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A B S T R A C T   

Precision agriculture has drawn much attention in the last few years because of the benefits it has on reducing 
farming costs while maximizing the harvest obtained. Yield prediction is of importance for farmers to fertilize 
accordingly to reach the potential yield. However, this task is still relying on manual work, which is expensive 
and time-consuming. Instance segmentation has been implemented in the last years for fruit detection and yield 
estimation, obtaining state-of-the-art metrics, and reducing the labor required. This research presents a novel 
approach for spinach seed yield estimation for seed production purposes, that consists of correlating the number 
of plants and two phenotyping variables (plant area and canopy cover percentage) with the number of harvested 
seeds and the thousand seed weight. Mask R-CNN is applied to count the number of detections of spinach plants 
and obtain the object mask from which the plant area is derived. The results show that there is a high linear 
correlation between a multivariate linear mixed model of the three variables and the number of seeds, with an 
R2

adj of 0.80. Furthermore, 77.42% of the variation in the weight of thousand seeds can be explained by the 
number of plants. For future studies, the algorithm should be trained with more spinach images from different 
locations and under varying weather conditions to allow it to generalize for the crop worldwide. It can be 
concluded, until further research, that Mask R-CNN can be applied for spinach counting and the computation of 
its individual plant area, with promising results.   

1. Introduction 

Human iron deficiency has been and still is, one of the leading 
contributors to disability and death worldwide [5], causing extreme 
fatigue and lightheadedness [20]. It is of importance to investigate the 
nourishments which contain iron and provide them to the population 
facing iron deficiency anemia (IDA). Spinach is a good source of iron for 
humans, even if they are not considered “high in” iron, since they do not 
reach the required amount of 4.2 mg/100 g [38]. Their content of 
vitamin C boosts iron absorption [27], turning spinach into a true source 
of iron [19]. Spinach cultivation represents a global gross production 
value of 18 billion USD, placing it in the 33rd world position for culti
vated crops, being mainland China the country with the highest gross 
production [39]. 

Predicting the yield of any crop cultivation is relevant, but its use
fulness increases with vegetables and fruits since they are perishable, 
degrade quickly, and cannot be stored for a long period. The importance 

of predicting spinach yield can be seen from two different sides, the 
farmer and the freezing industry. Observed by the farmer side, if the 
yield in the middle of the campaign is predicted, fertilization can be 
applied more accurately to reach the potential yield and adjust the 
fertilization to the crop stage and nitrogen status, as the guidelines of 
Precision Agriculture settle [6]. Regarding the freezing industry’s point 
of view, the industry knows the maximum amount of tons they can 
handle per day. Hence, the farmers should only provide that amount. In 
the case of overproduction and that the spinach needs to be frozen that 
same day (because of its perishable nature), the farmer should find a 
second industry source for processing [26]. If the final purpose of 
spinach cultivation is seed production, as in this paper, it is important to 
predict the seed yield (seen for instance as the number of seeds produced 
per plant) to understand the behavior of each spinach variety and 
continue breeding the varieties until the highest seed yield is obtained. 

Nowadays, agriculture has to face many food production challenges 
to be able to feed the increasing world population. Among them, the 
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most important concerns sustainable food production, while reducing 
greenhouse emissions, conserving groundwater sources, and meeting 
the Millennium Development Goal of eradicating hunger [10]. With the 
boost of Machine Learning (ML) and especially Deep Learning (DL), the 
most time-consuming field tasks (such as manually counting plants) 
have been able to be easily carried out, which has drawn the attention of 
many researchers. The developed approaches range from basic Deep 
Learning algorithms to models with state-of-the-art metrics, such as 
Mask R-CNN, developed for instance segmentation. State-of-the-art ac
curacy is defined as the highest accuracy obtained in other studies. Mask 
R-CNN is chosen for this project as it has shown high accuracy -higher 
than Faster R-CNN [34]- with multiple datasets and it provides an object 
mask, which refers to the silhouette and the inside of the object tinted on 
a color. Once the object mask is obtained, as it includes the mask co
ordinates, the plant area (m2) is computed straightforwardly and is 
correlated with seed yield. 

Mask R-CNN has already been adopted for agricultural purposes, 
such as pathogen detection [36,37] and weed detection [28], to pre
cisely apply localized pesticides and herbicides. Several studies ac
counting for Mask R-CNN in 2D have been conducted in different crops 
to automatize harvesting. These crops include pomegranate [47], apple 
[18], orange [8], cucumber [23], and strawberry [46], with a minimum 
F1-score of 89.47% and a maximum of 96.49%, among them all. The 
F1-score is the measure of the accuracy of a test, computed as the ratio 
between the number of true positives results (precision) and the number 
of all positive results (recall). Most of the articles claim that missing 
detections are still an important issue to be solved. Machefer et al. [24] 
introduced a refitted strategy for potato and lettuce counting and sizing 
and concluded that transfer learning can be used to reduce the required 
labeled data and used a large coarsely-annotated dataset. Nonetheless, 
they accepted that their model is crop-specific even if both potato and 
lettuce are low-density crops. In addition, counting limitations occur 
when plants reach a later growing stage since they have a high overlap 
[21]. Nevertheless, it also happens with human annotators because they 
get biased with the overlap. Lastly, their model was only trained on 256 
× 256 pixel frames and hence should be generalized to other pixel 
frames. 

Most of the studies conducted to predict yield using some pheno
typing variables are carried out with UAVs [7,43–45]. Among them, 
height is the most mentioned variable to predict yield [7,44,45]. Bendig 
et al. [2] derived the crop surface model from RGB images based on 
several observations over the growing season and extracted the height to 
correlate it with barley’s biomass, with an R2 of 0.81 for fresh biomass 
and 0.82 for dry biomass. Nevertheless, an earlier time window for seed 
yield forecasting is required for the farmer to deal with 
under/overproduction. 

Experiments with rice have correlated its yield with several vari
ables, such as Leaf Area Index (LAI) and different vegetation indices (VI) 
[48]. However, including data from multiple growth stages is necessary 
to increase the linear relationship between the mentioned variables and 
yield. Yang et al. [43] used a CNN with RGB and multispectral images as 
input data to predict rice yield and they concluded that DL leads to more 
accurate results than using common variables as VI since the latest have 
limited capacities at advanced stages such as ripening. Furthermore, the 
closer to the harvest moment the more spatial features the crop has, and 
hence, the better the accuracy of the predicted yield. 

Regarding spinach, most of the studies check for correlation between 
yield components (for instance number of leaves and plant height) [13, 
33], but none of them offers the correlation of a yield component with 
seed yield itself. Valente et al. [40] proposed a machine vision and 
transfer learning algorithm to count the number of spinach plants, with 
an accuracy of 95%. However, their method assumes that all plants are 
spinach, and hence there are weeds counted as spinach plants. As all 
plants were annotated thinking that they were spinach plants, when they 
could be weeds, it can still have high theoretical accuracy. In addition, 
closely growing plants might not be distinguished, which leads to the 

undercounting of plants in the image. 
All studies conducted until the moment, to the best of our knowl

edge, are crop-specific and cannot solve the challenge of applying the 
same algorithm to various crops from very distinct botanic families. 
Those experiments are also frame-specific, meaning that they can only 
be used for a certain pixel frame and their processing speed is low. 
Moreover, the algorithms are trained only with raw data (single UAV 
images), which include motion distortion and need to be rectified [17, 
25]. The current experiments that are carried out focus mainly on 
plant/fruit counting. However, they all struggle with missing detections 
and excluding weeds, which lead to undercounting and overcounting, 
respectively. In addition, the studies do not include multiple growth 
stages to train the algorithm, making them time-dependent and avoiding 
the opportunity of counting in an early stage. Furthermore, different 
phenotyping variables are not combined to predict yield and in the 
specific case of spinach, they only seek for correlation between yield 
components, not between a component and yield itself. 

Based on the above rationale, the heart of the selected method for 
accomplishing the correlation of number of plants and phenotyping 
variables with seed yield is an algorithm that exhibits state-of-the-art 
accuracy, shows good performance when applying transfer learning, 
and is not computationally expensive. A known framework that com
bines all the desired characteristics is the already described Mask R- 
CNN. 

This article aims to assess the correlation between the number of 
plants and two phenotyping variables (individual plant area and canopy 
cover) with two seed yield variables (count of seeds and average thou
sand seed weight). The information is extracted from UAV (Unmanned 
Aerial Vehicle) images and orthomosaics of a spinach field. This is 
achieved by applying the Mask R-CNN algorithm on a custom dataset as 
well as transfer learning. 

The objectives of this article are (1) to solve the lack of knowledge on 
combining the number of plants and multiple phenotyping variables to 
predict seed yield in spinach; (2) to work with raw data (single UAV 
images, not orthomosaics) to train the neural network (NN), as Yeom 
et al. [44] suggest; (3) to work with distinct phenological stages (early 
and late stages) to widen the time window and predict spinach seed yield 
in a sooner date. 

2. Material and methods 

2.1. Study area and data collection 

The experiment was conducted in a field in the province of North 
Holland, in the Netherlands, between April 19th and August 12th, 2019 
(planting and harvesting dates). Because of the confidential origin of the 
datasets, Fig. 1 does not show the exact location and coordinates of the 
study area. The crop on the field was spinach (Spinacia oleracea) with 
one male variety and multiple female varieties to stimulate cross- 
pollination. The aim of this experiment was seed production and it 
was carried out with conventional cultivation. The soil type is calcareous 
polder soils with heavy silt. The area of the field is around 0.41 ha, with 
a 0.35 m spacing between rows and a 0.15 m spacing within rows. The 
length and width of this field are approximately 160 m long and 23.5 m 
wide. 

DJI Phantom 4 Pro (Shenzhen, China) was flown over the field with a 
pre-designed flight plan controlled with the flight control software UgCS 
(SPH Engineering, Riga, Latvia). The specifications of the UAV and its 
flight parameters are shown in Table 1. The DJI Phantom 4 Pro carried 
an RGB camera, whose characteristics are presented in Table 2. 

In this study, a total of 982 RGB images on three different dates (June 
11th, July 8th, and August 12th, 2019) were collected. From the total of 
982 RGB files, the ones from the same date were then stitched together 
into a unique ortho-mosaic image, one for each of the mentioned dates. 
The Structure for Motion (SfM) approach as implemented in the soft
ware Agisoft MetaShape (St. Petersburg, Russia, version 1.7.3) was used 
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for all the RGB images. All the settings for Agisoft MetaShape were set to 
“High Quality” in all processing steps. The ground sampling distance 
was 5.45 mm. A total of 440 images were taken in June, 254 in July, and 
288 in August. The size of the created orthomosaics ranges from 512.4 to 
677.8 MB and its spatial resolution is approximately 5 mm. At such a 
detailed resolution, the canopy size and shape can easily be identified 
(Fig. 1). 

Ground Truth (GT) was observed by field specialists in 18 small plots 
(Fig. 1-c), that were the same for the three mentioned dates. They were 
approximately 105 × 90 cm and were disseminated all over the field at 
random distribution. The field observations for the GT dataset include 
the number of plants per plot on three different moments (June 11th, 
July 8th, and August 12th all from 2019) and the height and width of 
each plant (in cm) in the plot for July 8th and August 6th. Moreover, two 
breeding seed yield variables were observed by field specialists. These 
variables include the count of seeds produced per each GT plot and the 
average thousand seed weight (TSW), in grams, per each GT plot. To 
measure the number of seeds produced, first the spinach plants were cut. 
After, specialized machines dried and sorted the seeds, and finally 
removed soiling and abnormal seeds. The last step was to introduce all 
the seeds in an advanced packing machine that counted and packed all 
the seeds to have the final seed count per GT plot. With respect to the 
average TSW (g), the thousand seed weight per each plant of the GT plot 
was computed and the final value was average among the number of 
plants of the GT plot to obtain the final average TSW (g). 

The MS-COCO dataset [22], specially trained for object detection, 
counts with 80,000 images for training and 40,000 images for valida
tion. The MS-COCO dataset contains images of ten food categories 
(banana, broccoli…) but does not include spinach images and therefore 
it was used as a coarsely annotated dataset. Consequently, extra training 
data for this specific case scenario was needed. For testing purposes, the 
eighteen GT plots of the orthomosaic of July 8th were introduced to the 
model to count the number of spinach plants and compare it with the 
number of plants that had already been annotated. 

2.2. Preprocessing 

Fig. 2 displays the whole flowchart of this study, from the inputs (raw 

Fig. 1. Study area site: (a) Location of the province of Noord-Holland inside the Netherlands. (b) Close-up of spinach plants. (c) Distribution of the GT plots (red 
squares) around the spinach field. 

Table 1 
Characteristics of the UAV used (DJI Phantom 4 Pro) and the flight 
specifications.   

DJI Phantom 4 Pro 

Weight (g) 1388 
Number of rotors 4 
Max flight time (min) 30 
Overlap (front and side) 70–80% 
Flight height (m) 20 
Flight speed (m/s) 2–3 
Mission time (min) 30  

Table 2 
Specifications of the RGB camera mounted on the DJI Phantom 4 
Pro.   

DJI Phantom 4 Pro 

Model FC6310S 
Spectrum range RGB 
Sensor resolution 5472 × 3648 
Focal length (mm) 8.8 
F-stop f/4.5 
Exposure time 1/120  
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images and GT seed yield variables) to the final outputs, which are the 
RMSE metrics and the R2 and adjusted R2 of the correlations between the 
variables measured with Mask R-CNN and the seed yield variables. 

The first step was to stitch the images of July to generate the 
orthomosaic of July 8th, which is the one where spinach plants can be 
easily identified and distinguished. Moreover, the majority of the GT 
data correspond to that date. Afterward, the GT plots were identified 
with an ID number, that was introduced to the model and allowed us to 
compare the metrics of GT data and data extracted with the algorithm. 
Regarding their coordinates, polygons on top of the TIFF file were 
created on QGIS (version 3.16.7) to know the exact location of the GT 
plots. Apart from the 18 GT plots, 20 extra plots were generated. The 
purpose of these extra orthomosaic tiles, selected to be close to the GT 
plots, was to carry out a trial to check if including them as training and 
validating data increased the accuracy of the algorithm. The polygons 
(shapefiles) were masked later with the orthomosaic to obtain small tiles 
of the orthomosaic. This process was performed with the software R 
Core Team [32], version 1.2.5033, and saved as JPG files. The packages 
used were “raster”, “rgdal”, and “sf” [4,14,30]. The second step was to 
select which UAV images would be annotated. The selection criterium is 
described with the following questions, which can be answered in the 
provided order or in any other order, as long as all of them are answered.  

(1) Is it a picture of the spinach field?  

(2) Is it a blurry image for a human annotator, meaning that spinach 
plants can be distinguished?  

(3) Is it a good representation of the field, meaning more than 70% of 
the image corresponds to the spinach field? 

From the total number of images, 127 were selected because they 
perfectly fulfilled all the requirements. 

The last preprocessing step was to label and manually delineate a 
polygon around each spinach plant of the selected RGB images with the 
software LabelMe (Massachusetts, USA) (Fig. 3). From the total number 
of images, 80% of the annotations were used for training, and the 
remaining 20% for validating to reach the number of needed annota
tions (around 500). The needed number of annotations was agreed upon 
based on literature, in the work from Liu et al. [23]; Machefer et al. [24]; 
Stewart et al. [36], and Yu et al. [46]. 

2.3. Training and validating Mask R-CNN 

Detectron2 [41] was used to run the DL model. Detectron2 is a 
software developed by Facebook Research that implements 
state-of-the-art object detection algorithms. It has a user-friendly inter
face, which makes it easy to train and validate the algorithm on your 
custom dataset. Mask R-CNN was run on Google Colab (which comes 
with 12 GB of RAM that can be incremented to 25.5 GB) on a computer 

Fig. 2. Flowchart of the study. The initial inputs are the raw images and the Ground Truth seed yield variables measured on the field. The raw images are stitched to 
generate an orthomosaic, which is then sliced to obtain orthomosaic tiles. The raw images and the orthomosaic tiles are annotated to generate the training and testing 
dataset, which are used to train and test Mark R-CNN and obtain the detected plant count, plant area, and Canopy Cover. Those values are compared with the 
annotated measurements to obtain the RMSE. Finally, single linear and multiple linear regression are calculated from the three extracted variables and the seed yield 
variables (input) to compute the R2 and adjusted R2 of all the combinations. 
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with a 2 GHz Intel Core i5 processor, using 2.65 GB of RAM and 12.19 
GB of GPU, running macOS Mojave version 10.14.6, GPU Intel Iris 
Graphic 540 1536 MB. 

For training and validation, four different cases (Table 3) were 
considered to compare the obtained metrics and select the most accurate 
model. All of them use the 104 selected images as a base, with a reso
lution of 461 × 346 pixels. Case 3 and case 4 include also the 20 extra 
orthomosaic tiles for training and validation purposes. Data augmenta
tion is implemented in half of the cases (Case 1 and Case 3) and it refers 
to a strategy to increase the diversity of training data without collecting 
new ones [15]. It includes for instance padding, rotating, flipping, and 
brightness effects, among many others. 

Case 1 and case 2 include 104 images for training and 23 images for 
validating. The difference between case 1 and case 2 is that case 1 ap
plies data augmentation and case 2 does not. The second trial (case 3 and 
case 4) consists of adding small tiles of the orthomosaic to check if the 
hypothesis of Yeom et al. [44] of not using orthomosaics to train the 
algorithm can also be generalized for this case scenario. The already 
mentioned twenty extra orthomosaic tiles are introduced in these cases 
(17 for training and 3 for validating). Case 3 uses data augmentation and 
case 4 does not. A summary of the characteristics of the datasets of the 
four cases is provided in Table 3. 

The percentage of annotations was different for each month. July 
was the month with the highest number of annotations because the 

spinach plants were fully developed and were easily identified. August 
includes the least number of delineations (below 4%) since spinach 
plants had a high overlap and were complicated to differentiate. Table 4 
compiles the percentage of annotations that were used for both cases 1 
and 2 (without orthomosaic tiles), and cases 3 and 4 (adding orthomo
saic tiles). 

The training procedure started by implementing the default values of 
the hyper-parameters (Table 5) and was adapted by trial and error to the 
specific study case of spinach counting. The procedure consisted of 
modifying the values of the hyper-parameters increasing and decreasing 
the default values by 10% and checking if the metrics were higher than 
before. Then, the hyper-parameter value would be increased or 
decreased until the metrics were no longer higher. That same pattern 
was implemented with all hyper-parameters, implementing trial and 
error tests, following the guidelines of Bengio [3]. The adjustable pa
rameters considered were the following: batch size, learning rate, 
number of training epochs, number of regions of interest proposed per 
image, and threshold to accept/reject annotations [35]. 

After validation, classification metrics (Precision, Recall, and F1- 
score) [8] were computed to the validation dataset to check how accu
rately spinach plants were detected. The metrics were determined by 
comparing the Intersection over Union (IoU) of spinach plants in the 
manually annotated images for validation and the ones measured with 
Mask R-CNN [29]. 

Precision =
TP

TP + FP
(1.1)  

Recall =
TP

TP + FN
(1.2)  

Fig. 3. Caption of the manually delineated spinach polygons using the software LabelMe. Each polygon shown in the image represents one spinach plant. (a) an 
image that includes only spinach plants and (b) an image that includes both spinach plants and another crop (cauliflower plants), which are not annotated. 

Table 3 
Summary of the characteristics of the four scenarios that were used for training 
and validating Mask R-CNN. The table shows the number of training and vali
dating images used in every scenario, as well as if data augmentation and 
orthomosaic tiles were included. Finally, the last row displays the number of 
annotated plants that each case scenario had.   

Case 1 Case 2 Case 3 Case 4 

Training images 104 
RGB 

104 
RGB 

104 RGB + 17 
orthomosaic 

104 RGB + 17 
orthomosaic 

Validating 
images 

23 
RGB 

23 
RGB 

23 RGB + 3 
orthomosaic 

23 RGB + 3 
orthomosaic 

Data 
Augmentation 

Yes No Yes No 

Orthomosaic 
tiles 

No No Yes Yes 

Delineated 
plants 

5556 5556 6048 6048  

Table 4 
Summary of the percentage of annotations per month for Cases 1 and 2, and 
Cases 3 and 4. It is observed that most of the annotations belong to June and July 
and very few to August. This is in accordance with the scope of the study to 
predict seed yield at a sooner date.   

Case 1 and Case 2 Case 3 and Case 4 

June 44.5% 42.8% 
July 52.3% 54.1% 
August 3.2% 3.1%  
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F1 score = 2 ∗
Precision ∗ Recall
Precision + Recall

(1.3)  

Where TP are the true positives (spinach plants detected correctly), FP 
the false positives (objects detected as spinach plants), and FN the false 
negatives (spinach plants wrongly detected). 

2.4. Testing Mask R-CNN and computing plant count and phenotyping 
variables 

After choosing the best model based on the metrics of the validating 
dataset, the model of Mask R-CNN with the best hyper-parameters scores 
was implemented for the test dataset (dataset with GT values), obtaining 
again Precision, Recall, and F1-score values. The outputs of Mask R-CNN 
are the number of detected spinach plants per GT plot and its mask 
coordinates. As the coordinates are in the projected coordinate system 
Amersfoort / RD New (EPSG: 28,992), the results are in meters. A 
polygon for each mask was created and the area of each mask was 
computed automatically and summed to have the spinach area per GT 
plot. The Canopy Cover was computed also at GT-plot level by imple
menting Eq. (1.4). 

Canopy Cover (%) =
spinach area per GT plots

GT plot area
∗ 100 (1.4) 

The number of spinach plants annotated could directly be obtained 
by running an algorithm to count them based on the JSON file created 
per each image. The Ground Truth dataset provided by the experts from 
the breeding company had already calculated the spinach area (m2) per 
GT plot. By dividing the spinach area values per the area of the GT plot 
(computed with QGIS), the GT values of Cover Canopy were obtained. 

Then, a comparison between the number of plants measured by the 
algorithm, spinach area, and canopy cover with their GT values was 
performed. As they are ratio variables, regression metrics were needed 
and hence, the root mean squared error (RMSE) was calculated. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(y − ŷ)2

n

√

(1.5)  

Where n is the total sample size, y is the actual value, and ŷ is the value 
obtained with Mask R-CNN. 

2.5. Computing correlation between plant count and phenotyping 
variables with seed yield 

As a final evaluation, the correlation between the number of plants 
and the phenotyping variables with seed yield was evaluated based on 
the correlations analyzed. The correlations that were performed were 
with the number of plants per GT plot and the two seed yield variables, 
the plant area (m2) with the number of seeds (m− 2) and the TSW (g), and 
the Canopy Cover (%) with the two seed yield variables. Moreover, a 
combination of the previous variables was also performed to obtain the 
correlation with both the number of seeds (m− 2) and TSW (g). The 
correlations were performed by simple linear regression and multiple 
linear regression (when combining multiple variables). The adjusted 
coefficient of determination (R2

adj, Eq. (1.7)) was computed in both 
cases. 

R2 = 1 −

∑
(yi − ŷ)2

∑
(yi − y)2 (1.6)  

Adjusted R2 = 1 −

(
1 − R2

)
(n − 1)

n − p − 1
(1.7)  

Where y is mean value of y, n is the total sample size, and p is the number 
of predictors. 

3. Results 

3.1. Training and validating 

Ten trials were conducted to evaluate which were the most appro
priate hyper-parameter’s values for spinach detection. The trials con
sisted of modifying the already-mentioned hyper-parameter’s values 
starting with default values, followed by trial and error tests [3], and 
examining if any changes corresponded to an increase in metrics’ scores. 
The best configuration for all training cases resulted from trial 10. Their 
metrics can be observed in Table 6. The values of the hyper-parameters 
which conducted to these results were the following:  

- Batch size: 8;  
- Learning rate: 0.0025;  
- Number of training epochs: 500;  
- Number of RoI proposed per image: 200;  
- Threshold to accept/reject annotations: 0.7. 

Fig. 4 depicts the learning curves of the four different cases for both 
the validation and the test dataset. They consist of the change in accu
racy and total loss through iterations. It can be observed that case 1, case 
2, and case 3 show high accuracy and a low total loss. Moreover, models 
learn until the last epochs for both validating and test datasets (Fig. 4). 
However, in the three cases, there are appreciable differences between 
validation and test datasets. Lastly, case 4 performs with high accuracy, 
low total loss, and not many differences between datasets. 

Comparing all the information that comes from Table 6 and Fig. 4, 
case 4 was adopted as the reference model for the rest of the project’s 
research. Hence, all next Sections are only focused on this scenario to 
compute the testing metrics and correlation between the three variables 
and seed yield. 

3.2. Testing 

Fig. 5 represents how the most accurate model of Mask R-CNN (case 
4, trial 10) detects spinach plants in unseen images (test dataset). The 
example on top (Ground Truth plot number 14) was the best case, with 
the same number of detected annotations as labelled ones, 16 in total. 
On the other hand, Ground Truth plot 12 was the worst scenario, where 
there was a big difference between the number of manually labelled 
spinach plants, 13, and the number of identified plants, 7. 

With the outputs of Mask-RCNN (the detected plants), the plant area 
(m2) and Canopy Cover (%) were calculated. Regarding the computation 
of both seed yield variables per GT plot, some assumptions were made. 
The company’s ground truth dataset provided by the experts contained 
the average number of seeds per plant and the average TSW per plant 

Table 5 
Default values of the hyper-parameters that were used to start training Mask R- 
CNN. Afterward, these values were modified to fine-tune Mask R-CNN and reach 
higher metrics’ scores.  

Batch size Learning rate Number of epochs RoI per image Threshold 

8 0.0025 300 200 0.1  

Table 6 
Highest metric’s scores for Cases 1 to 4, resulting from trial 10. The highest 
scores, highlighted in bold, are obtained for Case 4.   

Case 1 Case 2 Case 3 Case 4 

Precision 0.582 0.596 0.645 0.782 
Recall 0.079 0.086 0.091 0.543 
F1-score 0.139 0.150 0.159 0.641  
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subdivided per size (small, medium, and tall) and per variety (OS196 ♀, 
OS250 ♀, and OS648 ♀). To clarify, there were nine different values per 
seed yield variable, one for small plant from OS196 ♀ variety, another 
for medium plant from OS196 ♀ variety, along with others. The 
assumption made was to compute the average value of the three sizes 
per variety and have an estimated value of the number of seeds per plant 
and TSW (g) from a specific variety. Afterward, the previous value was 
multiplied by the number of plants per GT plot to obtain the estimated 
value of the number of seeds (m− 2) plot and TSW (g). Because of the 
assumptions made to obtain the seed yield values per GT plot, the 
number of seeds (m− 2) and thousand seed weight (g) per GT plot are 
estimated, not real values. 

The regression metrics for the three computed variables are sum
marized in Table 7. The RMSE metrics are in the same units as the 
variables. It can be observed that all values are lower for plant area due 
to its small range of values (from 0.16 to 1.01 m2). The RMSE for Canopy 
Cover is low (4%) and hence there is not much difference between the 
annotated and the values obtained with Mask R-CNN. Nevertheless, the 
RMSE for the number of spinach plants is intermediate, three plants, and 
it is mainly caused by three GT plots (GT 1, 9, and 12) that have dif
ferences of five, five, and six plants, respectively. Without these three GT 
plots, the RMSE would decrease to 2.6 plants, which is a very adequate 
value. 

Fig. 6 displays the scatterplot representations of the three variables. 
It can be observed that for the number of plants (Fig. 6-a), there is a 

positive correlation between the annotated and the detected plants. 
Nevertheless, this correlation is not as high (as linear) as for the com
parison of plant area and canopy cover (Fig. 6-b, c). It can be observed 
that Fig. 6-a contains 16 points instead of 18 since there were three GT 
plots with the same detected and annotated number of spinach plants. 

3.3. Correlation between plant count and the two phenotyping variables 
with seed yield 

The correlations between the number of plants, plant area (m2), and 
canopy cover (%) with the number of seeds (m− 2) and thousand seed 
weight (g) plots are presented in Fig. 7. The highest correlations with 
seed yield are shown with the number of plants, with R2 values of 0.70 
and 0.77, being the largest correlation between the number of plants 
(m− 2) and TSW (g). The rest of the plots show flat lines indicating almost 
no correlation between the detected variables and seed yield variables. It 
can be observed in the two top plots of Fig. 7 (number of identified 
plants vs. number of seeds and TSW) that only 12 points are shown. As 
has been mentioned, some assumptions were made. Therefore, all GT 
plots that had the same number of plants and belonged to the same 
variety appear as one point in Fig. 7. 

All the R2
adj values of multiple linear regression correlations can be 

observed in Table 8. To predict the number of seeds, the addition of 
plant area increases the R2

adj value compared to having only the number 
of plants, but not at significant levels, since the p-value of the plant area 

Fig. 4. Learning curves of the four different cases with the hyper-parameters values of trial 10, divided into validation and test datasets. On the left column (a) and 
(c), the evolution of accuracy through iterations. On the right side (b) and (d), the evolution of total loss through iterations. 
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is higher than 0.05. Nevertheless, predicting the number of seeds with 
the three variables increases the coefficient of determination to 0.80, 
with both extra variables being significant. Differently, none of the 
combinations’ R2

adj is higher than the simple linear regression score, 
achieved by only the number of plants to predict TSW (g), with an R2

adj of 
0.77. In conclusion, both seed yield variables can be predicted with 
almost 80% accuracy. 

4. Discussion 

Mask R-CNN has proven to be a good algorithm for spinach plant 
detection (Table 6). The COCO-dataset [22] was chosen for this research 
because it is open-source and has an available configuration that can 
easily be implemented on custom cases, only a few parameters need to 
be modified for inference [22]. The adopted network was PyTorch, even 
if Keras and Tensorflow were the original networks for Mask R-CNN 
implementation [1]. The main reason for this decision was that PyTorch 

includes the software detectron2, which provides a high inference speed 
that allows the user to iterate more rapidly on model experiments [41]. 

Image labeling is a time-consuming task that took an approximate 
time of 181 h to be completed and is subject to human error [9]. The 
quality control was performed by first training the annotating skills on 
already labelled images downloaded from the internet [1] and afterward 
double checking all the manual delineations of the custom dataset to 
detect missing annotations or wrongly labeled ones. 

The metrics of cases 1 and 2 were in all trials lower than the ones of 
cases 3 and 4 (Table 6). The unique difference between these datasets 
was the fact that the latter included 20 tiles of the orthomosaic that was 
used for testing. Contradicting the recommendation of Yeom et al. [44] 
of using raw data to train the NN, the model showed better metrics while 
adding orthomosaic data, as it already happened in other studies 
regarding plant phenotyping variables using UAV images [11,42]. The 
reason for this contradiction might be that part of the training and 
testing datasets belong to the same orthomosaic. By having the same 
pixel frame and brightness conditions, the algorithm learns better and 
consequently predicts more accurately. To prove that the hypothesis of 
Yeom et al. [44] cannot generalize, more experiments with different 
datasets should be conducted. 

Regarding the distinct feature between cases 1 and 3 (with data 
augmentation), and cases 2 and 4 (without data augmentation), the 
results showed that the first group had lower metrics for all trials 

Fig. 5. Comparison between the annotated images (left) and detected images (right). (a) shows the best-detected example (16 annotated, 16 detected), whereas (b) 
illustrates the worst example found (13 annotated, 7 detected). Nevertheless, it can be observed that in (b) there is an operator in the field, which might confuse the 
algorithm. Still, the plot was kept to make the trained algorithm robust. 

Table 7 
RMSE regression metrics for the three variables (plant count, plant area, and 
canopy cover), by comparing the GT values with the detected ones.   

Number of plants[-] Plant area[m2] Canopy Cover[%] 

RMSE 3.4480 0.0537 4.4183  
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(Table 6). Interestingly, having extra data to train the model decreased 
the F1-score. The data augmentation methods applied were resizing, 
changing brightness, contrast, saturation, and lighting, and allowing 
flipping and rotations. All cases (e.g., flipped image, change in bright
ness) are valid images in the domain of spinach plants and cannot be the 
reason for the reduction in metrics. One motive for that could be that the 
model had a low capacity and could not learn patterns from the 
augmented dataset since it introduced noise to the real dataset. How
ever, it is unlikely because the model detected accurately without data 
augmentation. It could be that the model learnt in a short amount of 
time. Nevertheless, increasing the number of epochs was not accompa
nied by an increase in the metrics’ results ergo this hypothesis can be 
refused. Another cause could be that there were not enough annotations 
and when including data augmentation, the model was memorizing the 
training cases, causing overfitting [16]. To prove this last theory, more 
training annotations should be introduced to the model and in case the 
problem persists, the overfitting problem with the training dataset could 
be accepted. 

The highest F1-score obtained in this study (64.1%) (Table 6) was 
28% lower than the average F1-score calculated in similar studies of 
fruit detection with image segmentation [8,23], even if the RMSE values 
were all very accurate. The main difference between this study and the 

rest was the number of annotations present on each test image. Normally 
the number ranges from 1 to 5 plants/fruits per image and in the spinach 
case it ranges from 8 to 21 plants. Therefore, cropping the test datasets 
into smaller tiles (1 to 5 annotations each) could be considered in future 
work to find out if that was the reason for the low F1-score. Analyzing 
the decomposition of the F1-score formula (Eq. (1.3)), it can be seen that 
recall scores were lower than accuracy values for all cases and trials. The 
low values of the recall are coherent for the first trials and cases 1 to 3 
since the difference between annotated and identified plants was 
remarkable. However, an important increase in recall rate for trial 10 
case 4 is observed, turning recall into the main cause of the boosted 
F1-score. 

The hyper-parameters values that were responsible for obtaining an 
F1 score of 0.64 are the ones mentioned in the results section. The batch 
size for the spinach case, 8, was lower than for other studies, 32 or 64 
[12,46]. However, in the spinach scenario, the batch size could not be 
increased since CUDA was running out of memory. The threshold to 
accept/reject annotations used in the spinach case, 0.7, was the same as 
the one used by Liu et al., [23]. Regarding the learning rate, Häni et al. 
[12]; Liu et al. [23]; Yu et al. [46] showed that the value of 0.001 was 
better in their cases. Nevertheless, the best learning rate for the spinach 
study was 0.0025, even if 0.001 was included in one of the ten trials that 
were performed. Regarding the number of training epochs, the values 
implemented in the spinach study were inside the range of values used in 
similar studies for fruit detection with instance segmentation [8,12]. 

Concerning the RMSE values obtained for the comparison of the 
number of plants (Table 6), they are both close to the ones obtained by 
Prado Osco et al. [31] with citrus trees, which outperformed signifi
cantly object detection methods for plant counting. With respect to the 
two other variables (plant area and canopy cover), no studies are 
comparing the same metrics. Nevertheless, there are metrics for similar 
phenotyping variables measured, for instance, height and LAI, with 
RMSE values of 0.16 cm and 0.34 [-], respectively [45]. It can be 
observed that the obtained RMSE values for the spinach case are quite 
low and are comparable (in terms of absolute value) to the ones 
retrieved by Yu et al. [45]. Hence, it can be concluded that the metrics’ 
values of the plant count and the two phenotyping variables are 
state-of-the-art scores. With reference to the three GT plots whose dif
ference between annotated and detected plants was the highest (GT 1, 9, 
and 12), it can be observed that they are the plots with more plant 
density, with the most overlap and biggest size of the spinach plants. 
About GT 12, there was an operator in the middle of the GT plot, that 
could have confused the algorithm. Nevertheless, it was not removed to 
make the trained algorithm robust to any unexpected object. Therefore, 
more GT plots with denser and bigger spinach plants should be added to 
train the algorithm and exclude the test plots where there are people or 
random objects. 

As has been mentioned, some assumptions were made to estimate the 
seed yield variables’ values for each GT plot. For future studies, it would 
be recommended to gather real measurements per GT plot to confirm 
that the obtained values were properly estimated and that the obtained 
correlations can be generalized to other spinach fields. Furthermore, for 
future studies, plant height, which is the most mentioned variable to 
predict yield [7,44,45], should also be included as a GT measurement for 
all measured dates to correlate this variable with seed yield. 

The high values of the coefficient of determination obtained to pre
dict the number of seeds and TSW (0.80 and 0.77, respectively) (Fig. 7), 
are comparable to state-of-the-art scores achieved by Bendig et al. [2] to 
correlate barley’s height with biomass. Nevertheless, in the spinach 
study, the height was not measured with the 2D UAV images but could 
be calculated in future work with 3D point clouds collected from laser 
scanners mounted on a UAV or with the Digital Surface Model and 
Digital Terrain Models obtained from the photogrammetric process. To 
predict the number of seeds, the combination of the number of plants, 
plant area, and canopy cover was required to achieve the R2

adj of 0.80. On 
the other hand, only the number of plants was needed to predict the TSW 

Fig. 6. Scatterplot representation of the comparison between annotated and 
measured variables for the test dataset (18 GT plots). There is a linear corre
lation for all annotated and measured variables, being the correlation higher for 
cases (b) and (c) with R2 values of 0.95. 
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with an R2
adj of 0.77. Therefore, depending on the seed yield variable to 

be predicted, only one variable or the three mentioned need to be 
calculated. With this study, the correlation between some yield com
ponents and seed yield itself was provided, which was lacking in all the 
studies performed until the date on spinach [13,33]. 

5. Conclusions 

The main objective of this research was to assess the correlation 

between plant count and two phenotyping variables (individual plant 
area and canopy cover) derived from UAV images orthomosaics of a 
spinach field with seed yield measured in the field. The number of plants 
and the phenotyping variables were derived by applying Mask R-CNN on 
a custom dataset to count the number of plants per GT plot and to 
provide a mask per each spinach plant detected. 

This study showed that Mask R-CNN can be applied to count spinach 
plants by training the algorithm with a combination of UAV images and 
orthomosaic tiles. The algorithm achieved the first purpose by applying 

Fig. 7. Correlations between the measured variables and seed yield variables, with their regression equations and R2 score. The points display each observation, the 
gray shadow represents the 95% confidence interval, and the black line is the regression equation. A clear correlation is observed for the comparison of number of 
plants and both seed yield variables, whereas no clear correlation is shown for the plant area and canopy cover with the seed yield variables. 
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transfer learning using the COCO-dataset. The hyper-parameters modi
fied were the batch size, the learning rate, the number of training 
epochs, the number of regions of interest proposed per image, the 
threshold to accept/reject annotations. The accuracy obtained (F1-score 
= 0.641) is lower than the state-of-the-art ones, but the model detected 
the number of plants with a relatively low RMSE of 3.4480 plants. Mask 
R-CNN could also obtain individual plant area as part of the outputs of 
the algorithm, with a very low RMSE of 0.0537 m2. 

There was a linear correlation between the plant count and pheno
typing variables with the seed yield variables. The highest coefficient of 
determination for the number of seeds was found using multiple linear 
regression with three different variables (the number of plants, the plant 
area, and the Canopy Cover). With this, 80.31% of the variation of the 
number of seeds (m− 2) plot could be explained. The largest correlation 
found to predict the thousand seed weight (g) was with single linear 
regression, directly correlating the number of plants with TSW. 
Employing that, 77.42% of the variation of TSW (g) could be explained 
by the number of plants per GT plot. 

This research explored a method to predict spinach seed yield at an 
earlier date by working with multiple phenological stages. It solved the 
lack of knowledge on combining the number of plants and multiple 
phenotyping variables to predict seed yield more accurately and refused 
the hypothesis of Yeom et al. [44] to work only with raw data to train the 
algorithm. 
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