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A B S T R A C T   

Products for food and feed derived from genetically modified (GM) crops are only allowed on the market when 
they are deemed to be safe for human health and the environment. The European Food Safety Authority (EFSA) 
performs safety assessment including a comparative approach: the compositional characteristics of a GM ge
notype are compared to those of reference genotypes that have a history of safe use. Statistical equivalence tests 
are used to carry out such a comparative assessment. These tests are univariate and therefore only consider one 
measured variable at a time. Phenotypic data, however, often comprise measurements on multiple variables that 
must be integrated to arrive at a single decision on acceptance in the regulatory process. The surge of modern 
molecular phenotyping platforms further challenges this integration, due to the large number of characteristics 
measured on the plants. This paper presents a new multivariate equivalence test that naturally extends a recently 
proposed univariate equivalence test and allows to assess equivalence across all variables simultaneously. The 
proposed test is illustrated on plant compositional data from a field study on maize grain and on untargeted 
metabolomic data of potato tubers, while its performance is assessed on simulated data.   

1. Introduction 

Many countries have established procedures to assess the safety of 
foods derived from genetically modified (GM) crops. A standard step in 
such a risk assessment is the evaluation of the compositional charac
teristics of the GM crop. The European Food Safety Authority (EFSA) 
performs such safety assessment using a comparative approach which 
combines difference tests and equivalence tests. Difference tests are 
traditional tests to find possible differences between the tested new 
genotype (T) and a designated control genotype (C). Equivalence tests 
compare T to a collection of reference genotypes (R) that have a history 
of safe use, i.e. existing genetic variation in the crop. Such tests are the 
focus of this paper. Typically, the set of references comprises commer
cial varieties of the crop. For the assessment, EFSA requires a field 
experiment to be carried out in which compositional characteristics of 
the new and established crops are measured. The tests serve as a general 
screening method against unintended effects of the genetic 
modification. 

Currently, regulatory comparative safety assessment focuses on a 
limited number of crop-specific nutrients and anti-nutrients (variables), 
as listed in OECD consensus documents (OECD, 2015b, 2015a, 2019). 

The equivalence test is applied to demonstrate equivalence between T 
and R for each analyte separately. EFSA suggested to carry out the test 
by comparing the mean difference between T and R with an equivalence 
limit that may be known, fixed based on expert knowledge or estimated 
from data (EFSA, 2010). In human health food safety, equivalence limits 
are typically estimated from reference genotype data to account for the 
natural variation between genotypes. An evaluation of the use over a 
decade of equivalence tests by EFSA has been made ( Kleter, 2022). 
Improvements to the EFSA approach have been proposed (Q Kang and 
Vahl, 2016; Vahl and Kang, 2016; Engel and van der Voet, 2021). 

Safety assessment may benefit from the use of omics platforms which 
allow for deep molecular phenotyping of plant material in great detail. 
In this context (EFSA, 2018), has discussed the use of transcriptomics 
and untargeted metabolomics for safety assessment of foods derived 
from GM crops. While there is an ongoing debate about the added value 
and potential role in safety assessment of such phenotypic data 
compared to more traditional compositional data (Fedorova and Her
man, 2020; Fraser et al., 2020), some methods have been proposed for 
the analysis of transcriptomics and metabolomics data (Kok et al., 2019; 
Brini et al., 2021). These methods are not equivalence tests, but can be 
more generically labelled as multivariate classification methods to 
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identify aberrant profiles. The adoption of multivariate approaches for 
omics data contrasts with the univariate approaches commonly adopted 
for compositional data. The multivariate approach may be particularly 
useful for instance for untargeted metabolomic data in which the iden
tity of analytes may be unclear or unknown and for which univariate 
approaches are seemingly less meaningful. 

In food safety, application of multivariate and univariate equiva
lence tests would lead to different types of conclusions about the 
equivalence of T with R. A multivariate test would assess equivalence at 
a global level considering all analytes at once, whereas the univariate 
test assesses equivalence separately for each analyte, i.e. at a local level. 
Accordingly, multivariate and univariate equivalence testing are com
plementary rather than competing, both providing insight at different 
levels. 

Testing local equivalence for multiple analytes raises concerns about 
the increased probability of declaring false equivalences (type I errors). 
These concerns become more important as the number of analytes in
creases. For difference tests, this multiple testing problem is well-known 
and many solutions have been proposed to address it (Dudoit and van 
der Laan, 2008; Goeman and Solari, 2014). However, these solutions 
may not be applicable in an equivalence testing context. Some works 
have discussed the multiplicity problem for equivalence testing in food 
safety (Vahl and Kang, 2017; van der Voet, 2018) but there is not yet 
consensus on how to perform multiplicity correction for equivalence 
tests. 

Showing global equivalence allows to quantitatively assess the safety 
of T without focusing on a particular aspect of the composition of the 
crop. When global equivalence cannot be shown, local equivalence 
testing allows to pinpoint compositional characteristics of the new crop 
for which there may be unintended effects. 

To our knowledge, no multivariate equivalence testing approach has 
been proposed for food safety assessment. The proposed multivariate 
classification methods (Kok et al., 2019; Brini et al., 2021) are useful to 
identify aberrant compositional profiles but these do neither show 
equivalence between T and R, nor estimate equivalence limits, nor 
control the type I error of falsely declaring equivalence. Some multi
variate equivalence tests have been proposed in clinical applications 
(Chervoneva et al., 2007; Wellek, 2011; Hoffelder et al., 2015) but only 
for simple experimental designs and assuming fixed equivalence limits. 

In this paper we propose a multivariate test for assessing global 
equivalence in the comparative assessment of a test genotype with a 
collection of reference samples. This test may be used on high- 
dimensional data, where the number of measured analytes is much 
larger than the number of samples. The proposed method uses a multi
variate generalization of the distribution-wise equivalence (DWE) cri
terion proposed for food safety assessment (Vahl and Kang, 2016; van 
der Voet et al., 2017; Engel and van der Voet, 2021). The DWE criterion 
measures the relative discrepancy in distribution between the test ge
notype and the collection of all reference genotypes. The proposed 
method relies on generalized pivotal quantities (GPQs) to construct 
confidence intervals for the multivariate equivalence criterion and on 
the desired power (DP) approach of (van der Voet et al., 2017; Engel and 
van der Voet, 2021) to estimate the equivalence limit, i.e., the threshold 
used to indicate lack of equivalence between genotypes. The proposed 
method is assessed on simulated data and illustrated on maize compo
sitional data as well as potato metabolite profile data generated by using 
an untargeted mass spectrometry-based metabolomics approach. For 
local interpretations we add also univariate results. 

The paper is organized as follows. In Section 2, we introduce the 
multivariate statistical model and equivalence criterion, the inference 
methods used to carry out multivariate equivalence testing, two case 
studies and a simulation study. Section 3 describes results of the pro
posed test on maize compositional data and metabolomic data of potato 
tubers. Also reported are the results of computer simulations assessing 
the power of the multivariate equivalence test. Finally, a discussion of 
results is provided in Section 4. 

2. Method 

2.1. Statistical model 

We consider a field experiment in which a new genotype (test) is 
compared to established (reference) genotypes on multiple sites. Ge
notypes are block randomized within sites, although they may not be 
present at all sites. We denote by ns the number of sites, nb the number of 
blocks within sites, nr the number of references genotypes. Although not 
needed for the proposed equivalence test, we also include for 
completeness the conventional counterpart of the new genotype that is 
often included in experiments as a control, thus nv = nr + 2 is the total 
number of genotypes. 

2.2. Univariate model 

Measurements on plants are typically continuous and modeled, 
possibly after transformation, using a normal linear mixed model 
(LMM). Let yijk be the response of genotype i in block k at site j, then the 
following univariate LMM is used to compare the different genotypes 
(van der Voet et al., 2017; Engel and van der Voet, 2021): 

yijk =m+ di + sj + bk(j) + eijk, di ∼N
(
0,ω2) for i> 2, eijk ∼ N

(
0, σ2), (1)  

with i = 1,…, nv, j = 1,…, ns, and k = 1,…, nb, and where nv, ns, and nb 

denote respectively the numbers of genotypes, sites and blocks. For the 
model to be identifiable, the following contrasts (constraints on fixed 
effects) are imposed: 

∑

j
sj = 0 and 

∑

k
bk(j) = 0. 

In the above model, the factor genotype (di) has both fixed levels, for 
the test (i = 1) and control (i = 2) genotypes, and random levels for the 
reference genotypes (i > 2). This means that the model may, by parti
tioning of the data, be written in terms of two models, one with the fixed 
levels of the genotype factor and the other with its random levels (Njuho 
and Milliken, 2005, 2009). 

The intercept m represents the mean of the reference genotypes (as a 
whole), and d1 (resp. d2) represents the mean difference between the test 
(resp. control) and reference genotypes. The parameter sj represents the 
effect of site j and bk(j) the nested effect of block k within site j. Random 
effects in model (1) are assumed to be mutually independent. 

2.3. Multivariate model 

In the case where p variables have been measured on each experi
mental unit, a multivariate normal LMM is used to compare genotypes. 
Let Yijk be the (p-dimensional) response of genotype i in block k at site j, 
then the multivariate LMM is 

Yijk = μ+Δi + γj + βk(j) + εijk,Δi ∼Np(0,Ω) for i> 2, εijk ∼ Np(0,Σ). (2)  

Here Ω represents the covariance matrix between analytes for the 
reference genotypes and Σ the residual covariance. Similarly to the 
univariate LMM, the following contrasts are imposed: Δ1 = 0p, 

∑

j
γj = 0p 

and 
∑

k
βk(j) = 0p, with 0p being a column-vector with p elements all 

equal to 0. 
The multivariate LMM is a generalization of the univariate LMM. As 

for its univariate counterpart, the intercept μ represents the mean vector 
of the reference genotypes for all variables, and Δ1 (resp. Δ2) represents 
the vector of mean differences between the test (resp. control) and 
reference genotypes on all variables. Site and block effects are also 
modeled using vector parameters. As in model (1), the random effects in 
model (2) are assumed to be mutually independent. 

Correlations between variables are modeled through the covariance 
matrices Ω and Σ. However, accounting for correlations comes at the 
price of having many additional parameters to estimate. Indeed, each 
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covariance matrix has p(p − 1)/2 free parameters, which means that the 
number of parameters increases quadratically with p. When p = 10 for 
example, there are 45 parameters to estimate in each covariance matrix, 
whereas when p = 100 there are 4950 parameters. Having too many 
parameters to estimate poses major statistical and computational 
problems, which may be overcome by increasing the sample size, 
assuming a low-rank structure for the covariance matrices or using 
statistical regularization. Increasing the sample size may be difficult in 
practice and assuming a low-rank structure maybe too restrictive when 
the number of variables is not small. Also, to our knowledge, no statis
tical software allows the fitting of a multivariate LMM with low-rank or 
regularized estimation of covariance matrices for problems where p >

30. For these reasons, the covariances matrices Ω and Σ are in this paper 
assumed to be diagonal matrices when fitting the multivariate LMM. 

It is insightful to compare expressions of expectations and variances 
under the univariate and multivariate LMMs. Table 1 reports expres
sions for the expected responses of the test, control and reference ge
notypes, as well as the variances for differences between the test and 
reference genotypes and differences between (pairs of) reference geno
types. Table 1 highlights the (scalar) parameters of interest in the uni
variate LMM and their (multivariate) counterparts in the multivariate 
LMM. 

The multivariate LMM provides a framework for the derivation of 
multivariate equivalence criteria that considers all variables simulta
neously. Next Section discusses such criteria. 

2.4. Equivalence criteria 

We are interested in assessing the difference between the test geno
type and the collection of reference genotypes based on multivariate 
measurements on plants. The distribution-wise equivalence (DWE) cri
terion has been advanced by various authors (Vahl and Kang, 2016; van 
der Voet et al., 2017) as an appropriate univariate measure of discrep
ancy that circumvents some of the drawbacks of the EFSA approach. We 
here discuss multivariate generalizations of the DWE criterion. 

Following (van der Voet et al., 2017), the univariate DWE criterion is 
defined, in the context of the univariate LMM, as the expected squared 
difference between the test and reference genotypes relative to the ex
pected squared difference between (pairs of) references: 

E
[(

y1jk − yijk
)2
]

E
[(

yi1jk − yi2jk
)2
]=

d2
1 + ω2 + 2σ2

2ω2 + 2σ2 . (3)  

Here i, i1, i2 > 2 and i1 ∕= i2. The DWE criterion therefore assesses the 
difference between the test and references genotypes relative to typical 
differences between reference genotypes. 

The univariate criterion is strictly positive and equals 1 when the test 
genotype is assumed to be from the same population as the reference 
genotypes (because the numerator equals 2ω2 + 2σ2when assuming d1 ∼

N(0,ω2)). Although coming from the same population is not a necessary 
condition to achieve equivalence, this may indicate that in practice the 
range of values taken by the criterion when the test genotype is nearly 
from the same population as that of the reference is expected to be close 
to 1. 

Using the multivariate LMM, a multivariate generalization of the 
above DWE criterion can be constructed. We here propose a rather 
general formulation for the multivariate DWE that is defined as the 
expected weighted sum of squared differences (across all variables) 
between the test and reference genotypes relative to the expected 
weighted sum of squared differences between references. We write: 

E
[(

Y1jk − Yijk
)TA− 1(Y1jk − Yijk

)]

E
[(

Yi1jk − Yi2jk
)TC− 1(Yi1jk − Yi2jk

)]=

∑p

r=1

(
d2

1r+ω2
r +2σ2

r
ar

)

∑p

r=1

(
2ω2

r +2σ2
r

cr

) , (4)  

where ω2
r and σ2

r are respectively the variance of reference genotypes 
and errors for variable r (i.e. the rth diagonal elements of Ω and Σ) and d1r 

is the mean difference between the test and reference genotypes for 
variable r. A and C are p by p diagonal weight matrices (i.e. without 
weights for correlations between analytes for parsimony) whose rth di
agonal elements are ar and cr, respectively. Clearly, in the particular case 
where p = 1 and a1 = c1 the univariate DWE criterion (Engel and van 
der Voet, 2021) is retrieved. 

The above formulation of the multivariate DWE is relatively general 
and allows differential weighting of squared differences for each vari
able. Different choices of weights yield different multivariate informa
tion criteria. Table 2 provides expressions of criteria for six different 
choices of weights. Criterion 1 assigns equal (unit) weights on the 
squared differences whereas other criteria assign unequal weights. More 
precisely, squared differences are weighted by the variance of reference 
genotypes for criterion 2, the residual variance for criterion 3, the 
variance of differences between test and references for criterion 4, and 
the variance of differences between reference genotypes for criterion 5. 
Criterion 6 has the particularity of weighting differently the sum of 
squared differences between the test and references (numerator) and the 
sum of squared differences between references (denominator), each 
weighted by the variance of the corresponding differences. 

Each multivariate DWE criterion in Table 2 combines information of 
all variables possibly giving more weight to variables that are consid
ered more important (in some sense). For safety assessment it is 
reasonable to assume that some measured variables are more important 
than others. For this reason, criterion 1 that weights uniformly variables 

Table 1 
Comparison of expectation and variance expressions in the univariate and 
multivariate LMMs. The first three rows provide expressions for the expected 
responses of the test, control and reference genotypes under the univariate and 
multivariate LMMs. The last two rows provide expressions for the variance of 
differences between test and reference genotypes and the variance of differences 
between reference genotypes.   

Univariate Multivariate 

Test genotype (i = 1) E[yijk] = m+ d1 E[Yijk] = μ+ Δ1 

Control genotype (i = 2) E[yijk] = m+ d2 E[Yijk] = μ+ Δ2 

Reference genotypes (i > 2) E[yijk] = m E[Yijk] = μ 
Differences test-references (i1 =

1, i2 > 2) 
V[yi1k − yi2 jk] = ω2 +

2σ2 

V[Yi1 jk − Yi2 jk] = Ω+

2Σ 

Differences references (i1 ∕= i2, i1,
i2 > 2) 

V[yi1 jk − yi2 jk] =

2ω2 + 2σ2 

V[Yi1 jk − Yi2 jk] =

2Ω+ 2Σ  

Table 2 
Expression of the multivariate equivalence criterion for different choice of 
weights.   

Weights Multivariate DWE 

1 ad = cd = 1 ∑p
r=1d2

1r + ω2
r + 2σ2

r
∑p

r=12ω2
r + 2σ2

r 
2 ar = cr = ω2

r ∑p
r=1

d1r

ω2
r

2
+ p + 2

∑p
r=1

σ2
r

ω2
r

2p + 2
∑p

r=1
σ2

r
ω2

r 
3 ar = cr = σ2

r ∑p
r=1

d2
1r

σ2
r
+
∑p

r=1
ω2

r
σ2

r
+ 2p

2
∑p

r=1
ω2

r
σ2

r
+ 2p 

4 ar = cr = ω2
r + 2σ2

r ∑p
r=1

d2
1r

ω2
r + 2σ2

r
+ p

2
∑p

r=1
ω2

r + σ2
r

ω2
r + 2σ2

r 
5 ar = cr = 2ω2

r + 2σ2
r 1

p
∑p

r=1
d2

1r + ω2
r + 2σ2

r
2ω2

r + 2σ2
r 

6 ar = ω2
r + 2σ2

r , 
cr = 2ω2

r + 2σ2
r 

1+
1
p
∑p

r=1
d2

1r
ω2

r + 2σ2
r  
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may not be appropriate. Criterion 2 gives more weight to variables for 
which reference genotypes have small variability. However, variance 
estimates for random effects may be equal to zero and result in unde
fined variance ratios. Instead, criterion 3 gives more weight to variables 
with small residual variance. All variance ratios are well defined in this 
criterion but the natural variability in reference genotypes is ignored. It 
would be preferable to have a criterion that use this variability. Criterion 
4–6 all use the residual variance and the natural variability in reference 
genotypes and result in well-defined variance ratios. Criterion 6 has the 
disadvantage of not reducing to the univariate DWE when p = 1 and 
criterion 4 is found to lack interpretability (the ratio has no clear 
meaning) in comparison to criterion 5. Indeed, criterion 5, which gives 
more weight to variables with small variance for typical differences 
between references, is equal to the average of the univariate criteria. We 
therefore propose to use this intuitive quantity as multivariate criterion 
to carry out equivalence testing and write: 

θ=
1
p
∑p

r=1

d2
1r + ω2

r + 2σ2
r

2ω2
r + 2σ2

r
=

1
p
∑p

r=1
θr , (5)  

with θr denoting the univariate DWE criterion, defined in (3), for vari
able r. In other words, the multivariate criterion θ, particular case of (4), 
is the average of the univariate criteria over p analytes. 

2.5. Equivalence test 

Large values of θ indicate a lack of equivalence, globally across all 
variables, whereas small values indicate global equivalence. Hence, to 
statistically assess equivalence between test and reference genotypes we 
test: 

H0 : θ ≥ L versus H1 : θ < L  

where L represents an equivalence limit, i.e. a threshold beyond which 
the values of θ are considered large enough to indicate a lack of 
equivalence. 

The choice of equivalence limit is important for the equivalence test. 
However, it is difficult in practice to choose a suitable value. This is true 
in univariate settings, where only one variable is measured, but partic
ularly so in multivariate settings where information from multiple var
iables is summarized in a single quantity with no clear biological 
meaning. For these reasons we choose to estimate the equivalence limit 
from the data (see section 2.5). 

2.6. Statistical estimation and inference 

Estimation and inference in the multivariate LMM is facilitated by 
the assumptions of independence for the residuals and random effects 
(the covariance matrices Ω and Σ are diagonal matrices with unspecified 
diagonal elements). The multivariate model may therefore be seen as a 
collection of separate univariate LMMs for which univariate estimation 
procedures can readily be used. In this paper, the approach of (Engel and 
van der Voet, 2021) is adopted: variance parameters are estimated using 
Henderson’s method III, fixed effects estimated by generalized least 
squares, and confidence intervals for parameters of interest obtained 
with generalized pivotal quantities (GPQs), an established approach 
developed by (Tsui and Weerahandi, 1989; Weerahandi, 1993) and 
successfully used in food safety assessment (Qing Kang and Vahl, 2014; 
van der Voet et al., 2017). 

The GPQ for the multivariate equivalence criterion θ is obtained 
from the GPQs of univariate equivalence criteria. Precisely, GPQ(θ) =
1
p
∑p

r=1GPQ(θr)with 

GPQ(θr)=
GPQ

(
d2

1r

)
+ GPQ

(
ω2

r

)
+ 2⋅GPQ

(
σ2

r

)

2⋅GPQ
(
ω2

r

)
+ 2⋅GPQ

(
σ2

r

) .

Samples from the GPQ of the multivariate equivalence criterion θ are 

therefore obtained by generating samples from the GPQs of univariate 
equivalence criteria, which is done by sampling from the GPQs of in
dividual parameters that belong to known parametric distributions 
(Engel and van der Voet, 2021). 

The proposed multivariate equivalence criterion is an average esti
mator and its GPQ can, by the central limit theorem and independence 
assumption, be also approximated by a normal distribution when p is not 
small: 

GPQ(θ) ∼ N

(
1
p
∑p

r=1
EGPQ(θr),

1
p2

∑p

r=1
VGPQ(θr)

)

Here EGPQ(θr) and VGPQ(θr) represent the expectation and variance of 
the GPQ of the univariate criterion for variable r. The above approxi
mation allows to compute the P-value (i.e. the proportion of the GPQ 
distribution above the EL) associated with θ more accurately than by 
sampling from GPQ(θ) as accuracy is limited by the number of samples 
drawn. The normal approximation may also be useful in reducing 
computational burden (memory storage and speed) of sampling-based 
inference approaches such as GPQs. It is indeed sufficient to have esti
mates of two summary statistics (expectation and variance) from the 
sampling distribution of each univariate criterion to approximate the 
sampling distribution of θ, and these estimates may be computed 
accurately with a relatively small number of samples. In Section 3.1 we 
show that the normal approximation of GPQ(θ) is accurate. 

2.7. Equivalence limit 

To estimate the equivalence limit we adapt the DP approach of Engel 
and van der Voet (2021), which consist in choosing the limit so as to 
control the statistical power of showing equivalence. This is done by 
simulating data sets of “safe” cases, where the test and references are 
assumed to be from the same population. Below, we describe the esti
mation procedure. Briefly, for each generated dataset a one-sided upper 
confidence limit for θ is computed by determining the appropriate 
quantile of the GPQ distribution of θ (using simulation or the normal 
approximation; see Section 2.4). Then, the equivalence limit is estimated 
by the appropriate percentile of the distribution of upper confidence 
limits to control the desired level of statistical power. 

Estimation procedure for the equivalence limit:  

1. Generate a data set of “safe” cases using the multivariate LMM  
2. Obtain a 100(1 − α)% upper confidence limit for θ using method 

described in Section 2.4 
3. Repeat step 1 and 2, say M = 1000 times, and obtain upper confi

dence limits θupp
1 ,…,θupp

M  

4. Estimate the equivalence limit L by L̂, the 100(1 − β)% percentile of 
θupp

1 ,…,θupp
M 

In the above procedure, 1 − β represents the desired level of power 
for showing equivalence. The null hypothesis of non-equivalence is 
rejected when the estimated equivalence limit L̂ is not contained within 
the one-sided 100(1 − α)% confidence interval. 

In step 1, datasets of “safe” cases are generated using the multivariate 
LMM described in Section 2.1 using unit variance random effects for 

sites and blocks, residual covariance matrix Σ̂ = diag(σ̂2
1 ,…, σ̂2

1) with 

error variance estimates on its diagonal, and covariance matrix Ω̂ =

̂
D1/2

ω R̂ ̂D1/2
ω for the random effects of reference genotypes. The latter is 

decomposed into a variance matrix D̂ω = diag(ω̂2
1 , …, ω̂2

1 ), with refer
ence variance estimates on its diagonal, and a correlation matrix R̂. We 
have observed that using R̂ = Ip yielded estimates of equivalence limit 
that were too small and overcome this by using estimates of correlations 
to better mimic variability in the data. Precisely, we estimate 
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correlations from the data of reference genotypes (average over sites and 
blocks) using the POET estimator of (Fan et al., 2013) that is a low-rank 
estimator with computationally fast data-driven rank estimation. 

2.8. Case study: maize compositional data 

The multivariate equivalence test was applied to maize composi
tional data for the comparative assessment of a GM genotype with a set 
of 13 reference genotypes. This data set has previously been analyzed by 
(van der Voet et al., 2011) and we refer to this article for a more detailed 
description of the experimental design. Briefly, genotypes were planted 
at four sites using a randomized block design with three blocks per site. 
Most genotypes were replicated three times at each site, but sometimes 
only twice or once. Hence, the experimental design is unbalanced. Our 
analysis focused on 53 analytes in maize grain. 

The goal of the study was to compare the GM genotype with the set of 
13 reference genotypes. We used the multivariate equivalence test 
described in previous Sections to summarize information of all 53 ana
lytes and assessed equivalence globally. The confidence level of the test 
was set to 1 − α = 0.95 and the desired power to 1 − β = 0.95. The 
equivalence limit was estimated by simulating 10,000 datasets of safe 
cases where the GM genotype was assumed to be “just another reference 
genotype” and the sampling distribution of the multivariate criterion 
was approximated both by the normal approximation and the GPQs by 
drawing 10,000 samples. 

2.9. Case study: metabolite (or untargeted LC-MS) profiling of potato 
tubers 

The genome of the cultivated potato (Solanum tuberosum) is highly 
heterozygous and tetraploid of nature. Consequently, potatoes are 
clonally propagated. Also breeding for novel varieties faces several 
challenges. The Solanum wild relatives provide a rich source for novel 
traits like disease resistances, and the corresponding genes can be 
introgressed through inter-specific sexual crosses. The resulting 
breeding clones need to be crossed back several times before a variety 
can be selected. This process is referred to as conventional breeding. 
Conventional breeding is a time and resource intensive process and, 
apart from introgressing the genes of interest, other desired variety 
characteristics can never be fully regained. Alternatively, genes from 
crossable wild relatives can be inserted more quickly and precisely 
through cisgenesis (Haverkort et al., 2016). Using this approach, genes 
from crossable wild relatives are transformed to cells of established crop 
varieties using Agrobacterium mediated transformation. Successively, 
plants are regenerated, which are referred to as cisgenic events. 

In this case study, potato tubers from 43 conventionally bred vari
eties, 9 breeding clones and eight cisgenic events were used for untar
geted metabolomics. The conventionally bred varieties included three 
varieties for starch production, and 40 consumption varieties which 
have a history of safe use for human consumption and are henceforth 
referred to as “the reference genotypes”. The eight cisgenic events were 
derived from four different conventionally bred varieties enriched with 
different late blight resistance genes from crossable species (Jo et al., 
2014). The breeding clones had undergone 0 (interspecific breeding 
clones) till 4 backcrosses to S. tuberosum. These 60 genotypes (i.e., eight 
cisgenic events, 43 conventionally bred varieties, and 9 breeding clones) 
were planted in a screen cage in Wageningen, the Netherlands, 
mid-April 2020. Seed tubers were planted in pots according to a ran
domized block design with six blocks (Supplementary Material Section 
1). (Jo et al., 2014) (Jo et al., 2014) After the vines were completely 
matured, the tubers were harvested in late September 2020, collected 
from individual pots and stored at 4 ◦C until January 2021. For each 
genotype two samples, from three blocks each, were taken by pooling 
1/8 part of six randomly selected potato tubers (two tubers per block). 
Next, the pooled samples were frozen in liquid nitrogen, homogenized, 
freeze dried, and stored at − 80 C as described in (Kok et al., 2019), 

before their analysis by LC-MS. Samples (25 mg dry powder) were 
extracted in 1 ml of 75% methanol acidified with 0.1% formic acid ac
cording to (De Vos et al., 2007). Chromatographic separation was per
formed on a HPLC system (Waters Acquity, Milford, MA, USA) with a 
C18-RP column (150 × 2.1 mm; Luna, Phenomenex) using a 5–35% 
acetonitrile gradient with 0.1% formic acid in 45 min. Detection was 
done using an LTQ-Orbitrap FTMS hybrid mass spectrometer (Thermo 
Scientific, Bremen, Germany) in positive electrospray ionization mode. 
A mass resolution of 70,000 FWHM at a mass range of m/z 90–1350 was 
employed for data acquisition. Unbiased mass peak picking and align
ment of the raw LC-MS data were performed using the MetAlign soft
ware (Lommen, 2009). From the resulting table of 193,469 mass peak 
features, those signals present in <3 observations were filtered out and 
non-detects (i.e., peak intensity <1000 ions per scan) were replaced by 
the value 0, using an in-house script called METalign Output Trans
former (METOT). The remaining 39,154 mass features were subse
quently clustered into so-called reconstructed metabolites (centrotypes), 
based on the correlation of mass signals, presumably derived from the 
same compound, in both their retention time and relative abundance 
across all samples, using the MSClust software (Tikunov et al., 2012). 
The resulting metabolite dataset contains 2187 non-annotated com
pounds, each represented by at least 2 highly correlating mass features 
including the (putative) molecular ion (most intense mass feature), 
natural isotopes, adducts and/or fragments generated in the ion source. 
The compounds were numbered in order of their observed LC-retention 
time. 

The data set was further preprocessed in the software R (R Devel
opment Core Team, 2021). To limit the proportion of data that is 
imputed and ensure the reliability of subsequent statistical analyses, 
metabolites with more than 40% (across all samples) of zeros (non-
detects) were first discarded, leaving 456 metabolites. Among the me
tabolites that were discarded there were no cases of non-detects 
observed in all samples of cisgenic events and not observed in any 
samples of the reference samples. Next, the data was log2-transformed 
and the remaining missing values in the data set were imputed using 
k-nearest neighbor imputation with k = 5 (Hrydziuszko and Viant, 
2012). Results in this paper were largely unchanged (data not shown) 
when imputing missing values of each metabolite by zero or the 
observed mean or minimum value. 

The main purpose of this experiment was to compare each cisgenic 
event to the set of 40 traditionally bred consumption potato varieties, i. 
e., excluding the three starch varieties (reference genotypes). For the 
analysis, the confidence level of the multivariate equivalence test was 
set to 1 − α = 0.95 and the desired power to 1 − β = 0.95. The equiv
alence limit was estimated by simulating 1000 datasets of safe cases 
where the cisgenic event was assumed to be “just another reference 
genotype” and the sampling distribution of the multivariate criterion 
was obtained by drawing 10,000 samples from the GPQ and by using the 
normal approximation. 

2.10. Simulation study 

Simulations were carried out to assess the estimation accuracy of the 
equivalence limit using the desired power approach. To mimic reality, 
data were simulated using the multivariate LMM described in Section 
2.1.2 according to the experimental designs of the maize compositional 
data (that is unbalanced with 4 sites and 3 blocks, and comprises 53 
analytes) and untargeted potato metabolite data (balanced with 2 rep
licates and 456 analytes). 

Contrary to the model used in this paper and described in (2), sites 
and block-within-site effects of the data-generating LMM were consid
ered random and simulated using the standard normal distribution, i.e.: 
γj ∼ Np(0, Ip) and βk(j) ∼ N(0, Ip). Values of other parameters were set to 
their estimated values on the compositional and metabolite data instead 
of being sampled from parametric models, with the exception of the 
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mean of the test genotype, which is sampled from a normal distribution 
with mean and variance equal to that of the reference genotypes, to 
simulate safe cases and assess the statistical power. 

For simulations based on the experimental design of the composi
tional data (p = 53), various levels of correlations between reference 
genotypes are considered. The covariance matrix Ω of the reference 
genotypes in the generating LMM has its diagonal elements equal to 
their estimated values on the compositional data and its off-diagonal 
elements are chosen to represent five different correlation structures. 
Five block-diagonal correlation structures are considered with 11 blocks 
of five and three analytes, and with within-block correlation ρ ∈ {0,0.25,
0.5,0.75,0.9}. A sixth correlation structure, more realistic, was obtained 
by setting the correlations to their estimated values on the compositional 
data (averaged over replicates), as obtained with the low-rank POET 
estimator of (Fan et al., 2013). The block and low-rank correlation 
structures are realistic dependence structures for compositional data 
used in safety assessment as well as for emerging phenotypic data. 

For each correlation structure 1000 datasets are generated and the 
multivariate test is applied to each dataset using confidence level 1− α =

0.95 and desired power 1 − β = 0.95. The multivariate test is carried out 
by generating 10,000 samples from the GPQ distribution of the equiv
alence criterion θ and, for the purpose of comparison, using the normal 
approximation described in Section 2.4. For each generated dataset, the 
equivalence limit is estimated using the desired power approach 
described in Section 2.5 with M = 1000. 

For simulations based on the experimental design of the metabolite 
data (p = 456), which are computationally more intensive, two corre
lations structures between reference genotypes were considered: the 
independent (ρ = 0) and (real) low-rank structures (obtained using the 
POET estimator). Moreover, the multivariate test is carried out using the 
normal approximation as storage of GPQ samples across simulated 
datasets becomes cumbersome with a larger number of analytes. 

3. Results 

3.1. Case study: maize compositional data 

Fig. 1 displays the results of the multivariate equivalence test 
comparing the GM genotype with the 13 reference genotypes. The 

sampling distribution of the multivariate DWE criterion obtained with 
the GPQ samples is represented by the histogram and that obtained by 
the normal approximation is represented by the curve. Both methods 
yield nearly identical results. Using the normal approximation, the 
estimated 95th percentile (1.265) of the sampling distribution (dashed 
vertical green line), i.e. the upper confidence limit, is observed to be 
smaller than the estimated equivalence limit (1.897). Global equiva
lence is therefore shown for the 53 analytes. With a P-value equal to 
4.02.10− 40, there is strong evidence for the global equivalence of the GM 
genotype with the reference genotypes. Using the GPQ samples (histo
gram) instead of the normal approximation, global equivalence is also 
shown for the 53 analytes: the estimated 95th percentile (1.267) is 
smaller than the estimated equivalence limit (1.900). However, the 
calculated P-value equals zero as no GPQ samples exceed the equiva
lence limit. This illustrates a limitation of using GQP samples, namely 
that accuracy of small P-values is limited by the number of samples 
drawn. 

Fig. 2 displays results of the univariate test. For each analyte (x-axis) 
the estimate of the univariate DWE (y-axis), scaled by its equivalence 
limit, is displayed along with the interval (vertical line) defined by the 
5th and 95th percentiles. According to EFSA’s scale of evidence, 
equivalence is shown for 47 analytes, more likely than not for 5 analytes 
and not shown for one analyte. Note that these univariate results are not 
adjusted for the number of tests that is carried out (no multiplicity 
correction). 

3.2. Case study: metabolite profiling of potato tubers 

Each of the eight cisgenic events was compared to the set of 40 
reference genotypes using the multivariate equivalence test described in 
Section 3. The multivariate test assesses equivalence globally using in
formation of all 456 metabolites. Results, displayed in the left panel of 
Fig. 3, show that multivariate equivalence is shown for all eight cisgenic 
events as the upper limits of the confidence intervals are all smaller than 
the equivalence limit (represented by the red horizontal line). 

Subsequently, the nine breeding clones were individually compared 
with the set of 40 reference genotypes. These breeding clones contain 
large amounts of genes from other species and are therefore by design 
non-equivalent to the reference genotypes. These clones were therefore 
used as negative equivalence controls, in order to check whether the 
proposed test will fail to label them as being equivalent. The right panel 
of Fig. 3 shows that indeed the multivariate equivalence test never 
rejected the null hypothesis of non-equivalence for the breeding clones. 
Nevertheless, different degrees of evidence against equivalence are 
observed between these breeding clones. For example, according to 
EFSA’s scale of evidence, the genotypes RH89-39-16 and ivp4x-156- 
8_bcp were still found to be equivalent to the reference genotypes 
‘more likely than not’, whereas the other six breeding clones are clearly 
not equivalent. For each breeding clone the level of evidence against 
equivalence is more precisely quantified by the confidence interval of 
the multivariate DWE criterion. Comparing breeding clones on the basis 
of these intervals suggests that there is more evidence against equiva
lence for genotypes ivp4x-196-2_sto, aa36-45 and aa36-74 than for the 
others. Moreover, the degree of non-equivalence was negatively related 
to the estimated percentage of Solanum tuberosum DNA in the genome of 
these clones: a higher percentage of S. tuberosum DNA (values displayed 
in the plot above the confidence intervals) tends to yield to higher evi
dence for equivalence to the reference genotypes. 

To assess the ability of the multivariate test to declare equivalence, 
we compared in turn each of the 40 reference genotypes, i.e. varieties 
with a history of safe use for human consumption, with all others in a 
leave-one-out cross-comparison. Each comparison consists in comparing 
a reference genotype (treated as a test genotype) to the remaining 39 
reference genotypes. Fig. 4 reports results for these 40 comparisons. It is 
observed that equivalence is shown for 36 out of the 40 reference ge
notypes (90%). Amongst the genotypes for which equivalence was not 

Fig. 1. Results of the multivariate equivalence test on the maize compositional 
data when using confidence level 1 − α = 0.95 and desired power 1 − β =

0.95. The figure displays the density of samples (histogram) and the normal 
approximation (continuous line) of the sampling distribution of the multivar
iate DWE θ. The dashed vertical line represents its 95th upper quantile (con
fidence limit) and the vertical black line the estimated equivalence limit. 
Because the upper 95% confidence limit is smaller than the equivalence limit, 
we reject the null hypothesis of non-equivalence and conclude that equivalence 
is shown globally for all 53 analytes. The P-value is 4.02.10− 40. 
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shown, the EFSA’s scale of evidence indicates that equivalence is ‘more 
likely than not’ for two (5%) genotypes (Kiebitz and Lily Rose) and ‘not 
shown’ for two others (Agata and Columba). Based on the set level of 
desired statistical power of 0.95 in this analysis, equivalence is theo
retically expected for about 95% of the 40 comparisons: the observed 
percentage of 90% falls within the expected range (P-value is 0.1381 and 

95% confidence interval for a two-sided binomial test that the propor
tion of ‘equivalence shown’ equals 0.95 is [0.763, 0.972]). 

Fig. 5 illustrates the relationship between effect size on the relative 
abundance of each metabolite (as measured by log2 -fold change be
tween test and reference genotypes), and multivariate and univariate 
equivalences. Multivariate equivalence was shown for cisgenic event 
H43-4k (Fig. 5a) but not breeding clone ivp4x_196-2 (Fig. 5b). For this 
latter genotype there is a larger number of metabolites for which both 
the effect size (log2 -fold change on x-axis) is large, e.g. greater than 2 or 
lower than − 2, and univariate equivalence (log10 P-value on y-axis) 
cannot be shown (blue triangles). 

Fig. 6 compares the log2-fold change of each cisgenic event (x-axis) 
with its parent (y-axis) and shows that large fold-changes of metabolite 
levels observed in cisgenic events are often also observed for their 
parent. 

3.3. Simulation study 

Fig. 7 provides simulation results about the desired power of the 
multivariate equivalence test and shows the empirical desired power 
obtained under the compositional and metabolite experimental designs 
for each correlation structures considered in the simulation. It is 
observed that the empirical desired power is, for the compositional 
design, relatively close to the nominal value of 0.95, being slightly above 
the nominal level for the five block-diagonal correlation structures and 
slightly below the nominal level for the more realistic empirical corre
lation structure. The empirical desired power is also observed to be 
identical for the multivariate test based on the GPQ and normal 
approximation of θ. For the metabolite design, the desired power is 
observed to be slightly above the nominal level and less affected by 
correlations between analytes. 

4. Discussion 

4.1. Multivariate and univariate analyses are complementary 

The univariate and multivariate equivalence tests are complemen
tary rather than competing, both providing insights at different levels. 

Fig. 2. Results on the maize compositional data of 
the univariate equivalence tests (using confidence 
level 1 − α = 0.95 and desired power 1 − β = 0.95) 
for the comparison of the GM genotype with the set of 
13 reference genotypes. For each test (x-axis) the 
figure displays the estimate (squared dot) of the uni
variate DWE scaled by its equivalence limit (y-axis) 
and the interval (vertical line) defined by the 5th and 
95th percentiles. Equivalence is shown when the 95th 
percentile (indicated by a round dot) is below the 
horizontal line representing the standardized equiv
alence limit (equal to 1).   

Fig. 3. Multivariate equivalence tests of the potato tuber metabolite data 
(using confidence level 1 − α = 0.95 and desired power 1 − β = 0.95) For the 
comparison of each cisgenic event and conventional breeding clones with the 
set of 40 reference genotypes. For each test (x-axis) the figure displays the es
timate (squared dot) of the multivariate DWE scaled by its equivalence limit (y- 
axis) and the interval (vertical line) defined by the 5th and 95th percentiles. 
Multivariate equivalence is shown when the 95th percentile (indicated by a 
round dot) is below the horizontal line representing the standardized equiva
lence limit (equal to 1). For the breeding clones an estimate of the percentage of 
S. tuberosum DNA in their genome is displayed above the confidence intervals. 
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Fig. 4. Results on the potato tubers metabolomic 
data of the multivariate equivalence tests (using 
confidence level 1 − α = 0.95 and desired power 1 −

β = 0.95) for the comparison of each of the 40 
reference genotypes with all others. For each test (x- 
axis) the figure displays the estimate (round dot) of 
the multivariate DWE scaled by its equivalence limit 
(y-axis) and the interval (vertical line) defined by the 
5th and 95th percentiles. Multivariate equivalence is 
shown when the 95th percentile (indicated by a 
round dot) is below the horizontal line representing 
the standardized equivalence limit (equal to 1).   

Fig. 5. Potato tuber metabolite data of the univariate 
equivalence tests (using confidence level 1 − α = 0.95 
and desired power 1 − β = 0.95) for the comparison 
of cisgenic event H43-4k and breeding clone ivp4x- 
196-2 with the set of 40 reference genotypes. Each 
plot displays the log2 -fold change (x-axis) and 
negative log10 P-value of the univariate equivalence 
test (y-axis). Colors and shapes of dots indicate EFSA 
classification: light green round dots indicate metab
olites for which equivalence is shown, black squared 
dots metabolites for which equivalence is more likely 
than not, and light blue triangle dots metabolites for 
which equivalence is not shown. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   

Fig. 6. Comparison of cisgenic events (x-axis) with their parents (y-axis) in terms of log2 -fold change. Colors and shapes of dots indicate EFSA classification in 
univariate tests: light green round dots indicate metabolites for which equivalence is shown, black squared dots metabolites for which equivalence is more likely than 
not, and light blue triangle dots metabolites for which equivalence is not shown. Vertical and horizontal dashed lines represent log2 -fold change values of − 2 and 2. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The multivariate approach assesses equivalence at a global level 
considering all measured variables at once. However, when equivalence 
is not shown at the global level, the multivariate test does not allow the 
identification of analytes for which the test sample is not equivalent to 
the reference samples. Such insight is provided by the univariate 
approach that assesses equivalence at a local level and can pinpoint 
variables for which equivalence is not established. 

4.2. Global equivalence does not imply local equivalence 

Showing equivalence at a global level using the multivariate test 
does not necessarily imply that equivalence will be shown at the local 
level for each and every analyte using the univariate test. This makes 
sense because the proposed multivariate equivalence criterion is the 
average of univariate equivalence criteria and, therefore, global equiv
alence is expected to be shown when local equivalence can be shown for 
most, but not necessarily all, analytes. This means that single analytes 
which are a priori known to be hazardous can best be analyzed by 
univariate tests, irrespective of the outcome of the multivariate test. 
Conversely, failure to show global equivalence does not imply a failure 
to show local equivalence for every analyte but rather a failure to show 
local equivalence for a number of analytes. 

4.3. The multivariate test circumvents the multiplicity problem of using 
univariate tests 

A motivation to use the multivariate equivalence test is to circum
vent the multiplicity problem inherent in using many univariate tests 
simultaneously. With a univariate equivalence test performed multiple 
times for many analytes there is an increased probability of falsely 
declaring equivalence by chance. Multiple hypothesis testing has been 
well studied in the statistical literature and many methods exists to 
control simultaneously over all tests, and in different ways, type I errors 
(Dudoit and van der Laan, 2008; Goeman and Solari, 2014). However, 
these methods were designed for difference tests rather than equivalence 
tests and it is unclear what type of simultaneous control for false 
equivalences would be most appropriate for equivalence tests in food 
safety assessments. Multivariate equivalence testing circumvents the 
multiplicity problem by summarizing information from all variables in a 
single statistic for which no multiplicity correction is required. Addi
tionally, the multivariate test provides just one test result that can easily 

be visualized and reported, regardless of the number of measured 
variables. 

4.4. The desired power approach is appropriate for multivariate 
equivalence testing 

The proposed multivariate criterion has a very simple form: it is the 
average of the univariate criteria. The desired power approach is 
appropriate for food safety assessment in general as it limits follow-up 
investigations on test samples that are in reality similar to reference 
samples. It is particularly appropriate for multivariate equivalence 
testing where information from multiple analytes is summarized in a 
single criterion with little biological meaning, and therefore providing 
little intuition for specifying an acceptable limit based on expert 
opinion. 

4.5. The multivariate test needs assumptions about correlations between 
analytes 

Multivariate equivalence testing gives the opportunity to account for 
correlations between analytes. However, this comes at the price of 
having many additional parameters to estimate. In the designs investi
gated by us, there were too many additional parameters given the 
limited sample size. Making assumptions about the correlation structure 
of analytes becomes necessary to reduce the number of parameters and 
to make estimation possible. The multivariate test proposed in this paper 
assumes independence between analytes, an assumption commonly 
made for multivariate tests on high-dimensional data (Bickel and Lev
ina, 2004; Dong et al., 2016; Pérez-Cova et al., 2022). Other assump
tions, such as sparse and low-rank correlation structures, complicate 
considerably the estimation of the multivariate LMM and in particular 
the derivation of confidence intervals for the multivariate equivalence 
criterion (see Supplementary Material Section 2). However, if the cor
relations are considered fixed (i.e. not included in the inference process), 
they may simply be plugged in the weight matrices of the multivariate 
criterion proposed in this paper. We have partially evaluated the 
robustness of using the simplified independence model in several ways. 
First, simulation results show that the proposed multivariate equiva
lence test has good power and is able to provide useful results even in the 
presence of strong correlations. Indeed, the desired power is shown to be 
close to the nominal level for various correlation structures and levels. 

Fig. 7. Empirical power of the multivariate equiva
lence test (y-axis) for two experimental designs (left 
and right panels) and some considered correlation 
structures (x-axis) using two inference methods for θ: 
1) by sampling from the GPQ distribution (red) and 2) 
using the normal approximation (blue) described in 
Section 2.4. The vertical lines represent 99% Wald 
confidence intervals, dots represent estimates and 
horizontal dashed line represents the nominal desired 
power that is equal to 0.95. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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Secondly, in the metabolomics case study, the study design included 
comparisons with both assumed true equivalences (other reference ge
notypes) and assumed true non-equivalences (breeding clones with a 
sizeable proportion of genes from other species). The multivariate test 
using the model based on the diagonal covariance matrix still met ex
pectations and showed equivalence for reference genotypes in the 
cross-comparison (Fig. 4) and failed to show equivalence between 
breeding clones and reference genotypes (Fig. 3). 

4.6. Modern phenotyping for safety assessment 

There is an increased interest in using higher dimensional pheno
typing data for safety assessment. The large-scale metabolomics data set 
used in this paper is a good example, although in practice the dimension 
of the data can be much larger. For the comparative assessment of ge
notypes using high-dimensional data, the multivariate test provides a 
single conclusion about the new genotype and how its profile (as a 
whole) compares to reference genotypes. On the other hand, univariate 
tests, which provide a conclusion for each analyte separately, may be 
more difficult to use in risk assessments: in completely untargeted 
metabolomics studies, such as applied here, most detected metabolites 
are yet unknown, i.e., their identity has not been verified with either 
their authentic chemical standards or de novo structurally elucidated 
using nuclear magnetic resonance. It is then a decision for the risk 
managers to assess whether the identity of those metabolites for which a 
new genotype could not been shown as equivalent to the reference set, 
should be resolved and to what level (i.e., exact chemical structure or 
only biochemical class). 

4.7. Possible extensions and future work 

The method proposed in this paper may be extended in several ways. 
Based on the observation that the multivariate DWE criterion is defined 
as the average of the univariate DWE criteria, it is straightforward to use 
grouping information (e.g. biochemical class, pathways, etc.) to assess 
equivalence at the group level, if the identity of analytes is (at least 
partially) known. This strategy could be particularly useful for high- 
throughput phenotypic data, such as metabolomics and tran
scriptomics data with annotations of metabolites and genes, respec
tively, to help reduce the dimension and provide more interpretable 
results. An important avenue of future research concerns the incorpo
ration of correlations between analytes in the multivariate test. As 
mentioned above, this complicates statistical inference, however, it 
would be interesting to study more extensively the behaviour of the 
multivariate test under different types of correlation structures and 
unintended effects, and to investigate the performance of two-step ap
proaches where correlations are first estimated from the data and sub
sequently treated as fixed for multivariate equivalence testing. 

5. Conclusion 

A multivariate statistical method is proposed to test the equivalence 
between a test genotype and a collection of reference genotypes. It was 
shown using simulated data sets that the DP approach used to estimate 
the equivalence limit can control the statistical power of showing 
equivalence. We applied our new method on both maize compositional 
data and untargeted metabolomics data of a series of potato tuber 
samples to compare conventionally bred varieties with a history of safe 
use and their cisgenic counterparts. In this application, we illustrated the 
usefulness of the multivariate approach in assessing global equivalence 
across all measured variables. The proposed multivariate equivalence 
criterion, which weights variables inversely proportionally to the vari
ance of typical differences between reference genotypes, may be 
expressed as the mean of univariate equivalence criteria and therefore 
has the advantage of being simple and interpretable. The method pro
posed in this paper was applied to compositional and metabolite data in 

the context of food safety assessment of genetically modified maize and 
potato, but it is not limited to this particular application or data type. 
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