reserve. Another important change is that most of the coastal areas delineated as with no 
applicability in the cases of Primera and Postrera, are classified as having good applicability 
in the Apante season. However, in the case of Apante, the coastal areas present high levels 
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of entropy. This higlights the importance of considering both uncertainty assesments — the 
entropy and the AOA — as they are complementary. 

 

Figure 3.6a Map of genotypes with the higher probability of being in the top three across the study 
region for the Apante season. Figure 3.6b Normalized entropy (0-1) of the genotypes with higher 
probability of being in the top three; the legend scale is constrained to easily visualize the differences. 
Figure 3.6c Area of applicability (AOA) for the Apante season; areas in red denote no applicability of 
the model. 
One use of the predictions from the data synthesis is to identify promising locations for new 
genotype evaluations. For instance, EAP 9508-93 has been released only in Honduras as 
“Cedrón” and the present study only included tricot trials in Honduras (Figure 3.7). Yet, EAP 
9508-93 was found to belong to the top-three genotypes in most parts of Costa Rica (Figure 
3.4a). Relatively high entropy in those areas indicates that a direct recommendation to 
introduce this genotype in Costa Rica is not warranted, but our findings suggest it is a relevant 
candidate for future evaluations, which are required to release this variety also in Costa Rica. 
Another example is ALS 0532-6, a relatively new genotype again released only in Honduras, 
but tested across the four countries. The low entropy in areas where this genotype belongs to 
the top three (in Costa Rica, El Salvador, Nicaragua) indicates relatively large certainty about 
its superior performance. Therefore, this genotype is considered a good candidate for 
introduction in these areas. The results of this study feed directly into decision-making on 
common bean breeding, which is well-coordinated in Central America (Reyes et al., 2016). 
Another enabling factor is that market preferences are relatively homogeneous in Central 
America, and food quality traits are considered by farmers in tricot trials (Supplemental 
Figure S1). Within countries, our findings can be used to recommend genotypes directly to 
farmers.
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3.4 Conclusions 
We demonstrated the use of a data synthesis approach to aggregate data from on-farm trials 
to produce location-specific information about common bean genotype performance across 
four countries in Central America.  

The use of environmental covariates in the Plackett-Luce tree model allowed us to identify 
WSDI, a proxy for elevated heat, as the main abiotic factor influencing the genotype 
performance across the study region. The approach also allowed taking advantage of the 
different locations and growing seasons represented in the aggregated dataset, in contrast to 
what might be possible when single trials are analyzed in isolation. 

The maps of predicted variety performance produced with our data synthesis approach can 
provide useful insights for (1) local plant breeding programs to target new locations for 
testing, and (2) extension agents to generate recommendations for farmers. The combination 
of entropy and the AOA allowed us to quantify the uncertainty of two different dimensions: 
the rankings and the environmental conditions. We expect our data synthesis methodology 
to be applicable to other crops and regions.  

While the analysis of ranking data is less common in the evaluation of crop varieties, 
significative efforts have been made recently to facilitate both the collection and analysis of 
tricot trial data. For data collection, the digital platform ClimMob provides the required 
functionality to collect and store the data in a standardized format (van Etten, Quirós, et al., 
2017). A challenge for the aggregation of trials from different countries is the different 
naming used for released varieties. For future cases, we concur with Rosas, Beaver, Beebe, 
et al. (2004) that coordinated regional releases, in contrast to individual releases, help to avoid 
this problem. For the large number of already released materials under different names, an 
open-access database with harmonized variety names might facilitate variety identification 
across countries. For instance, a solution has been proposed within the breeding management 
system Breedbase (Morales et al., 2022). Still, further developments are required to also 
provide a solution to a wider audience, including farmers. With regards to the modelling and 
analytical stage, most of the developments made within our work are being fed into the R 
package gosset, which complements the functionality of the package PlackettLuce. This will 
help researchers to apply the methods presented in this study to other datasets. 

Our work also enables further synthesis of a larger dataset. As more tricot trial data becomes 
available, it could be aggregated and iteratively reanalyzed using the data synthesis approach. 
Two promising next steps are the use of ensembles of Plackett-Luce trees (Plackett-Luce 
Forests) and the integration of tricot and non-tricot on-farm trial data. 
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Figure S1 Data collection card used in tricot trials. 
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Chapter 4 - Rank-based data synthesis of 
heterogeneous trials to identify the effects of climatic 
factors on the reaction of Musa genotypes to black leaf 
streak disease 
 

 

 

 

 

 

 

 

This chapter is based on: 

Brown, D., de Bruin, S., de Sousa, K., Abadie, C., Carpentier, S., Machida, L., & van Etten, 
J. (Under Review). Rank-based data synthesis of heterogeneous trials to identify the effects 
of climatic factors on the reaction of Musa genotypes to black leaf streak disease. Agronomy 
Journal. 
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Abstract 
Synthesis of crop trial data can generate insights that are not available from the analysis of 
individual studies, but such synthesis is often constrained by the heterogeneity of data among 
studies. Rank-based data synthesis provides the flexibility to combine data of heterogeneous 
types and from different sources. We demonstrate the application of rank-based data 
synthesis of heterogeneous trial data to assess the effect of climatic factors on the reaction of 
several Musa genotypes to black leaf streak disease (BLSD). We aggregated data from the 
main public repositories of Musa trial data. We applied model-based recursive partitioning 
with the Plackett-Luce model, using climatic data as covariates. The model identified the 
maximum length of the dry spell as the main variable influencing differences in genotypic 
response to BLSD, dividing the aggregated trial dataset into humid and dry environments. 
We found differences in the reaction of genotypes to BLSD between these environments. In 
humid environments, NARITA 8 is the most resistant genotype, while in dry environments 
FHIA-01 is the best performing improved genotype. We also assessed reliability, which is 
the probability of outperforming the reference genotype (Calcutta 4). In humid environments 
NARITA 2, NARITA 8 and FHIA-01 had the highest reliability, while in dry environments 
only the landrace Saba surpassed 50% reliability. 
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4.1 Introduction 
Crop variety trial data are essential for producing relevant information to support critical 
decision making in agronomy and crop science. These data are expensive to obtain, since 
field trials require a significant investment of time and resources. Research synthesis of 
heterogeneous studies can help to generalize conclusions and to better account for 
environmental variability, compared to the analysis of individual studies (Makowski, 2021). 
Furthermore, appropriate data synthesis methodologies can add value to existing crop trial 
data, by (1) integrating results from trials with different types of data and from different 
sources, (2) comparing a higher number of genotypes than would be feasible in individual 
field experiments, and (3) adding environmental data that were not available at the time at 
which each individual trial was conducted, providing new insights on the effect of 
environmental factors (genotype × environment interaction).  

Current data synthesis methods often encounter obstacles related to poor data standardization 
(Eagle et al., 2017). Combining data from multiple trials with different experimental designs, 
measurement scales and data quality poses problems for data management and for subsequent 
statistical analysis (Simko & Pechenick, 2010). Simko and Pechenick (2010) proposed the 
use of rank-aggregation methods to allow for the combination of heterogeneous plant 
breeding data from different experiments. By converting diverse numerical measurements 
into rankings, trial data can be aggregated in one dataset and analyzed with appropriate 
statistical methods. Brown et al. (2020) suggested that the rank-aggregation approach could 
be extended to analyze heterogeneous data from crop trial evaluations under different 
environmental conditions by using climatic data to account for effects of abiotic stress on 
genotypic performance. van Etten, de Sousa, et al. (2019) analyzed farmer-participatory crop 
experiments in which field data were collected by farmers as rankings, following the ‘tricot’ 
approach (van Etten, Beza, et al., 2019), and then combined with environmental data. Brown 
et al. (submitted, 2022) demonstrate that data synthesis of tricot trial data of common bean 
(Phaseolus vulgaris L.) genotypes in Central America provides new insights to climate 
adaptation by predicting the performance of varieties beyond the locations in which they were 
tested.  

Black leaf streak disease (BLSD), also known as black Sigatoka, is a fungal disease that 
affects banana leaves, causing necrotic lesions which gradually reduce the plant's 
photosynthetic capacity (Churchill, 2011). BLSD is caused by the fungus Pseudocercospora 
fijiensis (sexual morph: Mycosphaerella fijiensis) (Guzman et al., 2018). It is the most 
destructive leaf disease of bananas and is considered to be among the ten most destructive 
diseases in global agriculture (Pennisi, 2010). BLSD both reduces yields and fruit quality, 
and affects the wider environment because its control currently relies heavily on frequent 
applications of chemical fungicides (De Lapeyre de Bellaire et al., 2010). The cultivation of 
BLSD-resistant varieties is considered to be the most sustainable disease control method. 
Thus, the selection and release of such BLSD-resistant varieties have become crucial for 
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banana producers. Location-specific information on how different genotypes perform under 
different climatic conditions can support decision making that considers genotype by 
environment interactions (G × E) and is useful for Musa breeding programs. 

Here, we apply the data synthesis approach (Brown et al., 2020) to a combination of data 
from various evaluations of Musa genotype reactions to BLSD and climatic data that are used 
as model covariates. To the best of our knowledge, this is the first application of such an 
approach to BLSD data originally collected in a non-ranking format. Multi-environment 
trials of Musa genotypes are complex to conduct because of their intricate requirements of 
space and time (Tenkouano et al., 2012). Our main objective is to demonstrate application of 
the data synthesis approach to unveil the effect of climatic factors on the reaction of several 
Musa genotypes to BLSD. Our interest is to explain rather than to predict a genotype’s 
reaction to BLSD; the models are fitted and validated accordingly. The specific objectives 
are to (1) aggregate heterogeneous trial data previously deemed incompatible, (2) assess the 
effect of climatic variables and indices on the reaction of several genotypes to BLSD, and (3) 
identify the best performing genotypes across different locations. 

4.2 Material and methods 
4.2.1 Musa trial data 

We retrieved data from the three main public data repositories currently storing field 
evaluation data on Musa genotypes: AgTrials, MusaBase and the Musa Germplasm 
Information System (MGIS) (BTI et al., 2018; Hyman et al., 2017; Ruas et al., 2017). From 
each repository, we selected data that fulfilled the following criteria:  

1) Contains evaluations of Musa genotype reactions to BLSD 

2) Contains geographic coordinates of trial locations 

3) Contains the start and end dates of the evaluation period (i.e., planting date, and 
either shooting or harvesting date) 

4) Genotypes evaluated at least partially overlap among trials 

Table 4.1 presents the studies and projects in which the selected data were originally 
produced, the number of evaluated genotypes, number of locations, temporal extent and the 
data repository from which we retrieved the data. 
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Table 4.1 Description of the trials included in the data synthesis 

Study/Project 
1 

Data 
repository 
2 

Number 
of 
locations 
3 

Experimental 
design 

Number 
of 
blocks 

Number 
of cycles 

Number 
of 
genotypes 

Temporal 
extent 

IMTP-1 AgTrials 6 Observation 
plots without 
replication 

 2 17 1990-
1992 

IMTP-2 AgTrials 8 RCBD 5 1 19 1995-
1997 

IMTP-3 AgTrials 7 RCBD 3-5 4  40 1999-
2003 

Orlando 
Narváez 
(2004) 

AgTrials 3 CRD  1 13 2003-
2004 

Irish et al. 
(2013) 

MGIS 1 RCBD 4 2 19 2008-
2009 

Irish et al. 
(2019) 

MGIS 1 RCBD 4 2 15 2014-
2016 

WP4-BBB-
Project 

MusaBase 5 RCBD 4 3 32 2016-
2019 

1 IMTP, International Musa Testing Program; WP4-BBB, Working Package 4 Breeding Better Bananas 
Project. 2 MGIS, Musa Germplasm Information System, currently does not store trial data, but provides 
a curated selection of literature on phenotypic evaluations of Musa genotypes. 3 Some locations are 
repeated across studies; unique locations are presented in Figure 1. 4 Varies among trials within the 
same study; information corresponds to the original design but not all data were available for data 
synthesis (e.g., one cycle missing). 

 
Figure 4.1 shows the 22 unique locations of the trials. To provide a general description of the 
climatic conditions at the trial locations, Table 4.2 presents the monthly mean temperature, 
precipitation and relative humidity, averaged from monthly climatologies for the reference 
period 1990 to 2020, which roughly covers the time span of the aggregated dataset 
(Copernicus Climate Change Service, 2018).
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Table 4.2 Location name, geographic coordinates, and monthly mean climatic data 
(temperature, precipitation and relative humidity) for the period 1990–2020 at unique trial 
locations. Climatic data from Copernicus Climate Change Service (2018) 

Country Location Longitude 
(°) 

Latitude 
(°) 

Temperature 
(°C) 

Precipitation 
(mm) 

Relative humidity 
(%) 

Bangladesh Ishurdi 89.033 24.133 25.57 146.38 77.04 

Cameroon Njombe 9.650 4.583 25.83 217.32 87.46 

Colombia Zabaletas -76.517 3.817 19.40 407.45 88.99 

Costa Rica La Rita -83.450 10.267 25.01 275.99 85.91 

Ecuador Pichilingue -79.483 -1.100 23.84 508.66 90.27 

Ecuador El Carmen -79.317 -0.233 23.32 232.44 87.61 

Ecuador Pagua -79.769 -3.074 22.04 548.46 89.27 

Honduras La Lima -87.933 15.417 24.42 166.41 86.89 

Nicaragua Rivas -85.799 11.356 26.35 122.65 80.97 

Nigeria Abuja 7.333 9.267 26.45 134.08 64.04 

Nigeria Onne 7.167 4.767 26.20 251.58 87.43 

Nigeria Ibadan 3.900 7.433 26.09 119.72 80.79 

Philippines Davao 125.600 7.083 26.65 147.48 80.27 

Philippines Kidapawan 125.154 7.014 25.27 239.50 83.60 

Puerto Rico Isabela -67.051 18.472 25.75 93.83 80.92 

Tanzania Mitalula 33.000 -8.500 24.57 51.18 55.59 

Tanzania Maruku 31.500 -1.333 20.93 91.26 82.07 

Tanzania TaCRI 37.246 -3.244 17.41 200.53 79.42 

Tonga Vaini -175.167 -21.167 24.14 142.26 76.80 

Uganda Kawanda 32.600 0.417 21.08 150.45 86.99 

Uganda Mbarara 30.617 -0.933 20.91 70.96 72.74 

Vietnam Ha Tay 105.983 21.300 24.20 157.40 78.95 

 

4.2.2 Converting data to rankings 
To analyze the data using the Plackett-Luce model (Luce, 1959; Plackett, 1975), the data 
were transformed from numerical BLSD measurements to a ranking format. Four different 
metrics for BLSD evaluation were used in the original trial data (Table 4.3). The scores for 
these metrics were used to rank the genotypes within each trial, where the order of the ranking 
depended on the metric used in a trial. For instance, in evaluations where the youngest leaf 
spotted (YLS) was reported, genotypes with the highest values were ranked first. Conversely, 
for rating scales such as disease infection index (DII), representing the diseased surface per 
plant, genotypes with the lowest values were ranked first. If multiple measurements were 
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made in the same evaluation, we selected the metric for which the most data were available 
and which resulted in a more homogeneous aggregated dataset. In the final aggregated 
dataset, 33 of the rankings were derived from the underlying variable YLS, 3 from disease 
development time (DDT), 41 from DII, 24 from the number of standing leaves (NSL), and 9 
from the number of functional leaves (NFL).  

Table 4.3 Description of metrics commonly used for BLSD evaluations, adapted from BTI 
et al. (2018), Jones and Tézenas du Montcel (1994) and Orjeda (1998) 

Metric Description 

Disease development time (DDT) Number of days from infection (occurring at the appearance of the 
unfolded leaf) to the appearance of 10 or more necrotic mature 
lesions.  

Disease infection index (DII) 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷 𝐷 ∑ 𝑛𝑛𝑛𝑛
(𝑁𝑁 𝑁 𝑁)𝑇𝑇 × 100 

N = number of grades in the scale 

n = number of leaves in each grade 

b = grade 

T = total number of leaves scored 

Number of functional leaves (NFL) Total number of leaves per plant with more than 50% green area. 

Number of standing leaves (NSL) Total number of standing leaves per plant, starting from the 
highest unfolded leaf, regardless of infection status.  

Youngest leaf spotted (YLS) The first (from top to bottom) fully unfolded leaf with 10 or more 
necrotic lesions. 

If the trial data were reported at plant or block level, we treated each block as an individual 
experiment and the summarized results at block level generated a ranking. On the contrary, 
where trial data were available only as summarized results, the ranking was constructed using 
the averaged values. Each evaluation cycle generated a separate ranking. For example, trials 
evaluating over two cycles (i.e., mother and first ratoon) produced two separate rankings. 
The evaluation also depends on decisions made when the trial was designed. For instance, 
YLS is usually registered at shooting but in some cases, it may have been registered only at 
harvest or at both. These differences were considered in order to define the period for which 
climatic data were obtained for modelling (see Section 4.2.3). In the aggregated dataset, the 
evaluation period for all YLS, DDT, and NFL and for one DII was from planting to shooting. 
For the rest of the data, where the BLSD metric was DII, DSI and NSL, the evaluation period 
was from planting to harvest. 

To convert the data from numerical measurements to ranks, we used the function 
rank_numeric() from the R package gosset (de Sousa et al., 2022). The rankings were 
constructed separately for each evaluation and then aggregated into a sparse matrix, where 
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the columns are the evaluated genotypes, and the rows correspond to the evaluations. After 
aggregating all the evaluations, the number of rankings was 110, with 62 genotypes 
evaluated. Information about the evaluated genotypes is presented in Table 4.4. There are 
three types of genotype: (1) a crop wild relative, (2) landraces, and (3) improved genotypes 
either through breeding (hybrids) or selection of somaclonal variants. 

Guzman et al. (2018) described two types of reactions and three types of interactions of 
Musa genotypes to and with BLSD: 

1) Incompatible interaction characterized by high resistance (HR) or hypersensitivity 
(phenotype 1). This expression of high resistance is characterized by the blockage 
of disease development at an early stage and YLS is not observed.  

2) Compatible interaction with two types of reaction:  
2.1 Partial resistance (phenotype 2) expressed by slow disease evolution (from 

first streak symptoms to spots) and a reduction in pathogen reproduction. 
The YLS is high. There is a large progression of response with phenotype 
2 from resistance to almost complete susceptibility. 

2.2  Susceptibility (phenotype 3) expressed by rapid disease evolution; YLS is 
low. 

The BLSD reactions indicated in Table 4 follow the types of reaction described above. The 
classification of any genotype into one of the three phenotypes results from evaluating the 
host reaction under field conditions in comparison with references of known resistance 
phenotypes. We used Calcutta 4 as the reference in our analysis; it is frequently used as a 
highly resistant reference in BLSD evaluations.
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4.2.3 Climatic data 
To account for climatic effects on the plant host reaction to BLSD, we used climatic data 
retrieved from the AgERA5 database (Hendrik Boogaard & Gerald van der Grijn, 2020; 
Copernicus Climate Change Service, 2020). We downloaded the following variables: 
daytime maximum temperature, nighttime minimum temperature, daily precipitation flux, 
and relative humidity at 06:00, 09:00, 12:00, 15:00 and 18:00. The initial set of climatic 
covariates (temperature, precipitation and relative humidity) were chosen based on guidelines 
for Musa disease evaluation (Orjeda, 1998) and previous studies relating BLSD to climatic 
factors (Churchill, 2011; Jacome & Schuh, 1992; Yonow et al., 2019). The climatic data were 
extracted for the period of each evaluation that generated a ranking. This corresponds to 
either the time from planting to shooting or from planting to harvest, depending on what was 
reported in each evaluation. If more than one cycle was reported, the start time for the ratoon 
cycle was computed as the end time of the previous crop cycle. For example, for a second 
cycle in which YLS at shooting is reported, the evaluation period of the mother is from 
planting to shooting, whereas for the first ratoon cycle the evaluation time is from the 
shooting of the mother to the shooting of the first ratoon cycle. All relative humidity variables 
were averaged over the evaluation period of each trial (i.e., either planting to shooting or 
planting to harvest). Precipitation and temperature variables were used as inputs with R 
package climatrends (de Sousa, van Etten, et al., 2020) to compute climatic indices (Table 
4.5).  
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Table 4.5 Climatic variables and indices used as model covariates. Indices were calculated 
for the evaluation period of each trial (e.g., planting to shooting) 

Variable Description Unit 
MLDS Maximum length of dry spell (consecutive days with precipitation < 1 mm) day 

MLWS Maximum length of wet spell (consecutive days with precipitation ≥ 1 mm) day 

r10mm Number of heavy precipitation days (10 ≤ rain < 20 mm) day 

r20mm Number of very heavy precipitation days (rain ≥ 20 mm) day 

R95p Total precipitation when rain > 95th percentile mm 

R99p Total precipitation when rain > 99th percentile mm 

Rtotal Total precipitation (mm) on wet days (rain ≥ 1 mm) mm 

Rx1day Maximum 1-day precipitation mm 

Rx5day Maximum 5-day precipitation mm 

SDII Simple daily intensity index (total precipitation divided by the number of wet days) mm/day 

rhum_06h Daily relative humidity at 06:00, averaged over the evaluation period % 

rhum_09h Daily relative humidity at 09:00, averaged over the evaluation period % 

rhum_12h Daily relative humidity at 12:00, averaged over the evaluation period % 

rhum_15h Daily relative humidity at 15:00, averaged over the evaluation period % 

rhum_18h Daily relative humidity at 18:00, averaged over the evaluation period % 

CSDI Cold spell duration index (maximum consecutive nights with temperature <10th 

percentile) 

day 

DTR Diurnal temperature range (mean difference between daily maximum temperature 

and daily minimum temperature) 

°C 

maxDT Maximum daytime temperature °C 

maxNT Maximum nighttime temperature °C 

minDT Minimum daytime temperature °C 

minNT Minimum nighttime temperature °C 

SU Summer days (number of days with maximum temperature > 30 °C) °C 

T10p 10th percentile of night temperature °C 

T90p 90th percentile of day temperature °C 

TR1 Tropical nights (number of nights with maximum temperature > 25 °C) °C 

WSDI Warm spell duration index (maximum consecutive days with temperature >90th 

percentile) 

day 

1Removed from the model because it has near zero variability. 

 
4.2.4 Plackett-Luce trees 
The Plackett-Luce model (Luce, 1959; Plackett, 1975) is a statistical model for ranking data. 
Its implementation in the R package PlackettLuce (Turner et al., 2020) is an extension of the 
original model that allows ties and partial rankings, although ties of order four or higher are 
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difficult to analyze. We briefly describe the Plackett-Luce model and recursive partitioning 
here. For a more detailed description of its implementation in R, refer to Turner et al. (2020). 
For a given set of items, the model estimates the worth of each item, which represents the 
probability that each item is selected over the rest in the set. To account for context-specific 
differences among rankings, the PlackettLuce package is coupled with the model-based 
recursive partitioning framework of the R package partykit (Hothorn & Zeileis, 2015; Zeileis 
et al., 2008). The combination of the recursive partitioning algorithm (Zeileis et al., 2008) 
and the Plackett-Luce model (Turner et al., 2020) proceeds as follows:  

1) The model is fitted to the entire dataset. 
2) The influence of each covariate on the stability of worth parameters is assessed. 
3) If there is significant instability, the dataset is split by the covariate with the 

strongest instability, according to a threshold that provides the greatest improvement 
in model fit. 

4) The algorithm stops either when no more instabilities are detected or when the 
resulting partitions are smaller than a pre-specified minimum threshold. Otherwise, 
steps 1-3 are repeated. 

The threshold in step 3 is specified by the α parameter in the Plackett-Luce tree model 
function, which defines the threshold significance level at which to admit a split (Zeileis et 
al., 2008). We used a Bonferroni-corrected α value of 0.05. In step 4, the threshold refers to 
the minimum number of observations required in a node. In our case, we set the minimum 
node size as 35% of the aggregated dataset. In predictive mode, this threshold might be 
considered as too conservative. However, we are modelling in explanatory mode and very 
small nodes might be uninformative. Furthermore, the model requires some level of 
connectivity among compared items, which might not be feasible with very few observations 
per node. Further details about connectivity are provided in Section 4.2.5. 

4.2.5 Network connectivity 
To compute finite maximum likelihood estimates (MLE) and standard errors with 
PlackettLuce, the network of items should be strongly connected, which means that a win-
lose relationship should exist between each pair of items included in the rankings (Hunter, 
2004; Turner et al., 2020). From the initial aggregated dataset, we removed genotypes that 
were weakly connected to others. To guarantee the representativeness of genotypes among 
trials and avoid extremely biased comparisons, we only kept genotypes that were present in 
at least 5% of the trials. This threshold was defined through an iterative search of the 
minimum amount of data that guarantees model convergence and minimizes data loss. It 
resulted in 37% of the genotypes being discarded. When a Plackett-Luce tree is fitted, a 
network that is initially strongly connected might become weakly connected if the dataset is 
divided by the recursive partitioning algorithm. The PlackettLuce package provides a 
solution for networks that are not strongly connected, through the inclusion of pseudo-
rankings (Turner et al., 2020). These are symmetric wins and losses between an artificial item 
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and each of the real items, which make the network strongly connected. Even though our 
initial network was strongly connected (Figure 4.2) after removing the weakly connected 
genotypes, we used the pseudo-rankings mechanism to guarantee the connectivity of the 
network after partitioning splits. The use of pseudo-rankings also reduces the variance and 
bias of the worth parameter estimators (Turner et al., 2020). The number of pseudo-rankings 
to the artificial item is set by the npseudo parameter in the Plackett-Luce model; we set 
npseudo = 2. Network connectivity is also important to guarantee tree stability, as detailed in 
Section 2.7. Cultivars Williams and Gros Michel are commonly used as susceptible 
references in BLSD evaluations. Pisang Ceylan is often used as a partially resistant reference. 
Figure 4.2 shows how these reference genotypes enabled the comparison of genotypes which 
were not compared to each other in the same trial. For instance, the FHIAs and NARITAs 
were not compared directly in any of the aggregated trials. 

 
Figure 4.2 Network of win (outgoing arrows) and lose (incoming arrows) relationships between each 
pair of evaluated Musa genotypes. Incoming and outgoing arrows between the same pair indicate 
different outcomes at independent evaluations. 

4.2.6 Handling tied ranks 
In the present analysis, we found many cases in which the evaluated genotypes were tied, 
especially in lower rank positions. The Plackett-Luce model implemented in the R package 
PlackettLuce can handle ties up to an order of four (Turner et al., 2020). Unfortunately, the 
large number of ties in our data prevented model convergence. Therefore, from the subset of 
tied genotypes in a single rank, we removed all except one. To avoid bias, the genotype to be 
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retained was randomly selected. We found that changing which genotype was retained had a 
negligible influence on the overall results.  

4.2.7 Stability assessment of the Plackett-Luce tree 
A well-known limitation of recursive partitioning as used in Plackett-Luce trees is model 
instability, which means that a small change in the input data can cause large changes in the 
output (Breiman, 1996; Philipp et al., 2018; Strobl et al., 2009). Stability is fundamental in 
the explanatory models to guarantee that similar model results (i.e., semantic similarity of 
the learned predictor-response relationship) are obtained using the same algorithm on a 
different random sample from the same data generation process (Philipp et al., 2018). We 
assessed stability through data sampling using the framework proposed by Philipp et al. 
(2018) and implemented in the R package stablelearner (Philipp et al., 2016). The method 
consists of fitting an ensemble of trees, each with a resampled instance of the original dataset, 
and counting the number of times each variable generates a split (Philipp et al., 2016). If the 
variables selected for splitting in the original tree are consistently selected across the 
ensemble of trees, then the original tree is considered stable (Philipp et al., 2016). We created 
1000 subsamples, each using 80% of the original data (sampling without replacement). We 
selected this sampling method to generate sufficiently large learning samples and to ensure 
strong network connectivity (see Section 4.2.5). We fitted 1000 Plackett-Luce trees and 
reported the relative frequencies of each variable being selected as the best splitting variable 
by the recursive partitioning algorithm. The relative frequencies of variable selection for 
splitting are reported using a histogram to facilitate interpretation. 

4.3 Results 
4.3.1 Plackett-Luce tree 
The model selected the variable MLDS (maximum length of dry spell, consecutive days with 
precipitation < 1 mm) as the best splitting variable, partitioning the dataset in two. While 
MLDS is a rainfall-derived index, it is only very weakly correlated with rainfall indices such 
as Rtotal (r = -0.06) and r10mm (r = -0.03). However, MLDS has a strong negative 
correlation with rhum_09 (r = -0.75). Figure 4.3 shows how the environments of the two 
nodes selected by the model differ in terms of length of dry spell and relative humidity, 
expressed by the variables MLDS and rhum_09. There are no major differences between the 
environments in terms of rainfall variables such as r10mm and Rtotal. Therefore, the 
Plackett-Luce model discriminated two main environmental conditions, humid environments 
(node 2) and dry environments (node 3). The Plackett-Luce tree model that resulted from 
fitting the aggregated data is presented in Figure 4.4. 
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Figure 4.3 Differences between the two nodes resulting from the Plackett-Luce tree model, in terms of 
relative daily humidity at 09:00 (rhum_09), maximum length of dry spell (MLDS), number of days 
with heavy precipitation (r10mm) and total precipitation on wet days (Rtotal). 
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Figure 4.4 Plackett-Luce tree of Musa genotypes split into two nodes by variable MLDS (maximum 
length of dry spell) during the BLSD evaluation period. The probability of each genotype being ranked 
first is presented on the x-axis on a logarithmic scale. The probability for Calcutta 4 is zero as it served 
as the BLSD-resistant reference. The vertical gray lines show the zero intercept. Horizontal black bars 
represent quasi-standard errors of each estimated probability. The y-axis shows genotype names, with 
color indicating genotype status (blue, wild; red, landrace; gray, improved genotype). 
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Figure 4.5 presents a visualization of the Plackett-Luce tree model that is complementary to 
Figure 4.4. While some genotypes seem to outperform the reference (Calcutta 4), only 
NARITA 8 does so with statistical significance (Tables 4.6 and 4.7). However, there are 
statistically significant differences among genotypes. 

 
Figure 4.5 Worth estimates (on logarithmic scale) of each genotype in each of the nodes from the 
Plackett-Luce tree model. Color indicates genotype status (blue, wild; red, landrace; gray, improved 
genotype). 

The horizontal black bars in Figure 4.4 represent quasi-standard errors (Firth & De Menezes, 
2004) and reflect the unbalanced distribution of genotype evaluations across the 
environments identified by the Plackett-Luce tree model (humid and dry) (Figure 4.6). 
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Figure 4.6 Number of times that each genotype has been evaluated in each environment (node 2 = 
humid; node 3 = dry).  
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The (log) worth estimates for the Plackett-Luce tree model are presented in Table 4.6 for 
node 2 (humid environments) and in Table 4.7 for node 3 (dry environments). In addition to 
the difference in estimated worth values, we calculated reliability, which is the probability of 
each genotype outperforming the check or reference genotype (Eskridge & Mumm, 1992). 
The reliability estimates are conservative because of the shrinkage effect of using pseudo-
rankings (Section 4.2.5).  

Table 4.6 Worth estimates and reliability for the top ten ranked genotypes in humid 
environments (node 2). The estimate denotes the log-worth probability of a genotype being 
ranked first. The worth of genotype Calcutta 4 is zero as it serves as the reference 

Genotype Estimate Std. error z value Pr(>|z|) quasiSE quasiVar Reliability relSE 
NARITA 8 1.496 0.810 1.848 0.065 0.415 0.172 0.817 0.070 

FHIA-01 1.193 0.800 1.492 0.136 0.511 0.262 0.767 0.103 

NARITA 2 0.956 0.851 1.123 0.261 0.489 0.240 0.722 0.108 

EMB 403 0.314 1.140 0.275 0.783 0.959 0.920 0.578 0.234 

NARITA 14 0.309 0.785 0.394 0.693 0.365 0.133 0.577 0.091 

NARITA 23 0.201 0.786 0.256 0.798 0.364 0.133 0.550 0.091 

Calcutta 4 0.000 0.000 NA NA 0.657 0.432 NA 0.159 

FHIA-25 -0.148 0.738 -0.200 0.841 0.377 0.142 0.463 0.091 

NARITA 9 -0.216 0.865 -0.249 0.803 0.514 0.265 0.446 0.121 

Pisang Ceylan -0.225 0.679 -0.332 0.740 0.222 0.049 0.444 0.054 

Significance levels ***, 0.001; **, 0.01; *, 0.05; relSE, standard error of reliability. 

Table 4.7 Worth estimates and reliability for the top ten ranked genotypes in dry 
environments (node 3). The estimate denotes the log-worth probability of a genotype being 
ranked first. The worth of genotype Calcutta 4 is zero as it serves as the reference 

Genotype Estimate Std. error z value Pr(>|z|) quasiSE quasiVar Reliability relSE 

Saba 0.036 1.394 0.026 0.979 0.677 0.458 0.509 0.164 

Calcutta 4 0.000 0.000 NA NA 1.285 1.651 NA 0.283 

FHIA-03 -0.060 1.586 -0.038 0.970 0.964 0.929 0.485 0.221 

NARITA 24 -0.117 1.350 -0.087 0.931 0.341 0.116 0.471 0.083 

FHIA-01 -0.294 1.455 -0.202 0.840 0.729 0.531 0.427 0.163 

FHIA-02 -0.322 1.705 -0.189 0.850 1.146 1.313 0.420 0.233 

FHIA-21 -0.325 1.413 -0.230 0.818 0.705 0.497 0.419 0.156 

FHIA-18 -0.411 1.496 -0.275 0.783 0.813 0.661 0.399 0.171 

Rose -0.680 1.589 -0.428 0.669 0.962 0.925 0.336 0.174 

Pisang Ceylan -0.685 1.299 -0.527 0.598 0.258 0.066 0.335 0.055 
Significance levels ***, 0.001; **, 0.01; *, 0.05; relSE, standard error of reliability. 
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4.3.2 Stability assessment 
The results of fitting 1000 Plackett-Luce trees by subsampling 80% of the data are presented 
in Figure 4.7. In 855 of the 1000 Plackett-Luce trees, the splitting variable was MLDS, as 
shown in the case of the single tree presented in Figure 4.4. Therefore, the original tree can 
be considered stable. 

 
Figure 4.7 Relative frequencies with which a variable is selected for a split in each of the 1000 runs of 
the ensemble of trees. The red bar indicates the variable selected in the original tree. Only variables that 
were selected at least once are shown. 

4.4 Discussion 
The Plackett-Luce tree model (Figure 4.4) identified the maximum length of dry spell 
(MLDS) as the most important climatic variable determining Musa genotypes’ reactions to 
BLSD. MLDS is a rainfall-derived climatic index, expressed as the number of days with 
precipitation less than 1 mm. While it is derived from rainfall, it is strongly negatively 
correlated with relative humidity (r = -0.75). The Plackett-Luce model partitioned the 
aggregated dataset into two contrasting environments: humid environments (node 2) in which 
the dry spell is less than or equal to 13 days, and dry environments (node 3) with a dry spell 
of more than 13 days. Humid environments (node 2) are assumed to be more favorable than 
dry environments (node 3) to BLSD development (Churchill, 2011; Guzman et al., 2018). 
Humidity is indeed required during various steps in the BLSD infection cycle, such as for 
infection efficacy (spore penetration in stomates), lesion growth on leaves and fungus 
sporulation (Guzman et al., 2018). Therefore, humid environments (node 2) are considered 
appropriate climatic conditions in which to evaluate differences in BLSD (Perez-Vicente et 
al., 2021). However, dry environments cannot be considered to be disease-free, as differences 
were found among genotypes. Environmental conditions act on both the host (banana plant) 
and the pathogen (P. fijiensis). From our results, it is not possible to discriminate between 
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the two but only to formulate plausible hypotheses to be further investigated or considered in 
future research.  

From the Plackett-Luce tree, we identified a contrasting reaction of genotypes across 
environments. For example, NARITAs 8 and 24 have relatively extreme and opposite 
responses to BLSD in humid (node 2) and dry (node 3) environments. In these cases, it might 
be that the genetic component of resistance in these genotypes has a different expression in 
different environments (Craenen & Ortiz, 1997) or at a particular stage (e.g., sporulation) of 
the disease cycle (Abadie et al., 2003). In the case of NARITA 8, its seems that its resistance 
component is expressed in humid (node 2) but not in dry (node 3) environments. On the other 
hand, NARITA 24 appeared susceptible in humid environments (node 2), while in dry 
environments (node 3) its performance did not differ from that of the reference, Calcutta 4. 
Our results might help to explain the contradictory results among previous studies in which 
NARITA 24 was evaluated. For instance, in evaluations of NARITAs by (Tushemereirwe et 
al., 2015), NARITA 24 was among the best performing genotypes with respect to BLSD 
reaction. In contrast, it performed poorly in two locations in Uganda in evaluations conducted 
by (Kimunye, Jomanga, et al., 2021). Another contrasting result between environments is 
FHIA-03, which performed better in dry environments than in humid environments. We 
concur with Kimunye, Were, et al. (2021) that the effect of environmental factors on the 
reaction of genotypes to BLSD should be further investigated at different locations.  

While Calcutta 4 was used as the highly resistant reference, failure of a genotype to 
outperform Calcutta 4 cannot be considered poor performance. Calcutta 4 has qualitative 
resistance, which blocks disease development at an early stage (Guzman et al., 2018). In 
contrast, quantitative resistance allows disease development but seems to be more durable 
than qualitative resistance (Guzman et al., 2018). Therefore, we advise against interpreting 
our results through dichotomization of whether or not a genotype outperforms the resistant 
reference. In dry environments (node 3), differences between the reference, Calcutta 4, and 
each of the genotypes included in the top ten are not statistically significant (Table 4.7). 
Hence, we cannot say that the top ten genotypes performed differently from the reference, 
but they did perform better than the rest of the genotypes. 

Water is the most limiting abiotic factor for banana growth (Turner, 1995). We hypothesize 
that plant growth could be negatively affected in dry conditions (node 3), as banana plants 
react very early to water deficit (Eyland et al., 2022) and require constant rainfall for normal 
development (Turner et al., 2007). The genotype FHIA-01 performed well in both humid and 
dry environments, which is in agreement with both its partial resistance to BLSD and its 
tolerance of extended periods of deficient rainfall (Rowe & Rosales, 1993). Furthermore, of 
the top ten best performing genotypes in dry environments, six contain the Musa balbisiana 
(B) genome, which has been identified to contribute to drought tolerance (Thomas et al., 
1998; van Wesemael et al., 2019; Vanhove et al., 2012). Abiotic stresses can affect plant 
reaction to diseases (Bostock et al., 2014). In the case of Musa, there is evidence that 
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nutritional deficiencies and poor soil conditions predispose BLSD infection (Guzman et al., 
2018). Our results suggest that predisposition to BLSD caused by drought should be further 
explored. 

Evaluation metrics based on leaf number (e.g., YLS) strongly depend on plant growth 
(Guzman et al., 2018). Slower plant growth in dry environments could induce some bias in 
rankings in which the disease variable is linked to leaf number, such as YLS, NFL and NSL. 
In spite of this potential bias, the Plackett-Luce tree model seems to adequately detect the 
different reactions of genotypes with partial resistance among environments (G × E), while 
it is also consistent with the expected performance of susceptible genotypes, such as Grand 
Naine, Gros Michel and Niyarma Yik. 

Our results could help to select genotypes of interest to breeders for further testing. For 
example, NARITA 8, FHIA-01 and NARITA 2 were not only the best performing genotypes 
in humid environments, but also the most reliable in outperforming the reference Calcutta 4 
(Table 6). This can provide impetus for breeding programs to include certain genotypes in 
new evaluations, based on their overall reliability in addition to their worth (ranking 
probability). In humid environments, only genotypes EMB 403, FHIA-01, and NARITAs 2, 
8, 14, 20 and 23 have more than 50% reliability, while in dry environments, only the landrace 
Saba marginally surpassed 50% reliability. Reliability is especially relevant given the lengthy 
process of developing and releasing a Musa genotype. For instance, FHIA-21 took 30 years 
from crossing to release (Tenkouano et al., 2019). Our results support the use of both ranking-
probabilities and reliability as criteria for selecting genotypes for further testing in new 
locations, minimizing the risk of investment.  

4.5 Conclusions 
Our work presents the first application of the data synthesis approach in combining 
heterogeneous trial data and using climatic data as model covariates to discover Musa 
genotypes’ reactions to BLSD. We aggregated data from 110 evaluations in 31 heterogeneous 
trials evaluating Musa genotypes for reaction to BLSD. The rank-based data synthesis 
methodology enabled the comparison of 62 genotypes, aggregated from trials established at 
22 unique locations, with a temporal range from 1990 to 2019. The large number of banana 
genotypes analyzed in our study would typically be challenging to compare in a single 
advanced multi-location testing trial. We have demonstrated how field trial environmental 
conditions can be reconstructed using publicly available climate datasets even where locally-
sensed weather data are lacking. In our work, the large temporal range for which the AgERA5 
data is available (1979 to present) allowed the addition of climatic data as model covariates 
for all the data selected for the study. The MLDS, a precipitation-derived climatic index, was 
found to be the best splitting variable in the Plackett-Luce tree model. We found that humidity 
is the main climatic factor driving differential reactions of genotypes to BLSD. Our results 
support previous evidence that genetic components of resistance to BLSD are triggered under 
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different environmental conditions, leading to different genotypic response patterns. We have 
provided insights to support the use of reliability in selecting genotypes for further evaluation.  

One limitation of our study is that despite the aggregation of several trials, the sample size of 
the aggregated dataset is still relatively small, due to the relative scarcity of Musa evaluation 
data in public repositories. Increased availability of trial data in public repositories is 
therefore required for further applications of the data synthesis approach to efficiently (re)use 
crop trial data. We expect our findings to motivate plant breeding programs to share their 
data in public repositories, to enable future reanalysis with extended versions of the dataset 
used in our study.  
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Chapter 5 - gosset: An R package for analysis and 
synthesis of ranking data in agricultural 
experimentation 
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Abstract 
To derive insights from data, researchers working on agricultural experiments need 
appropriate data management and analysis tools. To ensure that workflows are reproducible 
and can be applied on a routine basis, programmatic tools are needed. Such tools are 
increasingly necessary for rank-based data, a type of data that is generated in on-farm 
experimentation and data synthesis exercises, among others. To address this need, we 
developed the R package gosset, which provides functionality for rank-based data and 
models. The gosset package facilitates data preparation, modelling and results presentation 
stages. It introduces novel functions not available in existing R packages for analyzing 
ranking data. This paper demonstrates the package functionality using the case study of a 
decentralized on-farm trial of common bean (Phaseolus vulgaris L.) varieties in Nicaragua. 
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5.1 Motivation and significance 
Participatory on-farm experimentation approaches are reaching scale in agricultural research 
(De Roo et al., 2017). Participatory experiments often collect data as rankings, a format that 
is less common in other agricultural research settings (Coe, 2002). A recently developed 
approach for on-farm experimentation, triadic comparison of technologies (tricot), makes 
intensive use of data in ranking format (van Etten, Beza, et al., 2019). Also, a newly proposed 
approach for synthesizing crop variety evaluation data largely depends on the analysis of 
ranking data (Brown et al., 2020). 

The analysis of ranking data requires the use of appropriate statistical models such as the 
Plackett-Luce model (Luce, 1959; Plackett, 1975) or the Bradley-Terry model (Bradley & 
Terry, 1952). Functionality for fitting these models is available in R with the packages 
BradleyTerry2 (Turner & Firth, 2012) and PlackettLuce (Turner et al., 2020) respectively. 
However, extended functionality was required for the entire data science workflow, which 
usually includes: (1) Data preparation and cleaning, (2) modelling and validation, and (3) 
results presentation. For (1) gosset provides functions for converting and preparing data into 
a ranking or pairwise format required by the packages PlackettLuce and BradleyTerry2 
respectively. For (2), gosset provides functions for model selection and validation using 
cross-validation. In the case of (3), enhanced functionality for plotting model results is 
provided by the gosset package. 

 

5.2 Software description 
The R package gosset provides functionality supporting the analysis workflows in 
agricultural experimentation, especially for rank-based approaches. The package is available 
in the Comprehensive R Archive Network (CRAN) and can be installed by executing 
install.packages("gosset"). The package is named in honor of William Sealy 
Gosset, known by the pen name ‘Student’. Gosset was a pioneer of modern statistics in small 
sample experimental design and analysis. As a beer brewer at Guinness, he developed 
practical approaches to experimentation to compare barley varieties and beer brewing 
practices (Ziliak, 2019). 

5.2.1 Software Architecture 
The R package gosset is structured following the guidelines described in the manual for 
creating R add-on packages (R Core Team, 2022b). This structure consists of files 
DESCRIPTION, LICENSE, NAMESPACE and NEWS, and directories data, dev, docs, inst, 
man, R, and vignettes. The package functions were developed following the S3 methods style 
(R Core Team, 2022b) and are contained in the R sub-directory. 
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5.2.2 Software Functionalities 

Data management and preparation 

• rank_binomial transforms a ranking object into a binary comparison, as required 
by package BradleyTerry2 (Turner & Firth, 2012). 

• rank_numeric converts numeric values into rankings. The parameter ascending = 
indicates if the rankings should be made considering the numeric values in 
ascending order. The default is asceding = FALSE. This function is useful when 
the data have been collected as numerical observations, for instance, in an 
experiment measuring crop yield. 

• rank_tricot transforms data in tricot format into PlackettLuce rankings. 

Modelling 

• AIC computes the Akaike Information Criterion (Akaike, 1974) for a Bradley-Terry 
model (Turner & Firth, 2012) or a Plackett-Luce model (Turner et al., 2020). 

• btpermute deviance-based forward variable selection (Lysen, 2009) procedure for 
Bradley-Terry models. 

• crossvalidation performs k-fold cross-validation, where k could be specified by 
the user. The default is 10-fold. Folds can be provided as a vector for a custom cross-
validation, such as blocked cross-validation. 

• forward executes forward variable selection with cross-validation. 
 

• kendallTau computes the Kendall-tau rank correlation coefficient between two 
rankings (Kendall, 1938). 
 

• kendallW computes Kendall’s W (coefficient of concordance) among observed 
rankings and those predicted by the Plackett-Luce model (Kendall & Smith, 1939). 

• pseudoR2 computes goodness-of-fit metrics, such as McFadden’s pseudo-R2 
(McFadden, 1973). 

Visualization and results presentation 

• compare is a visualization approach to compare measures from two different 
methods (Bland & Altman, 1986). 

• plot provides an alternative S3 method to plot.pltree() method implemented by 
the PlackettLuce package. 
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• regret computes the regret coefficients, the loss under the worst possible outcome; 
a common heuristic in risk assessment strategy (Loomes & Sugden, 1982). 

• reliability computes the probability of a set of items outperforming a reference 
item; a common heuristic in plant breeding (Eskridge & Mumm, 1992). 

• worth_bar creates a bar plot of the estimated worth for each evaluated item. 

• worth_map creates a heatmap plot of the estimated log-worth for all items 
considering each of the evaluated traits. 

5.3 Illustrative example 
To demonstrate the functionality of the gosset package, we use the nicabean dataset, which 
was generated with decentralized on-farm trials of common bean (Phaseolus vulgaris L.) 
varieties in Nicaragua over five seasons (between 2015 and 2016). Following the tricot 
approach (van Etten, Beza, et al., 2019), farmers were asked to test in their farms three 
varieties of common bean. The varieties were randomly assigned as incomplete blocks, each 
representing 3 varieties out of a total set of 10 varieties. Each farmer assessed which of the 
three varieties in one incomplete block had the best and worst performance in eight traits 
(vigor, architecture, resistance to pests, resistance to diseases, tolerance to drought, yield, 
marketability, and taste). The farmers also provided their overall appreciation of the varieties, 
by indicating which variety had the best and the worst performance based on the overall 
performance considering all the traits. To analyze the data, we use the Plackett-Luce model 
implemented in the R package PlackettLuce (Turner et al., 2020). 

The nicabean dataset is a list with two data frames. The first, trial, contains the trial data with 
farmers’ evaluations, ranked from 1 to 3, with 1 being the higher ranked variety and 3 the 
lowest ranked variety for the given trait and incomplete block. The rankings in this dataset 
were previously transformed from tricot rankings (where participants indicate best and worst) 
to ordinal rankings using the function rank_tricot(). The second data frame, covar, 
contains the covariates associated to the on-farm trial plots and farmers. This example will 
require the packages PlackettLuce (Turner et al., 2020), climatrends (de Sousa, van Etten, et 
al., 2020), chirps (de Sousa, Sparks, et al., 2020) and ggplot2 (Wickham, 2016). 

library("gosset") 
library("PlackettLuce") 
library("climatrends") 
library("chirps") 
library("ggplot2") 
 
data("nicabean", package = "gosset") 
dat <- nicabean$trial 
covar <- nicabean$covar 
traits <- unique(dat$trait) 
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To start the data analysis, we transform the ordinal rankings into the Plackett-Luce rankings 
format (a sparse matrix) using the function rank_numeric(). We run iteratively over the 
traits adding the rankings to a list called R. Since the varieties are ranked in an ascending 
order, with 1 being the higher ranked and 3 the lower ranked, we use the argument ascending 
= TRUE to indicate which order should be used. 

R <- vector(mode = "list", length = length(traits)) 
 
for (i in seq_along(traits)) { 
     dat_i <- subset(dat, dat$trait == traits[i]) 
     R[[i]] <- rank_numeric(data = dat_i, 
                            items = "item", 
                            input = "rank", 
                            id = "id", 
                            ascending = TRUE) 
} 

Then, using the function kendallTau() we assess the Kendall tau (𝜏𝜏) coefficient (Kendall, 
1938). This approach can be used, for example, to assess what traits influence farmers’ 
choices or to prioritize traits to be tested in a next stage of tricot trials (e.g., a lighter version 
of tricot with no more than 4 traits to assess). We use the overall appreciation as the reference 
trait and compare the Kendall tau with the other 8 traits. 

baseline <- which(grepl("OverallAppreciation", traits)) 
 
kendall <- lapply(R[-baseline], function(X){ 
  kendallTau(x = X, y = R[[baseline]]) 
}) 
 
kendall <- do.call("rbind", kendall) 
 
kendall$trait <- traits[-baseline] 

The Kendall correlation (Table 5.1) shows that farmers prioritized the traits yield (𝜏𝜏 = 0.749), 
taste (𝜏𝜏 = 0.653) and marketability (𝜏𝜏 = 0.639) when assessing overall appreciation. 

Table 5.1 Kendall tau correlation between ‘overall performance’ and the other traits assessed 
in the Nicaragua bean on-farm trials 

trait kendallTau 
Vigor 0.439 
Architecture 0.393 
ResistanceToPests 0.463 
ResistanceToDiseases 0.449 
ToleranceToDrought 0.411 
Yield 0.749 
Marketability 0.639 
Taste 0.653 
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Then, for each trait, we fit a Plackett-Luce model using the function PlackettLuce() from 
the package of the same name. This will allow us to continue the trial data analysis using the 
other functions in the package gosset. 

mod <- lapply(R, PlackettLuce) 

The worth_map() function can be used to visually assess and compare item performance 
based on different characteristics. The values represented in a worth_map (Figure 5.1) are 
log-worth estimates. From the breeder or product developer perspective the function 
worth_map() offers a visualization tool to help in identifying item performance based on 
different characteristics and select crossing materials. 

worth_map(mod[-baseline], 
          labels = traits[-baseline], 
          ref = "Amadeus 77") + 
          labs(x = "Variety", 
               y = "Trait") 

 

Figure 5.1 Trait performance (log-worth) of bean varieties in Nicaragua. Variety ‘Amadeus’ is set as 
reference (log-worth = 0). Blue values indicate a superior performance of varieties for a given trait, 
compared to the reference. Red values indicate a variety with weak performance for the given trait, 
compared to the reference. 
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To consider the effect of climate factors on yield, we use agro-climatic covariates to fit a 
Plackett-Luce tree. For simplicity, we use the total rainfall (Rtotal) derived from CHIRPS 
data (Funk et al., 2015), obtained in using the R package chirps (de Sousa, Sparks, et al., 
2020). Additional covariates can be used in a Plackett-Luce tree, for example using 
temperature data from R packages ag5Tools (Brown & de Sousa, 2022) or nasapower 
(Sparks, 2018). 

We request the CHIRPS data using the package chirps. Data should be returned as a matrix. 
This process can take some minutes to be implemented. 

dates <- c(min(covar[, "planting_date"]), 
           max(covar[, "planting_date"]) + 70) 
 
chirps <- get_chirps(covar[, c("longitude","latitude")],  
                     dates = as.character(dates), 
                     as.matrix = TRUE, 
                     server = "ClimateSERV") 
We compute the rainfall indices from planting date to the first 45 days of plant growth using 
the function rainfall() from package climatrends (de Sousa, van Etten, et al., 2020). 

newnames <- dimnames(chirps)[[2]] 
newnames <- gsub("chirps-v2.0.", "", newnames) 
newnames <- gsub("[.]", "-", newnames) 
 
dimnames(chirps)[[2]] <- newnames 
 
rain <- rainfall(chirps, day.one = covar$planting_date, span = 45) 

To be linked to covariates, the rankings should be coerced to a ‘grouped_rankings’ object. 
For this we use the function group() from PlackettLuce. We retain the ranking 
corresponding to yield. 

yield <- which(grepl("Yield", traits)) 
 
G <- group(R[[yield]], index = 1:length(R[[yield]])) 

Now we can fit the Plackett-Luce tree with climate covariates. 

pldG <- cbind(G, rain) 
 
tree <- pltree(G ~ Rtotal, data = pldG, alpha = 0.1) 

The following is an example of the plot (Figure 5.2) made with the function plot() in the 
gosset package. The functions node_labels(), node_rules() and top_items() can 
be used to identify the splitting variables in the tree, the rules used to split the tree and the 
best items in each node, respectively. 

plot(tree, ref = "Amadeus 77", ci.level = 0.9) 
node_labels(tree) 
node_rules(tree) 
top_items(tree, top = 3) 
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Figure 5.2 Effect of total rainfall (Rtotal) on yield of common beans in on-farm trials. Agroclimatic 
variables are obtained from planting date over the first 45 days of plant growth. The x axis presents log-
worth, the log-probability of outperforming the other varieties in the set. 

We can use the function reliability() to compute the reliability of the evaluated common 
bean varieties in each of the resulting nodes of the Plackett-Luce tree (Table 5.2). This helps 
in identifying the varieties with higher probability of outperforming a check variety 
(Amadeus 77). For the sake of simplicity, we present only the varieties with reliability ≥ 0.5. 

reliability(tree, ref = "Amadeus 77") 
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Table 5.2 Reliability of common bean varieties based on yield performance under different 
rainfall conditions from planting date to the first 45 days of plant growth. Variety Amadeus 
77 is set as reference 

node item reliability reliabilitySE worth 
2 Amadeus 77 0.500 0.035 0.114 
2 BRT 103-182 0.519 0.036 0.123 
2 IBC 302-29 0.506 0.035 0.117 
2 SX 14825-7-1 0.517 0.033 0.122 
3 ALS 0532-6 0.630 0.056 0.177 
3 Amadeus 77 0.500 0.058 0.104 
3 SX 14825-7-1 0.565 0.053 0.135 

 

The results show that three varieties can marginally outperform Amadeus 77 under drier 
growing conditions (Rtotal ≤ 193.82 mm) whereas two varieties have a superior yield 
performance when under higher rainfall conditions (Rtotal > 193.82 mm) compared to the 
reference. This approach helps in identifying superior varieties for different target population 
environments. For example, the variety ALS 0532-6 shows weak performance in the whole 
yield ranking, however for the sub-group of higher rainfall, the variety outperforms all the 
others. Combining rankings with socio-economic covariates could also support the 
identification of superior materials for different market segments. 

A better approach for assessing the performance of varieties can be using the “Overall 
Appreciation”, since we expect this trait to capture the performance of the variety not only 
for yield, but for all the other traits prioritized by farmers (Table 5.1). To assess this, we use 
the function compare() which applies the approach proposed by Bland and Altman (1986) 
to assess the agreement between two different measures. We compare overall vs yield. If both 
measures completely agree, all the varieties should be centered to 0 in the axis Y. 

Overall <- PlackettLuce(R[[baseline]]) 
Yield <- PlackettLuce(R[[yield]]) 
compare(Overall, Yield) + 
  labs(x = "Average log(worth)", 
 y = "Difference (Overall Appreciation - Yield)") 
 

The chart (Figure 5.3) shows no complete agreement between overall appreciation and yield. 
For example, variety SX 14825-7-1 shows superior performance for overall appreciation 
when compared with yield. Looking at the log-worth in the heat map of Figure 1, we can 
argue that the superior performance of the given variety is also related to taste, marketability 
and diseases resistance. This performance, however, was not captured when assessing only 
yield. 
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Figure 5.3 Agreement between overall appreciation and yield for crop variety performance in on-farm 
trials. 

Here we present a simple workflow to assess crop variety performance and trait prioritization 
in decentralized on-farm trials with the tricot approach. A more complex workflow would 
also utilize other functions available in gosset, Examples include: (1) a forward selection 
combined with crossvalidation() to improve model robustness, or (2) model selection 
with btpermute() to consider all possible permutations in Bradley-Terry models, or (3) a 
risk analysis using regret() to support the selection of varieties, or also (4) using 
rank_numeric() to combine legacy data and deal with heterogeneous data from different 
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trials. All of these were previously implemented and validated elsewhere (Brown et al., 2021; 
de Sousa et al., 2021; Moyo et al., 2021; Steinke et al., 2019; van Etten, de Sousa, et al., 
2019). 

5.4 Impact 
Reproducible and efficient workflows are fundamental in scientific research (Lowndes et al., 
2017). The gosset package provides functionality that was not previously available from 
other R packages, and which enabled scientific studies based on the analysis of ranking data. 
This functionality allows reproducibility and greater efficiency of the entire workflow. The 
utility of the gosset package has been demonstrated by enabling studies based on the analysis 
of decentralized on-farm trial data and/or heterogeneous data from different sources. For 
instance, van Etten, de Sousa, et al. (2019), Moyo et al. (2021) and de Sousa et al. (2021) 
applied the Plackett-Luce model in combination with recursive partitioning (Turner et al., 
2020; Zeileis et al., 2008). In these studies, the gosset package supported data preparation, 
model validation and results presentation tasks. 

5.5 Conclusions 
We described the functionality of the R package gosset to support the synthesis and analysis 
of ranking data. The package provides functions that are not available in existing R packages 
for analyzing ranking data. We provided an illustrative example covering the main 
functionality across the stages involved in the analysis workflow. 
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Chapter 6 – ag5Tools: An R package for downloading 
and extracting agrometeorological data from the 
AgERA5 database 
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Brown, D., de Sousa, K., & van Etten, J. (Accepted for publication). ag5Tools: An R package 
for downloading and extracting agrometeorological data from the AgERA5 database. 
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Abstract 
Agrometeorological data is important in agricultural research, especially for investigating 
genotype by environment interactions. The AgERA5 dataset from the Copernicus Climate 
Data Store provides free and public access to daily agrometeorological data, from 1979 to 
present, with ready to use variables tailored for agricultural and agro-ecological studies. We 
developed the R package ag5Tools, which provides a simplified interface for downloading 
and extracting AgERA5 data. The package facilitates extracting time-series data for sets of 
geographic points in a format that can be conveniently used in statistical models applied in 
agricultural research. The use of the package is demonstrated with a synthetic dataset of 
multi-location trials in Arusha, Tanzania.  
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6.1 Motivation and significance 
The use of climatic data as model covariates in the analysis of multilocation trials enables 
extracting location-specific insights, such as targeted recommendations of crop varieties 
(Buntaran et al., 2021; van Etten, de Sousa, et al., 2019). Several statistical and machine 
learning models allow incorporating climatic data as model covariates. The lack of 
accessibility to climatic data from local weather stations at the required temporal and spatial 
resolution has been an obstacle for its application (Ramirez-Villegas & Challinor, 2012). 
Recently, several climatic datasets with global coverage have been made freely available to 
the public, enabling agricultural researchers to incorporate this kind of data in their analysis.  

The AgERA5 dataset  provides ready-to-use agrometeorological indicators from 1979 to 
present for agricultural and agro-ecological research studies (Hendrik Boogaard & Gerald 
van der Grijn, 2020). It is derived from on the European Centre for Medium-Range Weather 
Forecasts (ECMWF) atmospheric re-analyses of the global climate (ERA5) data (Hendrik 
Boogaard & Gerald  van der Grijn, 2020; Hersbach et al., 2020). It has a global coverage, 
with a temporal coverage from 1979 to present at a daily temporal resolution, and a spatial 
resolution of 0.1° × 0.1° (approximately 11 km × 11 km at the equator).  

The AgERA5 dataset provides 22 variables (Table 6.1)  tailored for agronomic research 
(Hendrik Boogaard & Gerald  van der Grijn, 2020). It allows the users to get all the required 
variables from a single climate dataset with a homogeneous spatial resolution.  
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Table 6.1 Variables and statistics available for download from the AgERA5 dataset 
 

Variable Statistic Time Unit 

10m wind speed 24 hours mean  m s-1 

2m dewpoint temperature 24 hours mean  K 

2m relative humidity  06:00 

09:00 

12:00 

15:00 

18:00 

% 

2m temperature 24 hours maximum 

24 hours mean 

24 hours minimum 

Day time maximum 

Day time mean 

Nighttime mean 

Nighttime minimum  

 K 

Cloud cover 24 hours mean   

Liquid precipitation duration fraction    

Precipitation flux   mm day-1 

Snow thickness 24 hours mean  cm 

Snow thickness LWE 24 hours mean  cm 

Solar radiation flux   J m-2 day-1 

Solid precipitation duration fraction    

Vapor pressure 24 hours mean  hPa 

Information retrieved from: https://doi.org/10.24381/cds.6c68c9bb  

The AgERA5 dataset is freely available online for downloading from the Copernicus Climate 
Data Store (CDS). The data can be downloaded using the CDS web interface but depending 
on the amount of data required, this interface might become unpractical. For example, there 
is a limit of 100 items, which means that only around 3 months of daily data can be 
downloaded in each request. Functionality for programmed downloading data from the CDS 
is provided by the CDS Application Programming Interface (API) 
(https://cds.climate.copernicus.eu/api-how-to). The CDS API is developed and supported by 
the ECMWF.  Currently, the officially-supported API client is available only as a Python 
library (https://pypi.org/project/cdsapi/). The CDS API can also be used with the online CDS 
Toolbox. However, even when the official Python CDS API is used, the restrictions for 
downloading the previously-mentioned data still apply. R (R Core Team, 2022a) users can 
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access a wide range of ECMWF datasets, including AgERA5, through the package ecmwfr 
(Hufkens et al., 2019). The wide range of accessibility to ECMWF products provided by the 
package ecmwfr is indeed convenient for users that require several datasets in their modelling 
workflows. To provide this cross-dataset compatibility, several parameters are available in 
the package ecmwfr. However, for users whose main interest lies in only one climatic dataset, 
this large number of parameters available in the package ecmwfr may be confusing. For 
instance, new users might feel overwhelmed by just finding if a parameter is indeed required 
for a download request of the AgERA5 dataset or not. Therefore, when the modelling 
workflow relies on mainly one climatic data product, such as the AgERA5 dataset, a product-
specific tool might be more convenient. Furthermore, the data limit of 100 items also applies 
to download requests using the ecmwfr package. 

The AgERA5 data is provided by the CDS as Network Common Data Form (NetCDF-4) 
files. This type of file can be easily read and handled in R by packages like terra (Hijmans, 
2021), especially if the data will be used in raster format, either as a single or multilayer 
SpatRaster object. However, when data is required as a point-based time series for the 
locations of interest, the corresponding files should be searched by date and climatic variable, 
which can be a tedious task, especially when the required workflow includes several time-
series of different meteorological variables and statistics. When different climatic products 
from different sources are used, it is often the case that they are in different spatial resolutions 
and coordinate reference systems. Since the AgERA5 dataset provides a large number of 
variables tailored for agricultural research, the need for mixing datasets from different 
sources, and hence potential disagreement among them, is largely reduced. 

6.2 Software description 
We developed the R package ag5Tools to facilitate agricultural researchers to download and 
extract AgERA5 data. The package is aimed at supporting data analytics and synthesis 
workflows, such as the analysis and modelling of on-farm crop trials data, to assess the effect 
of climatic factors on a trait of interest (e.g., yield or disease resistance). In many of these 
workflows, the data is often required in a point-based format, such as R numeric vectors or 
data.frame objects. 

6.2.1 Software architecture 
The ag5tools package was developed following the R add-on packages guidelines and 
applying the S3 methods style (R Core Team, 2022b). The package architecture consists of 
seven main sub-directories: data, dev, docs, inst, man, R, and vignettes. The root directory 
contains the files DESCRIPTION, LICENSE, NAMESPACE and NEWS.  

For the development of the package ag5Tools, we have used several open and free software, 
such as R and packages devtools, fs, terra, reticulate, and sf (Hester et al., 2021; Hijmans, 
2021; Pebesma, 2018; R Core Team, 2022a; Ushey et al., 2022; Wickham et al., 2021). The 
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downloading functionality of package ag5Tools uses the Python library cdsapi (ECMWF, 
2019).  

Since the package is published in The Comprehensive R Archive Network (CRAN), installing 
it can be made from R by executing install.packages(“ag5Tools”). The source code is 
available in the GitHub repository https://github.com/AgrDataSci/ag5Tools and the 
development version can be installed from there by executing 
devtools::install_github("agrdatasci/ag5Tools", build_vignettes = TRUE). Once installed, it 
can be loaded into a typical R session by library(ag5Tools). The package automatically 
checks and configures the local environment to fulfill the requirements for downloading data 
from the CDS services. The only pre-requisite is that the user should be registered with the 
CDS and has retrieved his or her user key. After that, the user should store the key in a file 
in a local hard drive, which will be retrieved automatically by the ag5Tools package. 

6.2.2 Software functionalities 
6.2.2.1 Download data 

The package ag5Tools provides functionality for downloading the full set of variables and 
statistics available from the AgERA5 dataset (Table 6.1). The users can make a download 
request through the function ag5_download, which is internally parsed by the R package 
reticulate to the Python library cdsapi. Those internal dependencies are internally managed 
by the ag5Tools package and do not require the intervention of the user. One advantage of 
the ag5Tools package is that it also sidesteps the current limitation of download request of 
the CDS platform, which does not allow requesting more than 100 elements. Therefore, 
ag5Tools users can request one or more years of data, without worrying about this limitation. 
Since ag5_download is specific for the AgERA5 dataset, it requires less input parameters 
from the user compared to other tools. For instance, parameters such as dataset name, dataset 
type and file format are handled internally by the function ag5_download, providing a 
simplified programming interface.  

6.2.2.2 Extract data 

Each NetCDF files (file extension .nc) downloaded from the Copernicus Climate Change 
Service contains AgERA5 data for a specific day. These files can be easily read with the R 
package terra (Hijmans, 2021). When the data is required as numeric vector or as a 
data.frame, for multiple point locations and different time frames, extracting the data could 
be a complex task for non-expert users. The ag5_extract function provides a simple interface 
that facilitates the extraction of AgERA5 data, automatically searching each of the required 
files in the local hard drive. The ag5_extract is a generic function, which encapsulates 
different methods depending on the input parameters and the corresponding output (Table 
6.2).  
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Table 6.2 Description of the methods, input parameters and outputs for the function 
ag5_extract 

Method Parameters  Output 
ag5_extract.numeric coords: numeric vector of length = 2 of the 

form (lon, lat), or a data.frame with required 
columns 
 
path: character indicating the path for the 
folder containing the AgERA5 files 
 
dates: character the dates for extracting the 
specified variable, a vector of length 1 
extracts a single date, while a vector of 
length 2 indicates the start and end dates. 
 
variable: character indicating the AgERA5 
variable to extract, see details for available 
options 
 
statistic: character, required only for some 
variables. 
 
time: only for variable Relative-Humidity-
2m 
 
celsius: logical, if TRUE converts the 
temperature values from the degrees Kelvin 
to degrees Celsius. Only for variables 
"Temperature-Air-2m" and 
"2m_dewpoint_temperature". 
 

A numeric vector with length equal to 
the number of dates between the first 
and second date of the input 
parameters dates. The vector names 
correspond to the requested dates. If 
only one date is provided the function 
returns a numeric vector of length = 
1. 

ag5_extract.data.frame 
1 

coords: a data.frame with required columns 
 
start_date: character indicating the column 
name for the start of period of time to be 
extracted. 
 
end_date: character indicating the column 
name for the end of period of time to be 
extracted. 
 
lon: character indicating the name of the 
column containing the longitude values in 
the input data.frame 
 
lat: character indicating the name of the 
column containing the latitude values in the 
input data.frame 

A list of named numeric vectors, each 
one corresponding to the rows in the 
input data.frame.  

1 Parameters path, variable, statistic, time and celsius are also required but omitted for brevity  
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6.3 Illustrative examples 
6.3.1 Download data 

"Example code 1” below shows the code required for downloading the maximum daytime 
temperature data for years 2000 to 2005 using the function ag5_download. The request 
required six parameters, whereas twelve would be required using the ecmwfr package. 

#Example code 1 ---------------------------- 
library(ag5Tools) 
ag5_download(variable = "2m_temperature", 
             statistic = "day_time_maximum", 
             day = "all", 
             month = "all", 
             year = 2000:2005, 
             path = "C:/custom_target_folder/") 
#-------------------------------------------- 
The data are downloaded to the location indicated by the path argument in the function call. 
Within this path, a subfolder is created for each year contained in the download request. The 
data is downloaded as temporary zip file named agera5_download.zip which is automatically 
uncompressed and deleted by the ag5Tools package after copying the files to the 
corresponding folder. The downloaded and extracted files after uncompressing the zip file 
are already named by the CDS using their nomenclature system. In the example above, we 
explicitly indicated that we wanted to download all days and months for each of the selected 
years, but specific days or months can also be requested. Depending on the variable, some 
arguments need to be specified while others do not. In the previous example, the variable 
2m_temperature needs specification of the statistic day_time_maximum. In the case of 
relative humidity (2m_relative_humidity), a statistic should not be indicated, but indicating 
the time is mandatory. Example code 2 shows how to download relative humidity for times 
6:00 and 18:00 for the same years as in the previous example. 

#Example code 2 ------------------------------ 
ag5_download(variable = "2m_relative_humidity", 
             time = c(“06_00", “18_00”), 
             day = "all", 
             month = "all", 
             year = 2000:2005, 
             path = "C:/custom_target_folder/") 
#--------------------------------------------  
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6.3.2 Extracting data 

To demonstrate the functionality of ag5_extract, we use a synthetic dataset of 100 locations 
randomly generated across Arusha, Tanzania (Figure 6.1).  

 
Figure 6.1 Location of the data points randomly generated in Arusha, Tanzania. 

For this example, we will focus only on variable maximum daytime temperature. Table 6.3 
presents the first 10 data points of the example dataset. 
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Table 6.3 First 10 data points of the synthetic data example, presenting geographic 
coordinates, along with planting and harvest dates 

Longitude Latitude Planting date Harvest date 

35.726 -2.197 4/22/1991 8/20/1991 

36.102 -2.851 1/24/1990 5/24/1990 

35.463 -3.603 3/6/1991 7/4/1991 

36.292 -3.856 10/10/1990 2/7/1991 

35.453 -3.616 1/22/1990 5/22/1990 

35.401 -3.216 10/19/1990 2/16/1991 

35.170 -3.356 3/22/1990 7/20/1990 

35.601 -2.502 10/14/1990 2/11/1991 

36.537 -3.645 3/6/1990 7/4/1990 

35.488 -2.981 4/27/1991 8/25/1991 

 

If the data presented in Table 6.3 is stored in an R data.frame object, the following code can 
be used to extract the maximum daytime temperature data with the ag5_extract function. 

#Example code 3 ------------------------------------------- 
arusha_maxDT <- ag5_extract(coords = arusha_data, 
                            path = "D:/agera5_data/", 
                            variable = "Temperature-Air-2m", 
                            statistic = "Max-Day-Time", 
                            start_date = "planting_date", 
                            end_date = "harvest_date", 
                            celsius = TRUE) 
#---------------------------------------------------------- 
AgERA5 temperature data is provided in degrees Kelvin. In our example, we set the 
parameter celsius = TRUE, to extract the data in degrees Celsius. We set the parameters 
start_date and end_date, as the column names in the data.frame have different column 
names,  planting_date and harvest_date respectively. However, if the column names of the 
data.frame corresponding to dates are named as start_date and end_date, those parameters 
could be omitted. In Example code 3, the parameters lon and lat were omitted from the 
function call, because the column names match the default function parameters. If the column 
names in the input data.frame do not match the parameters, the column names corresponding 
to lon and lat should be provided as parameters in the function call. When the coords 
parameter is provided as a data.frame, the function returns a list of data.frames, each one 
containing a time series for each of the data points (the rows in the original data.frame), 
where column names are each of the dates from start_date to end_date. If the data is aimed 
at being used directly as model covariates, we need to compute the required aggregate metric 
(e.g., mean) for each time series. Following the same example trial dataset, Table 6.4 shows 
the data extracted for variables maximum daytime temperature (maxDT), minimum night 
temperature (minNT), precipitation (prec), solar radiation (srf), and relative humidity at time 
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09:00 a.m. (rhum_09). Since the variables are downloaded as daily observations, we 
computed the mean corresponding for time from planting to harvest of each trial data point 
of the synthetic dataset. 

Table 6.4 Climatic variables daily maximum daytime temperature (maxDT), minimum night 
temperature (minNT), precipitation (prec), solar radiation flux (srf), and relative humidity at 
time 09:00 a.m. (rhum_09), extracted for the trial data points of the example dataset and 
averaged for the corresponding planting to harvest period 

maxDT (°C) minNT (°C) prec (mm) srf (J) rhum_09 (%) 

24.04 14.59 1.36 18778210.69 74.62 

27.44 19.34 3.74 19964845.93 71.71 

25.77 16.43 1.71 21830741.07 65.16 

27.47 16.82 2.61 21344995.40 60.05 

25.32 17.03 3.74 21727487.53 69.16 

20.60 11.02 11.48 21106727.64 70.30 

25.73 18.80 1.58 22175333.94 68.14 

28.97 17.85 0.73 23368231.39 60.19 

24.81 16.47 2.50 17724179.31 77.39 

24.89 14.72 1.00 20505541.25 56.97 
 

The data shown in Table 6.4 is ready to be used as model covariates in a statistical model. 
Also, the data extracted using ag5_extract can be used to calculate additional climatic 
variables or indices not directly available from Ag5ERA. The package climatrends (de Sousa, 
van Etten, et al., 2020) provides functionality for computing a range of climatic indices. 

The ag5_extract function can also be used to extract data for one point location and one date 
or a time series for one point location. In the case of one point location, the argument coords 
should be provided as a vector of length = 2, in the form c(lon, lat). For example, using the 
coordinates of the first row in Table 6.3, the argument coords would be c(35.726, -2.197). 
This functionality might be useful in the case where climatic characterization of a single site 
is required. For instance, the example code 4 shows an example of daily precipitation data 
extracted for the first location of the synthetic dataset.  If the data is extracted for only one 
date, the argument dates should be a vector of length = 1, and either a character or Date 
object. On the other hand, if a time series is required for just one location, the argument dates 
should be a vector of length = 2, where the first value indicates the start date and the second 
the end date of the series. 
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#Example code 4 ------------------------------------------- 
arusha_prec_01 <- ag5_extract(coords = c(35.726, -2.197162), 
                              dates = c("1991-04-22",  
                                        "1991-08-20"), 
                              variable = "Precipitation-Flux", 
                              path = "D:/agera5_data/") 
#---------------------------------------------------------- 
 
6.4 Impact 
The study of the effects of environmental factors on any genotype’s performance is important 
in agronomy and crop science research. For instance, in breeding trials, the environment 
represents the main source of yield variability (Chenu, 2015). The use of climatic data as 
model covariates can support the generation of location-specific insights in crop variety 
evaluations (Buntaran et al., 2021; de Sousa et al., 2021; van Etten, de Sousa, et al., 2019). 
The AgERA5 dataset provides an alternative data source when climatic data have not been 
collected in the field trials or when it is not available from local weather stations. This is even 
more relevant when a study involves several locations at regional or global scale, with 
disparities in terms of climate data availability. Given its wide time span (1979 to present) 
the AgERA5 provides an important source of climatic information for modelling purposes. 
Repurposing and reanalyzing legacy crop variety evaluation data, as described by Brown et 
al. (2020), is an example in which this wide time span is useful. For instance, the ag5Tools 
package was used by Brown et al. (2022) for downloading and extracting climatic data, which 
were used as covariates for modelling and predicting genotype performance. The ag5Tools 
package has been released in the Comprehensive R Archive Network (CRAN) and currently 
has more than 1600 downloads. 

6.5 Conclusions 

In this software paper, we have described the functionalities of the R package ag5Tools, for 
downloading and extracting AgERA5 data. As far as we know, this is the only R package 
with tools for downloading and extracting data exclusively designed for the AgERA5 dataset. 
The package is available freely for downloading at CRAN: https://cran.r-
project.org/package=ag5Tools. We provided examples on how to download and extract 
AgERA5 data. Additional examples and information can be found on the package website 
https://agrdatasci.github.io/ag5Tools/. Since the development version is hosted in GitHub, 
current functionality problems or new feature requests can be managed by opening an issue 
in the GitHub repository. 
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7.1 Main findings 

This section summarizes the main findings of Chapters 2 to 6, which address the research 

objectives presented in Chapter 1. 

7.1.1 Research objective 1: To describe the state of the art of data synthesis 
methods used in crop variety evaluation identifying the major constraints and 
knowledge gaps. 

This objective was addressed in Chapter 2 through a literature review, exploring the main 
elements required for data synthesis in crop variety evaluation, and assessing the available 
data synthesis methods applied to crop variety evaluation. The literature review revealed that 
a new data synthesis approach for crop variety evaluation must integrate data, models and 
expert knowledge from farmers and breeders. To provide location-specific and 
contextualized information, the data synthesis requires data of agronomic performance, 
environmental factors, and food quality and consumer preference data. In the case of data, 
the major challenges are related to availability and integration of data. It was found that data 
availability is constrained by cultural and technical factors. An example of a cultural factor 
constraining data availability, is researchers lacking interest to share their data (Diekmann, 
2012). Technical constraints include individual storage solutions developed by different 
research institutions, resulting in closed databases which are incompatible among research 
centers (Leonelli et al., 2017).  

The first conclusion from the literature review was that rank-based methods have the required 
flexibility to aggregate data from different sources but especially in different formats and 
scales. It was also found that previous experiences support the rank-based methods as the 
way to go to combine farmers preferences with environmental data as model covariates. For 
instance, the work of van Etten, de Sousa, et al. (2019) demonstrated that environmental 
model covariates can be added to the statistical analysis of ranking data. Another point in 
favor of rank-based methods is that they seamlessly fit within the conceptual framework of 
reliability assessment, which is the probability of outperforming a check variety (Eskridge & 
Mumm, 1992). 

The second conclusion from the literature review was that data synthesis should progress 
from general to specific and from simple to complex, as an alternative to fully detailed crop 
growth models, which has been proposed to advance the integration of different types of data 
into a single crop variety evaluation framework. In that sense, the literature review suggested 
the use of simpler methods involving statistical analysis or relatively limited crop-
physiological modelling.  

The third conclusion of the literature review was that real applications of the data synthesis 
approach in crop variety evaluation could motivate further data sharing and model 
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development. Chapters 3 and 4 demonstrate that the data synthesis approach can provide the 
versatility to be applied to standardized and non-standardized data, and for different purposes 
within the crop variety evaluation framework.  

7.1.2 Research objective 2: To design and implement a data synthesis approach 
that characterizes environmental adaptation of crop varieties in time and space, 
and assess its strengths and limitations through two case studies. 

Chapter 2 provided a general framework of a data synthesis approach in crop variety 
evaluation. Chapters 3 and 4 apply this general framework to design and implement a data 
synthesis approach to two case studies, each one with distinct contexts and goals (Table 7.1). 

Table 7.1 Main differences between case studies applying the data synthesis approach in 
Chapters 3 and 4 

Chapter Crop Modelling 
mode 

Geographical 
extent 

Original data 
type 

Evaluations Type of trials 

3 Common 
bean 

Predictive Regional  Tricot 
(rankings) 

Overall 
appreciation 

Participatory 
on-farm trials 

4 Bananas 
and 
Plantains 

Explanatory Global Numerical 
measurements 

Reaction to 
black leaf 
streak 
disease 

Conventional 
on-station 
trials 

 

 In Chapter 3, the data synthesis approach was applied to data from tricot trials established in 
four countries in Central America. In this study, environmental (soils and climate) data were 
used as covariates in a Plackett-Luce tree model. The Plackett-Luce tree model with 
environmental covariates were used previously by van Tilborg (2018) and van Etten, de 
Sousa, et al. (2019). Chapter 3 extended those previous works in different aspects, such as 
model validation, spatial mapping and, quantifying the uncertainty of model predictions. The 
new data synthesis approach takes advantage of the different locations and times of each 
experiment, by adding environmental covariates which were extracted for the specific 
locations and time extent of each experimental plot. Spatial mapping is often used for 
communicating crop suitability or the outcome of species distribution models, but it is rarely 
used for representing predictions of the best performing genotypes across a region. The 
genotypes with the highest probability to be in the top-three ranking, as predicted by a 
Plackett-Luce tree model with environmental covariates, were mapped at cell level for the 
four countries considered in the study: Costa Rica, El Salvador, Honduras, and Nicaragua. 
Spatial maps are helpful to present location-specific information about crop variety 
performance, which can be used by regional or national researchers to either plan new 
evaluations or recommend the introduction of a variety in a country. For instance, experts in 
Honduras working in participatory improvement of common bean already expressed their 
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intention to use the information provided by the data synthesis for selecting the set of 
genotypes to be tested in new experiments (Marvin Gomez, personal communication, 
February 15, 2022). Providing more than one top performing genotype may facilitate decision 
makers to have a narrowed set of good options but still have some margin to adapt their 
choice to the local context. For instance, if the decision making is for variety 
recommendations, and one of the top-three is not available the other two can be 
recommended to farmers. On the other hand, having more than one option may also 
contribute implementing variety diversification and portfolio management approaches for 
minimizing risks associated weather variability, pest and diseases, and market fluctuations 
(Lin, 2011; Nalley et al., 2009; Sukcharoen & Leatham, 2016; van Etten et al., 2020). The 
choice of using three and not any other number is partly arbitrary for demonstrative purposes, 
and other arrangements could be made in future applications, such as top-five for example. 

Chapter 4 demonstrates how data from different trials, established at different locations, time 
and testing genotypes that only overlap partially can be aggregated and analyzed to produce 
new insights. The data integrated in Chapter 4 were not originally rankings but numerical 
measurements requiring conversion to rankings to allow aggregation and analysis. This 
contrasts with the data used in Chapter 3, which were already collected as rankings in the 
tricot trials. In Chapter 1 it was stated that data synthesis in crop variety evaluation should 
go beyond the usual meta-analysis. In Chapter 2, the findings define data synthesis as an 
overarching approach that integrates data, models, and expert knowledge. This was 
demonstrated in Chapter 4, integrating data retrieved from public data repositories and 
scientific papers, deviating from traditional meta-analytic methods, which consist of a 
systemic literature review and a subsequent statistical analysis (Makowski et al., 2019). The 
data synthesis conducted in Chapter 4 integrated data from trials established at 22 different 
locations around the world, allowing to compare 62 Musa genotypes. As in the case of 
Chapter 3, the Chapter 4 also faced the challenge of inconsistencies in the genotype names, 
but in the case of Chapter 4 these were mainly caused by misspelling or mistyping variety 
names or by using the breeding name or code in one trial dataset and the name of release in 
other. The study case developed in Chapter 4 demonstrates that existing trial data can be 
repurposed and reanalyzed adding environmental covariates, which in many cases were not 
considered in the original analysis of each study. For instance, the aggregated dataset has a 
temporal range from 1990 to 2019, combining so-called legacy data with data from very 
recent experiments. This was possible by using location and time specific climatic data from 
the AgERA5 dataset. For instance, the climatic data was extracted for each location of the 
trials, and for each of the locations the time frame corresponds to the evaluation time (e.g., 
planting to shooting). This allows to characterize the effect of climatic factors on the reaction 
of the genotypes to BLSD in space and time. The results shown that the maximum length of 
the dry spell (MLDS) is a differential factor for the reaction of Musa genotypes to black leaf 
streak disease (BLSD). Although the length of the dry spell is a rainfall derived climatic 
index, it is strongly negatively correlated with relative humidity. The results of Chapter 4 
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expand the knowledge about how the environment affects the reaction of genotypes to BLSD, 
by (1) identifying MLDS as the main influencing factor in the reaction of 62 Musa genotypes 
to BLSD in the aggregated trials, and (2) characterizing the response of each of the 62 
genotypes to BLSD under two contrasting environments as defined by MLDS. The results 
are also consistent with earlier findings, as relative humidity is important for the development 
of BLSD. The research reported in Chapter 4 further included a reliability assessment, which 
assessed the probability of a variety to outperform the check variety (Eskridge & Mumm, 
1992). While the ranking probabilities estimated by the Plackett-Luce model represent the 
probability of each variety to be ranked first in particular environment, reliability represent 
the probability that a testing variety outperforms the reference or check variety across the 
environments (Eskridge & Mumm, 1992; Turner et al., 2020). Eskridge and Mumm (1992) 
proposed the use of reliability for the context of a breeding program, especially when a 
breeder aims to apply the safety first behavior, in which the main interest is in achieving an 
acceptable performance for each of the evaluated varieties (Eskridge, 1990; Eskridge & 
Mumm, 1992). In the study case of Chapter 4, if a breeding program wants to select a 
genotype for further testing, both ranking probabilities and reliability could be used as 
complementary information. In that case, it would not be necessary for a variety to be ranked 
first to advance to the next evaluation stage, but only to surpass a threshold of reliability 
agreed by the breeding program (e.g., 70%). This is also important if additional information 
about traits other than the main evaluated trait is available, such as quality traits (e.g., taste).  

7.1.3 Research objective 3: To design and document reproducible data 
synthesis workflows for crop variety trial data. 

This research objective is addressed by Chapters 3, 4, 5 and 6. The data synthesis workflows 
applied in Chapters 3 and 4 were documented as R code and made available in public 
repositories (i.e., GitHub). These study-specific workflows were used to design a general 
workflow of the data synthesis in crop variety evaluation. The generalized functionality was 
implemented as software tools. The design of a general workflow was an iterative process 
involving three main steps: (1) For each case studies, document the entire workflow as R 
code and made it available in public repositories, (2) identify functionality that could be 
generalized and implemented as R packages and releasing them for public access and use. 
The general workflow consists of the following stages:  

a) Data management and preparation. 
b) Modelling and validation. 
c) Results presentation. 

Currently, in the R statistical environment, the most suitable alternative for statistical 
modelling of ranking data in combination with environmental covariates is the R package 
PlackettLuce (Turner et al., 2020). In this model implementation, covariates are allowed by 
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the recursive partitioning framework, implemented in the R package partykit (Hothorn & 
Zeileis, 2015; Zeileis et al., 2008, 2010). The combined functionality of those two packages 
partially covers the modelling stage but lacks functionality required for model assessment. 
Furthermore, functionality required for data management and preparation and for results 
presentation were not available or difficult to customize. To address this functionality gap, 
the gosset package were developed. The initial development of the gosset package dates to 
times before the start of the development of this thesis, mainly to support the study made by 
van Etten, de Sousa, et al. (2019). As the research activities of this thesis progressed, new 
requirements were detected and subsequently implemented in the gosset package. 

The case studies required climatic data with the higher possible spatial resolution and daily 
temporal resolution. However, a key criterion for selecting the climatic data source was the 
temporal coverage. Only the AgERA5 (Hendrik Boogaard & Gerald  van der Grijn, 2020; 
Copernicus Climate Change Service, 2020) dataset fulfilled all the requirements but 
accessing it from the R environment was not straightforward. Accessing and retrieving the 
climatic data from the R environment is convenient, but also makes reproducible that part of 
the workflow. Therefore, the ag5Tools package was developed to provide a user-friendly 
interface for downloading and extracting climatic data from the AgERA5 dataset, supporting 
research activities that are not covered by PlackettLuce and gosset. 

The packages gosset and ag5Tools have been released in the Comprehensive R Archive 
Network (CRAN), facilitating its installation but also guaranteeing that they were developed 
following the official guidelines for developing R packages (R Core Team, 2022b).The 
development of the packages gosset and ag5Tools is framed into a public collaborative effort, 
where scientists and digital developers from different organizations participate developing 
digital tools supporting agricultural research. This digital collaborative ecosystem is currently 
hosted in GitHub (https://github.com/AgrDataSci)  and has several packages, tools, and code 
available for free and public access. Similar collaborative approaches have been applied to 
improve efficiency, transparency, collaboration, and reproducibility in other scientific 
research areas such as ecology (Lowndes et al., 2017).  

7.2  Research limitations and remaining gaps 
This section presents the research limitations and how they affect the main findings, along 
with the remaining research gaps. 

In Chapter 2, four potential areas in crop variety evaluation were delineated in which the data 
synthesis approach can provide knowledge and insights supporting decision making: (1) 
variety release decisions, (2) marketing or distribution of varieties, (3) recommendations to 
farmers, and (4) assessment of crop improvement over time. Chapters 3 and 4 demonstrated 
how the data synthesis approach can indeed contribute useful information to areas 1 to 3. 
However, (4) is not explicitly demonstrated in the cases developed in this thesis. Such 
progress over time is usually measured as genetic gain and is valuable information for the 
assessment of breeding programs. 
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In Chapters 1 and 2, it was stated that choosing the right variety goes beyond productivity 
traits and socioeconomic factors should be considered as well. The tricot trials analyzed in 
Chapter 3 incorporate the preferences of farmers with regards of market value and taste of 
common bean genotypes as part of their overall evaluation of the genotypes, which was the 
focus of this study. However, farmers’ preferences represent current conditions, which has 
limitations. For example, this does not consider consumer preferences in the future, or in 
markets that are not currently targeted by farmers. Data to address this gap is often not 
available and adding market insights to the data synthesis approach presented here involves 
methodological challenges. It will require that information about varieties would be linked 
to target market locations, which may be remote from production locations when crops are 
exported. The inclusion of this type of information may also require more complex models, 
especially to handle prioritization of traits and multiple criteria from both farmers and 
consumers, which may be in conflict with each other.  

In Chapter 3, a Plackett-Luce tree model with environmental covariates was used to predict 
the top-three best performing genotypes across the study region. A forward variable selection 
using blocked cross validation selected four variables which were reduced to one in the final 
AIC-pruned tree. This restrictive modelling approach was used to achieve a simplified model. 
This ensured that the model was interpretable but also restricted it in taking advantage of all 
the information present in the set of covariates. A less restrictive modelling approach would 
be a machine learning approach, such as ensembles of Plackett-Luce trees, allowing to fully 
explore the information contained in the environmental covariates. Furthermore, a well-
known weakness of tree-based models is their instability (Breiman, 1996; Philipp et al., 2018; 
Strobl et al., 2009) and  ensembles of trees have been proposed to overcome the instability 
problem (Strobl et al., 2009). Currently the main constraint for ensembles of Plackett-Luce 
trees is the uncertainty quantification, implemented for the single tree setting but not yet for 
ensembles.  

In Chapter 4, two different environments were identified from the aggregated dataset of trials 
evaluating the reaction of Musa genotypes to black leaf streak disease. While there is a 
differential response of genotypes to disease on the different environments, there is no 
information available about differences of disease intensity among environments. The model 
results allow to elaborate hypotheses for further investigation but does not allow to 
discriminate how the environmental conditions act on the host and the pathogen. Another 
limitation of the study presented in Chapter 4 is the limited sample size of the aggregated 
dataset, which is caused mainly by the relatively low availability of data of Musa genotypes 
evaluations in public repositories. 

In Chapter 3 uncertainty quantification using entropy was a key element for transforming 
model predictions into useful information. While most of functionality required in the data 
synthesis workflow is implemented in the R package gosset, uncertainty quantification is 
currently not yet available. 
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7.3  Reflection 

This section reflects on how this thesis contributed to expand the body of knowledge of data 
synthesis in crop variety evaluation, considering the different elements involved in this 
research approach: data, models, and expert knowledge. 

7.3.1 Conceptualizing data synthesis in crop variety evaluation 
This thesis contributed a new conceptualization of data synthesis in crop variety evaluation, 
placing the characterization of variety environmental adaptation as an integral part of the 
methodology. Focusing on spatio-temporal characterization, the information provided by the 
new data synthesis approach is closer to the conditions of the farming systems for which the 
decision making should be made. This has implications in the requirements of data and the 
statistical models that can be used for data synthesis. To characterize the environmental 
adaptation in time and space, the environmental data is extracted for the location of each trial 
plot and for the specific temporal extent of the experiments. Therefore, the trial data must 
contain the temporal extent (e.g., planting and harvest dates) and geographic coordinates of 
each trial plot. On the one hand requiring having location and time extent could be a 
constraint to use trial datasets lacking this information. On the other hand, the capability of 
the data synthesis approach to characterize the environmental adaptation of genotypes in time 
and space may serve as motivation to researchers and organizations to value the importance 
of good data management practices, including recording basic information of the trials such 
as the location and the temporal extent. 

7.3.2 Trial data management and sharing 
This thesis demonstrated that good data practices, including consistent standardization of 
field trial data collection, supported by digital technologies pay off in the long term to 
produce useful insights. However, not all future field variety evaluation will adhere to a single 
data collection standard or experimental design. Furthermore, there is vast amount of variety 
evaluation data already collected. For those cases, this thesis also provided a feasible 
alternative to reuse the data to extract useful information. For both contexts, a critical factor 
is the availability of data either on public repositories or shared directly among scientists. 
The ideal case would be that datasets are published in public repositories and with a unique 
and persistent identifier to make them citable. Knowing that their dataset will be properly 
acknowledged with the corresponding citation, would be a good motivation for scientists or 
institutions to share their data and invest time documenting it. But it should be recognized 
that there are or will be cases in which the data is shared directly among scientists. For these 
cases, co-authorship on the data synthesis work reusing the data seems a feasible mechanism 
to motivate and reward data sharing. However, this should be done based on collaboration 
and not only in terms of just handling over the data. The party that is sharing the data will 
likely know specific details about the experimental design, the variables measured, local 
names of genotypes, which might be unclear or unknown to the party conducting the data 
synthesis. This is an example on how data sharing and integration of expert knowledge 
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complement and motivate each other as fundamental parts of collaborative research in data 
synthesis. 

7.3.3 Modelling environmental adaptation of genotypes in time and space 
The modelling approach used in the data synthesis methodology is based on the aggregation 
of data, not for the simple sake of density of data points, but especially to take advantage of 
the diversity of locations, time frames and genotypes of each trial. Those differences are often 
aimed when multi-location or multi-environment trials are designed and established. Field 
trials are expensive and time consuming and will be difficult for an organization alone to 
reach the same scale allowed by the data synthesis. The use of environmental covariates for 
the specific time and location of each experiment is the basis for the assessment of 
environmental adaptation of varieties. In that sense, further refinement could be made in 
terms of pre-selection of model covariates, including approaches such as feature engineering 
(Kuhn & Johnson, 2013). Expert knowledge from breeders and crop-modelers could be 
further considered at the modelling stage of the data synthesis, to pre-select meaningful 
covariates from the biological point of view. An important step made in the development of 
the data synthesis methods, especially when used for predictive modelling, is the integration 
of uncertainty quantification of model predictions in the data synthesis workflow. In that 
way, decision makers can assess the reliability of the information provided.  

7.3.4 Expert knowledge and collaborative research 
This thesis contributed to demonstrate that collaborative research with intense participation 
of farmers provides an excellent context to (re)valorize data collected from field trials. For 
farmers, engaging in research activities and then get practical information from it may 
provide a stronger motivation not only to keep participating in future experimentation 
activities, but also to reflect on the importance of the data they helped to produce and collect, 
not only for themselves but for other farmers and for the society. This could also help to raise 
awareness about the importance of not only providing information per se but also information 
in a format tailored to its intended audience. However, collaborative research is not exclusive 
for experimentation but can also occur at posterior stages, by sharing and synthesizing data 
which were produced independently. As mentioned in the previous sections, scientists 
sharing the data have knowledge about the context of experiments that generated the data. 
Farmers, breeders, and crop modelers will know from their experience about abiotic factors 
affecting crop variety performance, which could be considered to pre-select meaningful 
covariates in the modelling stage. Furthermore, experts from other disciplines such as product 
designers could contribute helping to design information products to tailored for the intended 
audience. Therefore, collaborative research is a pivotal element of data synthesis, especially 
on the basis of expert knowledge integration, but also as the enabling factor motivating data 
sharing. 
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Further efforts are still required to streamline the data synthesis approach in crop variety 
evaluation, but the first steps taken by this thesis provide a motivating environment to move 
forward. 

7.4 Future research 
This section provides a perspective on potential research lines that could be developed to fill 
the remaining knowledge gaps. 

7.4.1 Assess genetic gain made by breeding programs 
Genetic gain is frequently used to assess the success of crop improvement programs, 
especially to prioritize investments (Cobb et al., 2019; Kholova et al., 2021). Genetic gain is 
a measure of the efficiency of a breeding program, expressing the genetic response to 
selection as change over time. This can be measured by doing a regression with crop trial 
data, taking as response variable yield or another target variable, and as explanatory variable 
the year of release of the different varieties. The use of rank-based methods provides an 
interesting option to assess genetic gain in breeding programs. Regression on rankings data 
can be done with the Plackett-Luce regression model (Yıldız et al., 2020), which was recently 
implemented in the R package PlackettLuce (Turner et al., 2020). The current 
implementation of the Plackett-Luce regression model with item covariates is experimental 
but can already be used to create a proof of concept. A difficulty would be that genetic gain 
would be expressed in a log-probability of exceeding the performance of a certain check 
variety (the concept of reliability) or the entire set of varieties, rather than the usual variable, 
yield gain. This already indicates that this potential research line does not only involve fitting 
a model but also sharing and assessing the results with breeders, iteratively exploring how to 
interpret and frame the results, to adjust and improve statistical models, and designing 
appropriate data visualizations. Hence, it requires interdisciplinary work among statisticians, 
data analysts and plant breeders. 

7.4.2 Improve predictions of genotype performance using ensembles of 
Plackett-Luce trees 
As mentioned in section 7.2, ensembles of Plackett-Luce trees could better exploit all 
information contained in the environmental covariates, by allowing a larger number of 
covariates being selected by the model. Implementing ensembles of Plackett-Luce trees will 
take the data synthesis approach even closer to machine learning, which will be more relevant 
as more trial data become available, enabling the integration of larger amounts of data. While 
machine learning models are not restricted to large sample datasets, they can handle larger 
datasets compared to conventional statistical data models (Breiman, 2001). Furthermore, for 
more complex applications using more covariates such as market and socioeconomic data, 
machine learning approaches may be more appropriate compared to more restrictive settings 
such as conventional statistical models, which have problems dealing high dimensional data 
(Breiman, 2001). Therefore, implementing ensembles of Plackett-Luce trees is suggested as 
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a way forward to improve spatially-explicit predictions of genotype performance considering 
environmental factors. 

7.4.3 Multi-objective optimization 
In Chapter 4, the analysis considered only one factor, reaction to BLSD, to elucidate the best 
performing genotypes. In Chapter 3, farmers considered several traits to provide their overall 
assessment of common bean genotypes. However, choosing the right variety involves several 
factors to be considered jointly. Furthermore, a more complex situation occurs when those 
factors are in conflict among them. Multi-objective optimization methods (Chiandussi et al., 
2012) could help to account for multiple and conflicting traits in crop variety evaluation. 
Further steps should be made to integrate multi-criteria decision making within the data 
synthesis approach. Currently, data synthesis for crop variety evaluation relies on the 
Plackett-Luce model for ranking data. Some multi-objective optimization approaches are also 
based on implementations of the Plackett-Luce model (Lan et al., 2014). Therefore, it will be 
worth exploring the integration of multi-objective optimization with the data synthesis 
approach using the Plackett-Luce model. 

7.4.4 Tailored information products 
The disconnection between scientists and farmers may be an obstacle for building trust of 
farmers in research findings (Moore et al., 2021). Participatory research methods, such as 
those based on citizen science, have the potential to create trust among scientists, extension 
services and farmers (Moore et al., 2021). The data synthesis presented in Chapter 3 is based 
on the aggregation of tricot trials, which are participatory on-farm trials based on citizen 
science. The information generated by the case study presented in Chapter 3 can provide 
useful information for breeding programs or extension services but is still far from being 
readily presented to farmers. Additional efforts are required to design user-friendly 
information products. Currently undergoing initiatives can contribute to this aim, applying 
participatory and co-creation approaches, such as user-centered design (Ortiz-Crespo et al., 
2020). Those new information products can help to build trust in the data synthesis approach, 
providing the farmers with actionable information they helped to create. In that sense, 
implementing a user-centered design for designing tailored information products based on 
the outputs of the data synthesis approach, is a potential research line for closing the gap of 
information products supporting farmers’ decision making. 
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