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Currently the Dutch greenhouse horticultural sector has a high energy demand. The pre-
sent use of weather forecasts can exacerbate this high energy consumption by contributing
to suboptimal prediction and trading of the greenhouse's power demand. This study in-
vestigates the role of weather forecast errors on energy prediction power and trading
uncertainty in greenhouse horticulture. This was done using an uncertainty analysis and
computer model of a tomato producing Venlo style greenhouse in Bleiswijk, The
Netherlands. This greenhouse model was used to predict the greenhouse's gas and elec-
trical power demand. The study concluded that errors in the weather forecast of outdoor
radiation, temperature and wind speed caused an overestimation of greenhouse energy
demand. A sensitivity analysis showed that the radiation forecast error had the greatest
impact on predicted greenhouse power demand errors with a mean relative error of 6.1%.
Predicted gas demand errors were most dependent on the outside wind speed forecast
mean relative error (18.0%) and temperature forecast error (17.2%). A power trading un-
certainty analysis was done to investigate the impact of predicted energy demand errors on
the cost of buying power on the Dutch imbalance and Amsterdam Power Exchange day-
ahead market. This cost analysis found that the volume of initial power trading was
greater than corrective trading. Additionally, the higher volatility in short term power
prices resulted in higher corrective power costs per unit of power than if the power de-
mand had been initially predicted with more accuracy.
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article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature SI Sensitivity indices
. . . Toi Indoor air temperature (°Ch™*
o Specific heat capacity of air (J kg—!) ar P ( 3 )
’ . . 1 Uagir Greenhouse air volume (m?)
Cp Cost of initial power demand prediction (€ h™") .
. .. Vaircow ~ Water vapour flux between the main
Cr Cost of corrective power demand prediction . 1.,
€h? compartment air and the cover (kg h™ m™2)
d Number of forecasts Varour  Water vapour flux between the main
h ey (e i () compartment air and the outside air (kg h™* m2)
Y P . . Vapser ~ Water vapour flux between the main
Hpicoy  Heat flux between the main compartment air and . A3
) compartment air and the screen (kg h™ m™2)
. . Vairop ~ Water vapour flux between the main
Hairrlr Heat flux between the main compartment air and . .
floor (W m~2) compartment air and the top compartment air
. ) (kg h™* m2)
Hanour  Heat flux between the main compartment air and .
outside air (Wm=2) Veanair  Water vapour flux between the main
. . compartment air and the canopy level air
Hppsee  Heat flux between the main compartment air and 1,
screen (W m—2) (kg h ™ m™)
. . VPir Main compartment water vapour pressure
Haprop  Heat flux between the main compartment air and (Pa h’l)
the top compartment air (W m~2) 5 . .
. . Y Energy prediction made with weather forecasts
Hepair  Heat flux between the main compartment air and 2 .. . .
ey Y Energy prediction made with weather recordings
By . . XF Forecast weather data
Hiowair Heat flux between the main compartment air and R
. . > X Recorded weather data
the lower heating pipe (W m~2) a
. . AY The first order forecast error
Hyppair  Heat flux between the main compartment air and 2
o AY The second order forecast error
PP 1 eF Weather forecast error
My Molar mass of water (kg mol ") e . .
Par HeA il with the lamps | (Wim=2) er Total forecast error in a forecast period
Pg]“A” APX day-ahead price (€ Wh™Y) £, Percentage prediction error (%)
. 1 & Energy prediction error
P Imbalance price (€ Wh™") P .
. . 3 €pr Accumulated energy demand over-prediction
Psunair  Heat flux incoming from the sun (W m=2) " ..
. . ENT Accumulated energy demand under-prediction
Q Forecast prediction horizon length (h) i Gty (i)
R Universal gas constant (J K~ mol %) oy y %8
1 Introduct predicted energy prices (van Beveren, Bontsema, van’t Ooster,
. niroduction

The Netherlands has a large greenhouse sector of approxi-
mately 10,554 ha (Statistics Netherlands [Internet], 2021),
with a power demand of 110 PJ in 2020. This power annually
costs the grower 6.5 € m ™2 (van der Velden & Smit, 2021) on
average making cost effective energy buying a priority. An
industrial greenhouse is a highly complex system, and the
grower may require frequent advice to achieve efficient
management. This advice is used to supplement and
computerise human expertise by predicting the greenhouse's
future behaviour and offering appropriate climate manage-
ment advice as shown in Fig. 1. Computer models and data
streams are used to generate the advice and form part of a
decision support system (DSS). The advice that this study
focusses on is how much energy should be bought to operate
the greenhouse. The external sources of energy being
considered in this study are the gas and electrical power
required by the greenhouse.

The predictive accuracy of a DSS is important as it allows
the accurate planning and trading of power on the power
markets (Wang, Mao, & Nelms, 2015). This greenhouse's future
energy demand is predicted using the weather forecast and

van Straten, & van Henten, 2020). However, errors within the
weather forecasts may affect the accuracy of predictions and
the efficiency of subsequent energy trading.

In the Netherlands the greenhouse's predicted power de-
mand is initially bought using the APX (Amsterdam Power
Exchange) day-ahead power market. The day-ahead
market allows bidders to submit an order for power at an
hourly rate, which will be delivered the next day. Any errors in
this initial purchase are resolved by using corrective power
trading on the APX intra-day market or imbalance market.
The intra-day market allows the continuous trading of power
on an hourly rate, and the imbalance price is used to reflect
the immediate value of power given the current ratio of supply
and demand on the grid.

In previous greenhouse studies weather forecasts have
been included in various forms. Some studies have used
actual forecast data (Sigrimis, Ferentinos, Arvanitis, &
Anastasiou, 2001; Su, Xu, & Goodman, 2021), and others
include simplified forms of forecasts such as a lazy-man
forecast (Tap, van Willigenburg, & van Straten, 1996; van
Ooteghem, 2010). Some studies create synthetic forecasts
using models (Seginer, van Beveren, & van Straten, 2018; Su,
Xu, & Goodman, 2017a).
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Fig. 1 — A flow diagram of how a greenhouse decision support system connects sensor data, forecast data and the grower,
and how advice on greenhouse energy consumption may be applied in the greenhouse.

Several studies that have focused on greenhouse energy
management have included weather forecasts. Among these
some address reducing the greenhouse's heating demand
(Chalabi, Bailey, & Wilkinson, 1996; Su et al., 2021) or heating
costs (Gutman, Lindberg, Ioslovich, & Seginer, 1993). Keesman,
Peters, and Lukasse (2003) investigates the reduction of
ventilation costs in a potato storage facility using a receding
horizon optimal controller and weather forecasts. However in
these studies and several other studies it is assumed that the
errors in weather forecasts have a negligible effect on the
prediction accuracy of greenhouse models (Seginer, Ioslovich,
& Albright, 2006; Seginer & McClendon, 1992).

The potential impact of weather forecast errors on green-
house prediction uncertainty has been partially addressed.
Vogler-Finck, Bacher, and Madsen (2017) use a simple linear
model and a recursive least squares approach to predict the
heat demand of a Danish greenhouses using short term
weather forecasts. Vogler-Finck concluded that the inclusion
of real weather forecasts significantly improved the online
prediction of heat load over using simplified weather fore-
casts. Tap et al. (1996), studied the greenhouse's CO, and
heating demand and simulated the financial performances of
a greenhouse model being controlled with a receding horizon
optimal controller. Tap et al. (1996) found a drop in the per-
formance of a greenhouse when forecast errors were intro-
duced, and that the performance worsened for longer
forecasts. Doeswijk, Keesman, and Van Straten (2006) also
found that weather forecast errors increase the heating costs
of operating a climate controlled storehouse. Sigrimis et al.
(2001) offer a nuanced perspective by concluding that while
the inclusion of weather forecasts can improve performance,
the presence of weather forecast errors increased the costs of
heating and that this cost only worsened with longer
forecasts.

As shown above the error within weather forecasts previ-
ous research has analysed in the context of greenhouse
heating control and economic optimisation. However, there is
a knowledge gap as there are limited studies about the effects
of weather forecast error on power demand prediction and the
subsequent consequences for power trading.

Several studies optimised the cost of the of the green-
house's energy usage (Golzar, Heeren, Hellweg, & Roshandel,
2021; Seginer, van Straten, & van Beveren, 2017; Vadiee &
Martin, 2012; van Beveren, Bontsema, van Straten, & van

Henten, 2019; van Henten & Bontsema, 2009; Vanthoor et al.,
2012) and several studies have included weather forecasts
(Doeswijk et al., 2006; Gutman et al.,, 1993; Keesman et al,,
2003; Sigrimis et al., 2001; Tap et al., 1996). However, many
studies are limited in how realistic they are when compared to
what is done in practice as the economics of the greenhouse
were often significantly simplified. For example a fixed power
price is often used (Golzar et al., 2021; Kuijpers et al., 2021,
Vadiee & Martin, 2012; Vanthoor et al., 2012). van Beveren et al.
(2019) did include a fluctuating price by optimising the use of
the greenhouse's energy equipment using the imbalance
price. However as discussed above, this is not what is done in
practice.

Many studies have optimised the economics of a green-
house by using simplified market prices to assess the green-
house's economic performance. As a result, there is an
additional knowledge gap as little information is available on
the potential costs of power trading using fluctuating prices
and multiple markets as is done in the greenhouse horticul-
ture sector.

The objective of this paper is to determine the impact of
weather forecast error on greenhouse energy demand pre-
diction and power trading. In addition, this study investigated
which forecast variables have the greatest impact on power
prediction error and how this impact changes depending on
the weather forecast prediction horizon length.

By identifying the roles of the error in weather forecast
variables, improvements can be made to the most error prone
variables through the targeted application of improved sen-
sors or by using combinations of multiple forecasts. This in
turn can improve the accuracy of energy demand prediction
and the economic efficiency of power trading.

In the subsequent sections the greenhouse model is briefly
described. This is followed by an uncertainty analysis that
describes the error in the weather forecast and how that
propagates into uncertainty in the energy demand prediction.
Next the uncertainty in the energy demand prediction was
used to calculate the costs of power trading when trading on
the APX day-ahead and imbalance markets. A local sensitivity
analysis was then done to assess which weather forecast
variable's errors are having the greatest impact on prediction
uncertainty. The results are then interpreted to focus on the
impact weather forecast errors have on energy prediction and
trading. Moreover, this study aims to assess how this impact
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changes when using weather forecasts of differing prediction
horizon lengths.

This paper makes a novel contribution to the field of
greenhouse horticultural modelling by investigating the
propagation of weather forecast error into predicted green-
house energy demand and power trading. The novelty of this
work consists of the following features:

e This study takes a detailed approach to assessing the
costs of buying the greenhouse's power demand. This
demand is calculated initially using the APX day-ahead
power market price, which is a realistic representation
of the initial and largest round of trading done by
growers in practice in the Netherlands. Then the cost of
the mispredicted power is calculated using the imbal-
ance market price to represent the costs of short-term
corrective trading.

The application of this input data-based uncertainty
analysis in the greenhouse horticulture domain is novel
and in particular the application of a weather forecast
based uncertainty analysis within the greenhouse
domain.

Unlike previous sensitivity analysis methods in the
greenhouse modelling domain which focused on the
sensitivity of parameters, this study uses an input data
discrete sensitivity analysis which is applied on the
weather variables to determine the largest contributors
to the energy prediction uncertainty.

Energy asset
control action

Climate
control
action

Input weather
(Forecasts)

e OQutside temperature
e Outside windspeed

Greenhouse
energy module

Greenhouse
climate module

2. Materials and methods
2.1. Model definition

The greenhouse model used in this study is composed of
modules (Fig. 2) which are described in the following sub-
sections. This study uses the greenhouse model KASPRO (de
Zwart, 1996; Dieleman, Meinen, Marcelis, de Zwart, & van
Henten, 2005; Elings, de Zwart, Janse, Marcelis, & Buwalda,
2006; Luo, de Zwart et al., 2005; Luo, Stanghellini, et al., 2005)
which is extensively calibrated to represent a commercial
Venlo type Dutch greenhouse. For clarity of explanation the
KASPRO model is described as being divided into modules
which simulate the operation of the indoor greenhouse
climate, energy system and rule-based controller. The energy
asset control action is the response of the controller to acti-
vate the greenhouse energy assets (CHP, Boiler, lamps,
screens, and ventilation). The climate control action defines
the heating, lighting and CO; input to the greenhouse climate
from the energy assets.

2.2. Greenhouse climate module

The climate module models the indoor climate of the top and
main compartments of the greenhouse and includes 16 state
variables, including the indoor air temperature, carbon diox-
ide concentration, and vapour pressure. The greenhouse

Energy demand
e Electricity
demand

e (Gas demand

v

Climate variables

e Airtemperature

e Inside vapour
concentration

e [nside ambient
radiation

I
|
|
e Solar radiation |
|
|
|
|

(Actual) Rule based
e Outside vapour controller
density | |+ Window ventilation
e Boiler/ CHP <
activation

e Lamp lighting
e Insulation screening

A 4

Fig. 2 — This figure shows the relations of the modules within the KASPRO greenhouse model and the role of weather data.
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climate module (Fig. 2) receives input data from the outside
weather and the energy input to the climate from the energy
module. Figure 3 shows the relative position of the elements
in the greenhouse and their relation to the top and main
compartments. This includes the air above and below the
thermal screen, at the greenhouse cover and crop canopy
level, as well as in six layers of soil. The elements displayed in
this figure are not to scale. The transfer of water vapour, CO,
and energy between elements of the greenhouse are governed
by the processes of radiative and latent heat exchange, con-
duction, convection, ventilation, and condensation.

This study focusses on the states in the model describing
the indoor air temperature and water vapor pressure in the
main compartment in the form of differential equations (Egs.
(1) and (2)). The insight gained from the model's indoor air CO,
state (de Zwart, 1996) was not used in this paper as the rele-
vant outdoor CO, data was unavailable. The implications of
this limitation are examined using a sensitivity analysis
described in Appendix A.

The main compartment temperature (Eq. (1)) (de Zwart,
1996) is scaled by a fraction of air density (p,;,), specific heat
capacity of air (¢, qy) and the volume of air (vgy). This is then
multiplied by the net energy being transferred between the
regions of the greenhouse, composed of the heat gained from
the artificial lights (Pawair) and solar radiation (Psynair), Upper
and lower heating pipes (Hyppair; Hoowair) and the canopy
air(Heppair)- Also included are the heat lost to the floor (Hajrr),
top compartment (Hayrop), Shade screen (Hapsy), thermal
cover (Hajrcov)and the outside (Hairout)-

dTair o 1
dt Pair ® Cp,air ® Vair

-1
- HAirFIr - HAirTop - HAichr - HAirOut - HAirCov) |: o Ch :|

* (PAIuAir + PSlmAir + HUppAir + Hrowair + HCVpAir

(1)
Within the model the main compartment vapour pressure
state (Eq. (2)) (de Zwart, 1996) is defined as a fraction of the
water molar mass (My), the gas constant (R), the volume of air
(Vair) and the main compartment air temperature (Tqy). This
was then multiplied by the sum of the vapour released from
the canopy (Vcaair) and lost to the top compartment, screen,
cover and outside (Vairrop, Vairser> Vaircov, Vairout)-

dVPg; 1
dtulr = W L4 ( Veanair — VAivTop — Vairser — Vaircow — Vairout )
H R.TﬂlT
X [Pah’l}

2

For the purposes of this study a representative greenhouse
design was specified. This greenhouse is a Venlo type green-
house producing tomato in Bleiswijk, Netherlands. The
physical parameters of the greenhouse are shown in Table 1.

2.3.  Greenhouse energy module

The greenhouse energy module receives the data describing
the use of energy system components from the rule-based
controller. The energy module describes the amount of pipe
heating, lamp lighting and injected CO, input into the

Greenhouse
cover (Cov)
7

Top compartment

(Top)

| B N N N O A N N 2 N N N N KN N N KN X |

Thermal or

Upper heating pipe
u
(Upp) Main
(Air)

Lower heating
pipe (Low)

compartment

shade screen
(Scr)

......................... — Crop canopy

level (Can)

Soil and subsaoil

layers (Flr)

Fig. 3 — This figure shows a cross section of the modelled Venlo type greenhouse. The figure describes the location of the
greenhouse elements (screens, covers and pipes) within the greenhouse compartments as described in the KASPRO
greenhouse model. The elements in this figure are not to scale but shows their relative positions in the greenhouse and

abbreviations.


https://doi.org/10.1016/j.biosystemseng.2022.09.009
https://doi.org/10.1016/j.biosystemseng.2022.09.009

6 BIOSYSTEMS ENGINEERING 224 (2022) 1—I5

Table 1 — Parameters of the simulated greenhouse
structure.

Property Value Units

Footing area 24 ha

Total height 6.5 m

Number of windows 1200 ~

Number of chambers 1 ~

Gutter height 6 m

Cladding area 27,000 m?

Window size 25x1.2 m

Upper heating pipe diameter 0.027 m

Lower heating pipe diameter 0.051 m

Number of lower heating pipe 1.25 Pipes m—2
per floor area

Number of upper heating pipe 0.625 Pipes m~2

per floor area

greenhouse climate as well as the required gas and power to
operate the components of the energy system. These com-
ponents include a shading and energy screens. Heating was
supplied via a lower and upper heating rail pipe system from a
boiler, combined heat and power generator (CHP) and heat
storage tank. Lighting was supplied from two arrays of SON-T
1000 W HPS (High Pressure Sodium) lamps. The greenhouse
energy system components properties are listed in Table 2.

2.4. Rule-based controller

The rule-based controller module receives data from the
outside weather and the indoor greenhouse climate and out-
puts the usage of greenhouse energy assets to meet pre-
defined indoor climate conditions (Luo, de Zwart et al., 2005).
The use of energy assets was defined as the immediate frac-
tion of window aperture, fraction of lamp lighting levels and
fraction of insulation screen coverage. The controller also
dictates the temperature of the greenhouse heating system
via the control of the CHP and boiler.

The controller resembles an industrial grade controller
which operates from a considerable library of threshold-based
rules. The threshold values were defined by climate profiles
which detail desired climate conditions as a series of set
points over time, as well as the time, outside weather and the
actual indoor climate.

Table 2 — Properties of the greenhouse energy system

components relating to the capacity of the components,
and efficiency of energy assets.

Property Value Units
Lower heating pipe diameter 51 mm

CHP power rating 43 Wm2
CHP thermal capacity 60 Wm2
Artificial light intensity 0.648 mol m—2h~*
Upper heating pipe diameter 27 mm

CHP heating efficiency 47 %

Boiler thermal capacity 170 Wm2
Heat tank volume 1000 m?3
Boiler heating efficiency 94 %

CHP electrical efficiency 37 %

The climate profile used in this study has a relative hu-
midity set point of 85% and a requirement to light the
greenhouse for 18 h a day ending at 20:00. The temperature
climate profile has set points of 18°C between sunset and
sunrise, 20°C 1 h after sunrise, 19°C 1 h before sunset. For
consistency over the simulations the climate set point
scheme was kept the same for all weather forecast prediction
horizon lengths.

2.5.  Model assumptions

The greenhouse climate and energy system model were
implemented with some simplifications and assumptions.
Key simplifications and assumptions are listed below:

e The greenhouse compartments are homogeneous
spaces, with no spatial microclimate variation within
them.

e The effects of shadow screens, covers, ventilation
windows and artificial lighting on state variables are
uniform within their related regions of the greenhouse.

e The flow of water through the heating system was

assumed to be constant over time.

KASPRO (de Zwart, 1996; Dieleman et al., 2005; Elings

et al, 2006; Luo, de Zwart et al., 2005; Luo,

Stanghellini, et al., 2005) is an extensively calibrated

model and it is assumed that this calibration makes it a

sufficiently representative predictor.

e It is assumed that the predictions made using the
weather recordings represent a ground truth to be
compared with the weather forecasts. This is necessary
as it is not possible to record the performance of a real
greenhouse that operates using forecasts with no error
as no such forecasts exist.

2.6. Power market data

The cost of power trading in this study was calculated using
the Netherlands APX day-ahead and the imbalance market
price for power over the same period as the forecast data. The
APX day-ahead market was chosen as it represents the prices
upon which the majority of initial energy trading is done for
growers. The APX price data is applied in an uncertainty
analysis along with weather forecast data. This is done to
represent a medium-term energy planning scenario over
multiple days. To calculate the costs of corrective power
trading that is done based on the mispredicted power demand
the imbalance market price is used. The imbalance price was
chosen over the intra-day market due to the lack of avail-
ability of intra-day market data. In this study it is assumed
that the volumes of power traded by the grower do not affect
the market price.

2.7. Recorded and forecasted weather data

A dataset of hourly weather forecasts and weather recordings
is used in this study. The dataset includes hourly forecast and
recording variables of the outside temperature (°C), wind
speed (ms~! ) and global solar radiation (Wm~2). The forecasts
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have a five-day length and were generated at: 06:00, 09:00,
12:00, 15:00 and 17:00 over a two-month period (13 Oct
2019-16 Dec 2019), resulting in 292 five-day forecasts in total.
The forecasts were generated by the weather forecast com-
pany Meteoconsult and was sourced from an operational
greenhouse and is comparative to what information is avail-
able to growers.

The forecasts of outside vapour concentration (gm~3) were
not included in the original data set. In place of these fore-
casts, recordings were retrieved from a nearby KNMI (Konin-
klijk Nederlands Meteorologisch Instituut) meteorological
station for the same period of time were used in place of a
forecast. The outdoor CO, concentration for both the weather
forecast and recordings was assumed to be constant at
410 ppm, the impact of this assumption is examined in ap-
pendix A.

In addition, the cloudiness index (CI) was fixed to the
average of the period (CI = 0.7). A sensitivity analysis found
that this assumption has little impact on the study’s result, the
results of which can be seen in Appendix A. The sky temper-
ature (Luo, de Zwart et al., 2005) and levels of diffused radia-
tion (Orgill & Hollands, 1977) were computed using the
available climate variables. Any missing entries in the data-
sets were filled with the value at the previous time instance,
this was done for simplicity.

| Import weather data I

|

2.8.1: Compose weather

2.8. Uncertainty analysis method

This study uses a method that is described in four sections.
These sections describe the method used to compose the
weather forecasts, and to explain the uncertainty in the
weather forecast, energy prediction and power trading
respectively. The steps of the method, their relations, key
variables, and sections are shown in Fig. 4. This study ana-
lyses the effect of using weather forecasts of increasing
length (Q), from 1 to 5 days long at daily intervals. This study
defines uncertainty analysis as the analysis of a distribution
of errors.

2.8.1. Compose weather forecast series

This study uses series of weather forecasts with a horizon
length in hours (Q), where Q = [24,48,72,96,120]. These ho-
rizon lengths are indexed through using i = 1..imax, Where
imax = 5. For each weather forecast horizon length and fore-
cast starting time, a series of consecutive forecasts (XF) was
used. This series of forecasts spanned the time period of the
entire data set. Due to 5-day forecasts being recalculated
daily, it is possible to concatenate forecasts with periods
shorter than 5 days. This was done by truncating the weather
forecasts from their starting sample to the given horizon
length.

Q@) = Q(i+1)

forecast series (XF)
1

Y

¥

2.8.2: Weather forecast
uncertainty analysis :

— Calculate weather forecast
error (&F)

2.8.3: Energy demand
uncertainty analysis

— Simulate greenhouse
energy demand (Y)

— Calcualte energy demand
error (&)

2.8.4: Power trading
uncertainty analysis :

— Calculate inital trade cost
(€P)

— Calculate corrective trade
cost (C')

No

Isi > ipae?

end

Fig. 4 — The steps for the analysis method used in this study and the corresponding sections of the manuscript. Each step in
the figure includes title of the step, the corresponding section of the manuscript and the key variable from that step. This
method is iterated through each forecast prediction horizon length (Q) using the index i.


https://doi.org/10.1016/j.biosystemseng.2022.09.009
https://doi.org/10.1016/j.biosystemseng.2022.09.009

8 BIOSYSTEMS ENGINEERING 224 (2022) 1—I5

2.8.2. Weather forecast uncertainty analysis

To investigate the role of weather forecast uncertainty on
greenhouse energy prediction uncertainty, a sample based
uncertainty propagation method is adapted and applied (van
der Meer, Widén, & Munkhammar, 2018). In this study time
inis discretised using hourly time steps and each time interval
is defined by its length in hours, Q(i), and starting point (d,h),
where d is the day of the year, and his the hour in the day. The
hourly forecast error (sFQ(i)(d,h)) at each time instance is
defined as the difference between the weather recording
(X§;)(d,h)) and forecasts (X5, (d,h)):

e (d 1) =X (d B) — X (d.h) o)

These errors were then summed (&5) as this represented
the quantity of error made over a forecast period, such that,

=S¢ dh) (4)

2.8.3. Energy demand uncertainty analysis

The energy prediction error is calculated as the difference
between predictions calculated using weather forecasts and
predictions made with weather recordings for the same
period. The energy demand predictions Y from the model in-
cludes the gas demand Yg (m*m~2h~!) and power demand Yp
(Wm~2h-1) where Y = [Yp Yg|". The greenhouse energy de-
mand (Yg(i)) is calculated using the KASPRO model over a
period Q(i), with inputs equal to the forecasted weather data
(XF). This results in predicted energy demand as a function of
forecasted data,

Yo () =Y (Xg, @.h) 5)

Then the energy demand (Y&i)) is calculated using the recor-

ded weather data (X®) as input,

Yi(d. ) =Y (X (dh) ©)

The hourly prediction error (eg(i)) is calculated by
comparing the weather forecast and weather recording based
energy predictions. Where

82@(1 h)= Yé(i)(d-, h) — Y’ém (d,h) ?)

To avoid having the prediction errors cancel each other out
the positive and negative error are summed for each forecast
period (Q(i)) to represent the accumulated over-prediction
(¢f;) and accumulated under-prediction (¢£,) respectively.
Such that,

Q(i)
ehr(d) = thw . - ofo(d;h),and (8)

Qi)
gl;'T(d) = Zh:l.g}’(d.h) <o€l<)2(i) (d,h) )

The initially predicted energy demand (Y§;) and mis-
predicted energy demand (eg;)) are summed to allow a direct
comparison of the quantity of error made over a forecast
period, where,

G10)
Yr(d)=) , You(dh) (10)
Q()
@=>""h(dh),and 11)
2.8.4. Power trading uncertainty analysis

This study investigates the financial consequences of power
demand misprediction. These consequences are dependent
on the volume of misprediction and the price of power on the
markets it is being traded on. The hourly APX day-ahead
market price (PP) was used to calculate the power cost (CSW

of the initially predicted energy demand (Yg(i)), where,
CB(d, ) =PP(d, h)*Yh, (d, ) (12)

The cost of the corrective bidding (Cj; ) of the mispredicted
energy (e5;)) is calculated using the imbalance market price

(P and

Cl

Lo (d, ) =PH(d, h)*eb, (d, ) (13)

To analyse and display the distribution of costs the
matrices are concatenated into a vector. It should be noted
that the power that can be generated and sold from the
combined heat and power generator (CHP) is not considered in
this study. This analysis does not consider the cost of gas
demand as it is often fixed by contract unless a maximum
supply rate is exceeded, which is assumed to be the case.

2.9. Sensitivity analysis of energy demand predictions

To understand which weather variable's forecast has the
greatest effect on the predicted power and gas demand (Y) a
local discrete sensitivity analysis was performed. This sensi-
tivity analysis was done on the forecast and recorded weather
variables which include, outdoor temperature, global radia-
tion and wind speed. The first order error (AY!) of each
weather forecast variables are calculated (Xf). Each weather
forecast variable is in turn used to replace the corresponding
recorded weather variable and applied to calculate the energy
demand predictions with the remaining recorded weather
variables (X)-F ). The index k is the index of each weather fore-
cast variable and j is the index of the remaining weather
variables. Such that

AYL(d, h) =Y (XR(d, h)) —Y(Xf(d, h),xﬁ(d,h)) (14)
where all the weather forecast variables were made equal to
the recorded variables, except index k:

X =X5 j#k (15)

The second order error interactions (AY?) is calculated by
replacing pairs of weather forecast variables (X!, ) to assess
their combined influence. Where,

A, (@)=Y (X*(d b)) — Y (XF(d,h). X, (d. ) (16)
where
XF =X, j#n,j=m (17)

where m and n are the indexes of all pairs of weather
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forecast variables. To allow comparison between predicted
gas and power demand the percentile prediction error (ey)
was then calculated for the first and second order errors,
accordingly

(1.2} @) = 23:1 (AY“’Z} (d, h)) *
S (Y(X*(d. )
This percentile prediction error was then used to calculate

the first and second sensitivity indices (SI) which is defined as
the average absolute percentage error,

100 (18)

SI=]es (d)] (19)

3. Results

The results describe the effect of weather forecast uncertainty
on energy use predictions and are split into four sections. The
first section assesses the uncertainty in weather forecast
variables. The second section shows the effect of the weather
forecast error on greenhouse model prediction uncertainty
and how it changes with the length of the weather forecast
prediction horizon. The third section includes a power trading
uncertainty analysis using multiple markets and weather
forecast prediction horizon lengths. The last section in-
vestigates the interrelations between the input weather data
and energy predictions using a discrete sensitivity analysis.

3.1. Weather forecast uncertainty
Figure 5 presents the total weather forecast errors (Eq. (4))

within each forecast variable for an increasing forecast

Outside temperature forecast
total error boxplot

Outside radiation forecast
total error boxplot

horizon length. For all the forecast variables the mean error
becomes more negative, and the variance increases as the
horizon increases. This means that on average the forecast
consistently underestimates the available outside tempera-
ture, global radiation and wind speed.

3.2 Greenhouse gas and power demand uncertainty

The greenhouse gas and power demand were simulated using
different weather forecast prediction horizon lengths. Figure 6
shows that as the forecast horizon increases the variance and
mean of the over and under-predicted power and gas in-
creases. In addition, the amount of over-predicted power and
gas is greater than the under-predicted amount in both mean
and variation. Subsequently in this case the greenhouse
model tends to overestimate the power and gas demand. This
originates from the bias present in the weather forecasts,
namely, in the case of power demand, a negative bias in the
global radiation forecast error (Fig. 5), meaning too little nat-
ural light is being forecast. This result is also reflected in the
sensitivity results shown in Section 3.4.

3.3.  Greenhouse power trading uncertainty analysis

A comparison between the prices of the APX day-ahead and
imbalance market is shown in Fig. 7. The comparison shows
that the day-ahead price has a higher mean price than the
imbalance price. However, the imbalance price has a far
longer tail than the day-ahead price where extreme prices can
occur. In addition, the day-ahead price is strictly positive
during this period, and the imbalance price ranges over both
positive and negative values.

Outside wind speed forecast
total error boxplot
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Fig. 5 — Boxplots of the total weather forecast errors (Eq. (4)) made over the forecast prediction horizon forecast length (Q).
Where the encircled point is the mean, the box is the 1st, the whiskers are the 2nd standard deviations, and the open circles

are the outliers.
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Figure 8 shows the total volume of the initial and corrective
power demand prediction of a forecast period (Egs. 10 and 11).
The total volume of the initially predicted demand is much
greater than the corrective demand for all weather forecast
prediction horizon lengths. For both the initial and corrective
demand the mean increases, and the standard deviation de-
creases with the weather forecast prediction horizon length.
In addition, the initial and corrective demand has a positive
bias for all the forecast prediction horizon lengths. To better
look at the impact of misprediction on incurred costs only
nonzero results are shown for the power demand and costs
(Egs. 12 and 13) displayed in Fig. 9.

The comparative costs of the initial and corrective trading
are shown in Fig. 9 and are derived from Egs. (12) and (13). The
initial bid is the larger in mean cost than the corrective costs
and increases in mean and standard deviations as the forecast
prediction lengths increase. The corrective costs have a
greater variation and increase in mean cost with the forecast
prediction horizon lengths. The standard deviation of the
corrective costs does rise to a peak at a 72 h forecast horizon
before declining. The negative value of the corrective bid cost
represents the grower being paid as an incentive to purchase
power on the imbalance market. This can occur when there is
a surplus of power on the grid.
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Fig. 7 — A histogram of the market prices on the APX day-ahead and imbalance power markets.
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34.
demand

Sensitivity analysis of greenhouse gas and power

The sensitivity analysis shown in Fig. 10 is done using a 48-
h weather forecast. This analysis revealed that the power

demand prediction error is most related to the global radia-
tion forecast error. The gas use prediction error is most
related to the temperature forecast error, then the wind
forecast error and marginally to the global radiation forecast
error. Moreover, the error in gas prediction is highly sensitive
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error.

to the second order interactions of errors in forecast
variables.

4, Discussion

This study investigates the role of weather forecast error on
greenhouse energy demand prediction and power trading.
Additionally, this study considers the impact of each fore-
casted weather variable and how power trading is impacted
when using multiple markets. This study uses a method that
is not validated as part of this studies analysis but provides
novel and relevant insight into the management of energy in
greenhouses.

This study explores how weather forecast errors can result
in the misprediction of both gas and power demand in a
greenhouse. In this specific study, the prediction uncertainty
suggests an overprediction of the gas and power demand of
the greenhouse. The overprediction of energy demand is
linked to the notable negative bias in the temperature and
global radiation forecast errors (Fig. 5). As a result, the amount
of available natural heat and radiation is being consistently
underestimated and as a result excess gas and power is being
bought to meet this perceived deficit (Fig. 6). It should be noted
that the overprediction of the greenhouse energy demand in
this study is case specific and it is entirely possible for
different weather forecasts to produce alternate patterns of
misprediction. However, this study demonstrates that the
effects of misprediction can be large. The analysis also con-
cludes that the cumulative amount of energy being mis-
predicted increased with the weather forecast prediction
horizon length, corroborating the conclusions of Tap et al.
(1996). This is understandable as longer forecasts should

become progressively more uncertain. The conclusions made
on the volume of the predicted energy demand were made
using a winter dataset and have not been extrapolated to the
whole year. This is as the winter is the season of the highest
use of artificial lighting in practice and requires more power
than the rest of the year.

The sensitivities of the energy predictions to weather
forecast variables showed that gas prediction is sensitive to
wind and temperature forecast error while power prediction
is sensitive to the global radiation forecast error (Fig. 10). This
observation is due to the fact that the global radiation fore-
cast directly influences the need for supplementary artificial
lighting and therefore the power demand. Gas is used to
provide heat and its demand depends on heat moving
through the greenhouse based on the temperature gradient
between the inside and outside temperature and the
convective energy transported through the greenhouse shell.
The dependence of gas use prediction error on the tempera-
ture forecast and not the global radiation forecast may be
because the data set used in the study was from a Dutch
winter where the ambient radiation levels are low. In sum-
mer one would expect that both the outside radiation and
temperature would have a large effect on gas demand pre-
diction as solar radiation is a key source of natural heat in the
greenhouse. These results were calculated using 48-h long
weather forecasts and as such this assumption excludes how
these sensitivities might change over varying weather fore-
cast prediction horizon lengths. While this does provide an
opening for future research this study has shown that the
broad trends and biases in the weather forecast error are
consistent for all horizon lengths. Consequently, it is antici-
pated that the conclusions of this analysis would be broadly
consistent for all horizon lengths.
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The power trading uncertainty analysis included in this
paper offers a number of key insights into how weather
forecast error might affect the power trading process and
economic efficiency of the greenhouse. Most prominently, the
corrective trading of mispredicted power can impact the
economic performance of the greenhouse. This impact arises
from the fact that although the volume of power being traded
in corrective bidding is relatively smaller than the initial trade
(Fig. 8), the corrective imbalance price is more volatile (Fig. 7).
This can lead to the grower risking a higher price for their
power than if it had been bought correctly in the initial trade.
In this way it is better to reduce the impact of weather forecast
error to mitigate the risk of volatile short-term prices.

Additionally, the power trading analysis confirmed the
conclusion of Sigrimis et al. (2001), in that the inclusion of
forecast errors increases the operating costs of a greenhouse.
Moreover, these costs worsen with the increasing length of
the weather forecasts as can be seen by the increase in the
mean costs for both the initial and corrective trading (Fig. 9).
Subsequently shorter weather forecasts would be preferable
for minimising error. Interestingly the standard deviation of
the initial and corrective power demand decreases as the
forecast horizon increases. A hypothesis is that the errors
tend to cancel out when summed over longer periods. So, a
large deviation from the mean is less probable for a long
prediction horizon. An analysis should be performed with a
larger dataset for more reliable conclusions to be drawn. It
should also be noted that the markets used are Dutch and
conclusions may vary based on the region of the market used.
Another interesting observation is that the standard deviation
of the corrective power demand costs (Fig. 9) rises to a peak at
a 72 h long forecast and then decreases. This is a potential
result of a combination of lower prediction error at shorter
forecast lengths and a cancellation of costs at longer forecasts
lengths. Indeed, this happened in the corrective costs and not
the initial costs as the price distribution for the day-ahead
market has a greater bias to positive values, whereas the
imbalance price is more centred on zero and takes negative
values more frequently, as can be seen in Fig. 7.

While this method is simple to apply it calculates the
prediction error directly, without the assumptions related to
the initial distribution of the weather forecast error that have
been used in previous studies (Seginer et al., 2018; Su, Xu, &
Goodman, 2017b). Thus, the conclusions drawn from this
method are inexorably linked to the weather forecast dataset
as they are so spatially and temporally specific. While this
specificity makes conclusions difficult to generalise it could be
done using large or varied forecast datasets and multiple
greenhouse models. Despite this the use of direct comparison
of energy predictions in this method means that it can be
applied other greenhouse systems and model formats and
offer the same analysis. Moreover, this method can be applied
to data from any place or time and produce relevant insight.

This study does not include outside CO, data but assumes
it is constant, this presents limitations to the conclusions
regarding energy consumption as one use of a CHP is to pro-
vide supplementary CO,, which in turn is dependent on the
outside conditions. The operation of the CHP for this purpose
also affects the greenhouse energy demand due to the power
and heat that is also produced. The inclusion of outside CO,

data may offer insight into how the CHP is operated based on
motives other than power demand and how that might affect
selling surplus power to the grid. As this study is conducted in
winter when the demand for supplementary CO, is less, it is
anticipated that this surplus power will be relatively minor
when compared to the power trading discussed in this study.

Alimitation of this study is that the economic analysis uses
the imbalance market price for the short-term trading of
power. While the imbalance price has been used in previous
research (van Beveren et al., 2019) it is more common in
practice to use the intra-day market price. Despite this limi-
tation the conclusions of this study are relevant as the
imbalance and intra-day markets are comparable represen-
tations of short-term power prices.

The possible practical consequences of energy demand
prediction error and the subsequent power trading are that
grower may lose economic efficiency by having to trade on the
more volatile short-term markets. These short-term markets
are often supplied by immediately accessible power, often
originating from fossil fuels. As a result, decreasing the
corrective power trading of a greenhouse may also help
reduce its carbon footprint. To try and achieve this the
weather forecast bias could be accounted for in the energy
prediction and energy buying process. This would need to
have a highly localised approach as the variations in local
climate strongly influence the validity of the global radiation
forecast as demonstrated by Doeswijk and Keesman (2005).

Additionally, the insight from the sensitivity analysis pre-
sents an opportunity to improve the data collection and
screening process by identifying weather forecast data with
errors that disproportionally impact the uncertainty of model
prediction. In particular this study's conclusion that the global
radiation forecast is a key cause of power misprediction par-
allels the importance of accounting for the error in radiation
sensors found in Bontsema, van Henten, Gieling, and Swinkels
(2011). This type of insight can drive more efficient energy
consumption in the horticultural sector, but also extends to
any facility that uses weather forecasts to define its climate
and energy buying strategy, such as food storage warehouses
and offices.

5. Conclusion

To conclude, this study investigates the role of weather fore-
cast uncertainty and its effect on greenhouse energy demand
prediction and power trading. This was done through the
direct comparison of predictions made with weather re-
cordings and forecasts. The economic analysis of power
trading was done using multiple markets to quantify the costs
more realistically.

This study shows a clear bias in the prediction of gas and
power demand to buy more than is necessary when using a
weather forecast. This bias is linked to the high sensitivity of
the energy predictions to underestimate of temperature and
global radiation in the forecasts in this study. The error pre-
sent in weather forecasts and in greenhouse energy demand
predictions do increase with longer weather forecast predic-
tion horizon lengths. The power trading analysis concluded
that while the volume of initial trading was greater than the
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corrective trading, the higher volatility in short term Imbal-
ance market prices can result in higher costs per unit of
power. Additionally, the means of the demand and cost of
both initial and corrective demand increase with the forecast
horizon prediction length. A sensitivity analysis was done on
the weather forecast variables and concluded that in the
Dutch winter case the global radiation forecasts have the
greatest impact on power prediction error (6.1%), whereas gas
demand prediction is strongly influenced by the wind (18.0%)
and outside temperature forecast (17.2%).
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Appendix A. Cloudiness index and ambient CO,
level sensitivity analysis

A Sobol sensitivity analysis (Saltelli et al., 2008) was performed
to assess the impact of the assumptions made about the
weather data used in this study. The assumptions that are
included are (Table 3) that the cloudiness index (CI) is constant
at 0.7 and that the Outdoor CO; level (CO,,,,) is constant at
410 ppm.

To perform a sensitivity analysis, the parameter CO,_, has
a normal prior distribution defined. Its mean is the nominal
value used in the study, with a standard deviation (s.d) defined
so that the 99th percentile of the prior is approximately +10%
of the mean value:

s.d=(0.1*mean) /5 (20)

The cloudiness index parameter (CI) has a prior distribu-
tion that is defined as a uniform distribution. This distribution
shape and limits are chosen based on expert opinion and the
distribution of historical cloudiness index data. The limits of
this prior are defined as being between 0.4 and 0.8.

Table A3 — Parameter priors used in the assumption
sensitivity analysis

Normal distribution Uniform distribution

Outdoor CO; (COy,,) Cloudiness index (CI)

Mean 410 Min 0.4

Standard 8.20 Max 0.8
deviation

Assumed 410 0.7
value

These parameter distributions are sampled 1000 times
using a Monte-Carlo method. This set of samples are used to
simulate 1000 greenhouse power demand predictions using
the KASPRO model and recorded weather data setup
described in Sections 2.1-2.8.

These simulations when used in the Sobol sensitivity
framework concluded that the prediction of greenhouse
power demand is completely insensitive to variations in the
two parameters included in this analysis. This result is logical
as within KASPRO the greenhouse power demand is derived
from the lamp lighting power demand and the parameters
CO,,,, and CI are not included in the control of the lamp
lighting. In the case of the CI, this parameter is used to
calculate the diffuse radiation but a separate data stream, the
global radiation, is used to control the lighting. This means
that while the values used in these assumptions should be
realistic, their precise value has no impact on the analysis
done in this study.
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