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Currently the Dutch greenhouse horticultural sector has a high energy demand. The pre-

sent use of weather forecasts can exacerbate this high energy consumption by contributing

to suboptimal prediction and trading of the greenhouse's power demand. This study in-

vestigates the role of weather forecast errors on energy prediction power and trading

uncertainty in greenhouse horticulture. This was done using an uncertainty analysis and

computer model of a tomato producing Venlo style greenhouse in Bleiswijk, The

Netherlands. This greenhouse model was used to predict the greenhouse's gas and elec-

trical power demand. The study concluded that errors in the weather forecast of outdoor

radiation, temperature and wind speed caused an overestimation of greenhouse energy

demand. A sensitivity analysis showed that the radiation forecast error had the greatest

impact on predicted greenhouse power demand errors with a mean relative error of 6:1%.

Predicted gas demand errors were most dependent on the outside wind speed forecast

mean relative error ð18:0%Þ and temperature forecast error ð17:2%Þ: A power trading un-

certainty analysis was done to investigate the impact of predicted energy demand errors on

the cost of buying power on the Dutch imbalance and Amsterdam Power Exchange day-

ahead market. This cost analysis found that the volume of initial power trading was

greater than corrective trading. Additionally, the higher volatility in short term power

prices resulted in higher corrective power costs per unit of power than if the power de-

mand had been initially predicted with more accuracy.

© 2022 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

cp;air Specific heat capacity of air (J kg�1)

CD Cost of initial power demand prediction (V h�1)

CI Cost of corrective power demand prediction

(V h�1)

d Number of forecasts

h Hourly time step (h)

HAirCov Heat flux between the main compartment air and

cover (Wm�2Þ
HAirFlr Heat flux between the main compartment air and

floor (Wm�2Þ
HAirOut Heat flux between the main compartment air and

outside air (Wm�2Þ
HAirScr Heat flux between the main compartment air and

screen (W m�2Þ
HAirTop Heat flux between the main compartment air and

the top compartment air (Wm�2Þ
HCrpAir Heat flux between the main compartment air and

the canopy level air (W m�2)

HLowAir Heat flux between the main compartment air and

the lower heating pipe (Wm�2Þ
HUppAir Heat flux between the main compartment air and

the upper heating pipe (Wm�2Þ
MH Molar mass of water ðkg mol�1Þ
PAluAir Heat flux with the lamps (W m�2)

PD APX day-ahead price (VWh�1)

PI Imbalance price (VW h�1)

PSunAir Heat flux incoming from the sun (Wm�2)

Q Forecast prediction horizon length (h)

R Universal gas constant ðJ K�1 mol�1Þ

SI Sensitivity indices

Tair Indoor air temperature (�C h�1Þ
vair Greenhouse air volume (m3)

VAirCov Water vapour flux between the main

compartment air and the cover (kg h�1 m�2)

VAirOut Water vapour flux between the main

compartment air and the outside air (kg h�1 m�2)

VAirScr Water vapour flux between the main

compartment air and the screen (kg h�1 m�2)

VAirTop Water vapour flux between the main

compartment air and the top compartment air

(kg h�1 m�2)

VCanAir Water vapour flux between the main

compartment air and the canopy level air

(kg h�1 m�2)

VPair Main compartment water vapour pressure

ðPa h�1)

YF Energy prediction made with weather forecasts

YR Energy prediction made with weather recordings

XF Forecast weather data

XR Recorded weather data

DY1 The first order forecast error

DY2 The second order forecast error

ε
F Weather forecast error

ε
F
T Total forecast error in a forecast period

ε% Percentage prediction error ð%Þ
ε
P Energy prediction error

ε
P
PT Accumulated energy demand over-prediction

ε
P
NT Accumulated energy demand under-prediction

rair Air density (kg m�3)
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1. Introduction

The Netherlands has a large greenhouse sector of approxi-

mately 10,554 ha (Statistics Netherlands [Internet], 2021),

with a power demand of 110 PJ in 2020. This power annually

costs the grower 6.5 V m�2 (van der Velden & Smit, 2021) on

average making cost effective energy buying a priority. An

industrial greenhouse is a highly complex system, and the

grower may require frequent advice to achieve efficient

management. This advice is used to supplement and

computerise human expertise by predicting the greenhouse's
future behaviour and offering appropriate climate manage-

ment advice as shown in Fig. 1. Computer models and data

streams are used to generate the advice and form part of a

decision support system (DSS). The advice that this study

focusses on is how much energy should be bought to operate

the greenhouse. The external sources of energy being

considered in this study are the gas and electrical power

required by the greenhouse.

The predictive accuracy of a DSS is important as it allows

the accurate planning and trading of power on the power

markets (Wang,Mao,&Nelms, 2015). This greenhouse's future
energy demand is predicted using the weather forecast and
predicted energy prices (van Beveren, Bontsema, van’t Ooster,

van Straten, & van Henten, 2020). However, errors within the

weather forecasts may affect the accuracy of predictions and

the efficiency of subsequent energy trading.

In the Netherlands the greenhouse's predicted power de-

mand is initially bought using the APX (Amsterdam Power

Exchange) day-ahead power market. The day-ahead

market allows bidders to submit an order for power at an

hourly rate, whichwill be delivered the next day. Any errors in

this initial purchase are resolved by using corrective power

trading on the APX intra-day market or imbalance market.

The intra-day market allows the continuous trading of power

on an hourly rate, and the imbalance price is used to reflect

the immediate value of power given the current ratio of supply

and demand on the grid.

In previous greenhouse studies weather forecasts have

been included in various forms. Some studies have used

actual forecast data (Sigrimis, Ferentinos, Arvanitis, &

Anastasiou, 2001; Su, Xu, & Goodman, 2021), and others

include simplified forms of forecasts such as a lazy-man

forecast (Tap, van Willigenburg, & van Straten, 1996; van

Ooteghem, 2010). Some studies create synthetic forecasts

using models (Seginer, van Beveren, & van Straten, 2018; Su,

Xu, & Goodman, 2017a).

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Fig. 1 e A flow diagram of how a greenhouse decision support system connects sensor data, forecast data and the grower,

and how advice on greenhouse energy consumption may be applied in the greenhouse.
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Several studies that have focused on greenhouse energy

management have included weather forecasts. Among these

some address reducing the greenhouse's heating demand

(Chalabi, Bailey, & Wilkinson, 1996; Su et al., 2021) or heating

costs (Gutman, Lindberg, Ioslovich,& Seginer, 1993). Keesman,

Peters, and Lukasse (2003) investigates the reduction of

ventilation costs in a potato storage facility using a receding

horizon optimal controller and weather forecasts. However in

these studies and several other studies it is assumed that the

errors in weather forecasts have a negligible effect on the

prediction accuracy of greenhouse models (Seginer, Ioslovich,

& Albright, 2006; Seginer & McClendon, 1992).

The potential impact of weather forecast errors on green-

house prediction uncertainty has been partially addressed.

Vogler-Finck, Bacher, and Madsen (2017) use a simple linear

model and a recursive least squares approach to predict the

heat demand of a Danish greenhouses using short term

weather forecasts. Vogler-Finck concluded that the inclusion

of real weather forecasts significantly improved the online

prediction of heat load over using simplified weather fore-

casts. Tap et al. (1996), studied the greenhouse's CO2 and

heating demand and simulated the financial performances of

a greenhouse model being controlled with a receding horizon

optimal controller. Tap et al. (1996) found a drop in the per-

formance of a greenhouse when forecast errors were intro-

duced, and that the performance worsened for longer

forecasts. Doeswijk, Keesman, and Van Straten (2006) also

found that weather forecast errors increase the heating costs

of operating a climate controlled storehouse. Sigrimis et al.

(2001) offer a nuanced perspective by concluding that while

the inclusion of weather forecasts can improve performance,

the presence of weather forecast errors increased the costs of

heating and that this cost only worsened with longer

forecasts.

As shown above the error within weather forecasts previ-

ous research has analysed in the context of greenhouse

heating control and economic optimisation. However, there is

a knowledge gap as there are limited studies about the effects

of weather forecast error on power demand prediction and the

subsequent consequences for power trading.

Several studies optimised the cost of the of the green-

house's energy usage (Golzar, Heeren, Hellweg, & Roshandel,

2021; Seginer, van Straten, & van Beveren, 2017; Vadiee &

Martin, 2012; van Beveren, Bontsema, van Straten, & van
Henten, 2019; van Henten & Bontsema, 2009; Vanthoor et al.,

2012) and several studies have included weather forecasts

(Doeswijk et al., 2006; Gutman et al., 1993; Keesman et al.,

2003; Sigrimis et al., 2001; Tap et al., 1996). However, many

studies are limited in how realistic they are when compared to

what is done in practice as the economics of the greenhouse

were often significantly simplified. For example a fixed power

price is often used (Golzar et al., 2021; Kuijpers et al., 2021;

Vadiee&Martin, 2012; Vanthoor et al., 2012). van Beveren et al.

(2019) did include a fluctuating price by optimising the use of

the greenhouse's energy equipment using the imbalance

price. However as discussed above, this is not what is done in

practice.

Many studies have optimised the economics of a green-

house by using simplified market prices to assess the green-

house's economic performance. As a result, there is an

additional knowledge gap as little information is available on

the potential costs of power trading using fluctuating prices

and multiple markets as is done in the greenhouse horticul-

ture sector.

The objective of this paper is to determine the impact of

weather forecast error on greenhouse energy demand pre-

diction and power trading. In addition, this study investigated

which forecast variables have the greatest impact on power

prediction error and how this impact changes depending on

the weather forecast prediction horizon length.

By identifying the roles of the error in weather forecast

variables, improvements can be made to the most error prone

variables through the targeted application of improved sen-

sors or by using combinations of multiple forecasts. This in

turn can improve the accuracy of energy demand prediction

and the economic efficiency of power trading.

In the subsequent sections the greenhouse model is briefly

described. This is followed by an uncertainty analysis that

describes the error in the weather forecast and how that

propagates into uncertainty in the energy demand prediction.

Next the uncertainty in the energy demand prediction was

used to calculate the costs of power trading when trading on

the APX day-ahead and imbalancemarkets. A local sensitivity

analysis was then done to assess which weather forecast

variable's errors are having the greatest impact on prediction

uncertainty. The results are then interpreted to focus on the

impact weather forecast errors have on energy prediction and

trading. Moreover, this study aims to assess how this impact

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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changes when using weather forecasts of differing prediction

horizon lengths.

This paper makes a novel contribution to the field of

greenhouse horticultural modelling by investigating the

propagation of weather forecast error into predicted green-

house energy demand and power trading. The novelty of this

work consists of the following features:

� This study takes a detailed approach to assessing the

costs of buying the greenhouse's power demand. This

demand is calculated initially using the APX day-ahead

power market price, which is a realistic representation

of the initial and largest round of trading done by

growers in practice in the Netherlands. Then the cost of

the mispredicted power is calculated using the imbal-

ance market price to represent the costs of short-term

corrective trading.

� The application of this input data-based uncertainty

analysis in the greenhouse horticulture domain is novel

and in particular the application of a weather forecast

based uncertainty analysis within the greenhouse

domain.

� Unlike previous sensitivity analysis methods in the

greenhouse modelling domain which focused on the

sensitivity of parameters, this study uses an input data

discrete sensitivity analysis which is applied on the

weather variables to determine the largest contributors

to the energy prediction uncertainty.
Fig. 2 e This figure shows the relations of the modules within th
2. Materials and methods

2.1. Model definition

The greenhouse model used in this study is composed of

modules (Fig. 2) which are described in the following sub-

sections. This study uses the greenhouse model KASPRO (de

Zwart, 1996; Dieleman, Meinen, Marcelis, de Zwart, & van

Henten, 2005; Elings, de Zwart, Janse, Marcelis, & Buwalda,

2006; Luo, de Zwart et al., 2005; Luo, Stanghellini, et al., 2005)

which is extensively calibrated to represent a commercial

Venlo type Dutch greenhouse. For clarity of explanation the

KASPRO model is described as being divided into modules

which simulate the operation of the indoor greenhouse

climate, energy system and rule-based controller. The energy

asset control action is the response of the controller to acti-

vate the greenhouse energy assets (CHP, Boiler, lamps,

screens, and ventilation). The climate control action defines

the heating, lighting and CO2 input to the greenhouse climate

from the energy assets.

2.2. Greenhouse climate module

The climate module models the indoor climate of the top and

main compartments of the greenhouse and includes 16 state

variables, including the indoor air temperature, carbon diox-

ide concentration, and vapour pressure. The greenhouse
e KASPRO greenhouse model and the role of weather data.

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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climate module (Fig. 2) receives input data from the outside

weather and the energy input to the climate from the energy

module. Figure 3 shows the relative position of the elements

in the greenhouse and their relation to the top and main

compartments. This includes the air above and below the

thermal screen, at the greenhouse cover and crop canopy

level, as well as in six layers of soil. The elements displayed in

this figure are not to scale. The transfer of water vapour, CO2

and energy between elements of the greenhouse are governed

by the processes of radiative and latent heat exchange, con-

duction, convection, ventilation, and condensation.

This study focusses on the states in the model describing

the indoor air temperature and water vapor pressure in the

main compartment in the form of differential equations (Eqs.

(1) and (2)). The insight gained from themodel's indoor air CO2

state (de Zwart, 1996) was not used in this paper as the rele-

vant outdoor CO2 data was unavailable. The implications of

this limitation are examined using a sensitivity analysis

described in Appendix A.

The main compartment temperature (Eq. (1)) (de Zwart,

1996) is scaled by a fraction of air density (rairÞ; specific heat

capacity of air (cp;airÞ and the volume of air (vairÞ. This is then

multiplied by the net energy being transferred between the

regions of the greenhouse, composed of the heat gained from

the artificial lights (PAluAirÞ and solar radiation (PSunAirÞ; upper

and lower heating pipes (HUppAir;HLowAirÞ and the canopy

airðHCrpAirÞ. Also included are the heat lost to the floor ðHAirFlrÞ,
top compartment (HAirTopÞ, shade screen ðHAirScrÞ; thermal

cover (HAirCovÞand the outside (HAirOutÞ:
Fig. 3 e This figure shows a cross section of the modelled Venl

greenhouse elements (screens, covers and pipes) within the gre

greenhouse model. The elements in this figure are not to scale

abbreviations.
dTair

dt
¼ 1
rair � cp;air � vair

*
�
PAluAir þPSunAir þHUppAir þHLowAir þHCrpAir

�HAirFlr �HAirTop �HAirScr �HAirOut �HAirCov

��
+Ch�1

�

(1)

Within the model the main compartment vapour pressure

state (Eq. (2)) (de Zwart, 1996) is defined as a fraction of the

water molar mass (MHÞ, the gas constant (RÞ, the volume of air

(vair) and the main compartment air temperature (Tair). This

was then multiplied by the sum of the vapour released from

the canopy ðVCanAirÞ and lost to the top compartment, screen,

cover and outside (VAirTop;VAirScr;VAirCov;VAirOutÞ.

dVPair

dt
¼ 1

MH � vair
R�Tair

� � VCanAir �VAirTop �VAirScr �VAirCov �VAirOut

�

�
h
Pah�1

i

(2)

For the purposes of this study a representative greenhouse

design was specified. This greenhouse is a Venlo type green-

house producing tomato in Bleiswijk, Netherlands. The

physical parameters of the greenhouse are shown in Table 1.

2.3. Greenhouse energy module

The greenhouse energy module receives the data describing

the use of energy system components from the rule-based

controller. The energy module describes the amount of pipe

heating, lamp lighting and injected CO2 input into the
o type greenhouse. The figure describes the location of the

enhouse compartments as described in the KASPRO

but shows their relative positions in the greenhouse and

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Table 1 e Parameters of the simulated greenhouse
structure.

Property Value Units

Footing area 2.4 ha

Total height 6.5 m

Number of windows 1200 ~

Number of chambers 1 ~

Gutter height 6 m

Cladding area 27,000 m2

Window size 2.5 � 1.2 m

Upper heating pipe diameter 0.027 m

Lower heating pipe diameter 0.051 m

Number of lower heating pipe

per floor area

1.25 Pipes m�2

Number of upper heating pipe

per floor area

0.625 Pipes m�2

b i o s y s t em s e n g i n e e r i n g 2 2 4 ( 2 0 2 2 ) 1e1 56
greenhouse climate as well as the required gas and power to

operate the components of the energy system. These com-

ponents include a shading and energy screens. Heating was

supplied via a lower and upper heating rail pipe system from a

boiler, combined heat and power generator (CHP) and heat

storage tank. Lighting was supplied from two arrays of SON-T

1000 W HPS (High Pressure Sodium) lamps. The greenhouse

energy system components properties are listed in Table 2.

2.4. Rule-based controller

The rule-based controller module receives data from the

outside weather and the indoor greenhouse climate and out-

puts the usage of greenhouse energy assets to meet pre-

defined indoor climate conditions (Luo, de Zwart et al., 2005).

The use of energy assets was defined as the immediate frac-

tion of window aperture, fraction of lamp lighting levels and

fraction of insulation screen coverage. The controller also

dictates the temperature of the greenhouse heating system

via the control of the CHP and boiler.

The controller resembles an industrial grade controller

which operates from a considerable library of threshold-based

rules. The threshold values were defined by climate profiles

which detail desired climate conditions as a series of set

points over time, as well as the time, outside weather and the

actual indoor climate.
Table 2 e Properties of the greenhouse energy system
components relating to the capacity of the components,
and efficiency of energy assets.

Property Value Units

Lower heating pipe diameter 51 mm

CHP power rating 43 Wm�2

CHP thermal capacity 60 Wm�2

Artificial light intensity 0.648 mol m�2h�1

Upper heating pipe diameter 27 mm

CHP heating efficiency 47 %

Boiler thermal capacity 170 Wm�2

Heat tank volume 1000 m3

Boiler heating efficiency 94 %

CHP electrical efficiency 37 %
The climate profile used in this study has a relative hu-

midity set point of 85% and a requirement to light the

greenhouse for 18 h a day ending at 20:00. The temperature

climate profile has set points of 18+C between sunset and

sunrise, 20+C 1 h after sunrise, 19+C 1 h before sunset. For

consistency over the simulations the climate set point

schemewas kept the same for all weather forecast prediction

horizon lengths.

2.5. Model assumptions

The greenhouse climate and energy system model were

implemented with some simplifications and assumptions.

Key simplifications and assumptions are listed below:

� The greenhouse compartments are homogeneous

spaces, with no spatial microclimate variation within

them.

� The effects of shadow screens, covers, ventilation

windows and artificial lighting on state variables are

uniform within their related regions of the greenhouse.

� The flow of water through the heating system was

assumed to be constant over time.

� KASPRO (de Zwart, 1996; Dieleman et al., 2005; Elings

et al., 2006; Luo, de Zwart et al., 2005; Luo,

Stanghellini, et al., 2005) is an extensively calibrated

model and it is assumed that this calibration makes it a

sufficiently representative predictor.

� It is assumed that the predictions made using the

weather recordings represent a ground truth to be

compared with the weather forecasts. This is necessary

as it is not possible to record the performance of a real

greenhouse that operates using forecasts with no error

as no such forecasts exist.
2.6. Power market data

The cost of power trading in this study was calculated using

the Netherlands APX day-ahead and the imbalance market

price for power over the same period as the forecast data. The

APX day-ahead market was chosen as it represents the prices

upon which the majority of initial energy trading is done for

growers. The APX price data is applied in an uncertainty

analysis along with weather forecast data. This is done to

represent a medium-term energy planning scenario over

multiple days. To calculate the costs of corrective power

trading that is done based on themispredicted power demand

the imbalance market price is used. The imbalance price was

chosen over the intra-day market due to the lack of avail-

ability of intra-day market data. In this study it is assumed

that the volumes of power traded by the grower do not affect

the market price.

2.7. Recorded and forecasted weather data

A dataset of hourly weather forecasts and weather recordings

is used in this study. The dataset includes hourly forecast and

recording variables of the outside temperature ð�C Þ, wind

speed ðms�1 Þ and global solar radiation ðWm�2Þ. The forecasts

https://doi.org/10.1016/j.biosystemseng.2022.09.009
https://doi.org/10.1016/j.biosystemseng.2022.09.009
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have a five-day length and were generated at: 06:00, 09:00,

12:00, 15:00 and 17:00 over a two-month period (13 Oct

2019e16 Dec 2019), resulting in 292 five-day forecasts in total.

The forecasts were generated by the weather forecast com-

pany Meteoconsult and was sourced from an operational

greenhouse and is comparative to what information is avail-

able to growers.

The forecasts of outside vapour concentration ðgm�3Þwere

not included in the original data set. In place of these fore-

casts, recordings were retrieved from a nearby KNMI (Konin-

klijk Nederlands Meteorologisch Instituut) meteorological

station for the same period of time were used in place of a

forecast. The outdoor C02 concentration for both the weather

forecast and recordings was assumed to be constant at

410 ppm, the impact of this assumption is examined in ap-

pendix A.

In addition, the cloudiness index (CI) was fixed to the

average of the period (CI ¼ 0.7). A sensitivity analysis found

that this assumption has little impact on the study's result, the
results of which can be seen in Appendix A. The sky temper-

ature (Luo, de Zwart et al., 2005) and levels of diffused radia-

tion (Orgill & Hollands, 1977) were computed using the

available climate variables. Any missing entries in the data-

sets were filled with the value at the previous time instance,

this was done for simplicity.
Fig. 4 e The steps for the analysis method used in this study and

the figure includes title of the step, the corresponding section o

method is iterated through each forecast prediction horizon len
2.8. Uncertainty analysis method

This study uses a method that is described in four sections.

These sections describe the method used to compose the

weather forecasts, and to explain the uncertainty in the

weather forecast, energy prediction and power trading

respectively. The steps of the method, their relations, key

variables, and sections are shown in Fig. 4. This study ana-

lyses the effect of using weather forecasts of increasing

length ðQÞ, from 1 to 5 days long at daily intervals. This study

defines uncertainty analysis as the analysis of a distribution

of errors.

2.8.1. Compose weather forecast series
This study uses series of weather forecasts with a horizon

length in hours ðQÞ, where Q ¼ ½24; 48; 72; 96; 120�. These ho-

rizon lengths are indexed through using i ¼ 1::imax, where

imax ¼ 5. For each weather forecast horizon length and fore-

cast starting time, a series of consecutive forecasts ðXFÞ was

used. This series of forecasts spanned the time period of the

entire data set. Due to 5-day forecasts being recalculated

daily, it is possible to concatenate forecasts with periods

shorter than 5 days. This was done by truncating the weather

forecasts from their starting sample to the given horizon

length.
the corresponding sections of the manuscript. Each step in

f the manuscript and the key variable from that step. This

gth ðQÞ using the index i.

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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2.8.2. Weather forecast uncertainty analysis
To investigate the role of weather forecast uncertainty on

greenhouse energy prediction uncertainty, a sample based

uncertainty propagation method is adapted and applied (van

der Meer, Wid�en, & Munkhammar, 2018). In this study time

in is discretised using hourly time steps and each time interval

is defined by its length in hours, QðiÞ, and starting point ðd;hÞ,
where d is the day of the year, and h is the hour in the day. The

hourly forecast error ðεFQðiÞðd;hÞÞ at each time instance is

defined as the difference between the weather recording

(XR
QðiÞðd;hÞÞ and forecasts (XF

QðiÞðd;hÞÞ:

ε
F
QðiÞðd;hÞ¼XF

QðiÞðd;hÞ � XR
QðiÞðd;hÞ (3)

These errors were then summed ðεFTÞ as this represented

the quantity of error made over a forecast period, such that,

ε
F
TðdÞ¼

XQðiÞ
h¼1

ε
F
QðiÞðd;hÞ (4)

2.8.3. Energy demand uncertainty analysis
The energy prediction error is calculated as the difference

between predictions calculated using weather forecasts and

predictions made with weather recordings for the same

period. The energy demand predictions Y from the model in-

cludes the gas demand YG (m3m�2h�1) and power demand YP

(Wm�2h�1) where Y ¼ ½YP YG�T. The greenhouse energy de-

mand ðYF
QðiÞÞ is calculated using the KASPRO model over a

period QðiÞ, with inputs equal to the forecasted weather data

ðXFÞ. This results in predicted energy demand as a function of

forecasted data,

YF
QðiÞðd;hÞ¼Y

�
XF

QðiÞðd;hÞ
�

(5)

Then the energy demand ðYR
QðiÞÞ is calculated using the recor-

ded weather data ðXRÞ as input,

YR
QðiÞðd;hÞ¼Y

�
XR

QðiÞðd;hÞ
�

(6)

The hourly prediction error ðεPQðiÞÞ is calculated by

comparing the weather forecast and weather recording based

energy predictions. Where

ε
P
QðiÞðd;hÞ¼YF

QðiÞðd;hÞ � YR
QðiÞðd;hÞ (7)

To avoid having the prediction errors cancel each other out

the positive and negative error are summed for each forecast

period ðQðiÞÞ to represent the accumulated over-prediction

ðεPPTÞ and accumulated under-prediction ðεPNTÞ respectively.

Such that,

ε
P
PTðdÞ¼

XQðiÞ
h¼1;εPðd;hÞ>0

ε
P
QðiÞðd;hÞ;and (8)

ε
P
NTðdÞ¼

XQðiÞ
h¼1;εPðd;hÞ<0

ε
P
QðiÞðd;hÞ (9)

The initially predicted energy demand ðYF
QðiÞÞ and mis-

predicted energy demand ðεPQðiÞÞ are summed to allow a direct

comparison of the quantity of error made over a forecast

period, where,
YF
TðdÞ¼

XQðiÞ
h¼1

YF
QðiÞðd;hÞ (10)

ε
P
TðdÞ¼

XQðiÞ
h¼1

ε
P
QðiÞðd;hÞ;and (11)

2.8.4. Power trading uncertainty analysis
This study investigates the financial consequences of power

demand misprediction. These consequences are dependent

on the volume of misprediction and the price of power on the

markets it is being traded on. The hourly APX day-ahead

market price ðPDÞ was used to calculate the power cost ðCD
QðiÞÞ

of the initially predicted energy demand ðYF
QðiÞÞ, where,

CD
QðiÞðd;hÞ¼ PDðd;hÞ*YF

QðiÞðd;hÞ (12)

The cost of the corrective bidding ðCI
QðiÞÞ of themispredicted

energy ðεPQðiÞÞ is calculated using the imbalance market price

ðPIÞ and
CI
QðiÞðd;hÞ¼ PIðd;hÞ*εPQðiÞðd;hÞ (13)

To analyse and display the distribution of costs the

matrices are concatenated into a vector. It should be noted

that the power that can be generated and sold from the

combined heat and power generator (CHP) is not considered in

this study. This analysis does not consider the cost of gas

demand as it is often fixed by contract unless a maximum

supply rate is exceeded, which is assumed to be the case.

2.9. Sensitivity analysis of energy demand predictions

To understand which weather variable's forecast has the

greatest effect on the predicted power and gas demand ðYÞ a
local discrete sensitivity analysis was performed. This sensi-

tivity analysis was done on the forecast and recorded weather

variables which include, outdoor temperature, global radia-

tion and wind speed. The first order error ðDY1Þ of each

weather forecast variables are calculated ðXF
kÞ. Each weather

forecast variable is in turn used to replace the corresponding

recorded weather variable and applied to calculate the energy

demand predictions with the remaining recorded weather

variables ðXF
j Þ. The index k is the index of each weather fore-

cast variable and j is the index of the remaining weather

variables. Such that

DY1
kðd;hÞ¼Y

�
XRðd;hÞ�� Y

�
XF

j ðd;hÞ;XF
kðd;hÞ

�
(14)

where all the weather forecast variables were made equal to

the recorded variables, except index k:

XF
j ¼XR

j ; jsk (15)

The second order error interactions ðDY2Þ is calculated by

replacing pairs of weather forecast variables ðXF
m;nÞ to assess

their combined influence. Where,

DY2
m;nðd;hÞ¼Y

�
XRðd;hÞ�� Y

�
XF

j ðd;hÞ;XF
m;nðd;hÞ

�
(16)

where
XF

j ¼XR
j ; jsn; jsm (17)

where m and n are the indexes of all pairs of weather
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forecast variables. To allow comparison between predicted

gas and power demand the percentile prediction error ðε%Þ
was then calculated for the first and second order errors,

accordingly

ε
f1;2g
% ðdÞ¼

PQ
h¼1

�
DYf1;2gðd;hÞ�PQ

h¼1

�
Y
�
XRðd;hÞ�� *100 (18)

This percentile prediction error was then used to calculate

the first and second sensitivity indices ðSIÞwhich is defined as

the average absolute percentage error,

SI¼ jε%ðdÞj (19)

3. Results

The results describe the effect of weather forecast uncertainty

on energy use predictions and are split into four sections. The

first section assesses the uncertainty in weather forecast

variables. The second section shows the effect of the weather

forecast error on greenhouse model prediction uncertainty

and how it changes with the length of the weather forecast

prediction horizon. The third section includes a power trading

uncertainty analysis using multiple markets and weather

forecast prediction horizon lengths. The last section in-

vestigates the interrelations between the input weather data

and energy predictions using a discrete sensitivity analysis.

3.1. Weather forecast uncertainty

Figure 5 presents the total weather forecast errors (Eq. (4))

within each forecast variable for an increasing forecast
Fig. 5 e Boxplots of the total weather forecast errors (Eq. (4)) ma

Where the encircled point is themean, the box is the 1st, the wh

are the outliers.
horizon length. For all the forecast variables the mean error

becomes more negative, and the variance increases as the

horizon increases. This means that on average the forecast

consistently underestimates the available outside tempera-

ture, global radiation and wind speed.

3.2. Greenhouse gas and power demand uncertainty

The greenhouse gas and power demandwere simulated using

different weather forecast prediction horizon lengths. Figure 6

shows that as the forecast horizon increases the variance and

mean of the over and under-predicted power and gas in-

creases. In addition, the amount of over-predicted power and

gas is greater than the under-predicted amount in both mean

and variation. Subsequently in this case the greenhouse

model tends to overestimate the power and gas demand. This

originates from the bias present in the weather forecasts,

namely, in the case of power demand, a negative bias in the

global radiation forecast error (Fig. 5), meaning too little nat-

ural light is being forecast. This result is also reflected in the

sensitivity results shown in Section 3.4.

3.3. Greenhouse power trading uncertainty analysis

A comparison between the prices of the APX day-ahead and

imbalance market is shown in Fig. 7. The comparison shows

that the day-ahead price has a higher mean price than the

imbalance price. However, the imbalance price has a far

longer tail than the day-ahead price where extreme prices can

occur. In addition, the day-ahead price is strictly positive

during this period, and the imbalance price ranges over both

positive and negative values.
de over the forecast prediction horizon forecast length ðQÞ.
iskers are the 2nd standard deviations, and the open circles

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Fig. 6 e Boxplot distributions of the accumulated over and under prediction (Eqs. (8) and (9)) of gas and power demand when

using forecasts of different forecast prediction horizon lengths. Where the encircled point is the mean, the box is the 1st,

and the whiskers are the 2nd standard deviations (outliers omitted for clarity).
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Figure 8 shows the total volume of the initial and corrective

power demand prediction of a forecast period (Eqs. 10 and 11).

The total volume of the initially predicted demand is much

greater than the corrective demand for all weather forecast

prediction horizon lengths. For both the initial and corrective

demand the mean increases, and the standard deviation de-

creases with the weather forecast prediction horizon length.

In addition, the initial and corrective demand has a positive

bias for all the forecast prediction horizon lengths. To better

look at the impact of misprediction on incurred costs only

nonzero results are shown for the power demand and costs

(Eqs. 12 and 13) displayed in Fig. 9.
Fig. 7 e A histogram of the market prices on the A
The comparative costs of the initial and corrective trading

are shown in Fig. 9 and are derived from Eqs. (12) and (13). The

initial bid is the larger in mean cost than the corrective costs

and increases inmean and standard deviations as the forecast

prediction lengths increase. The corrective costs have a

greater variation and increase in mean cost with the forecast

prediction horizon lengths. The standard deviation of the

corrective costs does rise to a peak at a 72 h forecast horizon

before declining. The negative value of the corrective bid cost

represents the grower being paid as an incentive to purchase

power on the imbalance market. This can occur when there is

a surplus of power on the grid.
PX day-ahead and imbalance power markets.

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Fig. 8 e A boxplot (left) of the initially predicted power demand (Eq. (10)) and the subsequently calculated corrective power

demand (Eq. (11)). These power demands are described as the total per forecast period Q. The mean and standard deviation

for the initial and corrective demands (right) are displayed for each forecast prediction horizon length. Where the box is the

1st, and the whiskers are the 2nd standard deviations.
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3.4. Sensitivity analysis of greenhouse gas and power
demand

The sensitivity analysis shown in Fig. 10 is done using a 48-

h weather forecast. This analysis revealed that the power
Fig. 9 e A boxplot (left) of the initial power costs (Eq. (12)) and th

The mean and standard deviation for the initial and corrective

horizon length. Where the box is the 1st, and the whiskers are
demand prediction error is most related to the global radia-

tion forecast error. The gas use prediction error is most

related to the temperature forecast error, then the wind

forecast error and marginally to the global radiation forecast

error. Moreover, the error in gas prediction is highly sensitive
e subsequently calculated corrective power costs (Eq. (13)).

demands (right) are displayed for each forecast prediction

the 2nd standard deviations.

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Fig. 10 e A heatmap of the local discrete sensitivities (Eq. (19)) of the predicted power and gas usage to weather forecast

error.
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to the second order interactions of errors in forecast

variables.
4. Discussion

This study investigates the role of weather forecast error on

greenhouse energy demand prediction and power trading.

Additionally, this study considers the impact of each fore-

casted weather variable and how power trading is impacted

when using multiple markets. This study uses a method that

is not validated as part of this studies analysis but provides

novel and relevant insight into the management of energy in

greenhouses.

This study explores howweather forecast errors can result

in the misprediction of both gas and power demand in a

greenhouse. In this specific study, the prediction uncertainty

suggests an overprediction of the gas and power demand of

the greenhouse. The overprediction of energy demand is

linked to the notable negative bias in the temperature and

global radiation forecast errors (Fig. 5). As a result, the amount

of available natural heat and radiation is being consistently

underestimated and as a result excess gas and power is being

bought tomeet this perceived deficit (Fig. 6). It should be noted

that the overprediction of the greenhouse energy demand in

this study is case specific and it is entirely possible for

different weather forecasts to produce alternate patterns of

misprediction. However, this study demonstrates that the

effects of misprediction can be large. The analysis also con-

cludes that the cumulative amount of energy being mis-

predicted increased with the weather forecast prediction

horizon length, corroborating the conclusions of Tap et al.

(1996). This is understandable as longer forecasts should
become progressively more uncertain. The conclusions made

on the volume of the predicted energy demand were made

using a winter dataset and have not been extrapolated to the

whole year. This is as the winter is the season of the highest

use of artificial lighting in practice and requires more power

than the rest of the year.

The sensitivities of the energy predictions to weather

forecast variables showed that gas prediction is sensitive to

wind and temperature forecast error while power prediction

is sensitive to the global radiation forecast error (Fig. 10). This

observation is due to the fact that the global radiation fore-

cast directly influences the need for supplementary artificial

lighting and therefore the power demand. Gas is used to

provide heat and its demand depends on heat moving

through the greenhouse based on the temperature gradient

between the inside and outside temperature and the

convective energy transported through the greenhouse shell.

The dependence of gas use prediction error on the tempera-

ture forecast and not the global radiation forecast may be

because the data set used in the study was from a Dutch

winter where the ambient radiation levels are low. In sum-

mer one would expect that both the outside radiation and

temperature would have a large effect on gas demand pre-

diction as solar radiation is a key source of natural heat in the

greenhouse. These results were calculated using 48-h long

weather forecasts and as such this assumption excludes how

these sensitivities might change over varying weather fore-

cast prediction horizon lengths. While this does provide an

opening for future research this study has shown that the

broad trends and biases in the weather forecast error are

consistent for all horizon lengths. Consequently, it is antici-

pated that the conclusions of this analysis would be broadly

consistent for all horizon lengths.

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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The power trading uncertainty analysis included in this

paper offers a number of key insights into how weather

forecast error might affect the power trading process and

economic efficiency of the greenhouse. Most prominently, the

corrective trading of mispredicted power can impact the

economic performance of the greenhouse. This impact arises

from the fact that although the volume of power being traded

in corrective bidding is relatively smaller than the initial trade

(Fig. 8), the corrective imbalance price is more volatile (Fig. 7).

This can lead to the grower risking a higher price for their

power than if it had been bought correctly in the initial trade.

In this way it is better to reduce the impact of weather forecast

error to mitigate the risk of volatile short-term prices.

Additionally, the power trading analysis confirmed the

conclusion of Sigrimis et al. (2001), in that the inclusion of

forecast errors increases the operating costs of a greenhouse.

Moreover, these costs worsen with the increasing length of

the weather forecasts as can be seen by the increase in the

mean costs for both the initial and corrective trading (Fig. 9).

Subsequently shorter weather forecasts would be preferable

for minimising error. Interestingly the standard deviation of

the initial and corrective power demand decreases as the

forecast horizon increases. A hypothesis is that the errors

tend to cancel out when summed over longer periods. So, a

large deviation from the mean is less probable for a long

prediction horizon. An analysis should be performed with a

larger dataset for more reliable conclusions to be drawn. It

should also be noted that the markets used are Dutch and

conclusions may vary based on the region of the market used.

Another interesting observation is that the standard deviation

of the corrective power demand costs (Fig. 9) rises to a peak at

a 72 h long forecast and then decreases. This is a potential

result of a combination of lower prediction error at shorter

forecast lengths and a cancellation of costs at longer forecasts

lengths. Indeed, this happened in the corrective costs and not

the initial costs as the price distribution for the day-ahead

market has a greater bias to positive values, whereas the

imbalance price is more centred on zero and takes negative

values more frequently, as can be seen in Fig. 7.

While this method is simple to apply it calculates the

prediction error directly, without the assumptions related to

the initial distribution of the weather forecast error that have

been used in previous studies (Seginer et al., 2018; Su, Xu, &

Goodman, 2017b). Thus, the conclusions drawn from this

method are inexorably linked to the weather forecast dataset

as they are so spatially and temporally specific. While this

specificity makes conclusions difficult to generalise it could be

done using large or varied forecast datasets and multiple

greenhouse models. Despite this the use of direct comparison

of energy predictions in this method means that it can be

applied other greenhouse systems and model formats and

offer the same analysis. Moreover, this method can be applied

to data from any place or time and produce relevant insight.

This study does not include outside CO2 data but assumes

it is constant, this presents limitations to the conclusions

regarding energy consumption as one use of a CHP is to pro-

vide supplementary CO2, which in turn is dependent on the

outside conditions. The operation of the CHP for this purpose

also affects the greenhouse energy demand due to the power

and heat that is also produced. The inclusion of outside CO2
data may offer insight into how the CHP is operated based on

motives other than power demand and how that might affect

selling surplus power to the grid. As this study is conducted in

winter when the demand for supplementary CO2 is less, it is

anticipated that this surplus power will be relatively minor

when compared to the power trading discussed in this study.

A limitation of this study is that the economic analysis uses

the imbalance market price for the short-term trading of

power. While the imbalance price has been used in previous

research (van Beveren et al., 2019) it is more common in

practice to use the intra-day market price. Despite this limi-

tation the conclusions of this study are relevant as the

imbalance and intra-day markets are comparable represen-

tations of short-term power prices.

The possible practical consequences of energy demand

prediction error and the subsequent power trading are that

growermay lose economic efficiency by having to trade on the

more volatile short-term markets. These short-term markets

are often supplied by immediately accessible power, often

originating from fossil fuels. As a result, decreasing the

corrective power trading of a greenhouse may also help

reduce its carbon footprint. To try and achieve this the

weather forecast bias could be accounted for in the energy

prediction and energy buying process. This would need to

have a highly localised approach as the variations in local

climate strongly influence the validity of the global radiation

forecast as demonstrated by Doeswijk and Keesman (2005).

Additionally, the insight from the sensitivity analysis pre-

sents an opportunity to improve the data collection and

screening process by identifying weather forecast data with

errors that disproportionally impact the uncertainty of model

prediction. In particular this study's conclusion that the global

radiation forecast is a key cause of power misprediction par-

allels the importance of accounting for the error in radiation

sensors found in Bontsema, vanHenten, Gieling, and Swinkels

(2011). This type of insight can drive more efficient energy

consumption in the horticultural sector, but also extends to

any facility that uses weather forecasts to define its climate

and energy buying strategy, such as food storage warehouses

and offices.
5. Conclusion

To conclude, this study investigates the role of weather fore-

cast uncertainty and its effect on greenhouse energy demand

prediction and power trading. This was done through the

direct comparison of predictions made with weather re-

cordings and forecasts. The economic analysis of power

trading was done usingmultiplemarkets to quantify the costs

more realistically.

This study shows a clear bias in the prediction of gas and

power demand to buy more than is necessary when using a

weather forecast. This bias is linked to the high sensitivity of

the energy predictions to underestimate of temperature and

global radiation in the forecasts in this study. The error pre-

sent in weather forecasts and in greenhouse energy demand

predictions do increase with longer weather forecast predic-

tion horizon lengths. The power trading analysis concluded

that while the volume of initial trading was greater than the

https://doi.org/10.1016/j.biosystemseng.2022.09.009
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Table A3 e Parameter priors used in the assumption
sensitivity analysis

Normal distribution Uniform distribution

Outdoor C02 (C02out ) Cloudiness index (CI)

Mean 410 Min 0.4

Standard

deviation

8.20 Max 0.8

Assumed

value

410 0.7
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corrective trading, the higher volatility in short term Imbal-

ance market prices can result in higher costs per unit of

power. Additionally, the means of the demand and cost of

both initial and corrective demand increase with the forecast

horizon prediction length. A sensitivity analysis was done on

the weather forecast variables and concluded that in the

Dutch winter case the global radiation forecasts have the

greatest impact on power prediction error ð6:1%Þ, whereas gas

demand prediction is strongly influenced by the wind ð18:0%Þ
and outside temperature forecast ð17:2%Þ.
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Appendix A. Cloudiness index and ambient CO2

level sensitivity analysis

A Sobol sensitivity analysis (Saltelli et al., 2008) was performed

to assess the impact of the assumptions made about the

weather data used in this study. The assumptions that are

included are (Table 3) that the cloudiness index (CI) is constant

at 0.7 and that the Outdoor C02 level (C02out ) is constant at

410 ppm.

To perform a sensitivity analysis, the parameter C02out has

a normal prior distribution defined. Its mean is the nominal

value used in the study, with a standard deviation (s:d) defined

so that the 99th percentile of the prior is approximately ±10%
of the mean value:

s:d¼ð0:1*meanÞ =5 (20)

The cloudiness index parameter (CI) has a prior distribu-

tion that is defined as a uniform distribution. This distribution

shape and limits are chosen based on expert opinion and the

distribution of historical cloudiness index data. The limits of

this prior are defined as being between 0.4 and 0.8.
These parameter distributions are sampled 1000 times

using a Monte-Carlo method. This set of samples are used to

simulate 1000 greenhouse power demand predictions using

the KASPRO model and recorded weather data setup

described in Sections 2.1e2.8.

These simulations when used in the Sobol sensitivity

framework concluded that the prediction of greenhouse

power demand is completely insensitive to variations in the

two parameters included in this analysis. This result is logical

as within KASPRO the greenhouse power demand is derived

from the lamp lighting power demand and the parameters

C02out and CI are not included in the control of the lamp

lighting. In the case of the CI, this parameter is used to

calculate the diffuse radiation but a separate data stream, the

global radiation, is used to control the lighting. This means

that while the values used in these assumptions should be

realistic, their precise value has no impact on the analysis

done in this study.
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