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Chapter 1

Introduction

How did the zebra get its stripes, the leopard its spots and the plant its hair-
cut? Although the last question is seemingly different from the first two,
theory suggests that many patterns in biology share common principles [1–
5]. In this thesis, the focus is on the latter question of plant ‘haircuts’, or
more precisely: the hair-like structures that are formed on the epidermis of
plant leaves, called ’trichomes’ [6]. The formation of patterns by trichomes
may provide fundamental insight into how cells that are similar in early life
stages differentiate over time into specific functions and shapes [7]. Given
the existence of an intricate regulatory network underlying the regulation of
trichome patterning [8–10], the use of mathematical modelling is essential in
order to get a grasp on its inherent complexity. In this introductory chapter,
an overview is given of the general theory behindmodels of pattern formation,
after which we place this in the context of trichome patterning and concomi-
tant challenges.

1.1 Patterns in nature

Although nature shows a great variety of shapes and structures, underneath
all this diversity a surprising amount of regularity is found. Even between
markedly different scales and contexts (e.g. sand dunes and pigment patterns
of fish as in Figure 1.1), there is a similarity between natural patterns that
strongly suggests that such phenomena could be explained by a common the-
oretical framework. The search for this theoretical framework has been led
by mathematicians hoping to answer questions such as “How do these patterns
arise?” and “What are the common features?”.

The Scottish biologist and mathematician Sir D’Arcy Wentworth Thomp-
son provided a first methodological answer in his book On Growth and Form
in 1917 [2]. There, he combined natural history, biology, mathematics, and
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Figure 1.1: Examples of patterns in nature. A: Sand dunes in Morocco, self-organized
into a regular pattern. B: Danio rerio, or zebrafish, known for its stripes and often used
in patterning studies.
Images from Wikipedia Commons, distributed under a CC BY-SA 2.0 licence.

physics in search of a quantitative description of the mechanisms underly-
ing plant and animal pattern formation. By applying tools from mathemat-
ics and physics, Thompson demonstrated how seemingly complex problems
could be described by elegant and simple forms of reasoning. Early in the
book, Thompson remarks that the phenomena of natural form can be found
at many levels of organisation,

“The waves of the sea, the little ripples on the shore, the sweeping
curve of the sandy bay between the headlines, the outline of the
hills, the shape of the clouds, all these are so many riddles of form,
so many problems of morphology, and all of them the physicist
can more or less easily read and adequately solve.”

Thompson states his aim of finding a way of combining mathematics and
physics for the purpose of explaining growth and form, as follows:

“My sole purpose is to correlate with mathematical statement and
physical law certain of the simpler outward phenomena of organic
growth and structure or form, while all the while regarding the
fabric of the organism, ex hypothesi, as a material and mechanical
configuration.”

Through his description of the “mathematical beauty” of nature, Thompson
has inspired many scientists to explore a theoretical approach to explaining
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natural form – among which Alan Turing, whose impact on the field of math-
ematical biology and the theory behind morphogenesis is substantial.

1.2 Turing patterns

Similar to Thompson’s assumptions that physical forces can explain biolog-
ical forms, Turing hypothesised that diffusing chemicals that react with one
another could explain the formation of anatomical patterns in developing tis-
sues, and that these simple chemical processes can be described precisely and
mathematically [3]. In Turing’s ground-breaking paper The Chemical Basis of
Morphogenesis a set of chemical kinetic equations is introduced that may gen-
erate patterns resembling those seen in biology [3]. Since then, these patterns
have been coined Turing patterns. These equations describe two mechanisms:
reaction, where chemicals are produced and decayed; and diffusion, where
chemicals spread across the tissue. This simple system consisting of only
two species is capable of breaking the symmetry of a spatially homogeneous
mixture of chemicals and leads to the development of structures, i.e. spa-
tial patterns [3]. In view of their assumed form-producing properties, Turing
termed these chemicals morphogens and the related chemical system is called
a reaction-diffusion system. A surprising outcome of Turing’s model is that he
showed that a systemwhich is stable in the absence of diffusion, could become
unstable in the presence of diffusion. This finding was really counter-intuitive
as diffusion is typically thought of as a homogenizing process. However, Tur-
ing showed that – given certain system kinetics – two stabilizing processes
could lead to an instability and thus the formation of spatial patterns. Fur-
thermore, these patterns are self-organizing, which means that the breaking
of the initial symmetry follows from the system dynamics itself, triggered by
random perturbations [3].

Since Turing’s prediction of diffusion-driven instability, it took almost 40
years before Turing patterns were observed in a real chemical reaction [11].
Nowadays, such chemical or molecular signals have been frequently found
in animals and plants and have been shown to spread across tissues describ-
ing patterns that are followed by processes like cell differentiation [12–16].
Crucially, Turing’s model demonstrated that the dynamic changes in the dis-
tribution of a morphogen leads to tissue patterns. This evoked the question
that is still relevant in developmental biology to this day: “How are morphogen
profiles shaped and interpreted in tissues?”.
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Turing’s approach exemplified the power of taking a mathematical and
quantitative perspective on biological questions. This is reflected by the abun-
dance of follow-up studies of morphogen-mediated patterning based on Tur-
ing’s reaction-diffusion system [5, 15, 17]. The work of Turing and Thompson
advocated the exploration of biological processes by finding simple mathe-
matical descriptions based on physical principles. In the following section
an overview is given of Turing’s theory, which will play a central role in this
thesis when dealing with the analysis of trichome patterns.

1.3 The theory behind Turing patterns

The Turing reaction-diffusion system [3] is of the form

∂w
∂t

= F(w;µ) +∆D∆w, (1.1)

wherew is a vector of chemical concentrations,D a matrix with diffusion con-
stants (diagonal with strictly positive elements) and F(w;µ) the (non-linear)
reaction kinetics depending on (a number of) parameters µ. The simplest case
that exhibits diffusion driven instability is a 2-component system. In that case,
w, D and F are written as

w =
(
u
v

)
, D =

(
1 0
0 d

)
, F =

(
f (u,v;µ)
g(u,v;µ)

)
, (1.2)

with u(r, t), v(r, t) concentrations of the two components at the spatial position
r = (x,y) and time t. After scaling, D has diagonal elements 1 and d, the ratio
of the diffusion coefficients of the components u and v.

A requirement is the existence of a stable homogeneous steady state w̄ =
(ū, v̄) of the system without diffusion, i.e. the solutions of the algebraic sys-
tem f (ū, v̄;µ) = g(ū, v̄;µ) = 0, which are constant in time and homogeneous
in space [18, 19]. The mechanisms by which w̄ may be destabilized deter-
mines the onset of the pattern. Usually, the initial conditions are taken to
be random perturbations of w̄. It is the final pattern that is of interest, not
the initialization of the pattern. In the case of diffusion driven instability,
the homogeneous steady state must be linearly stable and destabilized upon
the introduction of diffusion [18, 19]. To determine the stability of w̄ a small
perturbation is introduced:

w̄′ =w− w̄. (1.3)
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If the perturbation |w̄′ | is sufficiently small, we may linearize (1.1) about the
homogeneous steady state. This is achieved by writing a Taylor series expan-
sion for F(w̄) about w̄ and retaining the linear contributions [18, 19]. For (1.1)
the linearized version in the absence of diffusion is

∂w̄′

∂t
= Jw̄′ , J =

(
fu fv
gu gv

)
(ū,v̄)

, (1.4)

where J is the Jacobian matrix with fu = ∂f
∂u (ū, v̄), gu = ∂g

∂u (ū, v̄), etc. Solutions
of (1.4) are of the form

w̄′(t) ∝ eλt , (1.5)

where, after substitution of (1.5) into (1.4), the eigenvalue λ can be deter-
mined from the associated characteristic polynomial,

|J−λI| =
∣∣∣∣∣∣
(
fu −λ fv
gu gv −λ

)∣∣∣∣∣∣ = 0

⇒ λ2 − (fu + gv)λ+ (fugv − fvgu) = 0.

(1.6)

From the roots of the characteristic polynomial it follows that

λ1,λ2 =
1
2

[
(fu + gv)±

(
(fu + gv)

2 − 4(fugv − fvgu)1/2
)]
. (1.7)

The steady state is stable if Reλ < 0, which is guaranteed if

trJ = fu + gv < 0, |J| = fugv − fvgu > 0. (1.8)

Having derived the conditions for linear stability in the absence of diffusion,
the next goal is to find the necessary conditions upon which diffusion will
drive the system to instability. Hence, the system in (1.1) is linearized about
the steady state. This yields:

∂w̄′

∂t
= Jw̄′ +D∇2w̄′ . (1.9)

The solutions of this linear problem are of the form

w̄′(r, t) =
∑
k

cke
λk tWk(r), (1.10)

where Wk(r) are the wave modes and ck are constants to be determined by a
Fourier expansion of the initial conditions. For example, in the case of a 1-
dimensional system with a domain of 0 ≤ x ≤ a with zero-flux boundary con-
ditions, W ∝ cos(nπx/a) where n is an integer and k = nπ/a is the wavenum-
ber, which is a measure of the wavelike pattern and 1/k is proportional to the
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wavelength that grows at rate λk . Now, the goal is to find which modes are
unstable, i.e. Reλk > 0, for any non-zero value of k. In the case where multiple
modes are growing, small changes in the initial conditions can lead to differ-
ent final outcomes. The integer values of k for which λk has a positive real part
indicates the number of peaks the final pattern may form. For example, in the
1D case, if λ4 is the only growth rate with positive real part, then the system
will tend to a solution with a dominant cos(4πx/a) function, so the final pat-
tern will have the corresponding number of peaks. If multiple growth rates
are positive, then the final pattern is a superposition of modes. The precise
form of this superposition cannot be predicted due to the initial perturbations
being random. Furthermore, the nonlinearity of the system may give rise to
unexpected patterning even if the initial conditions would be deterministic.
To determine for which criteria the system has real positive eigenvalues, (1.10)
is substituted into (1.9) and λk is determined by the roots of the characteristic
polynomial

∣∣∣λI− J+Dk2
∣∣∣ = ∣∣∣∣∣∣

(
λ− fu + k2 −fv
−gu λ− gv + dk2

)∣∣∣∣∣∣ = 0

⇒ λ2 +λ
[
k2(1 + d)− (fu + gv)

]
+ h(k2) = 0,

h(k2) = dk4 − (dfu + gv)k2 + |J(ū, v̄)|

(1.11)

Together with the inequalities (1.8) derived for the stability of the homoge-
neous steady state, the conditions needed for a Turing instability are

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0. (1.12)

These inequalities indicate that d > 1 is a necessary condition for diffusion-
driven instability pattern formation [18, 19], so the species in the system need
to have different diffusion coefficients.

The linear stability analysis described above is an efficient method for de-
termining the bifurcation thresholds for diffusion-driven instability, for iden-
tifying the Turing space (the part of parameter space where patterns are formed),
and to determine the characteristic length of the pattern (given by the mode
with the largest real positive eigenvalue) [18, 19].

1.4 Extensions of Turing’s model

As Turing himself already noted,
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“This model will be a simplification and an idealization, and con-
sequently a falsification. It is to be hoped that the features retained
for discussion are those of greatest importance in the present state
of knowledge.”

The simple two-component reaction-diffusion system was a simplification
that would require further refinement when applied to the complexity behind
patterning in developmental systems. As mentioned in the previous section,
Turing patterns are sensitive to the initial random perturbation, indicating a
lack of robustness [20–22]. In some cases in biology this is exactly what is
observed, e.g. no two zebra show the same stripe pattern, they are unique like
fingerprints. However, in other cases (e.g. digit development) the pattern is
highly robustly reproduced. Extensions of Turing’s model which include ad-
ditional components, details like stochasicity, and domain growth have been
shown to increase this robustness [21, 23–27].

Two particular variations on Turing’s model are highlighted in the follow-
ing in view of their prominence and relevance in numerous studies on bi-
ological patterns, including trichome patterning. These two variations are
reaction-diffusion models with different reaction mechanics. The first one is
the activator-inhibitor model, also called the Gierer-Meinhardt model, which
relies on the principles of local induction and long-range inhibition by two
biochemical reactions [5, 17, 28, 29]. In such a system, small deviations from
the initially homogeneous field of activator concentrations will be amplified
by auto-catalysis. This will lead to a local increase in the inhibitor concentra-
tion, which is being produced by the activator and diffuses into the surround-
ing tissue at a faster rate than the activator, where it will suppress activator
production, leading to local peaks of activator and inhibitor concentrations
[5]. Such a simple system of two interacting components is capable of forming
patterns from an initially homogeneous field perturbed by small fluctuations,
i.e. it is self-organizing as is the case in biological pattern formation. These
interactions are described by the coupled differential equations

∂u
∂t

= α +
u2

v(1 +κu2)
−µu +Du∇2u, (1.13)

∂v
∂t

= u2 − v +Dv∇2v, (1.14)

where α is the basal production rate of the activator, κ is a measure of the
inhibition strength, µ is the decay rate of the activator, and Du ,Dv are the
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diffusion constants for the activator and the inhibitor, respectively. An alter-
native form which relies on similar principles is the activator-depletion model
[5], in which a substrate is depleted in the autocatalytic loop of the activator.
This alternative form is

∂u
∂t

= u2s −u +Du∇2u, (1.15)

∂s
∂t

= β −u2s −γs +Ds∇2v, (1.16)

where β is the substrate basal production rate and γ the substrate decay rate.

One of the criteria for pattern formation for both models is a difference in
diffusion rates. For the activator-inhibitor model it is necessary that Dv > Du
and for the substrate-depletion model Ds > Du . Gierer and Meinhardt have
applied the model to a wide variety of biological patterning systems, often
leading to a resemblance to the real pattern [17, 30]. However, it has been
shown that the parameter sets that lead to patterns are often unrealistically
restrictive [26]. In order to increase the range of patterning and improve ro-
bustness, some variations on the classical Gierer-Meinhardt models have been
investigated [19, 26].

1.5 Trichome patterning

The pattern of hair cells on the leaf epidermis in Arabidopsis thaliana is regu-
lated by a mechanism that is capable of forming the pattern without any pre-
existing information like cell lineage or signalling from underlying cell layers
[10, 31]. This mechanism robustly produces a pattern of hairs on leaves that
maintains a consistent spacing between any pair of hair-cells, interspersed on
average by the same amount of non-hair cells, with a certain degree of ir-
regularity [32, 33]. The development of trichomes has become a well-known
model of cell differentiation and growth due to the ease of accessibility and
manipulability [7, 34–36]. In Arabidopsis, the trichomes are not essential for
the plant under laboratory conditions, which has greatly facilitated the iso-
lation and study of mutants [34]. These mutants show phenotypical defects
that provide insight into the function of the underlying genotype. Based on
the resulting patterning defect uponmutation, genes have been identified that
fulfil the role of activator (induces trichome fate) and inhibitor (supresses tri-
chome fate) [7, 31, 35]. Given such obvious classifications, it naturally follows
that a model describing trichome patterning could be based on the Gierer-
Meinhardt models, considering that the interactions included in those models
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are activator-inhibitor reactions [5].

The network of genes involved in trichome development is extensive, in-
volving around 40 genes that have been identified throughmutagenesis screens
[34, 37]. Out of all of these, a core network that is relevant for patterning has
been identified and various subsets of that core have been used in modelling
approaches to explain certain aspects of pattern formation [38–42]. An impor-
tant mechanism of this core network is the formation of a complex by the des-
ignated activators [43, 44]. This complex is called the MBW-complex and con-
sists of R2R3 MYB-type transcription factors encoded by the genes GLABRA1
(GL1) and MYB23 [45], a bHLH protein encoded by GLABRA3 (GL3) and EN-
HANCER OF GLABRA3 (EGL3) [34, 44, 46] and finally, the WD40-protein en-
coded by TRANSPARANT TESTA GLABRA1 (TTG1) [47–49]. All these genes
fall in the group of positive regulators, based on their respective mutant phe-
notypes [34]. Mutations in GL1 and TTG1 each result in a complete absence
of trichomes, whereas knockouts of GL3 and EGL3 results in leaves with less
trichomes than wildtype – only when both GL3 and EGL3 are mutated the leaf
is devoid of trichomes [34]. The group of negative regulators consist of TRIP-
TYCHON (TRY), CAPRICE (CPC) [34, 50–52], ENHANCER OF TRY AND CPC
1, 2 and 3 (ETC1, ETC2, ETC3) and TRICHOMELESS 1 and 2 (TCL1, TCL2)
[50, 53–59]. These negative regulators lack a transcriptional activation do-
main and seem to interfere with the function of the transcriptionally active
MBW-complex through a competitive binding mechanism where they com-
pete with the positive regulators for binding to GL3 [60]. Furthermore, in
their absence, phenotypes show an increase in the number of trichomes or the
formation of clusters where trichomes are closely packed together [34, 50].
Downstream of the interactions between activators and inhibitors is the gene
GLABRA2 (GL2), which is assumed to be responsible for translating the cues
from the patterning genes into specific cell fate [61–63].

As mentioned before, the MBW complex plays a central role in the reg-
ulation of trichome patterning. Its function has been studied via yeast-two-
hybrid, yeast-three-hybrid, promoter activity assays and LUMIER experiments
[44, 64]. It has been found that the assumption of a trimeric complex is most
likely too simple and that the actual mechanism relies on differential dimer
formation as well as higher order complexes [64]. In Chapter 4, this bind-
ing behaviour is quantified and through protein binding models the different
modes of competitive binding behaviour have been tested and used in making
predictions about the relevant interactions and expected modes of function in
terms of regulating cell fate. The MBW complex and its regulations are also
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found to play a role in other plant developmental processes [43, 48, 65–68],
making it a suitable system for studying general features of plant develop-
ment. Especially in the case of root hairs, there is a significant overlap in the
involved genes [8]; the system of root hairs and leaf hairs is almost completely
analogous, yet with a few crucial distinctions. In the case of root hairs, there
is a strong dependence on the signals coming from the underlying layer of
cortex cells [69, 70]. There are also some functions that show the opposite
effect, e.g. expression of GL2 on the leaf leads to trichomes, whereas GL2
expression in the root leads to non-hair cells [8]. Given the genetic and func-
tional similarities between root hairs and trichomes, some assumptions made
for the root system are taken into account for trichome patterning as well.
One important assumption that is based on evidence found in the roots is the
cell-to-cell movement of the inhibitor CPC [71]. These assumptions on mobil-
ity are of particular relevance for the patterning models as evident from the
derived criteria for pattern formation described in the previous section.

The analysis of trichomes is not only interesting from a developmental
perspective, but, given the finding of an evolutionary conserved gene cassette,
also from the point of view of evolutional and functional diversification [72–
74]. In addition to the model plant Arabidopsis thaliana, trichomes have been
found in a variety of species [75], among which some hold interest for crop
industry, e.g. trichomes in cotton for the production of cotton fibre [76], and
the glandular trichomes in Artemisia annua that produce Artemisinin [77], the
most well-known and potent medicine for malaria. As might be expected, the
regulatory mechanism of trichomes varies between divergent plant species,
for example, overexpression of Arabidopsis GL1 in tobacco does not affect the
phenotype [78]. In order to discover where such differences come from it is
helpful to approach this by studying species that are closely related enough
to find similarities yet distant enough to see functional variation [79, 80]. In
Chapters 6 and 7, we will consider a comparison between Arabidopsis thaliana,
Arabis alpina and Cardamine hirsuta.

1.6 Mathematical modelling of trichome patterning

The pattern formation of trichomes has been modelled in the form of adap-
tations of the Gierer-Meinhardt models [38–42]. The development of these
models has been guided by the attempt to reproduce certain phenotypical,
biochemical, and molecular observations of mutant phenotypes with the goal
to gain insight into the underlying regulatory mechanisms. These modelling
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Figure 1.2: Schematic representation of a simulation of trichome patterning and
the grid. In the simulations, cells are assumed to be organized on a hexagonal grid.
Starting from homogeneous conditions (left-most figure), the system of equations is
numerically integrated until steady state is reached (middle figure). Based on the final
concentrations, trichomes are identified (right-most figure).

approaches allowed us to understand observations which were not imme-
diately obvious, for example the apparent paradoxical behaviour of TTG1,
which showed aspects of both inhibitor and activator behaviour in its mu-
tant phenotype [40]. Experimental observations suggested a possible role of
depletion of TTG1, which was corroborated by a substrate-depletion model
involving TTG1 and GL3 [40].

Depending on the question at hand, models on trichome patterning may
be as small as the original two-component system by Meinhardt and Gierer,
or require the involvement of more components (the largest model in this
thesis consists of 8 species). Each model is a representation of a subset of in-
teractions from the full network described above, which is where both their
weakness and strength comes from. What may be hard to track with intuition
due to the underlying complexity, can be boiled down to the relevant inter-
actions and components through the clever design of a model. This is true
for most biological processes which typically show non-linear behaviour and
where our understanding needs to be aided by mathematical modelling [81].
In the case of trichomes, there is a wealth of information available due to the
ease of genetic manipulation and thus the wide array of mutant phenotypes
available for study.
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Themodels used in this thesis are based on simplifying assumptions around
space and time. Typically, the patterns are investigated at steady state on
a static (non-growing) domain which is discretized into units that represent
cells which have some form of connectivity (Figure 1.2) and are assumed to
be internally well-mixed, i.e. intracellular concentrations are assumed to be
homogeneous across the cell. On leaves in Arabidopsis thaliana, the initiation
of trichomes occurs at the base of the leaf, already showing a certain degree
of regularity in distances between pairs. Further separation follows from cell
division and growth [10, 82]. By ignoring division and growth in the model, it
is assumed that the processes included in the model (protein binding, degra-
dation etc.) operate on a much faster time scale than the growth and thus lay
out the signals for patterning before processes relevant to cell differentiation
are initiated at the appropriate positions. Usually, the relevant regulations
are assumed to be on the level of proteins, which means that processes like
translation and binding are assumed to be the rate-limiting factors.

Despite simplifying assumptions, our models contain parameters which
are (mostly) unknown and in most cases cannot be estimated from the avail-
able data. In Chapter 4, some of these parameters are quantified through an
approach combining biochemical experiments and mathematical modelling
and in Chapter 2 a method is described which was developed to deal with
such uncertainty when making predictions. In the following section, this is-
sue of uncertainty is briefly introduced.

1.7 Uncertainty quantification

Modelling approaches typically include sources of uncertainty. Whether it
stems from incomplete knowledge, lack of data or generally noisy systems -
all of these sources have an effect on the predictions made by the model [83].
Specifically in the case of biological systems the natural variability due to in-
trinsic noise, e.g., due to stochastic gene expression, leads to uncertainties
[84–87]. Therefore, it is crucial to quantify how model and data inaccuracies
affect the model predictions.

A method that is well-known and often employed for uncertainty quan-
tification is Monte Carlo (MC) sampling. In the literature, statistical methods
based on (pseudo-)random numbers were used a long before the name “Monte
Carlo” for these type of approaches was inspired by the Monte Carlo Casino
[88]. MC methods are used in physics, chemistry, statistics, computer science,
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to name just a few areas [89]. Fundamentally, MC methods rely on pseudo-
random sampling of the unknown parameters in order to construct a set of
input realisations. For each of these realisations there exists a corresponding
solution of the model; all these solutions together give the sample solution
set. Using this set one can estimate certain statistics of the model output, for
example the expectation 〈x〉 of the model solution x can be estimated by:

〈x〉 = lim
N→∞

1
N

N∑
i=1

xiwi ,
N∑
i=1

wi =N, (1.17)

where x is the model outcome for input realisation i, N is the number of reali-
sations andwi is the weight associated with realisation i. In a non-biased sam-
pling approach all wi = 1. MC methods can be applied to any parametrised
model, either stochastic or deterministic. MC methods are flexible and ro-
bust in that they do not depend on the model form or any regularity in the
model solutions. MC methods will always provide some approximation of
the quantity of interest. Convergence of the estimation can be assessed based
on indicators that are related to the computed solutions. This convergence
of MC methods is their main limitation, as the convergence rate depends on
the number of realisations by N−1/2. Several different sampling methods have
been proposed to improve this rate like quasi-Monte Carlo (using low dis-
crepancy sequences like Sobol sequences [90]), Latin hypercube, importance
sampling, and variance reduction [91–93]. However, the large number of com-
putations that are needed still remains a bottleneck for a substantial amount
of uncertainty problems. Overall, Monte Carlo methods are widely applica-
ble, however, the main disadvantage is the computational power required for
a large number of repeated simulations such that the quantity approximated
by MC simulations is sufficiently accurate. For some models a single simula-
tion can already be computationally very costly; in these cases MC approaches
are not feasible.

An interesting alternative to MC are spectral methods [94, 95], which will
be treated in more detail in Chapter 2. In spectral methods, the expectation x
is approximated by a series expansion or spectral expansion (SE) in terms of
orthogonal functions Ψ of the uncertainty parameter θ:

x(θ) ≈
N∑
k=0

ckΨk(θ), (1.18)

where ck are expansion coefficients that may be time and space dependent,
and N is the order of the expansion. This type of expansion resembles the
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well-known Fourier expansion used in, e.g., signal analysis. The advantage of
this representation is that an approximation of x is obtained for all values of
θ at the same time. This form allows immediate evaluation of statistics of x,
either analytically or through sampling of θ [95].

In a SE, the greatest computational costs comes from calculating the ex-
pansion coefficients ck . In so-called non-intrusive spectral projection, the expan-
sion coefficients ck can be calculated using only straightforward deterministic
model solutions and does not require any reformulation of the model. As a re-
sult of treating themodel as a black-box, such expansions can be easily applied
to very complex models (e.g., large or highly non-linear models). Although
SE can become computationally expensive if the model itself is expensive to
solve (in particular when a higher order of expansion is needed or when fac-
ing high dimensional problems [83, 95]), there are methods available to deal
with this hurdle by reducing the complexity of the non-intrusive methods,
such as adaptive sparse grids [96]. Spectral methods are increasingly popular
in the field of uncertainty quantification and have proven very effective for
physical and mechanical models (e.g. fluid dynamics) [94]. For these models
SE outperform MC methods in terms of computational efficiency. For biolog-
ical models spectral methods are still uncommon [97], however, given their
success in applications that share the same mathematical principles and fun-
damentally similar sources of uncertainty, it seems a promising approach for
biological problems as well; some examples of this will be treated in Chapter
2.

1.8 Thesis objectives and outline

In this thesis, biological experiments are combined with mathematical theory
to model the link between genotype and phenotype in the context of trichome
patterning. Genetic analysis has revealed a complex and interconnected un-
derlying network which is impossible to explain intuitively, therefore, math-
ematical models are essential in elucidating this complexity. Both this level
of complexity as well as the principles underlying the pattern formation are
characteristic for many biological systems, making this an excellent model
system. By modelling a variety of mutations, by quantifying fundamental in-
teractions, and through evolutionary comparisons, our aim is to gain insight
into the developmental processes involved. The development of the models
is guided by experimental results and known biological functions. They are
ultimately used not only as a working hypothesis, but also as a guideline for
new experiments.
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In chapter 2 the problem of modelling under uncertainty is addressed and
an efficient method based on spectral expansions is proposed for uncertainty
quantification, specifically in the context of biological models. Through a se-
ries of examples, the method is demonstrated and it is shown how it can be
adapted to overcome challenges that are typically found in biological systems,
such as bifurcations. The method is also applied to the substrate-depletion
model in the context of trichome patterning.

In chapter 3 a mutation in one of the core components in the trichome net-
work is analyzed. This mutation leads to weak ttg1 alleles that – in contrast to
strong alleles, which are devoid of trichomes – show clusters. The proteins in
the weak ttg1 alleles can not bind to GL3 and do not show depletion. In these
mutants the formation of trichomes is still ongoing which suggests that parts
of the network are functional, albeit aberrant. In addition, the pattern of tri-
chomes appears to show a higher degree of irregularity than seen in wild-type.
Aspects of the mutant pattern are quantified and, together with biochemical
and molecular observations, are used to formulate a model that includes the
essential features necessary to capture the mutant phenotype.

In chapter 4 the interactions between proteins that are part of the MBW-
complex are quantified. This MBW-complex plays a central role in trichome
patterning. The formation of this complex is not as straight-forward as ini-
tially thought, as follows from previously published data, as well as the data
shown in this chapter. Rather than forming a trimeric complex, there appear
to be mechanisms at play that allow for higher-order complexes, as well as
bilateral influences on distinct binding sites. Using experiments involving
only two proteins in isolation as well as competition experiments, binding
constants are estimated and used to make predictions on the composition of
complexes found in plants and how this might impact and regulate trichome
patterning.

In chapter 5 a modelling approach is used to aid the elucidation of a pre-
viously unexplained phenotype, namely the double mutant trycpc. In this
mutant, both the inhibitors TRY and CPC are non-functional, resulting in a
highly-clustering phenotype. The single mutants exhibit either a high tri-
chome density (cpc), or a low density in combination with small clusters (try).
It was previously assumed that both the single and double mutants could be
explained by a difference in range of effect of the inhibitors, where CPC was
thought to repress trichome fate on a long range and TRY on a short range; the
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double mutant was assumed to be the result of lacking both long-range and
short-range effects. However, these simple assumptions alone are not enough
to reproduce the observations of all three mutant phenotypes using any of
the existing models. In this chapter, a new model is developed in order to
determine which mechanisms can explain these kind of phenotypes and it is
shown that the cause lies not only in the difference between mobility rates of
inhibitors, but rather in a combination of effects that involve all other compo-
nents in the derived network.

In chapter 6 the trichome patterns of two related species, Arabidopsis tha-
liana and Arabis alpina are compared. Orthologues of the relevant genes in
Arabidopsis were identified for Arabis through synteny and sequence similar-
ity and mutants phenotypes were compared between the species. While in
most cases the phenotypical defects were analogous, there were also striking
differences. In one of these differences, the same mutation leads to an oppo-
site phenotype. Guided by qPCR data, a mathematical model was developed
that could help explain such non-intuitive behaviour by different ratios of the
relevant proteins.

In chapter 7 the expression levels of a large number of trichome patterning
genes is compared between three closely related species: Arabidopsis thaliana,
Arabis Alpina and Cardamine hirsuta. This data is used to fit a model consist-
ing of the core components of trichome patterning and the resulting parame-
ter distributions are compared, revealing how the same network of genes can
be adapted to achieve the differences found between evolutionarily distinct
species. Furthermore, a sensitivity analysis for each of the three species is
used to make predictions on how each of the species show different forms of
robustness and what kind of mutant phenotypes might show distinctive dif-
ferences. Taken together, in this chapter we provide promising avenues of
investigation for future mutant screening with the goal of elucidating evolu-
tionary functional divergence.

Finally, in chapter 8 an overview is given of all the preceding modelling
work and the most important conclusions obtained. This chapter reflects on
whether the thesis objectives were reached and includes a discussion on the
relevance of trichome patterning in a more general context, as well as points
of critique and issues that remain unresolved thus far.
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Chapter 2

Spectral methods for prediction uncertainty
quantification in Systems Biology

Anna Deneer, Jaap Molenaar, Christian Fleck

2.1 Abstract

Uncertainty is ubiquitous in biological systems. These uncertainties can be
the result of lack of knowledge or due to a lack of appropriate data. Addition-
ally, the natural variability of biological systems caused by intrinsic noise, e.g.
in stochastic gene expression, leads to uncertainties. With the help of numer-
ical simulations the impact of these uncertainties on the model predictions
can be assessed, i.e. the impact of the propagation of uncertainty in model
parameters on the model response can be quantified. Taking this into account
is crucial when the models are used for experimental design, optimization,
or decision-making, as model uncertainty can have a significant effect on the
accuracy of model predictions. We focus here on spectral methods to quantify
prediction uncertainty based on a probabilistic framework. Such methods
have a basis in, e.g., computational mathematics, engineering, physics, and
fluid dynamics, and, to a lesser extent, systems biology. In this chapter, we
highlight the advantages these methods can have for modelling purposes in
systems biology and do so by providing a novel and intuitive scheme. By ap-
plying the scheme to an array of examples we show its power, especially in
challenging situations where slow converge due to high-dimensionality, bi-
furcations, and spatial discontinuities play a role.

2.2 Introduction

Every mathematical model in Systems Biology is subject to uncertainty and
incomplete knowledge [98–101]. This can be in the form of unknown model
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structure, unknownmodel parameters and imperfect experimental data. Char-
acterizing and quantifying these sources is crucial, as the uncertainty can
translate into inaccuracies in the model predictions. Information about the
quality of model predictions is vital when applied as support for decision-
making or optimization routines such as experimental design and parameter
estimation [102]. The aim of uncertainty quantification (UQ) is to determine
the likeliness of certain outcomes, given that some aspects of the system un-
der study are not (exactly) known.

Generally, uncertainty is distinguished into two classes [94, 95, 103]. The
first class is so-called aleatoric uncertainty. Aleatoric uncertainty stems from
the intrinsic variability found in the system under consideration, for this rea-
son it is also referred to as statistical uncertainty. For example, in the case
of parameter estimation, this uncertainty is related to the fact that parame-
ters may essentially vary over the system components (e.g., cells) [85], so that
for the system as a whole only a distribution of parameter values can be esti-
mated, and not one precise value per parameter.

In contrast, the second class of uncertainty, termed epistemic (or systemic)
uncertainty, is caused by a lack of information [94, 95, 103]. For example, in
the case of parameter estimation, this may be caused by imperfect data sets
that contain noisy, incoherent, or missing data points [83]. In such cases, the
uncertainty could be reduced by performing extra experiments.

In biological systems both types of uncertainty are typically present [98].
In terms of modelling, both are usually dealt with by employing a proba-
bilistic framework [104]. In the case of epistemic uncertainty, model param-
eters can be represented according to a probability density function (PDF)
[95, 101]. The choice of the type of PDF and the corresponding distribution of
parameters is usually based on previous knowledge. For example, the case of
a completely unknown parameter could be described by a uniform distribu-
tion on a broad (positive) interval. In other cases a parameter could be known
to follow a normal or lognormal distribution with known mean and variance,
established in previously performed experiments [105].

Among the field of UQ, Monte Carlo (MC) methods are most commonly
used [88, 89]. In a MC approach the parameter PDFs are sampled and model
responses for each sample recorded, thus providing a distribution of model
outcomes and an indication of the uncertainty therein (e.g. by analyzing the
distribution moments). These methods are simple in their implementation
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and are widely applicable. However, for models that have a large number of
parameters or are computationally expensive, these MC procedures are often
not feasible [94, 95].

As an alternative toMC,meta-modelling techniques are frequently adopted
to deal with models that would otherwise be intractable. Support vector ma-
chines [106], artificial neural networks [107] and Bayesian networks [108] are
examples of surrogate- or meta-modelling techniques used in Systems Biol-
ogy. In this chapter we focus on stochastic spectral methods, in particular
polynomial chaos expansion (PCE), an approach that is widely used in engi-
neering systems [94, 103] and to a lesser extent in biological systems [97, 109–
111] for UQ purposes. The aim of these approaches is to represent the model
response as a series expansion. The advantage of this representation is that
an approximation of the model response is obtained for all values of the un-
certainty parameters. This form allows immediate evaluation of statistics of
the model outcome, either analytically or through sampling of the stochastic
parameters, which can be done significantly faster than through MC methods
for models that are problematic and computationally expensive [112].

This advantage comes at the cost of the need to calculate expansion coef-
ficients. For this, two classes of spectral methods are in use. In the first class
the governing equations of the model are reformulated such that each vari-
able is represented by a spectral expansion. This results in a system of differ-
ential equations for the expansion coefficients and is known as intrusive spec-
tral projection [95]. In the second class, consisting of so-called non-intrusive
spectral projection approaches and followed in this paper, the expansion coef-
ficients are determined using the model without changing the original model
equations [113]. The advantage of this non-intrusive approach is that it re-
quires only straightforward deterministic model evaluations and does not in-
volve any reformulation of the model. It is particularly attractive in case of
very large models, since then intrusive methods would become too laborious.

In the past, PCE has been shown to converge very slowly or not at all for
models involving non-smooth functions [114, 115]. This is indeed a criti-
cal challenge for biological models, which often show complex, non-linear
behaviour such as bifurcations and spatial discontinuities. In this chapter
we provide a scheme for non-intrusive spectral projection that may overcome
these problems. It is easy to implement and we show its power through ap-
plying it to a number of biological models. The examples in this chapter each
have a specific problem to be overcome.
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2.3 Methods

2.3.1 Spectral expansion

Let us consider a modelΩ that depends on a vector of stochastic input param-
eters θ. The model response Y can be any chosen quantity, e.g. the concentra-
tion of one of the model components or a function thereof. The uncertainty
parameters θl are assumed to be independently distributed, each with PDF
Pl (θl ). So,

Y =Ω(θ), θ ∼ P(θ), (2.1)

where P(θ) is the joint probability density function (PDF) for all U uncer-
tainty parameters: P(θ) =

∏U
l=1Pl (θl ). For reasons of clarity, we restrict here

the explanation to Y and θ being scalar functions. In the section Practical As-
pects we show how to deal with more than one uncertainty parameter. Note
that for correlated parameters the PDF would follow from the corresponding
multivariate distribution.

The underlying model could be of any type, e.g., an ODE, a PDE, an al-
gebraic, or a statistical model. This implies that Y may also depend on time
and space. The challenge is to analyse the behaviour of Y as a function of
θ. In cases where the numerical evaluation of the underlying model takes a
considerable amount of computational time this tends to obstruct any form
of comprehensive analysis. In this paper we present the use of a method that
aims at making this tractable. The idea is to replace the original model by a
meta-model, which is achieved by representing the output Y in terms of an
expansion. This meta-model can be constructed such that it represents the
underlying model to a high degree of accuracy, with the advantage of being
much faster to evaluate than the original model.

This meta-model can be used to determine the distribution of the model
response Y or reconstruct the function accurately at given points in the pa-
rameter space. In the spectral approach the model response is represented
by

Y =
∞∑
n=0

cnφn(θ), (2.2)

where cn are the expansion coefficients (which can be time and/or space de-
pendent) and φn are functions that are orthonormal with respect to the distri-
bution of the uncertainty parameters as weight functions for an inner product,
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as dealt with in S1 Appendix A. For example, suitable basis functions for uni-
formly distributed parameters are Legendre polynomials, while for normally
distributed parameters Hermite polynomials qualify. For any practical pur-
pose the expansion needs to be truncated to a certain degree:

Y s =
N∑
n=0

cnφn(θ), (2.3)

where N is the truncation degree. So, for such a meta-model Y s N expansion
coefficients have to be calculated. The advantage of (2.3) is that the statis-
tics of the model response Y can be evaluated very fast, either analytically or
through sampling of the parameters θ. The main computational cost of the
expansion comes from the computation of the coefficients cn. Below, we pro-
vide an easy-to-implement scheme for the calculation of these coefficients.

We use a non-intrusive approach to the spectral expansion, i.e., we treat
the model equations as a black box, not requiring any tailoring to the equa-
tions to include the parameter uncertainties. Themost commonly usedmethod
for non-intrusively determining the coefficients is through Gaussian quadra-
ture schemes [95]. Here, we propose an alternative scheme. It is applicable
to any set of orthonormal functions, allowing the flexibility to tackle different
modelling challenges. A key feature in the scheme is the introduction of the
symmetric matrix:

B̂n,m =
∫
φn(θ)θφm(θ)P(θ)dθ. (2.4)

Its eigenvalues λ(l), l = 1,2, . . . , are real and its eigenvectors u(l) orthonormal.
In the appendix we show that these eigenvalues and eigenvectors can be used
to derive an expression for the coefficients cn. After substitution, (2.3) then
reads as

Y s(θ) =
N∑
l=0

Y (λ(l))u(l)1 ψsl (θ), (2.5)

where

ψsl (θ) ≡
N∑
n=0

u
(l)
n+1φn(θ). (2.6)

The striking point here is that this expansion requires to evaluate the model
only N +1 times, namely for each of the eigenvalues λ(l), l = 0, . . . ,N . Note that
all terms in the expansion that do not depend on the uncertainty parameter
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θ can be calculated in advance, so once and for all. This saves computation
time for any future application. For models that take a long time to evaluate
the use of (2.5) is a very fast alternative, compared to e.g. a Monte-Carlo
approach. Note that expansion (2.5) is only exact in the limit N →∞. Taking
a finite value for N introduces an inaccuracy. Therefore, N must be chosen
with care and it is often not obvious beforehand which value of N will give
reliable results. We will showcase in the Examples underneath how one may
deal with the choice of N . In the subsection Segmentation in the next section,
we propose an adjusted scheme to deal with cases where a high degree might
result in infeasible computational times.

2.3.2 Practical aspects

Here, we treat some specific aspects of the method presented above.

PDFs and basis functions

We already mentioned Legendre and Hermite polynomials as typical basis
functions for PCE. Legendre polynomials are defined over [−1,1] and are or-
thogonal with respect to the uniform distribution. The Hermite polynomials
are defined over R and are orthogonal with respect to the Gaussian distri-
bution. Both polynomials can be normalized with appropriate prefactors to
ensure orthonormality. These two families of polynomials are most commonly
used to represent biological parameters. The uniform distribution is typically
applied in uninformed cases and the lognormal distribution in cases where
there is prior information available on a parameter. In practice, sometimes
other classical orthogonal polynomial families are appropriate, e.g., Laguerre
polynomials for Gamma distributions. Also, non-polynomial functions may
be applied, such as spherical harmonics. The approach presented here can be
used for any set of orthonormal functions.

The Legendre and Hermite polynomials are defined for standard uniform
U (−1,1) and standard normal N (0,1) variables, respectively. In practice, the
biological parameters are often not restricted to the corresponding intervals.
In these cases we have to apply an isoprobabilistic transformation. For ex-
ample, to obtain a normally distributed random variable k with mean µ and
variance σ , so k ∼N (µ,σ), from θ ∼N (0,1), we need the transform

k = µ+σθ, θ ∼N (0,1). (2.7)
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To obtain a uniformly distributed random variable k on the interval [a,b], so
k ∼ U (a,b), from θ ∼ U (−1,1), we need the transform

k = (b + a)/2+ (b − a)θ/2, θ ∼ U (−1,1). (2.8)

A lognormally distributed random variable k ∼ Lognormal(µ,σ) is obtained
from θ ∼N (0,1) via the transformation

k = µexp
[
αθ − α

2

2

]
, θ ∼N (0,1), (2.9)

where α =

√
ln

(
1+ σ2

µ2

)
.

Multiple uncertainty parameters

Typically, biological models involve more than one random parameter, which
means that the PCE basis {φn(θ), n ∈ NM } is multivariate. Extending (2.5) to
the M-dimensional case is straightforward:

Y s(θ1, . . . ,θM ) =
N∑
l1=1

. . .
N∑

lM=1

Y (λ(l1), . . . ,λ(lM ))u(l1)1 . . .u
(lM )
1 ψsl1(θ1) . . .ψ

s
lM
(θM ).

(2.10)
Similar to MC approaches, PCE suffers from the curse of dimensionality [103,
116]. Note from (2.10) that the number of times the model has to be eval-
uated scales as NM , where N is the expansion order and M the number of
uncertainty parameters.

Segmentation

In cases where the model is computationally expensive, it is advantageous
to keep the expansion order relatively low to ensure feasible computation
times. However, models that show complex response surfaces (e.g., bifurca-
tions) will in a straightforward approach require high order expansions to
capture the complexity. This is problematic since it not only requires to eval-
uate the model often, but also leads to time consuming summations in (2.10).
To overcome these problems, we propose a scheme that segments the param-
eter intervals into subintervals. Within each of these segments we then per-
form a separate expansion. In this approach we have to deal with a trade-off:
the number of expansions is multiplied, but per expansion we have a (much)
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lower order of expansion. Below we argue why the second positive aspect
greatly counterbalances the first negative aspect.
To determine the segments we define a scaling function gm with M ∈ N and
L ∈ R by:

gm : [−L,L]→Im =
[
(2m− 1)L
2M +1

,
(2m+1)L
2M +1

]
,m ∈ {−M,M} ⊂ Z, (2.11)

θ 7→ gm(θ) =
2mL

2M +1
+

θ
2M +1

.

This scaling function gm divides the interval [−L,L] into 2M + 1 segments
Im of equal length. Of course, Lmust be larger than or equal to any value of θ.
For example, consider the case L = 1. Then, the whole interval is [−1,1]. For
a segmentation granularity ofM = 1, this interval is divided into three subin-
tervals: I−1 = [−1,−0.33], I0 = [−0.33,0.33] and I+1 = [0.33,1]. The expansion
of Y on any subinterval Im is given by:

Y (gm(θ)) =
N∑
l

Y (gm(λ
(l)))u(l)1 ψl (θ). (2.12)

Upon a variable transformation y = gm(θ), Eq. 2.12 becomes:

Y (y) =
N∑
l

Y (gm(λ
(l)))u(l)1 ψl (g

−1
m (y)) : y ∈ Im. (2.13)

After segmentation, the expansion on the interval [−L,L] as a whole is a su-
perposition of the expansions on the subintervals:

Y (y) =
M∑
m

N∑
l

Y (gm(λ
(l)))u(l)1 χm(y)ψl (g

−1
m (y)) : y ∈ [−L,L], (2.14)

where χm(y) is an indicator function for selecting the correct segment:

χm(y) =

1 : y ∈ Im,
0 : y < Im.

(2.15)

We can also define an index function to selectm∗ ∈ {−M,M} for which χm(y) =
1:

m∗ = z(y) =
⌊
(2M +1)y

2L
+
1
2

⌋
for |y| ≤ L. (2.16)
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Using both index functions we can finally write the segmented reconstruction
as:

Y (y) =
N∑
l

Y (gz(y)(λ
(l)))u(l)1 ψl (g

−1
z(y)(y)) : y ∈ [−L,L]. (2.17)

Segmentation allows the use of lower order polynomials while maintaining
the same accuracy (assuming a sensible choice forN andM) as a non-segmented
higher order expansion. The number of model solutions required now scales
as (2M + 1)KNK , where K is the number of uncertainty parameters, M the
segmentation granularity, and N the expansion order. The reduced accuracy
by using a lower order expansion is compensated for by evaluating the model
more often, as a result of zooming in. Expanding up to the N -th order for p
uncertainty dimensions requires solving the systemNp times. Reconstruction
requires the summation ofN2p terms. Therefore, it is advantageous to keepN
as low as possible. Normally, the reconstruction error is large for low N , but
this is mitigated by segmentation. Segmentation requires to evaluate the sys-
tem (2M+1)pNp times, but due to segmentationN can be takenmuch smaller.

To illustrate this with an example, we take a system with 2 species of
interest and 5 uncertainty parameters θi . The expansion order is taken as
N = 8. This implies summing over 2 × 810 = 2,147,483,648 terms per time
point and per parameter set (θ1, ...,θ5). In the case of segmented expansion,
we can choose a lower N , for example N = 3 with a segmentation granularity
ofM = 1. The number of terms to be summed over is 2× 310 = 118,098. This
is dramatically more efficient and stems from the fact that one only has to de-
termine the segment in which the parameter set (θ1, ..,θ5) falls and choose the
corresponding expansion coefficients. In the Results section we will present
Example II in which segmentation indeed proves to be very beneficial.

Haar wavelet expansion

Traditional PCE methods are known to have difficulties with capturing dis-
continuous behaviour [114, 115]. Spectral convergence is only observed when
solutions are sufficiently regular and continuous. Just like Fourier expan-
sions, PCE suffers from Gibbs phenonema at discontinuities, resulting in slow
convergence [94]. Haar wavelets have been suggested to overcome these dif-
ficulties [83, 115]. In contrast to global basis functions like the aforemen-
tioned polynomial systems, wavelet representations lead to localized decom-
positions, resulting in increased robustness at the cost of a slower convergence
rate [83, 94]. Here, we discuss that Haar wavelets can be easily incorporated
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in the framework presented above and in Example IV underneath we show
how they can be applied in practice.
As mother wavelet we take

ψW (y) =


1 for 0 ≤ y < 1

2
−1 for 1

2 ≤ y < 1
0 otherwise

. (2.18)

By introducing a scaling factor j and a sliding factor k, we may construct the
wavelet family

ψWj,k(y) = 2j/2ψW (2jy − k), j = 0,1 . . . ; k = 0, . . . ,2j − 1. (2.19)

Given the uncertainty parameter θ with its cumulative distribution function
F(θ), we define the basis functions as

Wj,k(θ) ∼ ψWj,k(F(θ)). (2.20)

By concatenating the indices j and k into one index i ≡ 2j + k, we may expand
the meta-model Y similarly as we did in (2.2):

Y (θ) =
∞∑
n=0

cnWi (θ). (2.21)

Sensitivity analysis

In sensitivity analysis one quantifies the effects of changes in the parameters
on the variability of the model response. Here, we show how our PCE ap-
proach allows for sensitivity analysis in an elegant way. In the case of local
sensitivity analysis, small parameter variations around a certain point in pa-
rameter space are used to determine the effect on the model output [117].
This sensitivity is estimated via calculation of the partial derivatives of model
output with respect to parameters, evaluated in that point [118]. Alterna-
tively, global sensitivity approaches do not specify a specific point in parame-
ter space [119]. For example, Sobol indices are a popular sensitivity measure
as they provide a measure of global sensitivity and accurate information for
most models [90]. Sobol indices are based on the decomposition of the vari-
ance of the output Y as a function of the contribution of the parameters (and
possibly their combination), also called the ANalysis of VAriance, or ANOVA
[90]. Thanks to the orthonormality of basis functions in PCE, Sobol indices
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can be determined analytically from the coefficients of the PCE [120, 121] So,
once these coefficients are known, one gets the Sobol indices nearly for free.
Given the PCE expansion of output Y , the total variance of the model output
is given by

D̂ =
∑
i∈I−{0}

c2i , (2.22)

where I is the multi-index set of all variables and ci the expansions coeffi-
cients. The 0th coefficient is not included as this is a constant. The partial
variance is given by

Dθi =
∑
i∈Iθi

c2i , (2.23)

where Iθi is the multi-index set of parameter θi , i.e. where the ith term in the
multi-index is larger than 0. The Sobol indices are then given by

Sθi =
Dθi
D̂
, (2.24)

In this way the relative contribution of parameter θi to the variance of the
output is easily calculated.

2.3.3 Summary of implementation

In this section we provide an overview of the steps needed to arrive at a meta-
model using PCE:

1. Determine which of themodel parametersmay show stochastic behaviour
and decide upon an appropriate PDF for such parameters.

2. Choose a truncation degree N .

3. Based on the PDF in the previous steps, calculate the appropriate basis
functions φn(θ),n = 0,1,2 . . . ,N .

4. Determine the N ×N matrix B̂ as defined in 2.4. For example, for Leg-
endre polynomials B̂ reads as

B̂n,m =
n

√
2n+1

√
2m+1

δnm+1 +
m

√
2n+1

√
2m+1

δnm−1, (2.25)

where n,m = 0,1,2 . . . ,N .

For Hermitian polynomials B̂ reads as:

B̂n,m =
√
nδnm+1 +

√
mδnm−1. (2.26)
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5. Calculate the eigenvalues λ(l), l = 1,2, . . . ,N and orthonormal eigenvec-
tors u(l).

6. Calculate ψsl (θ) =
∑N
n=0u

(l)
n+1φn(θ).

7. Calculate Y (λ(l)), l = 1,2, . . . ,N by evaluating the model N times.

8. Arrive at the metamodel Y s(θ) =
∑N
l=0Y (λ

(l))u(l)1 ψsl (θ).

9. Eventually, apply post-processing through, e.g., sensitivity analysis.

2.4 Results

To test the performance of the present PCE approach in biological simula-
tions, we have chosen four typical examples. Through these examples, we
show how to deal with several challenges usually encountered in systems bi-
ology.

The first example has only one uncertainty parameter. Its simplicity al-
lows comparison between the results of our approach with an exact solution.

The second example concerns a biochemical reaction network and is higher
dimensional, i.e., it contains more than one uncertainty parameters. We use it
to highlight the advantages of segmentation.

The third example is the glycolytic oscillator, which shows bifurcations,
i.e., different dynamic behaviour for different parameter sets [122]. We use
it to demonstrate the power of global sensitivity analysis, which in the PCE
framework can be achievedwithout significant additional computational costs
once the PCE coefficients have been calculated. In addition, this example al-
lows us to show the use of mixed expansions, since the parameter PDFs fol-
low different distributions. This leads to a combination of different families
of basis functions, thus highlighting the flexibility of the PCE approach when
applied to varying input uncertainties.

The last two examples have a spatial dimension. First, we consider the
Schnakenberg model which is a well-known model of pattern formation and
comes with challenges such as shifts from non-patterning to patterning re-
gions [123]. In this example we demonstrate the advantage of using Haar
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wavelets over polynomial basis functions for systems with bifurcations. Sec-
ond, we study a model describing pattern formation in plants, more specifi-
cally patterning of the hairs found on top of leaves, so-called trichomes [40].
In this model we show how to adapt the approach such that the computational
costs are reduced as much as possible by carefully choosing the quantity of in-
terest, without changing the standard set of steps.

2.4.1 Example I. Exponential decay: comparing performance of PCE to
MC and an analytical solution

For this example case, we consider the extremely simple reaction system con-
sisting of one decaying species:

A
k−→ ∅.

Its dynamics is described by A(t) = A0 exp−kt , where A0 is the initial concen-
tration of A at t = 0 and k the rate of decay. We test the PCE method against:
1) the exact, analytical solution and 2) the classical Monte Carlo approach.

The quantification of the sources of uncertainty constitute the second step
in the analysis. This entails identification of the parameters that are unknown
and modelling them in a probabilistic context. In this case, we assume that
k is distributed according to a lognormal distribution with known mean and
variance, i.e. k ∼ Lognormal(µ,σ), and we choose µ = 0.5,σ = 0.2. The PDF for
k is shown in Figure 2.1 and the derivation for the exact PDF for A is given in
S2: Derivation of the probability density function for the exponential decay
model.

Next, we determine how the uncertainty in k propagates through themodel
and affects concentration A(t). To that end, we expand the function A(t) =
A0 exp−kt in terms of Hermitian polynomials. Using (2.9), k is transformed
into a standard normal variable θ. To arrive at the meta-model Y s(θ) we
truncate the expansion to a certain order N , as shown in (2.3). Choosing N
is not straightforward and will involve some experimentation. In Figure 2.1
we compare results for N = 5 to the analytical solution for different k values.
This shows that for this expansion order the reconstructed function accurately
matches the analytical solution.

In Figure 2.1, we focus on the distributions of A(t = 1) and A(t = 5). This is
achieved by sampling the PCE using a large sample set χ of reduced (i.e. stan-
dard normally distributed) variables θ, χsim = {θj , j = 1, . . . ,nsim}. The trun-
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Figure 2.1: Quantifying the uncertainty propagated by the decay rate in the ex-
ponential decay model. A: Probability density function of the decay rate k(θ) with
µ = 0.5 and σ = 0.2. The colour gradient corresponds to the value of k(θ). B: The con-
centration of A up to t = 6 seconds. The solid lines indicate the analytical solution and
the dots indicate the reconstruction using PCE with Hermite basis functions and an
expansion order N = 5. The colour for each of the solutions correspond to the colour
of the line in A, which indicates the value of k(θ) used for each of the depicted solu-
tions. C: The dashed lines in B indicate a cross-section along the model response space
at t = 1 for the red line, and at t = 5 for the grey line, determined through three meth-
ods. First, the exact dynamics of the model (solid lines), second through MC sampling
using the exact model dynamics (dashed lines) and finally, through MC sampling of
the reconstructed function as obtained through PCE (dots).
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cated series is then evaluated onto this sample: Y ssim = {ηj =
∑N
n=0 cnφn(θj ), j =

1, . . . ,nsim}. These PDFs are obtained by kernel smoothing [124] using a sam-
ple set with nsim = 106, drawn from the standard normal distribution with
µ = 0 and σ = 1. The kernel density estimator is given by

f̂Y (y) =
1

nsimh

nsim∑
j=1

K
(y − ηj

h

)
, (2.27)

with kernel function K(t) = 1√
2π

exp−t
2/2 and bandwidth h, which is deter-

mined by Silverman’s rule of thumb [125]. Figure 2.1 shows that both MC
and PCE perform well in reproducing the exact PDFs.

2.4.2 Example II. Biochemical reaction network: dealing with higher
dimensions

In this example we present a simple model with multiple uncertainty param-
eters. The model describes the dynamics of two proteins x1 and x2 which bind
together to form a dimer x3. We consider the following reactions:

∅
k1−−→ x1 (2.28)

x1 + x2
k2−−⇀↽−−
k3
x3 (2.29)

∅
k4−−→ x2 (2.30)

x1,x2,x3
k5−−→ ∅ (2.31)

In this network, the proteins x1 and x2 are produced at rates k1 and k4. Pro-
teins x1 and x2 reversibly bind to form species x3, with binding rate k2 and
unbinding rate k3. All three proteins are degraded at the rate k5.These inter-
actions are visualized in a reaction scheme in Figure 2.2. The ODEs for this
system are

ẋ1 = k1 − k2x1x2 + k3x3 − k5x1 (2.32)

ẋ2 = k4 − k2x1x2 + k3x3 − k5x2 (2.33)

ẋ3 = k2x1x2 − k3x3 − k5x3 (2.34)

We use for the parameters k1 − k5 log-normal distributions and expand
the functions x1 − x3 in terms of Hermitian polynomials. In Figure 2.2 we
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Figure 2.2: Comparing the segmented expansion with the standard non-segmented
expansion. A: Interaction scheme of the model in Eqs.(2.32)-(2.34). Note that x1,x2
and x3 all have the same degradation rate and x1,x2 have production rates in themodel
but this is not indicated in the scheme. B: Reconstruction of the system by a Hermitian
expansion. For the segmented reconstruction we used N = 2,M = 1 (crosses) and N =
3,M = 1 (dots). For non-segmented expansion the expansion order was N = 8 (dashed
lines) andN = 9, (dash-dotted lines). Note that these lines overlap with the true model
solution (solid lines). We used two log-normal distributions with mean and standard
deviation µ1 = 0.1,σ1 = 0.1 for k1, k4, k5 and µ2 = 0.4,σ2 = 0.1 for k2, k3.

compare the results of the segmented expansion with the non-segmented ex-
pansion and the exact results. For this comparison we chose the degree of
expansion and segmentation granularity such that the same number of model
evaluations were required. We found that the subsequent summation to re-
construct the solutions for the differential equations improved by factors of
1000-30,000 when using the segmented expansion. See Table 2.1. As men-
tioned in the Methods section, this improvements stems from the large re-
duction in the number of terms to be summed over in the segmented case
compared to the non-segmented expansion.

Dividing the parameter intervals into smaller sub-intervals is a relatively
straightforward and simple way to circumvent huge computation times. Other,
more intricate methods have been developed to tackle models with an even
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Table 2.1: Benchmarking of segmented and non-segmented expansion.

N M Nλ NΣ tΣ[s] Fold-
change

2 1 7776 3.07E+03 0.03
3 1 59049 1.77E+05 0.17
6 0 7776 1.81E+08 31.96 1065
9 0 59049 1.05E+10 5402 31776

An overview of the number of model evaluations Nλ, the number of
summation terms NΣ and the time in seconds spent on summation (tΣ), for
different orders N of expansion, both segmentedM = 1 and non-segmented
M = 0. The last column highlights the speed-up factor when segmentation is
used (keeping Nλ constant).

larger amount of parameters [96, 116, 126]. For example, using an adaptive
algorithm that is based on classical statistical learning tools can result in a
"sparse" PCE, that consists of only the significant coefficients in the expan-
sion, thereby reducing the computational cost. This method has been tested
on models of stochastic finite element analysis with up to 21 parameters [96].

2.4.3 Example III. Glycolytic oscillator: mixed input PDFs and global
sensitivity

Living cells obtain energy by breaking down sugar in the biochemical pro-
cess called glycolysis. In yeast cells, this glycolysis was observed to behave in
an oscillatory fashion, where the concentration of various intermediates were
increasing and decreasing within a period of several minutes [127]. This gly-
colytic oscillator can be modelled as a two-component system with a negative
feedback [122]:

ẋ = −x +αy + x2y (2.35)

ẏ = β −αy − x2y (2.36)

where x and y are the concentrations of ADP (adenosine diphosphate) and
F6P (fructose-6-phosphate) and α,β are kinetic parameters. Depending on
the values of α and β the system will be in a stable limit cycle or a stable fixed
point [122]. In this example, we assume α to be uniformly distributed on the
interval [0.1,0.5] and β to follow a lognormal distribution with µ = 0.3 and
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σ = 0.1. Because both uncertainty parameters come from a different distribu-
tion, the expansion will consist of multivariate polynomials ΨN,M which are
tensor products of the univariate polynomials. In this case, Legendre poly-
nomials are used to expand α(θ1) and Hermite polynomials for β(θ2), where
θ1 ∼ U (−1,1) and θ2 ∼ N (0,1). This results in a mixed polynomial for the
overall expansion as exemplified with a 3rd order Legendre polynomial L̃3
and a 3rd order Hermite polynomial H̃3, giving Ψ3,3 = L̃3 · H̃3 (Figure 2.3).

The distributions of the uncertainty parameters were chosen such that
they include the bifurcation point from stable limit cycle to the stable fixed
point (Figure 2.3). For the purpose of this example we are interested in the
concentration of y only and therefore reconstruct this model response using
PCE. A good approximation is obtained with a truncation degree of the PCE
of N = 10. This value is relatively high, due to the bifurcation in the system.
However, this case shows that convergence can be reached using PCE despite
such challenges. Yet, the computational costs are still very tractable. In the
following examples we deal with cases in which still higher order expansions
are necessary due to non-smooth bifurcations.

In post-processing we may use the PC coefficients to determine the first
order Sobol indices for the parameters α and β at each time point, providing
a representation of the global sensitivity based on variance decomposition.
The Sobol indices are readily available from the PC coefficients (see Methods).
They have the advantage of being global measures of sensitivity. In Figure 2.3
we show the first order Sobol indices given in (2.23) for the first and second
random variable. They indicate the contribution to the total output variance
of either θ1 or θ2 individually. Higher-order terms would give an indication
of interaction effects between θ1 and θ2, which are also readily available from
the PCE coefficients but are not considered here for brevity.

2.4.4 Example IV. Schnakenberg model: dealing with spatial disconti-
nuities

In this example we introduce a spatial component. We consider the Schnack-
enberg model, which is one of the simplest, but yet realistic two-species sys-
tem that can produce periodic solutions and therefore has become a proto-
type for reaction diffusion systems. The Schnakenberg model consists of the
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Figure 2.3: Example of a system of glycolysis as defined in (2.35)-(2.36) where PCE
is performed for the concentration of species y and for two uncertainty parameters.
A: Example of a multivariate polynomial, consisting of the tensor product between
3rd Legendre polynomial of the first random variable L̃3(θ1) and the 3rd Hermite
polynomial of the second random variable H̃3(θ2). B: Solutions of concentration of
fructose-6-phosphate (y) in the glycolytic oscillator model for two different points in
the parameter space, obtained by solving the ODEs (lines) and reconstructing via PCE
(dots). α = 0.1,β = 0.46 produces an oscillation (dark coloured) whereas α = 0.5,β =
0.46 gives a stable fixed point (light coloured). We used N = 10 as expansion order
for the Legendre and Hermite polynomials. C: The first order Sobol sensitivity index
Ŝθi for the two random variables in the glycolytic oscillator model for the first 20 time
points.
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following (dimensionless) equations [123]

u̇ = ∇2u +γ(α −u +u2v), (2.37)

v̇ = d∇2v +γ(β −u2v). (2.38)

α,β are reaction rates, γ a scale parameter and d the ratio of diffusion con-
stants between the species u and v. The species u is auto-catalytically pro-
duced by the u2v term in (2.37), whereby species v is consumed. There are
certain combinations of the parameters α,β,γ and d for which the system
will exhibit a stable pattern [128]; this region of parameter space is called the
Turing space (TS). For the purpose of this example we limit the number of
uncertainty parameters to one: the parameter α, fixing the other parameters
at β = 1,γ = 5 and d = 20. We assume α to be distributed as α ∼ U (0.001,0.45)
and determine the TS for a range of α (Figure 2.4) using linear stability anal-
ysis (for details see [123, 128]). To that end, the model is simulated on a 1D
grid of 20 cells. We focus on the concentration of species v at steady state and
consider an expansion by both Legendre polynomials and Haar wavelets.

Polynomial chaos expansion is known for being inaccurate in regions that
contain discontinuities [94, 114, 115]. In this example, the lack of conver-
gence in PCE can be seen along the boundary of the patterning space (TS) in
Figure 2.4, where the expansion by Legendre polynomials is indicated with
the dashed lines. For the reconstruction of concentration of v in terms of
Legendre polynomials, we used a segmented expansion with N = 18 and a
segmentation granularity of M = 3, leading to a total of 126 model evalua-
tions used in the expansion. To show that Haar wavelets perform much better
in such a region, we additionally do an expansion in terms of Haar wavelets.
As resolution level we take N = 6, which means a total of Nw = 128 wavelets
are used in the expansion. In Figure 2.4 the performances of Legendre poly-
nomials and Haar wavelets are compared in the vicinity of α = 0.23 (middle
inset, Figure 2.4), showing that the Haar-wavelets provide an improvement
in accuracy at the bifurcation point, while using the same number of model
evaluations (i.e. the same amount of information and computational cost) for
the expansion.

2.4.5 Example V. Trichome patterning: dealing with spatial discontinu-
ities

As an extra example of pattern formation we consider a model that describes
trichomes. Trichomes are hairs found on the epidermal layer of leaves. In Ara-
bidopsis Thaliana these trichomes form a regular pattern, where each trichome
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Figure 2.4: Reconstruction of the concentration of species v of the Schnaken-
berg model, as defined in (2.38) at steady state, comparing Legendre and Haar
wavelet expansions. We consider the patterning of v in the Schnakenberg model for
α ∈ [0.15,0.3], as indicated on the main x-axis and assuming α ∼ U (0.001,0.45), while
fixing β = 1,γ = 5 and d = 20. The colour along this axis indicates the region in the
1D-parameter space whether a stable pattern will form (i.e., α is inside the Turing
Space (TS), indicated by green colouring), or a homogeneous spatial distribution of v
(grey colour). We highlight three examples of the patterns formed for different values
of α, one inside the TS (left inset, α = 0.22), one close to the boundary (middle inset,
α = 0.23) and one outside the TS (right inset, α = 0.24). Within these examples we
compare the true solution Y (solid black line) to the reconstructed function of v by
PCE in terms of Legendre polynomials Y sL by a segmented expansion with polynomial
order N = 18 and segmentation granularityM = 3 (dashed line), or Haar wavelets Y sHa
(dots), using the first 128 wavelets in the expansion, i.e. N = 6 resolution levels.

is separated by around three to four epidermal cells [7]. The model studied
here consists of three proteins and their interactions which, taken together,
can explain features of trichome patterning [31, 40]. Protein transpararant

testa glabra1 (TTG1) binds to the transcription factor glabra3 (GL3) which
together form a trichome-promoting complex, called the activating complex
(AC) [40]. Experimental data suggests that TTG1 is depleted from cells neigh-
bouring a trichome [40]. For this reason the interaction between TTG1 and
GL3 is modelled in a substrate-depletion form (Figure 2.5), where TTG1 acts
as a substrate for the formation of AC [40]. After non-dimensionalisation this
model consists of four parameters, none of which have been experimentally
determined, highlighting the substantial amount of uncertainty within this
model [35, 81]. Here, we examine the propagation of uncertainty in the pa-
rameters to the predicted pattern.
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TTG1 GL3

AC

Figure 2.5: Uncertainty quantification for the trichome system. A: Schematic of the
model. B: Probability density function of the trichome density in the Turing Space us-
ing either the indirect (dashed red line) or direct expansion (dotted blue line) method
and for comparison the solution of the real model (solid black line). A resolution level
of 3 (i.e., a total of 16 wavelets) has been used for the expansion.

The trichome patterning is described by the following set of coupled ODEs
[40]:

˙TTG1j = α −λTTG1j −TTG1jGL3j + δL̂TTG1j (2.39)
˙GL3j = βAC

2
j −GL3j −TTG1jGL3j (2.40)

˙ACj = TTG1jGL3j −ACj (2.41)

where α,λ,δ and β are parameters in the model and L̂ describes the coupling
between the cells. The subscript j indicates the jth cell. We solve these equa-
tions for 400 cells, grouped on a hexagonal grid of 20 by 20 cells.

In this example we focus on the parameter α, the basal production for
TTG1. We assume this parameter to be uniformly distributed on the interval
[0.4, 0.9]. We are interested in the number of trichomes that are predicted
by the model, therefore we consider the trichome density ρ (total number
of trichomes divided by the total number of cells in the simulated tissue) as
the model response of interest. The number of trichomes is determined by
simulating the system until steady state is reached and counting the number
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of cells for which the concentration of AC exceeds a threshold. The amount of
AC is considered to be an indicator for trichome cell fate in plants, however
the biological threshold for this is unknown. We set this threshold to the half-
maximum of AC in the system. This leads to the following description of
trichome density:

ρ =
|T |
N

(2.42)

T =
{
j ∈ J

∣∣∣∣ ACj ≥ 1
2
ACmax

}
(2.43)

where T is the set of cells which exceed the AC threshold, J is the set of all
cells on the grid, N is the total number of cells and |T | is the cardinality of T .

The goal is to determine the uncertainty in ρ as a result of the uncertainty
in α. To this end, we employ two different approaches. For both approaches
we first transform α to a standard uniform variable by α = T −1(θ), using the
transform function for a uniform variable given in (2.8). The first approach,
refered to as the indirect approach, is the same as used in Example IV. To
reconstruct the concentration at steady state for all cells, we expand the con-
centration of AC using Haar wavelets. From the result we may determine
ρ. In this process we discriminate between cases where there is a pattern and
where there is no pattern. For the latter, we need not solve the system as ρ = 0.
Through linear stability analysis we determine beforehand whether a pattern
will form or not, i.e., whether the chosen parameter set is in the Turing Space
(TS) [123]. For a certain realisation θ we can determine ρ by

ρ(θ) =

 |T
s |
N ifθ ∈ TS
0 ifθ < TS

(2.44)

where T s is the set of trichomes as determined from the reconstructed AC
concentration profile.
Our second, direct approach is to directly reconstruct ρ as

ρs(θ) =
N∑
l=0

Y (λ(l))u(l)1 ψsl (θ) (2.45)

Similarly, as we did for ρ(θ) we can define Y (λ(l)) as

Y (λ(l)) =

 |T |N ifλ(l) ∈ TS
0 ifλ(l) < TS

(2.46)
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In other words, we only solve the system and determine the trichome density
if the parameter set falls within the Turing space. This lends robustness to the
PCE for the non-smooth parts of the function Y (θ) and at the same time limits
the amount of simulations to be performed, as the non-patterning parameter
combinations need not be solved for.

We show here that there are multiple ways in which the uncertainty in the
output can be captured. In this case of trichome patterning, we first tested
an indirect method where the model output consists of concentration profiles
from which the pattern features have to be extracted in post-processing, and
secondly, we showed the pattern feature could also be expanded directly, by
taking the density as model output. Comparing the indirect and direct ap-
proaches, we conclude that both have similar levels of accuracy (Figure 2.5).
Note that in both cases the expansions converge to the real solution at reso-
lution level N = 6, which means a summation of 128 wavelets. The PDF in
Figure 2.5 is constructed using 103 samples which costs 4.7 seconds for the
wavelet reconstruction as opposed to 80.9 seconds for solving the full model.

2.5 Discussion and Conclusions

Through a series of examples we have presented an efficient andwidely-applicable
version of spectral methods for quantification of the effect of parameter uncer-
tainty on model outcomes. The present scheme utilizes non-intrusive spectral
projection based on polynomial functions or wavelets. The orthonormal prop-
erties of those functions provide a novel scheme to determine the expansion
coefficients in a computationally fast way. The scheme is similar to the Golub-
Welsh algorithm known from Gaussian quadrature [129]. In fact, the points
indicating the roots of the polynomials used obtained in quadrature proce-
dures, exactly correspond to the eigenvalues obtained from the matrix which
plays a central role in our approach. Quadrature methods as well as sampling
methods are traditionally used to determine the coefficients of expansions of
functions one is interested in [95]. The approach used here does effectively
the same and provides an alternative for existing approaches, with the advan-
tage that it is flexible and applicable to any set of orthonormal basis functions.

The method presented here requires no modification of the model equa-
tions. This is in general the main advantage of non-intrusive methods: there
is no need to recast the model into a probabilistic framework. Instead, the
random behaviour of parameters is accounted for through a set of determin-
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istic simulations of the process for a restricted number of parameter values.
These values are chosen such that they reflect the uncertainty in the param-
eters. To test the performance of our method we applied it to five different
models: (1) a model of exponential decay, (2) a biochemical reaction network,
(3) the glycolytic oscillator, (4) the Schnakenberg model, and (5) a trichome
model. The latter two models describe spatial pattern formation. For each
test case, the results of the PCE were compared to, if available, analytical so-
lutions, non-PCE numerical simulations, or Monte Carlo simulations. In these
comparisons wemostly focused on the accuracy of PCE. Even though the com-
putational advantage is one of the major reasons for using PCE techniques, we
do not focus on it because this aspect has already been extensively explored in
various applications. For such comparisons we refer to other publications, see
for example [95, 130, 131]. The logic behind the compututational advantages
of PCE over MC extends to the methods we have presented here and is evident
in, e.g., in the case of trichome pattern formation (Example V), for which the
output of the model was obtained 17 times faster when using PCE instead of
MC.

The accuracy of the reconstruction by PCE depends on the choice of expan-
sion order and basis functions. While the latter is determined by the PDFs of
the input parameters, the choice of expansion order has to be chosen by the
user. For example, in Examples I and III we chose N = 5 and N = 10, respec-
tively. These choices were based on careful observation of the convergence
properties of the method. In some cases the expansion order has to be chosen
prohibitively large. For such a situation we propose an alternative approach
that segments the parameter interval into subintervals, essentially zooming
in on these sub-intervals such that a lower expansion order can be used in
each sub-interval. In Example II we have shown that this segmentation ap-
proach can greatly reduce the computational costs in summation part of the
expansion, thus providing a way to circumvent the curse of dimensionality.
Such adaptations are required for the more difficult high-dimensional cases
and the segmentation is a relatively straight-forward method to tackle dimen-
sionality problems. It is an alternative for so-called sparse PCE methods, that
utilize only a small subset of the polynomial basis functions in order to limit
the amount of model evaluations [96, 116, 126].

Convergence of the PCE may be poor in regions of the parameter space
around a bifurcation [103]. In PCE, smooth polynomials are used in the
expansions and they may show effects similar to the Gibbs phenomenon in
Fourier expansions, i.e., the spectral basis is not suitable and leads to a slow
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convergence. Since smooth functions like the Hermite and Legendre poly-
nomials will fail to describe steep or discontinuous solutions, we explored
the use of Haar wavelets. These wavelets lead to localized decompositions
and this produces more robust behaviour [115]. We show in Example IV
(Schnakenberg model) the advantages of using Haar wavelets over polyno-
mials by focusing on the region in parameter space where the system tran-
sitions from spatially heterogeneous dynamics to spatially homogeneous dy-
namics take place. Around this bifurcation point an expansion in terms of
Haar wavelets also shows slow convergence, but the accuracy of the expan-
sion is 10 times better than when Legendre polynomials are used. For a fair
comparison we kept the number of model evaluations in both approaches the
same. In the vicinity of bifurcations Haar wavelets show greater robustness
than the traditional polynomial basis functions. They thus provide a useful
tool for biological systems which often feature such discontinuity.

In Example V (trichome pattern formation) we have highlighted the flex-
ibility of the method: certain quantities, e.g., the scalar quantity of trichome
density, can either be directly expanded or indirectly. By making use of that
adaptability the number of model evaluations can be reduced while maintain-
ing the same level of accuracy.

Overall, the approach presented here consists of a number of easy-to-
implement steps and is widely applicable to a variety of systems which would
normally be intractable when used in the context of uncertainty quantifica-
tion.
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2.7 Supplementary info

2.7.1 S1: Expanding a meta model

To illustrate the derivation of (2.5) and (2.6), we consider here the case with
only one uncertainty parameter θ, distributed according to PDF P(θ). The
involved Hilbert space consists of functions of θ that are square-integrable
with respect to the inner product

〈f ,g〉 =
∫
f (θ)g(θ)P(θ)dθ (2.47)

for any two functions f (θ) and g(θ) in this space. So, P(θ) acts as weight
function in the inner product.

In this Hilbert space we make use of a set of basis functions φn(θ),n =
0,1,2, . . . that are orthonormal with respect to this inner product. These may
be Legendre, Hermite, Jacobi, Chebyshev, Laguerre, and other polynomials,
but also Bessel functions, Hankel functions, wavelets and other functions may
be used. The only requirement is orthonormality.

We assume the model response Y (θ) to be in the Hilbert space. This im-
plies that we may expand Y (θ) in terms of the basis functions:

Y (θ) =
∞∑
n=0

cnφn(θ), (2.48)

with the expansion coefficients given by

cn = 〈Y,φn〉 =
∫
Y (θ)φn(θ)P(θ)dθ. (2.49)

It is convenient to associate with Y (θ) the matrix Ŷ whose elements read as

Ŷn,m = 〈φn,Yφm〉. (2.50)

Assuming Y to be an analytical function in θ, we may write down its Taylor
expansion:

Y (θ) =
∞∑
k=0

dk θ
k . (2.51)

For the matrix Ŷ this implies that it is given by the expansion

Ŷ =
∞∑
k=0

dk B̂(k), (2.52)
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with the elements of matrix B̂(k) given by

B̂n,m(k) = 〈φn,θk φm〉. (2.53)

Using the completeness relation of the basis functions

∞∑
n=0

φn(θ)φn(θ
′)P(θ) = δ(θ −θ′), (2.54)

we may factorize this matrix. For k = 0 we have [B̂(0)]n,m = δn,m, and for k ≥ 1

B̂(k) = B̂k , (2.55)

where B̂ ≡ B̂(1). So, Ŷ can be written as

Ŷ =
∞∑
k=0

dk B̂
k . (2.56)

with

B̂n,m =
∫
φn(θ)θφm(θ)P(θ)dθ. (2.57)

B̂ is a symmetric, (∞×∞) matrix. So, it has real eigenvalues λ(l), l = 1,2, . . . and
there exists an orthogonal basis of∞-dimensional eigenvectors u(l). Note that,
as usual in the literature, but in contrast with the basis in the Hilbert space
introduced above, the counting here starts at l = 1.
The completeness relation for the u(l) reads as

∞∑
l=1

u
(l)
i u

(l)
j = δi,j . (2.58)

Using the relations obtained above, we may rewrite the expansion for Y in the
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following way:

Y (θ) =
∞∑
n=0

Ŷ0,nφn(θ) (2.59)

=
∞∑
n=0

∞∑
k=0

dk (B̂
k)0,nφn(θ) (2.60)

=
∞∑
n=0

∞∑
k=0

∞∑
i=0

∞∑
l=1

dk (B̂
k)0,i u

(l)
i+1u

(l)
n+1φn(θ) (2.61)

=
∞∑
n=0

∞∑
k=0

∞∑
l=1

dk (λ
(l))k u(l)1 u

(l)
n+1φn(θ) (2.62)

=
∞∑
n=0

∞∑
l=1

Y (λ(l))u(l)1 u
(l)
n+1φn(θ) (2.63)

=
∞∑
l=1

Y (λ(l))u(l)1 ψl (θ), (2.64)

In the last step we used an orthogonal basis transformation from φ(θ) to ψ(θ)
with the help of the orthogonal vectors u(l):

ψl (θ) ≡
∞∑
n=0

u
(l)
n+1φn(θ). (2.65)

The important conclusion is that we may express the model response Y (θ),
which originally depends on the continuous parameter θ, in terms of discrete
values Y (λ(l)), l = 1,2, . . . . This implies that Y needs to be evaluated only at the
points θ = λ(l), l = 1,2, . . . in parameter space. Note that most ingredients of
the formalism can be calculated in advance and once and for all.

The corresponding meta-model response Y s we are aiming at is obtained
from Y by taking into account only the lowest N basis functions, for some
integer N . So,

Y s(θ) =
N∑
n=0

cnφn(θ). (2.66)

Note, that the coefficients cn,n ≤ N , do not change if we omit the terms with
n > N , thanks to the orthonormality of the basis functions. For the meta-
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model we have

Y s(θ) =
N∑
l=0

Y (λ(l))u(l)1 ψsl (θ). (2.67)

We remark that omitting higher order basis functions has also consequences
for the ψl . Instead of ψl we now use

ψsl (θ) ≡
N∑
n=0

u
(l)
n+1φn(θ). (2.68)

In practice one should for each case analyze the accuracy of Y s in approximat-
ing Y , especially as a function of N .

2.7.2 S2: Derivation of the probability density function for the expo-
nential decay model

For the exponential decay model an analytical expression for the probability
density function (PDF) can be obtained. In order to derive the PDF we start
with:

P(y, t) =

∞∫
0

δ(y −A(t,θ))P(θ)dθ.

For log-normal distributed k we have for the PDF of the uncertainty parameter
θ and k(θ):

P(θ) =
1
√
2π
e−θ

2/2

k(θ) = µeαθ−α
2/2,

with

α =

√
ln

(
1+

σ2

µ2

)
.

The function A(t,θ) is given by:

A(t,θ) = A0e
−k(θ)t .
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Defing u = y − x we arrive at:

P(y, t) =

u(∞)∫
u(0)

δ(u)
∣∣∣∣∣∂A∂θ

∣∣∣∣∣−1
θ=θ(u)

P(θ(u))du.

Now, it holds:

∂A
∂θ

= −α0te−ktαk

θ(u) = 1
α ln

[
ea

2/2

µt ln y−u
x0

]
, u < y.

and further:

u(∞) = y −A(t,∞) = y −A0e
−k(∞)t

k(∞) = ∞ (α > 0)

u(∞) =

y −A0 : t = 0
y : t > 0

k(−∞) = 0

u(0) = y −A0

Using these results we arrive at:

P(y, t) =

u(∞)∫
u(0)

δ(u)
ek(u)t

x0tαk(u)
e−θ

2(u)/2√
(2π)

du

P(y, t) =
ek(u=0)t

√
2πA0tαk(u = 0)

e−θ
2(0)/2 ·θ(y)θ(A0 − y).

Inserting

k(θ(u = 0)) =
1
t
ln

(
A0

y

)
,

we finally arrive at:

P(y, t) =
1

√
2παy ln

(
A0
y

) exp− 1
2α2

ln
eα2/2

µt
ln

(
A0

y

)

2 ·θ(y)θ(A0 − y).
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3.1 Abstract

The regular distribution of trichomes on leaves in Arabidopsis is a well-understood
model system for two-dimensional pattern formation. It involves more than
10 genes and is governed by two patterning principles, the activator-inhibitor
(AI) and the activator depletion (AD) mechanisms, though their relative con-
tributions are unknown. The complexity of gene interactions, protein inter-
actions and intra- and intercellular mobility of proteins makes it very chal-
lenging to understand which aspects are relevant for pattern formation. In
this study we used global mathematical methods combined with a constrain-
ing of data to identify the structure of the underlying network. To constrain
the model, we performed a genetic, cell biological and biochemical study of
weak ttg1 alleles. We find that the core of the trichome patterning is a com-
bination of the AI and AD mechanisms differentiating between two pathways
activating the long-range inhibitor CPC and the short-range inhibitor TRY.
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3.2 Introduction

Mathematical modelling has become an integrated discipline in developmen-
tal biology aiming to integrate the knowledge about a biological system in
order to arrive at either conceptual statements or predictions about the con-
sequences of experimental manipulations. One frequent problem, however, is
that the available data sets do not contain enough information for the param-
eters of the mathematical model to be uniquely identified. This means that
the model is capable to reproduce the data with many different parameters
and this may lead to the undesirable situation that no clear conceptual state-
ments can be made and many different model predictions are possible. The
way out of this situation is to use global analysis methods in combination with
further constraining observations or data. It is possible, although challenging,
to use mathematical modelling approaches in these situations and to arrive at
conceptual statements on the developmental process despite the incomplete
information about the biological system. Trichome patterning in Arabidopsis
is an excellent model system for which this constraint global analysis method
needs to be applied. On the one hand it presents a fairly simple develop-
mental process that can be described as a two-dimensional pattern formation
[31]. On the other hand, the underlying gene regulatory network involves
many gene interactions, protein-protein interactions and intercellular trans-
port processes for which the parameters are largely unknown ([35]).

Our understanding of trichome formation in Arabidopsis thaliana is based
on the genetic identification of the key genes and a detailed molecular and
cell biological analysis [35, 36, 132, 133]. Trichomes are initiated without
reference to already existing positional information with a regular spacing.
Although there is a remarkable degree of variability in the relative distances
[32], trichomes are normally not found immediately next to each other [34].
This pattern is established early during leaf development. On young rosette
leaves incipient trichomes are typically separated by 3-4 epidermal cells and
their distance is increased during leaf expansion because of cell divisions and
growth of the intervening cells [34]. Trichome patterning in Arabidopsis tha-
liana is regulated by a gene regulatory network involving trichome promoting
and trichome inhibiting genes. Three genes act as the major positive regu-
lators: TRANSPARENT TESTA GLABRA1 (TTG1) encodes a WD40 protein
[47–49], GLABRA1 (GL1) encodes a R2R3 MYB related transcription factor
[45], and GLABRA3 (GL3) a basic helix-loop-helix (bHLH)-like transcription
factor [34, 44, 46]. In addition, MYB23 and EGL3 act in a partially redundant
manner with GL1 and GL3, respectively [134–136]. TRIPTYCHON (TRY) and
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CAPRICE (CPC) represent negative regulators of trichome development as
the corresponding single mutants show trichome clusters and a higher tri-
chome density, respectively [34, 50, 51]. They encode R3 single repeat MYB
proteins and act partially redundant with five additional homologs [50, 53–
59].

The trichome promoting and inhibiting proteins show a complex protein
interaction pattern. TTG1 and GL1 both bind to GL3/EGL3 [38, 43, 44, 134,
136–139] and the binding of one of them counteracts the binding of the other
to GL3 [64]. This competitive behaviour is also seen at the level of target gene
regulation such that the transcriptional activation of TRY by GL3 and TTG1
is counteracted by GL1 and the activation of CPC by GL3 and GL1 is inhib-
ited by TTG1 [64]. Also, the negative regulators bind to GL3/EGL3 thereby
preventing the binding of GL1 [44, 69, 140].

Theoretical models have been developed to explain how the gene regula-
tory network formed by the activators and inhibitors can create a de novo tri-
chome pattern [38, 40–42]. The molecular interaction schemes are consistent
with two general principles, an activator-inhibitor (AI model) and an activator
depletion model (AD model) [35]. According to the activator-inhibitor model
the activators promote the expression of the inhibitors. The inhibitors move
between cells and repress the activators in the neighbourhood. The activator-
depletion model explains the establishment of a trichome pattern patterning
by the depletion of the activator in the neighbourhood of trichome initials. It
is based on the finding that TTG1 can move between cells and that TTG1 is
trapped in trichome initials by binding to GL3 [40, 141]. Both principles are
able to generate regular spacing patterns de novo [17]. While the experimen-
tal data support the existence of both mechanisms it is very difficult to assess
their individual biological significance because the two mechanisms involve
the same genes.

Both, the AI and the AD models had been primarily used to demonstrate
the minimal requirements to describe trichome patterning. Most importantly,
the models do not need the additional genes that are, however, known to
act in the network. In this study, we constrain the model to unfold struc-
tural elements by analysing the TTG1 gene in greater detail. TTG1 appears
to be a key component in the AI as well as in the AD model. We focus on
the molecular function of weak ttg1 alleles. While strong ttg1 alleles are de-
void of trichomes, weak ttg1 alleles produce a reduced number of trichomes
[48, 49, 142–144]. Remarkably, all weak ttg1 alleles exhibit trichome clusters.
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It was possible to predict this unusual behaviour of TTG1 alleles by chang-
ing several parameters of the TTG1 function in the AD model [40]. It is not
known whether the role of TTG1 in the AI model also contributes to the phe-
notype of weak ttg1 alleles and if so what the relative contributions of the
AD and the AI mechanisms are. According to the AD model, cluster forma-
tion can be explained by a failure to remove TTG1 from the neighbourhood
of trichome initials. In the AI model, cluster formation in weak ttg1 alleles
could be explained if TRY would not be expressed. We show that the interac-
tion of mutant TTG1 proteins carrying the point mutations of the weak ttg1
alleles with GL3 protein are strongly impaired and that mutant TTG1 pro-
tein is not depleted around trichomes. We further show that TRY expression
but not CPC expression is strongly reduced in ttg1 alleles. We developed a
new mathematical model that combines the AI and AD models. We reveal
the requirement of additional structural elements in the network and demon-
strate that the reduced interaction of TTG1 to GL3 is sufficient to explain all
trichome phenotypes of weak ttg1 mutants.

3.3 Results

3.3.1 Weak ttg1 alleles exhibit irregular spatial distribution of trichomes

Strong ttg1 alleles show a glabrous phenotype indicating that TTG1 has a
positive role in trichome formation. All weak alleles exhibit a cluster pheno-
type [48, 49, 143] suggesting a negative function in trichome formation (Fig-
ure 3.1). Thus strong, and weak ttg1 alleles appear to have opposite genetic
functions. Interestingly, this is specific to the trichome trait as seed colour,
seed coat mucilage and root hair formation phenotypes do not show the op-
posite phenotype in weak ttg1 allelesttg1-9, ttg1-11 and ttg1-12 alleles (Figure
S1). To understand the molecular basis of cluster formation in the weak ttg1
alleles, we analysed the three weak ttg1 alleles ttg1-9 [49, 142], ttg1-11 and
ttg1-12 [142, 143] in more detail using two strong ttg1 alleles ttg1-1 [48] and
ttg1-13 [143] as a reference. The three weak alleles have point mutations lead-
ing to amino acid exchanges at different positions [48, 49, 142, 143] (Table S1).

During the phenotypic analysis of the three weak ttg1 alleles we noticed
that trichomes appeared to be less regularly distributed compared to wild
type, suggesting a randomized trichome pattern. We used TrichEratops to
generate coordinates [145]. We limit the analysis to the tt1-9 allele because
ttg1-11 and ttg1-12 alleles produce too few trichomes on each leaf to yield
sufficient data for a meaningful statistical analysis. To quantitatively com-
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Figure 3.1: Trichome Patterning defects in ttg1-9 leaves (A) Fourth rosette leaves of
wild type and ttg1-1 and ttg1-9 mutants. Note that the strong ttg1-1 allele has no
trichomes, while the weak ttg1-9 allele exhibits clusters (yellow arrowheads). Scale
bars, 1 cm. (B) Nearest neighbour distances. δσ represents the standard deviations
and δ̄ the mean of the nearest neighbour distances. (C) Mean anisotropy, defined as
the ratio of the eigenvalues as a measure of deviation from isotropy.
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pare the regularity of trichome patterns on wild-type and ttg1-9 leaves we
used different measures.

As a first measure we use the coefficient of variation of the nearest neigh-
bour distances distribution (CVNN) which is defined as the standard devia-
tion normalized by the mean of the nearest neighbour distances (Figure 3.1B).
For wild type we found a regular but not perfect pattern [32] with a CV of
0.33±0.05. The ttg1-9 allele exhibits a more irregular pattern with a mean CV
of 0.84±0.22. Next, we compared the leaf phenotypes to randomly generated
point patterns. For the random patterns we consider the difference between
the trichome densities for wild type and ttg1-9 and simulate 104 instances,
where for each instance the points are placed with a uniform probability
across the simulated region. Using the bootstrapping method, we generate
104 samples based on the CVNN distribution from the leaves and compare the
bootstrap distributions with the random references (Figure 3.1B). In this com-
parison we show that the wild-type pattern exhibits significantly less variabil-
ity in trichome distances than the corresponding random reference (one-tailed
Mann-Whitney U-test, p< 0.01), whereas the ttg1-9 allele shows a higher ir-
regularity than the random distribution with similar density (p< 0.01).

Because the nearest neighbour distances give a very narrow viewpoint on
the region around a trichome, we decided to employ another quantifications
of the variability, which takes into account a more appropriate region of in-
terest. Towards this end we calculated the anisotropy of the neighbourhood
around the trichomes [32] (Figure 3.1C). The anisotropy from the experimen-
tal data is taken relative to the corresponding random references. Comparing
between the anisotropy of bootstrapped experimental results and the random
references we come to the same conclusion as for the CVNN. Testing between
wild-type and ttg1-9 showed that the ttg1-9 allele has a significantly higher
relative mean anisotropy (one-tailedMann-Whitney U-test, p< 0.01), confirm-
ing that ttg1-9 spatial distributions are more irregular than wild-type.

For a hypothetical homogeneous (not depending on space) random tri-
chome pattern the cluster probability depends inversely on the trichome den-
sity (Figure S2A). Thus, ttg1-9 mutants should have fewer clusters than wild
type. This is calculated for wild type and ttg1-9 in Figure S2A. Thus, cluster
formation in ttg1-9 mutants cannot be explained in full by a homogeneous
random process, suggesting that it is due to a deterministic process. To dif-
ferentiate between stochastic processes and deterministic processes that only
appear random we determined the correlation dimension [146]. This gives an
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estimate of the number of parameters needed to explain the measured vari-
ability. We find for both wild type and ttg1-9 data a correlation dimension
smaller than the homogeneous random patterning process (Figure S2C-F), in-
dicating that deterministic factors control a considerable part of the variabil-
ity in trichome distances. The theoretically expected probability of clusters
is not dependent on the area available for trichome formation (Figure S2B)
suggesting that these deterministic factors are represented by altered genetic
interactions in ttg1-9 mutants.

3.3.2 Amino acid exchanges in weak ttg1 alleles reduce or abolish the
interaction with GL3, EGL3 and TT8

To explore the molecular function of the weak ttg1 alleles, we studied the pro-
tein interaction of TTG1 with GL3. TTG1 is considered to regulate trichome
formation by binding to GL3. It has been shown before, that the TTG1 pro-
tein lacking the 26 C-terminal amino acids (corresponding to the ttg1-1 allele)
does not interact with GL3 [44, 141] and that two newly identified weak alle-
les, ttg1-23 and ttg1-24, show reduced interaction in yeast two hybrid assays
[144]. We therefore studied the interaction of the mutant TTG1 proteins with
GL3 in yeast two-hybrid interaction experiments (Figure 3.2A-C). We found
no interaction between GL3 and the TTG1-1, TTG1-11 and TTG1-12 mutant
proteins. The TTG1-9 mutant protein exhibited reduced binding as judged by
weak colony growth. To independently test the protein interaction between
GL3 and TTG1 proteins, we studied the interactions using a pulldown assay
by expressing the proteins in human embryonic kidney (HEK293TN) cells and
a quantification of the precipitated proteins in a luminescence-based mam-
malian interactome mapping (LUMIER assay (Blasche and Koegl, 2013)). In
these experiments the pull down efficiencies of the three weak mutant TTG1
proteins and TTG1-1 were about tenfold lower than wild type but in all exper-
iments clearly significantly above background (t-test, p< 0.001) (Figure 3.2D).
The LUMIER assay appears to be more sensitive and indicate that binding of
the mutant TTG1 proteins to GL3 is greatly reduced but not completely abol-
ished. Also the binding of the mutant TTG1 proteins to EGL3 and TT8 was
impaired in yeast two-hybrid assays (Table S2).

3.3.3 Nuclear targeting and spatial distribution in the epidermis of TTG1
mutant proteins is impaired

GL3 has been shown to trap TTG1 in the nucleus [40]. We reasoned that the
reduced interaction of weak TTG1 mutant proteins with GL3 also affects their
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Figure 3.2: Protein-Protein Interactions and Nuclear Transport of Wild-Type and
Mutant TTG1 Proteins. (A–C) Protein-protein interactions between TTG1 mutant
proteins and GL3. (A) Control for presence of plasmids. (B) Interaction assay on
medium supplemented with 5mM 3-aminotriazole (3-AT). Yeast growth indicates pos-
itive interactions. (C) Schematic presentation showing the positions of different combi-
nation on the plates. (D) Pull-down efficiency of TTG1 alleles by ProtA-tagged GL3 in
LUMIER assays. The pull-down efficiency of the three weak TTG1 alleles is shown rel-
ative to wild type (defined as 100%). w/o is the control in which protein extract from
non-transformed cells was used. (E–G) Yeast-based nuclear transportation trap (NTT)
assay to test the ability of GL3 to mediate nuclear transport of different TTG1 mu-
tant proteins. (E) Control for presence of plasmids. (F) Nuclear transport assay. Yeast
growth indicates GL3-mediated nuclear transport of NES-LexAD-TTG1 proteins. (G)
Schematic presentations showing the positions of different combinations on the plates.

nuclear transport. We tested this using the yeast nuclear transportation trap
assay (NTT) [147]. TTG1 was fused to the transactivator LexAD (LexA DNA-
binding domain and GAL4AD transactivation domain) and a nuclear export
sequence from HIV Rev protein to generate NES-LexAD-TTG1. The NES se-
quence mediates nuclear export of TTG1. Binding to GL3 can overcome the
NES driven nuclear export, which in turn leads to an activation of the LexAD-
responsive LEUCINE2 gene reporter. Wild-type TTG1 was efficiently targeted
to the nucleus (Figure 3.2E-G) [141]. By contrast, none of the four TTG1 mu-
tant proteins were directed to the nucleus in these assays (Figure 3.2E-G).
Thus, the weak binding of mutant TTG1 proteins to GL3 is not sufficient to
mediate nuclear transport.

It had been previously shown that wild-type TTG1-YFP protein is local-
ized to the nucleus when expressed in the ttg1 mutant background [40]. This
genetic situation can be considered to reflect the wild-type situation as two
intact TTG1 gene copies are present. To analyse the localization of TTG1-9,
TTG1-11 and TTG1-12 proteins in plants we generated transgenic lines ex-
pressing YFP tagged TTG1 proteins under the control of the TTG1 promoter.
We used the wild-type background to enable the analysis in the context of
normal trichome development. TTG1-YFP was localized exclusively in nu-
clei when expressed in the ttg1-13 mutant background (Figure 3.3A, [40]).
Wild-type TTG1-YFP expressed in wild type background showed nuclear and
cytoplasmic localization (Figure 3.3B). As this line harbours four TTG1 gene
copies it is conceivable that the increased gene dosage leads to a saturation of
the system such that GL3 cannot efficiently target TTG1 to the nucleus any-
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more (Figure 3.3B). The three mutant proteins were found predominantly in
the cytoplasm, and trichome nuclei had much less fluorescence intensity than
the cytoplasm (Figure 3.3C-F).

The GL3 dependent localization of TTG1 also results in a depletion of
TTG1-YFP in immediate neighbour cells of a developing trichome (39% of
the fluorescence found in the trichome) when expressed in the ttg1-13mutant
background[40, 141]. The reduced binding or no binding of mutant TTG1
proteins to GL3 suggested to us that they show an altered spatial distribu-
tion in the leaf epidermis. As a reference we show TTG1-YFP expressed in
the ttg1-13 mutant with high levels of fluorescence in the nucleus of the tri-
chome and much lower levels in the epidermal nuclei immediately next to
the trichome (1st tier, Figure 3.3A, [40]). Wild-type plants expressing TTG1-
YFP under the TTG1 promoter showed a similar distribution (Figure 3.3B). In
the first tier of cells next to the trichome TTG1-YFP levels were significantly
(p=0.002; Students t-test, Table S3) reduced to 78% as compared to the tri-
chome cell, though this depletion is clearly less pronounced as compared the
expression in ttg1-13 mutants (39%, [40]). This is likely due to the difference
in the gene dosage in the two experiments. It is conceivable that in this situ-
ation GL3-driven trapping cannot efficiently cope with too much TTG1 pro-
tein leading to reduced depletion. This view is supported by our modelling
approach. When simulating different TTG1 levels, we found a decreased de-
pletion for higher TTG1 levels (Figure S3B). In a next step, we analysed the
depletion in the TTG1-9-YFP, TTG1-11-YFP and TTG1-12-YFP lines. All three
lines showed no detectable depletion of the signal in the neighbouring epider-
mal cells (Figure 3.3C-F, Table S3). This was consistent with our modelling
results simulating the effect of different protein amounts (Figure S3B). Our
findings show that the mutant TTG1 proteins are not efficiently targeted to
the nucleus and show not the characteristic depletion of TTG1 protein in the
immediate neighbour cells.

3.3.4 Expression of TRY and CPC in ttg1 mutant alleles

One possibility to explain the cluster phenotype would be that TRY is not
properly expressed in the weak ttg1 alleles. Mutations in TRY result in the
formation of trichome clusters in about 9% of all trichome initiation sites
[148, 149]. Genetic experiments had suggested that TRY and TTG1 act in
the same pathway as trans-heterozygous mutant combinations show clusters
[148]. To tested the possibility that the cluster phenotype in weak ttg1 alle-
les is due to a reduced TRY activity by analysing the expression of TRY using
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Figure 3.3: Localization of Wild-Type and Mutant TTG1 Proteins in the Epidermis
of Arabidopsis thaliana (A) TTG1-YFP expressed in ttg1-13 is localized in the nucleus
(arrowhead). High fluorescence is found in the trichome. In 1st-tier nuclei, TTG1-
YFP is barely visible, and intensity increases in the 2nd and 3rd tiers. (B) TTG1-YFP
expressed in wild-type background is found in the cytoplasm (arrows) and the nu-
clei (arrowhead). Depletion in 1st-tier nuclei is much less pronounced as compared
to (A). (C) TTG1-9-YFP shows fluorescence in the cytoplasm (arrows) and no or little
fluorescence in the nucleus (arrowhead). We found no depletion of fluorescence in
the cytoplasm (arrows) of the neighboring cells. (D) Color-coded cells shown in (C) to
indicate the relevant compartments (red, nucleus; yellow, cytoplasm; blue, vacuole).
Epidermal cells contain one large vacuole and a thin cytoplasmic layer at the cortex
at this stage of leaf development. (E) TTG1-11-YFP. (F) TTG1-12-YFP. (G) Relative
fluorescence intensity in the 1st, 2nd, and 3rd tier of cells as a percentage of the flu-
orescence measured in the trichome cell in different genetic situations. Error bars are
shown; statistical analysis is shown in Table S3. Scale bars, 10 µm.

a 1.8 kb promoter fragment of TRY (pTRY:GUS) driving the β-glucoronidase
(GUS) reporter gene [52]. In addition we studied the expression of the CPC
gene to judge the specificity of regulation events. Here, we used a 525 bp long
5’ upstream region of the CPC gene (pCPC:GUS) [52].

The pTRY:GUS marker was expressed ubiquitously in young wild-type
leaves with slightly elevated levels in trichomes (Figure 3.4A). Inmature leaves,
pTRY:GUS was expressed only in trichomes (Figure 3.4F). In ttg1-1, ttg1-9,
ttg1-11 and ttg1-12 mutants we found neither the initial ubiquitous expres-
sion on young leaves nor the trichome specific expression on mature leaves
(Figure 3.4).

The pCPC:GUS marker was expressed in trichomes in young and mature
leaves (Figure 3.5A,F). The strong ttg1-13 allele revealed no CPC expression
(Figure 3.5E,J) and the two weak ttg1-11 and ttg1-12 alleles showed clear ex-
pression in the few trichomes present on young leaves (Figure 3.5B,G,C,H,D,I).
The expression of CPC was not obviously changed in the ttg1-9 allele (Fig-
ure 3.5B,G).

3.3.5 Rescue of the ttg1-9 cluster phenotype by expressing TRY under
the CPC promoter

The expression analysis of TRY and CPC in weak ttg1 mutants suggests their
differential regulation such that CPC is activated while TRY is not. If this
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Figure 3.4: Expression Pattern of pTRY:GUS in Different ttg1 Alleles. (A–J) Left
column shows the expression pattern of pTRY:GUS in a young leaf (A–E). Right column
presents the expression pattern of pTRY:GUS in a mature leaf (F–J). (A and F) Col-0.
(B and G) ttg1-9. (C and H) ttg1-11. (D and I) ttg1-12. (E and J) ttg1-13.
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Figure 3.5: Expression Pattern of pCPC:GUS in Different ttg1 Alleles. (A–J) Left
column (A-E) shows the expression pattern of pCPC:GUS in a young leaf (A–E). Right
column (F-J) shows the expression pattern of pCPC:GUS in a mature leaf (F–J). (A and
F) Col-0. (B and G) ttg1-9. (C and H) ttg1-11. (D and I) ttg1-12. (E and J) ttg1-13.
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differential regulation were the reason for the cluster phenotype one would
expect that the expression of TRY under the CPC promoter could rescue the
cluster phenotype in weak ttg1 mutants. To test this, we generated transgenic
ttg1-9 lines expressing TRY under the control of 525 bp of the 5’ upstream
region of the CPC gene (pCPC:TRY [52]). We analysed the plants in the T1-
generation to statistically cover the whole range of rescue phenotypes [52].
We observed a general reduction of the trichome number to about 38% of
that observed in the single mutant ttg1-9 line. This is consistent with the
previous observation that pCPC:TRY expression in the try mutant reduces
trichome number [52]. The cluster frequency was partially rescued. While
ttg1-9 plants exhibit a cluster frequency of 18%, the cluster frequency was
significantly reduced to 4.6% in ttg1-9 pCPC:TRY plants (p< 0.01, by Mann-
Whitney U-test, Figure 3.6, Table S4). The pCPC:TRY expression in ttg1-11
and ttg1-12 alleles did not result in a reduced trichome number (Table S4).
However, the cluster frequency was significantly reduced in pCPC:TRY ttg1-
11 and pCPC:TRY ttg1-12 lines. In ttg1-11 pCPC:TRY we found a cluster
frequency of 2.8% while ttg1-11 showed 7.0% clusters (p< 0.01 by Mann-
Whitney U-test). In ttg1-12 clusters were found with a frequency of 8.93%
while in ttg1-12 pCPC:TRY the cluster formation was significantly reduced
to 3.1% (Figure 3.6). Although we never found a complete rescue these data
indicate that the lack of TRY activation in weak ttg1 alleles causes cluster for-
mation.

3.3.6 Mathematical modelling of TTG1 dynamics in a combined AI-AD
model

Weak ttg1 alleles show three phenotypic aspects: First, reduced trichome den-
sity. Second, strongly enhanced trichome cluster formation. Third, a seem-
ingly randomized trichome pattern. How are these three aspects theoretically
related? To answer this question, we analysed hexagonal point patterns (Fig-
ure 3.7A). In a first step, we manipulated a regular hexagonal pattern by ran-
domly perturbing the point coordinates such that the CV of the nearest neigh-
bour distances matched the wild type pattern (Figure 3.7B). We assumed that
the variation in spacing found in wild-type patterns is the effect of intrinsic
fluctuations of cellular processes. These fluctuations result in small cell-to-
cell differences in the young epidermal tissue, which can have a considerable
effect on the final trichome pattern [32].

In a second step, we randomly removed points until the density matched
the experimentally observed density of ttg1-9 alleles (Figure 3.7C). This re-
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Figure 3.6: Rescue of the Cluster Phenotype inWeak ttg1Mutants by pCPC:TRY. (A)
Diagrams showing the cluster frequency in ttg1 alleles and the respective pCPC:TRY
rescue lines. Three black asterisk indicate a statistically significant difference between
the single mutants and the pCPC:TRY rescue lines (p < 0.01, Wilcoxon test). (B) Rep-
resentative scanning electron microscope (SEM) image of a young ttg1-9 plant. Red
asterisks indicate the position of trichome clusters. (C) Representative SEM image of a
ttg1-9 pCPC:TRY plant. Scale bars, 400 µm.
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(Caption on next page.)
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Figure 3.7: Analysis of Point Patterns and Development of Trichome Model Net-
works. (A–D) Distribution of points on hexagonal grid. Lines between points are
edges determined byDelaunay triangulation and indicate connectivity between points.
Starting from a completely regular point distribution (A), point coordinates are per-
turbed (B), randomly removed (C), and clustered (D) (clusters indicated in green).
The pattern in (D) represents a typical ttg1-9 leaf. (E–G) Interaction scheme of the
combined activator-inhibitor (AI) activator-depletion (AD) (AI-AD) model (E), the AI
model (F), and the AD model (G). The dashed, gray edge in (E) indicates an additional
feedback that can be used to convert the AI-AD to an AI-type network. TTG1 and GL3
form an active complex (AC) that activates TRY. In turn, TRY binds to GL3, thus form-
ing an inactive complex (IC). The colors in (E) indicate the different additions needed
to explain the ttg1-9 phenotype. The black edges indicate the simplest form of the
combination of the networks in (F) and (G). Light green indicates the edges needed
for including GL1, and dark green edges are added upon CPC inclusion. For simplic-
ity, basal production, degradation, and diffusion are not indicated. (H) Comparison
of the AI (blue), AD (gray), and AI-AD (green) models. Each point is a different pa-
rameter set tested for the ttg1-9 phenotype. The trichome densities are relative to wild
type, where βmin is the strongest possible mutation for the TTG1-GL3 interaction pa-
rameter and βwt is the value for the wild-type simulation. (I) Each point on the lines
indicates a different relative change in binding strength (β) and the mean effect this has
on the pattern in terms of relative trichome density (left y axis, circles), depletion (left
y axis, crosses), percentage of clusters (right y axis), and coefficient of variation (CV)
in nearest neighbor distances (x axis). From the leftmost point in the plot to the right-
most point, the TTG1-GL3 interaction is decreased, as indicated by the arrow. The
green and gray shaded area indicates experimental data ranges for trichome density
and cluster percentages on ttg1-9 leaves, respectively. A shaded line indicates the 95%
confidence interval determined by bootstrapping of a varying number of simulations;
note that this area is smaller than the line width. The letters J, K, and L in the plot
correspond to example simulations given below the plot. (J) Example simulation of a
wild-type situation. (K) Example simulation that resembles the wild-type situation.
In this simulation, the binding between TTG1 and GL3 is decreased, but not to such
an extent that it replicates ttg1-9 phenotypes. (L) An example of a ttg1-9 simulation.
In this case, the pattern shows clusters, reduced density, and irregularity, in the same
relative quantities as observed experimentally.
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sulted in an increased variability as measured by the nearest neighbour distri-
bution (CVNN). In a third step, clusters were introduced by moving randomly
selected points towards each other, thus forming clusters (Figure 3.7D). This
resulted in a CV matching the ttg1-9 allele (CVNN = 0.85), without introduc-
ing any additional noise on the resulting point pattern. Thus the pattern of
the ttg1-9 alleles only appears to be more random and the stochasticity un-
derlying the trichome patterning process is not increased. Therefore, we do
not take additional noise sources into account. Rather, as shown by the analy-
sis of these point patterns, the changes of trichome density and clustering are
sufficient to explain the full extent of the observed irregularity of the ttg1-9
phenotype.

To gain mechanistic insight into the role of TTG1 in the patterning net-
work we derived aminimal combined AI ADmodel (Figure 3.7E, black edges).
In this model, TTG1 and GL3 form an active complex (AC). The binding of
TTG1 to GL3 leads to a depletion around GL3 maxima. The AC formed by
TTG1-GL3 activates both TRY and GL3. Based on the previously published
models [38, 40] and new findings we used the following assumptions: (i)
TTG1 and TRY are non-cell-autonomous [40, 150], GL3 is cell-autonomous
[38]. (ii) TTG1 and GL3 form the AC [44], which activates its own inhibitor
TRY and has a positive feedback-loop with its activator GL3 [38]. (iii) Inhi-
bition is mediated by TRY binding to GL3 [38] or the GL3 TTG1 dimer [64].
The inhibited complex is explicitly modelled as a dimer (ID) or implicitly as
a trimer (IT). (iv) Activation of GL3 and TRY by AC is modelled as activation
by two AC units (i.e. a tetramer of TTG1-GL3-GL3-TTG1) [64]. This type of
non-linearity is a requirement for pattern formation. (v) High concentrations
of AC are considered to correspond to trichome cell-fate.

The model indicated in black edges in Figure 3.7E is the simplest combi-
nation of AI (Figure 3.7F) and AD (Figure 3.7G) patterning motifs and can be
reduced to either an AI or AD network by cutting or adding one edge. In par-
ticular, adding activation of TTG1 by AC (dashed edge in Figure 3.7E) yields
an AI network similar to previously published AI model (Digiuni et al., 2008)
(Figure 3.7F). Removing the activation of TRY by AC results in the previously
published AD model [40] (Figure 3.7G). To understand what is gained by the
combination of the two motifs we studied how the two networks shown in
Figure 3.7E-G perform in explaining the ttg1-9 phenotype. As the parameters
for the wild-type network are unknown we analysed 106 randomly generated
parameter sets for each model using Quasi Monte-Carlo methods and selected
for those able to generate a wild type pattern defined by the experimentally
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observed trichome density and zero cluster frequency. Each of those parame-
ter sets constitutes a possible wild type situation. Next, we analysed the net-
works by systematically reducing the binding strength of TTG1 to GL3 and
analysing the changes in trichome density and cluster frequency.

We investigated the predicted phenotype for the lowest possible TTG1-
GL3 binding strength, which still yields a trichome pattern, and compared
the values with the experimentally observed ttg1-9 phenotype. Typically, in
the AI model the reduced binding strength almost never led to the formation
of clusters (Figure 3.7H, blue solid circles). By contrast the AD model tends
to generate too many clusters and higher trichome density than observed in
ttg1-9mutants (Figure 3.7H, grey solid circles). Only the combinedmodel was
able to reproduce the experimentally observed trichome density and cluster
frequency (Figure 3.7H, green solid circles). We therefore analysed the AIAD
model in more detail. To understand how trichome density, cluster frequency
and pattern randomness depend on the interaction strength of TTG1 to GL3,
we quantified the three traits for successively decreasing interaction strength
(Figure S4). As observed in the ttg1-9 mutant, decreased interaction strength
led to a reduced trichome density (0.46 ± 0.06 relative to wild-type), an in-
creased apparent randomness (CVNN,ttg1-9/CVNN,wt = 2.22 ± 0.22) and more
clustering (18%± 7%).

Next, we analysed how well the combined model can explain the observed
lack of depletion of TTG1-9 in the ttg1-9mutants for a range of reduced bind-
ing strengths. Unexpectedly, the model predicted a stronger depletion upon
a reduction of the binding strength (Figure S4B). This behaviour does not de-
pend on a specific parameter set, but rather is a generic feature of the AD
motif (Figure S5). The failure of the model to reproduce the reduction of de-
pletion can only be overcome by adding additional patterning elements not
depending on TTG1. This type of TTG1-independent regulatory events are
realistic given that the ttg1 mutant phenotype can be partially rescued by
overexpression of GL3 or EGL3 ([44, 136]).

Following these considerations, we included GL1 into the network (Fig-
ure 3.7E, light green edges, Figure S6A). GL1 and GL3 can form an active
complex, which activates TRY. The interactions included in this sub-part are
based on the previously published AI model [38] (Figure 3.7F). Similar to the
AI model tested in Figure 3.7H this model cannot reproduce the cluster for-
mation, however, in contrast to the model without GL1, it is possible to find a
reduced depletion of TTG1. The lack of cluster formation is likely due to the
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activity of TRY, which is maintained throughout different mutation strengths
by the GL3-GL1 dimer, thus consistently inhibiting neighbouring cells (Fig-
ure S6). To overcome this, we introduced the inhibitor CPC (Figure 3.7E, dark
green edges). Through differential dimer formation by TTG1-GL3 and GL1-
GL3 we modelled activation of the inhibitors by the different dimers (Fig-
ure 3.7G), where TRY is activated by TTG1-GL3 and CPC by GL1-GL3. This
is a simplified form of the competitive binding model suggested previously
[64]. Based on the cpc and try mutant phenotypes [7, 50] and the finding that
CPC is more stable than TRY [151] we considered CPC to act on long-range
distances and TRY to act on short-range distances. Thus, in this model, the
loss of TRY through the TTG1 mutation results in a loss of short-range inhibi-
tion whereas CPC is still functioning at long ranges to maintain the trichome
pattern. This model is able to predict the changes in trichome density, per-
centage of trichomes in clusters and the CVNN for reduced TTG1-GL3 inter-
action strengths in the same ranges as experimentally observed (Figure 3.7I-
L). Also the lower ranges of TTG1-GL3 interaction strength show a reduced
amount of depletion compared to wild type. Futhermore, the difference be-
tween the inhibitor mobilities is found back in the parameter values used to
simulate the ttg1-9 phenotype (Figure S7A). Further support for this model is
found in the analysis of the TTG1 knockout mutant. Our model predicts that
the TTG1 knockout is glabrous and can be rescued by overexpression of GL3
(Figure S6C-D), which is in line with the experimental observations on these
mutants [44, 136].

Our experimental data show that TRY expression is not seen in the ttg1-9
mutants and indicate that the cluster phenotype can be rescued by trichome-
specific expression of TRY under the CPC promoter. Consistent with this, our
combined AIAD model predicts a reduced TRY expression when the interac-
tion strength of TTG1 to GL3 is reduced (Figure S7B). We also simulated the
ttg1-9 pCPC:TRY rescue experiment by varying the parameters for the activa-
tion of TRY by the GL3-GL1 dimer. In these simulations we are able to show
a partial to full rescue of cluster phenotype based on the change in GL3-GL1
dependent TRY activation (Figure S7C-D).

3.4 Discussion

Although it is well established that TTG1 plays a major role in trichome for-
mation in Arabidopsis thaliana, its molecular function in trichome patterning
remains elusive for at least two reasons. First, because it is a central com-
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ponent in two patterning mechanisms, the activator-inhibitor and activator-
depletion mechanisms, it is difficult to assess the biological significance in
each of them [35]. Second, competitive complex formation of TTG1 - GL3
and GL3 – GL1 suggests that TTG1 has different roles in the activation of dif-
ferent MBW target genes [64]. Our analysis of weak ttg1 alleles sheds some
light on both aspects that will be discussed in the following.

3.4.1 Regulation of TRY by TTG1

The analysis of genetic interactions between TRY and TTG1 suggested a regu-
lation of TRY by TTG1 [148]. Various try/+ ttg1/+ double-heterozygous com-
binations of try and different ttg1 null-alleles exhibited clusters. Thus, the
reduced activity of both genes is sufficient to cause a phenotypic effect indi-
cating that they act in the same pathway. Recent molecular data suggest that
TTG1 regulates MBW target genes - including TRY - in a differential man-
ner in the root hair system [144]. One possible molecular explanation is the
competitive complex formation of the MBW complex. It was reported that
the activation of the TRY promoter by TTG1 and GL3 is counteracted by GL1
whereas the GL3 GL1 dependent activation of CPC promoter is repressed by
TTG1 (Pesch et al., 2015). Consistent with the regulation scheme we observed
a differential regulation of TRY and CPC in weak ttg1 alleles. Our data can
explain the observed lack of TRY activation in weak ttg1 alleles by two related
causes: First, the reduced interaction of mutant TTG1 to GL3 and second, the
binding of GL1 to GL3 is not counteracted by mutant TTG1.

3.4.2 Role of TTG1 in the activator-depletion scenario

The activator-depletion model for trichome patterning is based on three ex-
perimental data sets: the interaction of TTG1 with GL3, the nuclear targeting
of TTG1 by GL3 and the lack of depletion in the cells immediately next to
incipient trichomes [40, 141]. We show that all three aspects are impaired in
weak ttg1 alleles. Thus, by all criteria, the activator-depletion mechanism is
not operating in these alleles. This raises the question whether the random-
ization of the trichome pattern in weak ttg1 alleles is caused by the lack of the
activator-depletion mechanism. This is difficult to answer, as it is not clear
whether or to what extent the activator-inhibitor mechanism is still operating.
The mutual competition of TTG1 and GL1 for binding to GL3 [64] suggests
that TTG1 GL3 and GL3 GL1 can act separately to transcriptionally activate
inhibitory patterning genes. In this light one could postulate that GL3, GL1
and CPC can still function as an activator-inhibitor unit in weak ttg1 alleles.
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In fact, the results from the mathematical modelling suggest that GL3, GL1
and CPC are necessary to reproduce all observations.

3.4.3 Is the reduced interaction of TTG1 mutant protein with GL3 suf-
ficient to explain the ttg1 trichome phenotypes?

When reducing the TTG1-GL3 interaction strength in the AIADmodel we can
robustly reproduce the patterning defects indicating that the proposed AIAD
model is sufficient to explain the full spectrum of trichome defects in strong
and weak ttg1mutants. A reduction of TTG1-GL3 interactions is predicted to
cause reduced AC levels. This, in turn, leads to a lower activation of TRY. The
reduced activation of TRY explains the increased cluster frequency.

One aspect that cannot be matched by the simplest form of the model
(black edges in Figure 3.7E) is the loss of depletion in the ttg1 mutants. This
stems from the characteristics of the AD sub-motif. The reduction in TTG1-
GL3 interaction results in a focussing effect of TTG1, which counteracts a loss
of depletion. This characteristic persists in the combined AIAD model and
suggests that TTG1 independent regulation aspects are missing from the net-
work. After the inclusion of GL1 into the model we can find reduction of de-
pletion as a result of reduced TTG1-GL3 interaction, however, clusters are not
formed in this model. Ultimately, the differential regulation of the inhibitors
CPC and TRY was needed to find loss of depletion in combination with the
patterning defects found for the ttg1-9 allele. Here, two main requirements
needed to be fulfilled. First, an additional motif needed to be introduced that
could pattern independently of TTG1, this was achieved through the inclu-
sion of GL1 (black and light green edges in Figure 3.7E). This second pat-
terning mechanism increases pattern-forming robustness against the TTG1
mutation, resulting in a pattern that is not dependent on the depletion of
TTG1 at its core. A model without GL1 would always need TTG1 depletion
as a basis for forming a pattern (Figure S5). Second, CPC was introduced un-
der the regulation of GL1-GL3 (complete network in Figure 3.7E). Without
CPC, GL3-GL1 would still activate TRY despite changes in the TTG1 GL3 in-
teraction strength, thereby maintaining high levels of TRY such that no clus-
ters are formed (Figure S6B). Now, with the addition of CPC and differential
dimer regulation, the reduction in TTG1-GL3 interaction leads to a reduced
amount of TRY in the system, resulting in clusters. Furthermore, from the
selected randomly generated parameter sets we find that TRY operates on
shorter ranges than CPC (Figure S7A). This relatively short-range radius of
effect ensures that clusters are formed when the reduction in TTG1-GL3 in-
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teraction strength results in reduced amounts of TRY.

We combined the AI and AD spatial patterning motifs to explain a com-
plex patterning phenotype as a result of a point mutation. To overcome the
challenge of incomplete information about the system parameters we adopted
a constraint global analysis method using a Quasi Monte Carlo approach. For
every randomly chosen parameter set the model had firstly to reproduce the
observed wild-type pattern and, subsequently, had to replicate the complex
mutant phenotype. This approach revealed that neither the AI nor the AD
motif is structurally capable to explain the observed data. Moreover, by seek-
ing for a minimal model our approach disclosed that the combination of the
AD and the AI motif plus an extension by an extra inhibitor is required to
capture the observations. Our combined and extended AIAD model provides
a link between geno- and phenotype and offers a consistent explanation how a
point mutation can result into reduced trichome density and increased cluster
frequency at the same time.

3.5 Methods

3.5.1 Analysis of fluorescence intensity in trichomes and surrounding
tiers

Stable lines expressing TTG1 tagged with YFP and the three TTG1 mutant
proteins tagged with YFP under the control of the TTG1 promoter were anal-
ysed using confocal laser scanning microscopy. The DM6000 CS Microscope
was used in combination with the TCS-SP8 imaging system (Leica Microsys-
tems, Heidelberg, Germany). Z-stacks of young trichomes and surround-
ing tiers were acquired with a plane thickness of around 1-1.5 µm using the
20x water immersion objective. Determination of fluorescence intensity was
achieved by using the software ImageJ (Fabrice Cordelieres, Institute Curie,
Orsay, France). Maximum projections of the planes displaying the trichome
and the surrounding tiers of cells were created, and fluorescence intensity
(mean grey value) was measured in manually placed ROIs (region of interest).
For each trichome three elliptical ROIs were chosen (Figure S3A). In the epi-
dermal cells three polygonal ROIs were selected in each tier in the cytoplasmic
regions (Figure S3A). The mean fluorescence for the trichome and each of the
three tiers were calculated. Trichome fluorescence intensity was set to 100%
and for each tier the fluorescence percentage compared to the trichome inten-
sity was calculated. Subsequently for each YFP-tagged TTG1 allele the mean
percentage of the 1st, 2nd and 3rd tier was calculated as well as the standard
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deviations (TTG1 n=12, TTG1-9 n=19, TTG1-11 n=28, TTG1-12 n=15). The
data were tested for normal distribution using the Kolmogorov-Smirnov test
(α = 0.05) followed by a one-sample t-test (p = 0.002). All calculations were
performed using Microsoft Excel 365.

3.5.2 Light Microscopy

To observe the root phenotypes of wild type (Col-0), ttg1-1, ttg1-9, ttg1-11
and ttg1-12, seeds were sterilized and sown on ½ MS plates with 1% sugar.
After 2 days of stratification the plates were transferred into a growth cham-
ber (22 C, light/dark cycle of 16/8 h, humidity of 60%) and placed vertically.
2-3 days later the seedlings were transferred to a microscopic slide wrapped
with parafilm on both ends so that the seedlings all had the cotyledons on one
long side of the slide. Liquid 1/10 MS with 1% sugar was added to the roots
and the plants, except for the leaves, were covered with a cover slide. The
slides were placed vertically into a glass box filled with some 1/10 MS with
1% sugar and stored in the growth chamber. After one day the roots were
examined using the DM5000 B and the DFC360 FX imaging system (Leica
Microsystems, Heidelberg, Germany). Seed colour was examined using a LE-
ICA MZ16 F and documentation was performed by using the LEICA DFC420
C imaging system. To analyse seed coat mucilage production by seed epider-
mal cells, a ruthenium red staining was performed. Seeds were hydrated in
water for 5 min under gentle shaking. After removing the water, ruthenium
red solution (0.1 mg/ml) was added. After 5 min of incubation the seeds were
washed twice with water [152] and examined using a LEICA MZ16 F and
documentation was performed by using the LEICA DFC420 C imaging sys-
tem. Trichome coordinates of Col-0 and ttg1-9 were extracted using TrichEr-
atops [145]. GUS analysis was performed as described previously [153]. Light
microscopy was done either using a Leica MZ16F binocular microscope or
a Leica DMRE microscope equipped with a high resolution KY-F70 3-CCD
JVC camera and DISKUS software. Confocal laser scanning microscopy was
performed on Leica TCS-SP2 imaging system (Leica Microsystems) equipped
with LCS software. 40x water immersion objective was used to obtain the z-
stack images. z-stack images were merged to obtain the image in one plane.
YFP fluorescence quantification was done using the histogram quantification
tool in LCS software.
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3.5.3 Yeast two hybrid and nuclear transport assays

For protein-protein interaction in yeast, pAS2 and pC-ACT2 plasmids (Clon-
tech) were used fort translational fusion of proteins either with GAL4 activa-
tion or DNA binding domain respectively. TTG1, TTG1-13, TTG1-9, TTG1-
11 and TTG1-12 were cloned as a fusion to DNA binding domain in the pAS2
vector and GL3, EGL3 and TT8 were cloned as a fusion to the GAL4 activation
domain by LR clonase reaction. Saccharomyces cerevisiae strain AH109 was
transformed as described previously for the interaction assay [154]. Yeast Nu-
clear Transportation Trap (NTT) assay was performed in yeast strain EGY48 as
described before [147]. NTT constructs pNH2 (NES-LexAD), pNS (modified
pNH2) [147], pNS-TTG1, pNS-TTG1-13 and pVT-U-GL3 [141] have been de-
scribed before. pNS-TTG1-9, pNS-TTG1-11 and pNS-TTG1-12 were created
by cloning SalI and XhoI fragments from corresponding entry vectors into the
SalI site in pNS vector to obtain pNS-TTG1-9, pNS-TTG1-11 and pNS-TTG1-
12. Yeast harbouring pNS and pVT-U plasmids grow on synthetic dropout
media lacking histidine and uracil respectively. Transport of protein of in-
terest as a translational fusion to NES-LexAD into the nucleus results in ac-
tivation of rhw leucine reporter gene under GAL4 promoter and is read out
by growth of yeast cells on the synthetic dropout media lacking amino acid
leucine.

3.5.4 LUMIER

Two destination vectors were used for LR reactions. pcDNA3-Rluc-GW and
pTREXdest30 (Invitrogen) enable the N-terminal fusion of Renilla reniformis
and Staphylococcus aureus proteins, respectively [60]. GL3 was N terminally
fused to the S. aureus ProtA sequence in pTREX-dest30-ntPrA. As a nega-
tive control, the vector pTREX-dest30-ntPrAwas recombined with pENTR1A-
w/ o-ccdB. R. reniformis Luciferase-TTG1-wt, Luciferase-TTG1-9, Luciferase-
TTG1-11 and Luciferase-TTG1-12were created as N terminal fusions in pcDNA3-
Rluc-GW. pENTR1A-w/o-ccdB was used as a negative control. For LUMIER
assays, each protein was transiently expressed inHEK293TN cells (BioCat/SBI;
LV900A-1). Transfection and pull down assay were done as described before
[60, 64] three times independently each as two technical replicas.

3.5.5 Constructs

All entry clones were in pENTRY1A/pENTR4. TTG1-YFPpEN [40], TTG1∆C26-
YFPpENwhere carboxy terminal 26 amino acids are deleted [141] and TTG1pEN
[64] have been described previously. TTG1-9-YFPpEN, TTG1-11-YFPpEN for
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ttg-11 and TTG1-12-YFPpEN were generated by site directed mutagenesis us-
ing TTG1-YFPpEN as a template. Entry clones of all the ttg1 allelic versions
without YFP fusion were also generated by site directed mutagenesis using
TTG1pEN as a template. For plant transformation all the TTG1-YFP versions
were cloned into pAMPAT-pTTG1-GW binary vector [40] by LR clonase reac-
tion to express them under native TTG1 promoter.

3.5.6 Generation of a random pattern

We compare the data from leaves to a suitable random reference. There are
two requirements the random patterns should fulfil. First, the points should
be independent and identically distributed, i.e. we assume complete spatial
randomness. Seconds, the amount and variation in density of points per rep-
resentation should reflect the observations for wild-type and ttg1-9 pheno-
types. For these reasons we simulate a homogeneous Poisson point process
[155]. We generate 104 random representations for both wild-type and ttg1-9.
For each of these representations the points density is sampled from a Pois-
son distribution using the mean trichome density determined from either the
wild-type or ttg1-9 leaves as a parameter for the distribution. The points for
each representation are uniformly and independently placed within the unit
circle.

3.5.7 Quantification of the regularity of patterns

To quantify the regularity of the trichome patterns we focus on two measures.
The first measure is the coefficient of variation of nearest neighbour distances.
For each leaf (wild-type and ttg1-9) we calculate the Euclidian distances δi for
each trichome ti to its nearest neighbour tn by

δi =
√
(xi − xn)2 + (yi − yn)2 (3.1)

where (xi , yi ) are the coordinates for the trichome ti and (xn, yn) the coordi-
nates for its nearest neighbour tn. Next, we use the coefficient of variation
(ratio of the standard deviation of the distances δσ to the mean δ̄) of the near-
est neighbour distances which is defined by

CVNN =
δσ

δ̄
with δ̄ =

1
|Jk |

|Jk |∑
i=1

δi and δσ =

√
1

|Jk | − 1

|Jk |∑
i=1

(δi − δ̄)2 (3.2)

where Jk is the set of trichome coordinates for a certain leaf k and |Jk | its car-
dinality. The CVNN reported for wild-type and ttg1-9 is the mean of N = 9
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and N = 11 leaves respectively.

In addition to the CVNN we use the mean anisotropy as a measure of pat-
tern regularity. The anisotropy has been shown to be a suitable measure of
the local trichome environment [32]. Following the procedure from Greese et
al. [32], we determine the ratio of eigenvalues of the inertia tensor for each
trichome. We report the average of these ratios for each leaf and averaging
again over all leaves (or computer-generated patterns).

3.5.8 Theoretical probability of finding clusters in random patterns

For a homogeneous Poisson process the probability to find n points per unit
area is given by the Poisson distribution [156]

P(n) =
mne−m

n!
(3.3)

wherem is the mean number of points per area. Because we consider a homo-
geneous process the probability is independent of the specific location of area
of interest. If ρ is the mean density of the distribution, then m = πr2ρ, which
upon substitution into (3.3) gives

P(n) =
πr2ρne−πr

2ρ

n!
. (3.4)

The probability of the chosen area πr2 containing no points is

P0(r) = P(n = 0) = e−πr
2ρ (3.5)

which is the probability that the area within a distance r ≥ 0 contains no
points. Consequently, the probability of finding at least one point within a
radius r is given by

P≥1(r) = 1− e−πr
2ρ. (3.6)

The relation given in (3.6) is visualized in Figure S2A for densities correspond-
ing to wild-type and ttg1-9. For a random pattern of lower density, the prob-
ability of finding a cluster is lower than for a pattern of higher density.

3.5.9 Correlation dimension of experimental data and simulated pat-
terns

The correlation dimension can be used to evaluate the number of factors that
are involved in the variability of a process [157, 158]. In this case we are
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interested in the application of the correlation dimension in spatial patterns.
For the trichome and randomly generated patterns we use the Grassberger-
Procaccia algorithm to extract the correlation dimension from the data [159].
The spatial coordinates are given in two dimensions; therefore, the maximum
correlation dimension is two. This maximum dimension is found back in the
analysis of the random data, showing that there is no underlying deterministic
factor in determining the pattern (Figure S2C-F). For both the wild-type and
the ttg1-9 data we find correlation dimensions < 2, indicating that there is
some inherent deterministic mechanism operating in the patterning of both
phenotypes.

3.5.10 Reproducing trichome pattern irregularity by perturbing hexag-
onal patterns

To reflect the noise level of nearest neighbour distances of trichomes seen in
wild-type (CVNN = 0.33), we apply a random perturbation to the coordinates
of a completely regular hexagonal pattern consisting of N = 100 points. Con-
sidering that wild-type phenotypes do not show any clusters of trichomes, we
include an exclusion zone around every point. This exclusion zone is achieved
by defining a region around a certain point with a radius z. The algorithm for
generating the perturbed pattern is the following:

1. Generate u1, u2, . . . ,uN ∼ U (0,1) independently.

2. Set R1← r
√
u1, R2← r

√
u2, . . . ,RN ← r

√
uN .

3. Generate uN+1, uN+2, . . . ,u2N ∼ U (0,1) independently.

4. Set Θ1← 2πuN+1,Θ2← 2πuN+2, . . . ,ΘN ← 2πu2N .

5. Select points (xi , yi ) by a randompermutation on the integers I = {1, . . . ,N }.

6. Set x1← x1 +R1 cosΘ1, x2← x2 +R2 cosΘ2, . . . ,xN ← xN +RN cosΘN .

7. Set y1← y1 +R1 sinΘ1, y2← y2 +R2 sinΘ2, . . . , yN ← yN +RN sinΘN .

8. For steps 6 and 7 check if the nearest neighbour distance from point i ∈ I
is larger than z = 0.4, else point (xi , yi ) is not shifted.

This exclusion zone in step 8 of z = 0.4 is arbitrarily chosen, but sufficient to
reproduce a CVNN corresponding to measurements of wild-type leaves.

Next, we generated a vector of points by drawing from nPr , with n = 100
and r = 54. The coordinates corresponding to the integers in this vector are
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removed from the grid, yielding a density relative to the wild-type grid of
0.46. Finally, we induce clustering by first selecting 8 points out of the 46
remaining after sparsening by random permutation. Next, the selected points
are split into two groups of 4 points. The coordinates of the second group are
set to the coordinates of the first group plus a value smaller than the minimal
nearest neighbor distance found in the previous step. This set of points is then
counted as clusters, giving a density of 8 out of 46 (18%), comparable to ex-
perimental observations. The pattern showing clusters and a reduced density
has a CVNN similar to the ttg1-9 leaves (CVNN = 0.85). Edges between points
are determined by MATLAB’s built-in Delaunay Triangulation function.

3.5.11 Trichome patterning model

The cells are modelled on a hexagonal grid of Nx by Ny cells with periodic
boundary conditions based on a modelling framework described before [38,
40]. Transport of species χ between cell j at coordinates (x,y), where 1 ≤ x ≤
Nx and 1 ≤ y ≤Ny and its neighbour is modelled by the coupling equation

L̂[χ]x,y =[χ]y−1,x + [χ]y+1,x + [χ]y,x−1 + [χ]y,x+1 (3.7)

+ [χ]y+1,x−1 + [χ]y−1,x+1 − 6[χ]y,x.

Based on the network presented in Figure 3.7E, we used the following system
of dimensionless coupled ordinary differential equations (ODEs) to describe
the change over time of TTG1, GL1, GL3, TRY, CPC and the active complex
between TTG1-GL3 (AC1) and GL1-GL3 (AC2):

∂t[TTG1]j =k1 − [TTG1]j (k2 + k3[GL3]j ) + k2k4L̂[TTG1]j (3.8)

∂t[GL1]j =k5 + k6[AC2]j − [GL1]j (k7 + k8[GL3]j ) (3.9)

∂t[GL3]j =k9 +
k10k11[AC1]

2
j

k11 + [AC1]2j
+
k12k13[AC2]

2
j

k13 + [AC2]2j
−

[GL3]j (k14 + k3[TTG1]j + k8[GL1]j
+ k15[TRY ]j + k16[CPC]j ) (3.10)

∂t[TRY ]j =k17[AC1]
2
j + k25[AC2]

2
j − [TRY ]j (k18 + k15[GL3]j )+

k18k19L̂[TRY ]j (3.11)

∂t[CPC]j =k20[AC2]
2
j − [CPC]j (k21 + k16[GL3]j )+

k21k22L̂[CPC]j (3.12)
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∂t[AC1]j =k3[GL3]j [TTG1]j − k23[AC1]j (3.13)

∂t[AC2]j =k8[GL3]j [GL1]j − k24[AC2]j (3.14)

The first version of the model consisted only of (3.8), (3.10), (3.11) and (3.13)
and a smaller amount of the relevant parameters, giving the network of black
edges only in Figure 3.7E. This was extended later by including (3.9) and
(3.14); this is the combination of black and light green edges in Figure 3.7E.
Finally, CPC was included through (3.12), resulting in the complete network.
Note that parameter k25 is generally set to 0 except in the pCPC:TRY rescue
simulation where k25 > 0 (Figure S7D).

3.5.12 Pattern quantification

Similar to the hexagonal point pattern analysis, we determined the coefficient
of variation of the nearest neighbour distances (CVNN), cluster density and
trichome density for the model simulations. In order to calculate any of the
quantities we first identified the trichome cells. Towards that end, the steady
state concentrations of the active complex [AC](x,y) are normalized by the
maximum observation [AC]max; cells that contain more than half-maximum
of AC are classified as trichomes. In the model with both the GL3-TTG1
(AC1) and GL3-GL1 (AC2) active complex the sum of both complexes is used,
i.e. [AC](x,y) = [AC1](x,y) + [AC2](x,y). Using these criteria we can identify the
set of grid-coordinates at which trichomes can be found, formally defined as
T = {(x,y)|[AC](x,y) ≥ 1

2 [AC]max}. The number of elements in this set, i.e. its
cardinality |T |, equals the number of trichomes on the grid. By dividing the
cardinality by the total number of cells (i.e. grid size) we obtain the trichome
density. Next, we determined the cluster frequency by identifying the ele-
ments with coordinates that are next to each other on the grid and by dividing
that number by |T |. Finally, we determined the nearest neighbour distances.
For this we considered the trichome cells as a point pattern on a hexagonal
grid. With the set of coordinates of trichomes on this grid we used MATLABs
knnsearch with default settings. From this distribution of distances we deter-
mine the CVNN, as described above.

3.5.13 Parameter search

As all parameters for the system are unknown, we used Latin Hypercube sam-
pling to study system dynamics at different points in the parameter space.
Within the parameter space there exists a sub-space where Turing patterning
can occur, called the Turing Space. In this domain a diffusion-driven insta-
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bility (Turing instability) can occur resulting in an inhomogeneous patterning
state [3]. To test this for our randomly generated sets we use linear stability
analysis where the stability of a uniform steady state is verified by determin-
ing whether effects of small perturbations to the ODE system decay over time.
Turing instability was tested by the following criteria: starting from a uniform
steady state (i) the steady state in the absence of diffusion is stable and (ii) the
steady state in the presence of diffusion is unstable [123]. For criterion i this
means that all eigenvalues of the Jacobian evaluated at steady state must be
negative. To perform the same test for criterion ii we decoupled the system by
Fourier transformation and analysed the eigenvalues [38, 40], where the real
part of at least one of the eigenvalues must be positive.

3.5.14 Parameter criteria

To test in the mathematical model whether the patterning defects can be ex-
plained by a reduced binding of TTG1 to GL3 (β) this parameter is varied
while other factors are kept constant.

In a random parameter search, the parameter sets are tested for (i) Turing
instability, (ii) increase in cluster densities, (iii) relative increase in CV (iv) a
relative decrease in trichome densities. Every quantity is fitted to the follow-
ing experimentally determined ranges: trichome density of 0.46±0.06 relative
to wild type, CV of 2.22 ± 0.22 relative to wild type and a cluster density of
0.18± 0.07.

After an initial search of 106 randomly generated parameter sets we found
4 sets that fulfilled these criteria. These sets were then used to define a lo-
cal search area to speed up the parameter search. With this approach we
found 40 parameter sets that were used to study the pattern development for
decreasing TTG1-GL3 interaction strengths. For parameter sets that match
the criteria, the quantitative factors, e.g. cluster density, were averaged across
multiple simulations with randomly perturbed initial conditions until conver-
gence. Convergence is defined as σ/

√
N < εθ(k) where σ is the standard devia-

tion of a pattern quantity, N the number of simulation repeats, ε a measure of
accuracy, which we set to 0.05, and θ(k) the mean of a pattern quantification
(e.g. trichome density) for parameter set k.

82



3

3.5.15 Depletion in the activator-depletion model

For the simplest combination of the AI and AD model networks, we found
that loss of depletion in the ttg1-9 mutant simulations was not observed, in
fact we found a focussing effect where more TTG1 was recruited to trichome
cells. To facilitate the analysis we focused on the behaviour of the AD sub-
motif. As expected, reduced binding strength resulted in higher amount of
free TTG1 (Figure S5B), which in turn results in a higher effective TTG1 mo-
bility (Figure S5A). The number of peaks (i.e. trichomes) was decreased and
the peak height (i.e. AC levels in trichomes) was increased (Figure S5B). As a
consequence, also TTG1 was more strongly focussed in the trichomes.

We further sought to gain insight into the underlying reason of the fo-
cussing effect. A reduction of the interaction rate between TTG1 and GL3 re-
sults in an enhanced number of unstable Fourier modes (Figure S5C) for the
initial Turing instability (see section on ‘Dispersion relation’ below for meth-
ods). Due to this, only the major peaks of the stochastic initial perturbation
grow into stable large peaks. Because TTG1 is less bound in complexes in non-
peak cells, more TTG1 can be recruited to the developing peaks. This results
in low trichome density with enhanced peak height and strong depletion of
TTG1 around peak cells. This is contrasted by the wild-type situation where
only very few Fourier modes are unstable (Figure S5B). From the stochastic
initial perturbation only the high frequency modes are selected while most
Fourier modes are damped. This means that the AD motif acts as a spatial
high-pass filter.

3.5.16 Dispersion relation

When the binding strength between TTG1 and GL3 is decreased less AC is
formed. This observation is confirmed by the model and is one of the possible
reasons why the trichome density is decreased for the mutants. To determine
the effect of the change in binding strength on the pattern formation, the dis-
persion relation is studied for different binding strengths on a 1-dimensional
grid of N cells. The Fourier modes for a 1D grid are given by

k2 = 4sin2
(πn
N

)
(3.15)

where 1 ≤ n ≤N,and
Ap,q = J0 −Dk2 (3.16)
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where J0 is the Jacobian evaluated at steady state andD is the diffusionmatrix.
The eigenvalues for the matrixAp,q are determined for different wavenumbers
and different values for the binding strength parameter. Given that a pattern
is only formed when Re(λ) > 0 the dispersion relation shows which wavenum-
bers correspond to unstable modes and are thus a possible component of the
pattern.

3.5.17 Quantification and Statistical Analysis

For the statistical analysis of the difference of the mean intensity in trichomes
and the three neighbouring epidermal cell tiers the data were first tested for
normal distribution using the Kolmogorov-Smirnov test (α = 0.05) followed
by a one sample t-test (p = 0.002). All calculations were performed using Mi-
crosoft Excel 365. For testing the statistical difference in pattern irregularity
for the mean CVNN and anisotropy Mann-Whitney U-test was used (α = 0.01).
The single-tailed test was used to test whether the irregularity measures were
greater for random patterns than wild-type and whether ttg1-9 patterns were
more irregular than wild-type. In comparing ttg1-9 to random patterns we
tested whether ttg1-9 was more irregular than the random reference patterns.
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Chapter 4

Quantitative identification of the MBW-complex
binding behaviour in trichome patterning
through a ratiometric approach

Anna Deneer*, Bipei Zhang*, Christian Fleck and Martin Hülskamp
* Contributed equally

4.1 Abstract

The proteins in the MYB-bHLH-WDR (MBW) complex are well conserved
in higher plant species and are involved in a wide range of developmental
and metabolic processes. Here, we focus on their role in trichome pattern-
ing and aim to quantify the interactions between the R2R3MYB protein GLA-
BRA1, the WD40 protein TRANSPARANT TESTA GLABRA1, the bHLH pro-
tein GLABRA3 and both the R3MYB proteins TRIPTYCHON and CAPRICE.
These proteins form the core of the network regulating trichome patterning
and their binding behaviour is what drives downstream processes like cell
differentiation. We quantified the dissociation constants for each of the in-
teractions with the unifying bHLH protein through a ratiometric approach
and show that the R2R3MYB and WD40 have similar binding strenghts while
exhibiting negative cooperativity. Furthermore, we find that the R3MYB pro-
teins showweaker binding and suggest that their mode of competitive binding
goes beyond a displacement mechanism. Finally, through mathematical mod-
elling, we predict an increased robustness in patterning as a consequence of
these binding properties, indicating a relevant mechanism for trichome pat-
terning.
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4.2 Introduction

The MBW complex consisting of MYB and bHLH transcription factors asso-
ciated with a WD40 repeat protein drives multiple traits in a range of plant
species, among which metabolic pathways and cell differentiation [43, 48, 65–
68]. Mutation and duplication events in the genes encoding theMBWproteins
have given rise to a wide array of developmental regulatory mechanisms that
provide the flexibility needed to generate the different epidermal cell types
found in plants [65, 66, 160, 161]. In Arabidopsis thaliana the MBW complex
is involved in anthocyanin biosynthesis, seed coat mucilage, seed coat pig-
mentation, and trichome and root hair patterning [65, 68].

An excellent system in which to study epidermal cell differentiation and
patterning is that of trichome formation [7, 9, 35]. In this system the WD40
protein is encoded by TRANSPARENT TESTA GLABRA1 (TTG1) [43, 162,
163] which associates with bHLH proteins, among which GLABRA3 (GL3)
[44, 136, 139, 160]. The bHLH proteins are known to homodimerize or het-
erodimerize, possibly leading to higher order complexes [44, 69, 136, 164–
168]. The third component of the complex is a MYB protein [45, 134, 136],
which in the case of trichome differentiation can be classified into two groups
based on their function discovered in mutant phenotype studies [31, 34, 38,
40, 50]. In the first group, the activators, are the R2R3MYB transcription fac-
tors, among which is GLABRA1 (GL1) [45, 134, 169, 170]. The second group,
the inhibitors, consists of R3MYB transcription factors [50, 52, 56, 148, 171].
Among the inhibitors are TRIPTYCHON (TRY) and CAPRICE (CPC) [34, 50,
51, 56, 139].

The interaction between the MBW components and the balance of their
quantities are what drives the pattern formation process of trichomes [61, 62,
64, 172–176]. Gene regulation in developing trichomes is controlled by both
MBW quantity and composition [64]. The interactions between the WD40,
MYB and bHLH proteins have been studied in different settings [38, 43, 44,
60, 136]. In yeast two-hybrid experiments TTG1 and GL1 were both found to
interact with GL3 but TTG1 and GL1 do not interact directly [44, 64], leading
to the assumption that GL1, GL3 and TTG1 form a trimeric complex together,
capable of activating trichome differentiation events [44]. It was later shown
in yeast three-hybrid experiments and pulldown assays that GL1 and TTG1
counteract each other’s binding to GL3 [64], which led to a new model of dif-
ferential dimer formation of GL3-GL1 and GL3-TTG1 dimers. Furthermore,
these different dimers show a different extent of effect on the activity of the
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target promotors of TRY and CPC [64], indicating that the differential com-
plex formation could be a mechanism of control, depending on the ratio of the
dimers or higher order complexes. An additional mechanism of interaction is
that between the different MYB proteins. The R3MYB proteins compete with
R2R3MYB for binding to GL3 [64]. Thus, there are two mechanistically differ-
ent types of competition: 1) in the competition betweenWD40 and R2R3MYB
a possible allosteric regulation counteracts the other component from bind-
ing to the bHLH protein, 2) between R2R3MYB and R3MYB proteins, where
repression of the complex activity is achieved by removal of R2R3MYB by
R3MYB.

From our current understanding the ratios of the MBW proteins and the
resulting composition of the MBW complex regulates the activity of different
promoters [61, 62], which ultimately control the spatial and temporal distri-
bution of specialized cell types [65, 66]. Here we define the complex interac-
tions through a quantitative analysis of binding experiments. We first aim to
identify and compare the dissociation constants of the WD40 and MYB pro-
teins to the bHLH protein. The dissociation constants are quantified through
LUMIER assays, which show that TTG1 and GL1 have similar binding prop-
erties and bind stronger than TRY and CPC to GL3. Additionally, the dissoci-
ation constants of TRY and CPC lie within very similar ranges of each other.
Next, effects of competition between TTG1 and GL1 as well as between GL1
and the inhibitors TRY and CPC are analysed through competition experi-
ments. For TTG1, GL1 and GL3 we find that GL3 homodimerization plays a
significant role, together with a mechanism of negative cooperativity between
TTG1 and GL1. In the case of the competition between GL1 and TRY/CPC
we find strong competitive effects in the form of competitive displacement, in
combination with the binding of the inhibitors to GL1 which further increases
the competitive effect. Taken together, we find two very different mechanisms
of complex formation, both having different effects on the complexes formed
at equilibrium which provides insight into how both mechanisms can control
different aspects of trichome differentiation events.

4.3 Results

4.3.1 Dissociation constants of TTG1-GL3 and GL1-GL3 dimers are in a
similar range

To determine the relative amounts of the different complexes that can be
formed by TTG1, GL3 and GL1, we aimed to determine the dissociation con-
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stants of the TTG1-GL3 and GL1-GL3 dimers. This requires a quantitative
analysis of the protein concentrations at different ratios. As we have not been
able to produce soluble TTG1, GL3 or GL1 proteins in sufficient amounts
for a biochemical analysis, during the last years we developed an alternative
approach using LUMIER pulldown assays (LUminescence-based Mammalian
IntERactome [177]). This approach has proven to be very successful for the
analysis of interactions between TTG1, GL3 and GL1 proteins [64]. ProtA-
tagged GL3 and Renilla-tagged GL1 or TTG1 were expressed separately in hu-
man HEK293TM cells (Figure 4.1A), raw extracts were mixed and subjected
to pulldown assays. Because we could not determine the absolute protein
concentrations of GL1, GL3 and/or TTG1, we use a ratiometric approach. To-
wards this end, we added a HA-tag to all proteins and quantified the relative
protein amounts of TTG1, GL3 and GL1 in parallel to the LUMIER assays
on Western blots using the HA-antibody (Figure 4.1B and Supplementary fig-
ure 4.6).

Based on these ratios we normalized the Renilla-tagged protein amounts
with the GL3 levels. The ratio of GL1 or TTG1 to GL3 was varied by dilution
series of the extracts. The amount of GL1 and TTG1 precipitated with ProtA-
tagged GL3 was analysed by measuring the Renilla luminescence. To enable
a comparison between different experiments, we normalized every measure-
ment by the maximum intensity. Each experiment included two technical
replicas and was repeated several times (biological replicas) with different
ranges of the ratios between GL1 or TTG1 and GL3. The data of the biological
replicas were combined to estimate the dissociation constants (KD) for GL3-
GL1 and GL3-TTG1. The KD was calculated by fitting a model of reversible
binding to the data with a non-linear least squares approach (Figure 4.1C).
Because of the normalization methods that we used, these KD are dimension-
less and relative to the total GL3 concentration. To indicate this, we refer to
them as relative KD , denoted by K̄D . The best fits resulted in a K̄D = 1 for
TTG1-GL3 and K̄D = 0.5 for GL1-GL3. The TTG1-GL3 dimer has a slightly
higher K̄D than GL1-GL3. However, the confidence interval for both K̄D esti-
mates are very close. When taking into account that the method to determine
the relative protein amounts by western blot analysis also introduces small
errors we consider the dissociation constants of the protein dimers to be in a
similar range.
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GL3 3HAPIE-1 ProtApTREX-dest30-ProtA-GL3

pCDNA3-Renilla_LUC-TTG1 TTG1PIE-1 3HARenilla_LUC

PIE-1 GL1Renilla_LUC 3HApCDNA3-Renilla_LUC-GL1Prey

Bait

Renilla_LUCPIE-1
pCDNA3-Renilla_LUC-w/o
(Negative control)

Figure 4.1: LUMIER binding assays to estimate dissociation constants. A: Schematic
representation of constructs used in LUMIER. B: Western Blot used to determine the
ratio of GL1 and TTG1 to GL1 using peak intensity. C: Model fit to LUMIER data
of GL1 (red) and TTG1 (blue) binding to GL3. The shaded region indicates the 95%
confidence interval on the dissociation constant estimate. Error bars indicate 3 tech-
nical replicates. Cloud of points stems from three biological replicates which are not
averaged into single points due to variation in expression levels.

4.3.2 Negative cooperativity between TTG1 and GL1 for binding to GL3

To quantify to what extent the binding of TTG1 to GL3 has an effect on subse-
quent binding of GL1 to GL3 and vice versa, we performed two assays. In the
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first approach, we added different amounts of TTG1-Renilla to GL3-ProtA in
presence of GL1-YFP. As the Western blot analysis was done in parallel to the
LUMIER assay, we could not calculate the GL1-YFP and GL3-ProtA ratios be-
fore starting the LUMIER analysis. The ratio of the GL1-YFP and GL3-ProtA
varied between 1:1 to 1:2. To describe the mechanism underlying the competi-
tive binding of GL1 and TTG1 to GL3 we extended the model by including the
simultaneous binding of TTG1 and GL1 to a single GL3 unit (Figure 4.2A). We
used the individual dissociation constants determined in the non-competitive
experiments and introduced the cooperativity parameter α which describes
the change in the K̄D of GL1-GL3 and TTG1-GL3 upon additional binding
of TTG1 or GL1, respectively. To estimate the cooperativity parameter, we
fixed the K̄D of TTG1-GL3 and GL1-GL3 to the values found from the non-
competitive data. Fitting our data with the model revealed a cooperativity
parameter of 0.2, indicating strong negative cooperativity (Figure 4.2B).

In the second approach, we quantified the GL1 GL3 interaction by adding
different amounts of GL1-Renilla to GL3-ProtA in the presence of TTG1-YFP.
In all three experiments we found a slightly S-shaped response curve (Fig-
ure 4.2C), suggesting a highly non-linear behaviour. Using the χ2 score for
the estimate of α we found that the lower limit of the 95% confidence inter-
val is unidentifiable [178], as seen in the χ2 profile for α (Figure 4.2C), which
means that after a certain lower point in α, the fit of the model to the data is
not improved upon further reduction of α. Given the poor fit of the model to
the data, we asked the question what could result in the differing shape of the
curve of the data and the model. One possible explanation is that GL1 shows
weak homo-dimerization ([38, 179]; Supplementary Table 1). When includ-
ing the GL1 dimerization in our model we found the S-shaped response curve
(Figure 4.2D).

4.3.3 Formation of higher order complexes of GL3

The homodimerization of GL3 could lead to higher order complexes [43, 69,
136, 160]. In a first step we determine the K̄D for the GL3 homodimer (Fig-
ure 4.4B). We find an estimate of K̄D = 0.5, indicating that the GL3-GL3 dis-
sociation constant is very similar to TTG1-GL3 and GL1-GL3.

In a next step we assessed whether GL3 dimerization is changed by ad-
ditional binding of GL1 or TTG1. Towards this end, we performed LUMIER
assays using GL3-ProtA and GL3-Renilla at different concentrations in the
presence of TTG1-YFP or GL1-YFP (Figure 4.4B). These experiments revealed
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⇆
𝐾𝐾𝐷𝐷/𝛼𝛼

TTG1 GL3 GL1 GL3TTG1 GL1

Figure 4.2: Competition between TTG1 and GL1 for binding to GL3.. A: Schematic
representation of cooperativity between GL1 and TTG1. The K̄D of GL1 is adjusted
by the cooperativity parameter α as a result of TTG1 bound to GL3. B: Measurement
of GL3-TTG1 binding in presence of GL1 at 2:1 (blue) and 1:1 (red) ratio. The model
in A is used to fit the data and estimate α = 0.2. Shaded regions indicate the 95%
confidence interval. C: Measurement of GL3-GL1 binding in presence of TTG1 at 2:1
(blue), 1:1 (red) and 1.8:1 (yellow) ratio. The shaded region indicates 68% confidence
interval as determined by the χ2 profile of the estimate for α in the inset. The dashed
line indicates the 95% confidence interval and the dash-dotted line indicates 68% con-
fidence. D: Fit to the data in C with a function that allows higher order complexes in
GL1.

that GL1 and TTG1 do not change the dimerization behaviour.

To enable the modelling of higher order complex formation mediated by
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Figure 4.3: Inhibitor binding. A: LUMIER data and model fit for TRY-GL3 binding.
The shaded region indicates the confidence interval. B: CPC-GL3 data and model fit.
C: Competition of GL1 with TRY, for different ratios indicated in legend. D: Com-
petition of GL1 with TRY (red) and CPC (blue), using a model that includes binding
between the inhibitors and GL1. The yellow data indicates the GL1-GL3 binding in ab-
sence of TRY/CPC. E and F show the prediction of percentages of complexes formed
using the estimates from the data for GL1 competition with TRY and CPC, respectively.
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TTG1GL1GL3 TRY

D
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Figure 4.4: Competition between TTG1 and GL1 for binding to GL3, including GL3
homodimerization. A: Schematic representation of cooperativity between GL1 and
TTG1. The K̄D of GL1 is adjusted by the cooperativity parameter α as a result of TTG1
bound to GL3. B: Estimate of GL3-GL3 K̄D using a least squares fit, the shaded region
indicates the 95% confidence interval. C: Measurement of GL3-GL3 binding under
different amounts of TTG1 and GL1. Amount of GL3-GL3 binding is given relative to
the control where TTG1 or GL1 is absent. D: Prediction of the percentage of different
possible complexes assuming equimolar amounts of GL1, TTG1, GL3 and TRY.
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GL3 dimerization, we limited the analysis on the competitive complex forma-
tion data obtained in the first set of TTG1-Renilla experiments. Note that for
simplicity, we did not consider the potential higher order formation possibly
mediated by the weak GL1 dimerization. The extended model takes into con-
sideration competitive complex formation for the same GL3 protein, treats
GL3 dimerization to be independent of binding to GL1 and/or TTG1 and as-
sumes that GL1 or TTG1 binding to one of the GL3 molecules of the GL3
homodimer have no effect on binding sites of the other GL3 molecule (Fig-
ure 4.4C). The latter is plausible as GL3 dimerization is not affected by GL1
or TTG1. Modelling of these events revealed a cooperativity parameter of 0.4.
Thus, GL3 dimerization resulted in a cooperativity parameter twice as high
as calculated without GL3 homodimerization. This suggests that GL3 homod-
imerization reduces the predicted negative effect of GL1 on TTG1 binding and
vice versa.

To determine which of the models (competitive or cooperative with or
without GL3 homodimerization) explains the data most accurately we deter-
mined the root mean square error (RMSE) for each fit. Note that each of these
models consists of the same amount of parameters to estimate. Although there
was only a small difference, we found the lowest RMSE for the cooperative
model with GL3 homodimerization (Supplementary Table 2).

4.3.4 Formation of the inhibitor complex

The binding of GL1 to GL3 is thought to occur at the same binding site as the
inhibitors TRY and CPC [139]. To quantify this competition, we first deter-
mined the K̄D of the two inhibitors with GL3 using GL3-ProtA in combination
with TRY-Renilla or CPC-Renilla. For TRY and GL3 we found the best fit for
K̄D = 2.7 (Figure 4.3A), and for CPC-GL3 we found K̄D = 2.3 (Figure 4.3B). As
the confidence intervals overlap, we consider the K̄D to be in the same range.
Note, however, that the K̄D of the inhibitors are approximately 2-fold higher
than TTG1, GL1 and GL3 suggesting that the interaction between the activa-
tors is stronger than the interaction of the inhibitors with GL3.

In a next step we quantified the effect of the inhibitors on the binding
between GL3 and GL1 experimentally. In these experiments, the binding
between GL3-ProtA and GL1-Renilla is measured in the presence of a fixed
amount of TRY-YFP or CPC-YFP. To find the best model to describe the data,
we initially used the K̄D values for GL1-GL3 and TRY/CPC-GL3 obtained in
the non-competitive experiments in a competitive, single binding site model.
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This did not describe the data very well (Figure 4.3C). We therefore extended
the model by testing whether the binding of the inhibitors to GL1 might im-
prove the fit (Figure 4.3D) [38], thereby introducing one parameter to estimate
when fixing the estimates of binding to GL3 from the non-competitive data.
This led to a clear reduction of the RMSE (Supplementary Table 2), indicating
that the binding of the inhibitors to GL1 could be a potential explanation for
the difference between the binding behaviour predicted by the K̄D obtained
from pair wise interaction studies and three component assays.

4.3.5 Estimating the relative amounts of different MBW complexes

The complex interaction behaviour of the MBW proteins and the inhibitors
raised the question about the relative ratios of the different multimers and
how these change with different ratios of the protein amounts. To estimate
this, we used the K̄D values to calculate the ratios of the multimers. In a
first step, we calculated the relative amounts of MBW complexes without the
inhibitor. About 50% of the complexes would be expected to contain only
one GL3 bound to GL1, TTG1 or both. Among the GL3 dimers containing
complexes only a small fraction below 1% of all complexes are expected that
contain six proteins (Supplementary Figures).

In a next step, we calculated the relative amounts of the multimers in the
presence of TRY. When all proteins are present in equimolar amounts one
would expect that 19% of the complexes with one GL3 protein contain TRY
and are therefore expected to be inactive (Figure 3E). Among the GL3 dimer
containing complexes about 23% of the complexes contain TRY suggesting
that dimerization renders TRY inhibition slightly more effective.

Given that binding of TRY to GL3 is considered to represent the relevant
biochemical mechanism of repression [34, 50, 51, 56], it was surprising that
only about 20% of the complexes contain TRY when all are present in equimo-
lar amounts. We use a range of a relative changes between 0.25 to 4 of indi-
vidual proteins with respect to GL3. This revealed some notable observations.
First, the formation of GL1 GL3 TTG1 trimers is fairly low (about 5%) for a
wide range of combinations and increases to more than 20% only, if the rela-
tive amounts of GL1 and TTG1 are both four-fold higher than GL3. Second,
the amount of TRY containing inhibited complexes is between 15 and 30% for
a wide range of concentrations. It requires low GL1 concentrations in com-
bination with four-fold higher TRY levels to predict more than 50% inhibited
complexes.
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The largest complex included in this model consists of six sub-units. As all
of these proteins are involved in the patterning of trichomes, a logical follow-
up question is what the effect is of forming such a high order complex on
the patterning capabilities of the trichome system. To make a prediction on
this we study a simple model, namely the activator-inhibitor model [17]. This
model has been used as a basic framework for trichome patterning to study
competitive complex formation [38], as well as other patterning-specific prop-
erties of the trichome network [39–42]. Using this activator-inhibitor model,
we derive the necessary conditions for pattern formation and determine how
these conditions are affected by changes in the order of the complex. From the
mathematical analysis we find that the formation of higher order complexes
provides the system with an advantage in terms of robustness, i.e. it becomes
easier to find conditions under which a stable pattern can be formed.

4.3.6 A patterning model predicts increased robustness through multi-
mer formation

The essential principles of trichome pattern formation have been formulated
as mathematical models [38, 42, 180]. At the basis of these models are the
activator-inhibitor and substrate depletion systems [17]. Here, we have anal-
ysed the activator-inhibitor model and adapted it to include the formation of
higher-order complexes (> 2 sub-units) in the activator terms. We derived
the conditions upon which the model would form patterns (see methods, Sec-
tion 4.5.10) and determine how the size of the Turing space (in two dimen-
sions) varies for complexes with n = 2, 4 or 6 sub-units. From this we find that
a higher value for n, i.e. a higher order complex, leads to an increased size of
the Turing space. This indicates that the number of possibilities of generating
a pattern is increased. More specifically, patterning is more robust to changes
in the values of a and b (production- and degradation-rate of the activator,
respectively). Additionally, there is a shift in the patterning region towards
higher values of a. This indicates that more activator is required to satisfy the
conditions under high n.

4.4 Discussion

At the basis of trichome patterning are the interactions between the proteins
that are classified as activators and inhibitors [7, 35]. Of all the proteins in-
volved, GL3 plays a central role in that it is a binding partner to the other
activators [44, 61, 62, 136, 139, 160], among which are TTG1 and GL1, as well
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Figure 4.5: Combinations of a and b in the activator-inhibitor model in (4.37) -
(4.38) for which the patterning conditions are met. A,B and C: Overview of the
conditions derived in (4.46) - (4.49). Values of a and b for which condition (4.46),
(4.48) and (4.49) are met are indicated by a marker. The different colours indicate the
complex order n as shown in the legend of A. D: Regions for which all conditions are
met, for complex orders n = 2, 4, and 6. The size of the area A of each of the regions is
indicated.

as the inhibitors, among which are CPC and TRY [34, 50, 51, 56]. Here, we
quantified these interactions and estimated relative dissociation constants. By
testing different modes of binding and competition, we determined the most
likely scenarios given the data and predicted in what amount certain com-
plexes are present when assuming a certain ratio of individual proteins.
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4.4.1 Negative cooperativity between activators suggests higher order
complex compositions

It is commonly assumed that a trimeric complex of GL3, TTG1 and GL1 drives
the activation of downstream promoters that are involved in trichome pat-
terning [38, 43, 44, 61, 136]. From previously published results it was shown
that there is a form of competition between GL1 and TTG1 in binding to GL3
[38, 44, 64], which led to the assumption that a differential dimer formation
of GL3-GL1 and GL3-TTG1 is a more likely scenario. The results found in this
paper are in line with that hypothesis, where we found a negative cooperativ-
ity parameter between GL1 and TTG1.

Additionally, we found that the individual dissociation constants for both
GL1 and TTG1 lie in similar ranges, indicating that their relative amounts
play an important role in determining the final composition of complexes
and thus the efficiency with which certain downstream targets are activated
[172–176]. Finally, there’s an added layer of complexity in the form of homod-
imerization of GL3 [43, 69, 136, 160], which according to our binding models
negates the effect of negative cooperativity between TTG1 and GL1, leading to
higher-order complexes where both are found bound to either sub-unit of the
homodimerized GL3. Taken together, the presented scenarios indicate a ver-
satility in binding behaviours and a range of possible complexes in which the
individual ratios of TTG1 and GL1 to GL3 play a crucial role in the final com-
position of complexes. This versatility could be translated into a fine-tuning
mechanism where certain complex compositions lead to more or less efficient
activation of targeted promoters.

Furthermore, from a mathematical analysis using an activator-inhibitor
patterning model we predict that the formation of higher-order complexes
leads to increased robustness in terms of forming stable patterns, suggesting
an additional function for the complex formation scenarios presented here.
The observations made for this simple activator-inhibitor system do not nec-
essarily extend to the models formulated for the trichome system. This analy-
sis can only indicate a tendency in the changes in patterning space as a result
of higher order complex formation. Its strengths lie in its simplicity and thus
the ease of interpretation. For any of the more extensive and intricate tri-
chome models, such an analysis would become intractable. As the activator-
inhibitor system underlies the trichome patterning models [7, 35, 38, 40, 42],
it serves as an appropriate simplification for the purposes of this exploration,
giving an idea of what could be expected in terms of patterning properties as
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a result of higher-order complex formation as observed in the trichome pat-
terning proteins. In the case of a trichome-patterning-specific model, taking
into account all the possible complexes for the trichome proteins would lead
to an overly-convoluted model from which it would be problematic to draw a
similar prediction.

4.4.2 Inhibitors binding is weaker than activators and show a complex-
ity beyond competitive binding

The estimated dissociation constants of TRY and CPC are 2-fold higher than
found for GL1 and TTG1, indicating weaker binding to GL3. As the displace-
ment of GL1 by TRY and CPC is expected to be the leading mechanism by
which TRY and CPC exert their inhibitory function [38, 50, 56, 139], this
would suggest that in order to achieve inhibition in non-trichome cells, the
inhibitors would have to be present in higher amounts than the activators in
order to compensate for the weaker binding strength. This is in line with the
concentration profiles predicted by the patterning models based on activator-
inhibitor principles assumed for trichome patterning, where in the trichome-
peak the amount of activators is much higher than inhibitors and vice versa in
epidermal cells [38–41]. While this difference in binding strength could play
a role in achieving this difference, it is not the only mechanism in the pattern-
ing models. More specifically, these models include feedback-loops to achieve
this distribution of high activator in trichome cells and high inhibitor in non-
trichome cells [38–41]. One additional assumption the patterning models of-
ten rely on is a higher mobility for inhibitors than the activators [17, 123],
which a lower binding constant could also lead to as less proteins are caught
in a cell-autonomous complex [59].

Finally, we observed that the binding curves for TRY and CPC were not
accurately reproduced by a simple, single-binding site competitive binding
model. From our results, we found that the binding of TRY and CPC to GL1
would resolve this inaccuracy and so the model predicts that this could be a
potential mechanism which is as of yet unexplored.

4.5 Methods

4.5.1 LUMIER (LUminescence-based Mammalian IntERactome)

Staphylococcus aureus protein A orRenilla reniformis luciferase (Rluc) was fused
to the N-terminus of each protein while the third protein was fused to YFP
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at the N-terminus using the backbone of pTREXdest30 and three constructs
were transiently expressed inHEK293TM cells (BioCat/SBI: LV900A-1). Trans-
fection and cell harvesting were done as described before [60, 64]. After 48
hours cells were washed three times with PBS, lysed in 750µl-1000µl lysis
buffer. Extracts were normalized with respect to the YFP signal and Rluc sig-
nal (TECAN) then combined after 1 hour lysis. The total volume was kept
constant by adding untransfected cell lysate. Each combination was prepared
in triplicate. Protein-immunoprecipitation and luminescence measurements
were done as described previously [60] using untransfected cells or cells ex-
pressing Luciferase-protein as controls. Cells solely expressing YFP-protein
was also performed to exclude any nonspecific interference signal. The per-
centage of Rluc on the beads compared with the lysate was calculated by di-
viding the Rluc activity on the beads by the Rluc activity in the same amount
of lysate used in the pull-down assay (input).

4.5.2 Western Blot

Western blot experiments were performed as described in Molecular Cloning
[181]. Materials were used as follows: PVDF membrane (Roth), Super Signal
West Femto Maximum Sensitivity Substrate (Termo Scientific), Mini Trans-
Blot Cells (BioRad) for wet western blotting, Mini Protean Cells (BioRad) for
SDS gel electrophoresis, and Prestained Protein Ladder (Fermentas). Protein
lysate was extracted from HEK cell and detected with Anti-HA-Peroxidase
(5 mU/ml 1:2500 roth). Each lane is 40x dilution of original lysate by lysis
buffer. Relative density of each band is analysed by ImageJ (1.48v, National
Institutes of Health, USA).

4.5.3 Single site, reversible binding model

In the single binding experiments the binding between the protA-tagged pro-
tein and the Renilla-tagged protein is measured. For fitting the data we use
a simple, single-site binding model under the assumptions of mass balance
and equilibrium. Let x stand for protA-tagged protein, y for Renilla-tagged
protein, α for the association rate and β for the dissociation rate, we get

x + y
γ
−⇀↽−
µ
c (4.1)

ẋ = −γxy +µc (4.2)

ẏ = −γxy +µc (4.3)

ċ = γxy −µc (4.4)
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x0 = x + c (4.5)

y0 = y + c (4.6)

where x0, y0 is total amount of protein (the sum of free and bound protein).
Upon substitution of (4.5) and (4.6) into ẋ = 0 we get the following expression
for c at steady state

c =
1
2x0


(
1+

y0
x0

+
µ

γx0

)
±

√(
1+

y0
x0

+
µ

γx0

)2
− 4

y0
x0

 . (4.7)

Note that in (4.7) the term y0
x0

indicates the ratio between the Renilla-tagged
protein concentration y0 and the protA-tagged protein concentration x0, and
that the dissociation constant is given by KD = µ

γ . So, given the normaliza-
tion by the total amount of protA-tagged protein x0, we get a normalized KD ,
namely K̄D = ( µ

γx0
). Finally, to allow comparison between different experi-

ments, we normalize c by cmax which is the amount of complex at the point of
saturation.

4.5.4 Modelling higher order complexes in GL1

Given that the single site, reversible binding model showed a poor fit to the
data in Figure 4.2C, we have used a model that allows homodimerization in
GL1 such that higher order complexes than the trimer in Figure 4.2A can be
formed. Towards this end, we introduce a hill-function [117] that describes
binding in the following form:

s =
ax + bxn + cxz + dxmz

1+ ax + bxn + cxz + dxmz
(4.8)

where n and m are the hill coefficients that indicate the order of protein x
(in this case GL1), as a homodimer or as part of the complex with GL3 and
TTG1, respectively; a,b,c and d are the coefficients for each binding term and
z is the competitor protein (in this case TTG1). For Figure 4.2D the best fit
is found for n = 1 and m = 10, indicating that a high form of non-linearity is
part of the competitive complex formation which is more precisely defined in
the following models.
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4.5.5 Competitive displacement model

A protein binding experiment with competition for a single binding site is
described by the following equations:

x + y
KDy
−−−⇀↽−−− xy, (4.9)

x + z
KDz−−−⇀↽−−− xz, (4.10)

where conservation of mass requires that

x0 = x + xy + xz, (4.11)

y0 = y + xy, (4.12)

z0 = z + xz. (4.13)

Assuming that the x protein is tagged with protA again and y with Renilla,
we get the following expression used to fit to the data [182]

xy =
ȳ0

[
2
√
a2 − 3b cos(θ/3)− a

]
3K̄Dy +

[
2
√
a2 − 3b cos(θ/3)− a

] (4.14)

where the bar notation indicates the normalization by x0 and

a = K̄Dy + K̄Dz + ȳ0z̄0 − 1, (4.15)

b = K̄Dz(ȳ0 − 1) + K̄Dy(z̄0 − 1) + K̄DyK̄Dz, (4.16)

c = −K̄DyK̄Dz, (4.17)

θ = arccos
−2a3 +9ab − 27c

2
√
(a2 − 3b)3

. (4.18)

KDy ,KDz are the same as the dissociation constants determined with the single
binding model in (4.7). In the LUMIER data and the model (4.14) is normal-
ized by the amount of xy measured at saturation levels.

4.5.6 Extension of the competitive displacement model

As the model in Eq. (4.14) does not seem to reflect the experimental data very
well, a different mechanism is explored. In this extension the binding between

104



4

the inhibitor and GL1 is included. The set of reactions are:

x + y
KD1−−−⇀↽−−− xy, (4.19)

x + z
KD2−−−⇀↽−−− xz, (4.20)

y + z
KD3−−−⇀↽−−− yz, (4.21)

x0 = x + xy + xz, (4.22)

y0 = y + xy + yz, (4.23)

z0 = z + xz + yz. (4.24)

In this case it is not straightforward to derive an expression for the amount
of complex like the one given in (4.7) and (4.14), therefore the equations are
solved numerically to find the protein concentrations at steady state. Again
the protein amounts and KD are normalized by x0, i.e. the total amount of
protA-tagged protein (GL3).

4.5.7 Cooperative binding model

For the competition experiment with GL3, TTG1 and GL1 we first use the
model in (4.14) to try to fit the KD in the presence of the third protein. Be-
cause this does not give a good fit, the model is extended to include higher or-
der complexes with the possibility of a GL1-GL3-TTG1 complex. Given that
the KD for GL1 and TTG1 for binding to GL3 is very similar, we introduce
a parameter α as a cooperativity parameter [cite] that indicates the change
in the KD when GL1 or TTG1 is already bound to GL3, giving the following
model:

x + y
KD1−−−⇀↽−−− xy, (4.25)

x + z
KD2−−−⇀↽−−− xz, (4.26)

xz + y
KD1/α−−−−−⇀↽−−−−− xyz, (4.27)

xy + z
KD2/α−−−−−⇀↽−−−−− xyz, (4.28)

x0 = x + xy + xz + xyz, (4.29)

y0 = y + xy + xyz, (4.30)

z0 = z + xz + xyz. (4.31)
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Note that the binding of y to x is always indicated by KD1 as seen in (4.25)
and (4.27), but in the case when z is already bound to x, the KD1 is adjusted
by α as shown in (4.27). Here the equations are solved numerically and α is
estimated by a least squares fit. The interpretation of α can describe three
different scenarios depending on its value: 1) α < 1, the KD increases, i.e.
negative cooperativity, 2) α = 1 the KD is unchanged, i.e. no cooperativity but
independent binding, 3) α > 1, the KD decreases, i.e. positive cooperativity.
In this case the signal is modelled as xy + xyz and is normalized by the signal
at saturation.

4.5.8 Extension of the cooperative binding model

To explore whether the homodimerization of GL3 plays an important role in
the competition experiments with GL3, TTG1 and GL1 we extend the model
from (4.25) - (4.28) to include GL3 homodimerization. As a result of this
extension the model now consists of 46 reversible reactions, where the highest
order complex is a hexamer. We describe these reactions with a set of ordinary
differential equations (ODEs) which, in chemical reaction network theory is
commonly written as [117]

ċ = S~v(c,k) (4.32)

where S is the stoichiometric matrix and ~v(c,k) the vector of reaction rates,
which are of the form of mass action kinetics:

vj = kj
N∏
i=1

c
βij
i , j = 1, . . . ,R (4.33)

where N is the number of species, R is the number of reactions and βij is the
molecularity of the reactant species i in reaction j . In this model we have
N = 22 species and R = 92 reactions. Since we are dealing with a closed
system at equilibrium we solve for ċ = Sv(c,k) = 0 to find the solutions of
species concentrations at steady state. Cooperativity is only included when
GL1 and TTG1 bind to the same sub-unit of GL3, for all other binding events
we assume independent binding and use the KD estimates from the non-
competitive data, including the GL3-GL3 binding rate. In the least squares
fit to the data we have one estimable parameter, namely α the cooperativity
parameter.

4.5.9 Parameter estimation and identifiability

In order to get an estimate for the KD the model output is fitted to the data
via a least-squares approach [178]. The agreement between data and model is
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described by the weighted sum of squared residuals

χ2(θ) =
n∑
i=1

(yi − f (xi ,θ))2

σi
(4.34)

where yi indicates the ith data point, f (xi ,θ) the point as predicted by the
model with parameters θ and σi is the corresponding measurement error. The
most optimal parameters θ̂ can then be estimated numerically by

θ̂ = argmin
[
χ2(θ)

]
. (4.35)

Confidence intervals for θ̂ can be derived by assuming a threshold in χ2(θ),
defined by the region [178]

{θ|χ2(θ)−χ2(θ̂) < ∆α} with ∆α = χ2(α,df ) (4.36)

the threshold ∆α is the α quantile of the χ2-distribution and with df the de-
grees of freedom, in this case df = 1, represents the confidence interval with
confidence level α. This leads to a confidence interval for parameter θi with
lower bound σ−i and upper bound σ+

i . θi is identifiable if the interval [σ
−
i ,σ

+
i ]

of its estimate θ̂i is finite [178].

4.5.10 Multimers in the context of pattern formation: A mathematical
analysis

We analyse the activator-inhibitormodel as the typical reaction-diffusion scheme
[3, 17, 123]

∂tu = f (u,v) +∇2 = a− bu + u
n

v
+∇2u (4.37)

∂tv = g(u,v) + d∇2 = un − v + d∇2v (4.38)

where a, b, n and d are constants. This is a dimensionless version of the acti-
vator (u) - inhibitor (v) system. In the classical version of this system n = 2,
but here we vary n to simulate higher-order complexes in the activator u. To
determine what the effect is of increasingly higher order complexes on the pat-
tern formation capabilities of the model, we derive the necessary conditions
imposed on the model parameters by linear stability analysis [3, 123]. Instead
of using any of the existing trichome models [35, 38, 40, 183, 184], we use
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this simpler version as this allows an analytic approach in determining the
conditions for the generation of spatial patterns. These conditions are[123]

fu + gv < 0, fugv − fvgu > 0

dfu + gv > 0, (dfu + gv)
2 − 4d(fugv − fvgu) > 0 (4.39)

(4.40)

where fu , fv , gu and gv are the partial derivatives of the reaction kinetics f (u,v)
and g(u,v), evaluated at the uniform steady state. In the case of the activator-
inhibitor system, this uniform steady state is

u0 =
a
b
, v0 =

(a
b

)n
. (4.41)

And at steady state the partial derivatives are

fu =
b(n− a)
a

(4.42)

fv =
−1(
a
b

)n (4.43)

gu = n
(a
b

)n−1
(4.44)

gv = −1 (4.45)

Taken together, this leads to the following conditions:

fu + gv < 0 ⇒ b(n− a)
a

< 1, (4.46)

fugv − fvgu > 0 ⇒ b > 0, (4.47)

dfu + gv > 0 ⇒ db(n− a)
a

> 1 (4.48)

(dfu + gv)
2 − 4d(fugv − fvgu) > 0

⇒
(
db(n− a)

a
− 1

)2
> 4db (4.49)

Upon fixing d = 10 and varying a and b across a wide range of values, the
shape of the Turing space (the region in parameter-space where spatial pat-
terns are generated) can be visualized as in Figure 4.5D, which is obtained by
combining all the sub-conditions (Figures 4.5A to 4.5C) into one region. Note
that the second condition, b > 0, will always be satisfied (a negative degrada-
tion rate b of the activator is not biologically relevant).
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4.6 Supplementary information

4.6.1 Supplementary figure 1

D E F

A B C

Figure 4.6: Western blot analysis of proteins expressed in HEK cells.
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4.6.2 Supplementary table 1

Table 4.1: LUMIER experiment of GL1 homodimerization

ProtA_GL1 Renilla_GL1 Input (mean) Pull down Interaction

50 uL 50 uL 1396 268 -
50 uL 100 uL 2107 403 slightly
50 uL 200 uL 4022 695 +

4.6.3 Supplementary table 2

Table 4.2: Root mean square error (RMSE) of different models and datasets.

Model Dataset RMSE

Cooperativity, trimer TTG1-GL3 measured, GL1 fixed 0.0588
Cooperativity, hexamer TTG1-GL3 measured, GL1 fixed 0.0476
Competition with inhibitor GL1-GL3 measured, TRY fixed 0.1025
Competition with inhibitor GL1-GL3 measured, CPC fixed 0.0761
Competition with inhibitor,
GL1-Inhibitor binding

GL1-GL3 measured, TRY fixed 0.0584

Competition with inhibitor,
GL1-Inhibitor binding

GL1-GL3 measured, CPC fixed 0.0545
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Chapter 5

Unravelling the genotype-phenotype relationship
in a trichome double mutant through
mathematical modelling

Anna Deneer, Jessica Pietsch, Christian Fleck and Martin Hülskamp

5.1 Abstract

The hairs on top of the leaves of Arabidopsis Thaliana form a pattern that
is self-regulated. This system presents a unique opportunity in that it has
proven to be easily genetically manipulable, leading to a diverse set of geno-
types and corresponding phenotypes. Genetic analysis has revealed a com-
plex and interconnected network which is impossible to explain intuitively,
therefore, mathematical models are essential in elucidating this complexity.
Both this level of complexity as well as the principles underlying the pattern
formation are characteristic for many biological systems, making this an ex-
cellent model system. In this study, we focus on three unexplained genotype-
phenotype connections and use a modelling approach to analyse the underly-
ingmechanisms and how they are linked. In particular, we study knockouts of
the inhibitors TRIPTYCHON and CAPRICE and show how the double knock-
out is not simply a combination of the single mutants as previously assumed,
but rather the result of unexpected mechanisms that do not directly involve
the inhibitors themselves.

5.2 Introduction

The pattern of hair cells of the leaf epidermis in Arabidopsis is regulated by
an underlying mechanism that is capable of forming the pattern de novo [8,
35, 81], i.e. without any pre-existing information like cell lineage or signals
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from underlying cell layers [10]. This mechanism robustly produces a pat-
tern of hairs on leaves that maintains a consistent spacing between any pair
of hair-cells, interspersed on average by the same amount of non-hair cells,
with a certain degree of irregularity [32, 33]. The type of patterns formed
by these so-called trichomes are reminiscent of the well-known Turing spot-
patterns [3, 4]. In fact, the involved patterning genes have been found to
fall within the typical roles of ‘activator’, ‘inhibitor’ and ‘substrate’ as rep-
resented in extensions of Turing’s two component model, called the activator-
inhibitor and substrate-depletion model [5, 17]. The number of genes in-
volved in trichome patterning is extensive [34, 37] and a model capturing
the entire complexity would be unhelpfully intractable. Therefore, all exist-
ing models of trichome patterning contain elements of activator-inhibitor and
substrate-depletion principles [38–41, 183], composing a minimal set of com-
ponents (Figure 5.1) such that certain genotypes and resulting phenotypes can
be analysed through mathematical modelling.

What has been leading the development of these models is the study of
mutant backgrounds in Arabidopsis, where the model is challenged to repro-
duce phenotypical, molecular and biochemical observations. In the case of
trichomes, there is a wide variety of mutants available [34, 50, 136, 139], many
with observable patterning defects that reveal specific aspects of the underly-
ing machinery, thus giving insight into principles of development and how a
network based on Turing’s model might operate in a natural system.

Among the numerous genes found to be involved in trichome pattern-
ing, a core set has been identified (Figure 5.1), consisting of the positive reg-
ulators: TRANSPARANT TESTA GLABRA1 (TTG1) encoding for a WD40-
protein [47–49], the partially redundant genes GLABRA1 (GL1) and MYB23
encoding for R2R3 MYB-type transcription factors [45] and GLABRA3 (GL3)
encoding for a bHLH protein [34, 44, 46], redundantly with ENHANCER OF
GLABRA3 (EGL3) [134–136]. These positive regulators fall under the cate-
gory ‘activators’ in the context of the aforementioned patterning models [38],
where TTG1 shows features that fall under ‘substrate’ [40, 141]. These acti-
vators interact with each other to form active complexes (ACs) that regulate
other parts of the network [64]. The negative regulators, or ‘inhibitors’ in the
models, consist of R3 MYB transcription factors, encoded by the genes TRIP-
TYCHON (TRY), CAPRICE (CPC) [34, 50–52], ENHANCER OF TRY AND
CPC 1, 2 and 3 (ETC1, ETC2, ETC3) and TRICHOMELESS1 and 2 (TCL1,
TCL2) [50, 53–59]. All of these genes together are considered to be the core
network of trichome patterning and previously published models all involve

114



5

Figure 5.1: Schematic representation of the trichome model. Left: Network of the
core components in trichome patterning and their interactions. Right: Network re-
duced to components involved in inhibitor mutant phenotypes.

different subsets of these genes [38–41, 183].

In this study, we focussed on mutations involving two inhibitors of tri-
chome patterning: TRY and CPC [34, 50]. The phenotypes of the single knock-
out mutants of TRY and CPC each have different characteristics, where the try
mutant shows a lower overall density and formation of small clusters, the cpc
phenotype has a strongly increased density [50] (Figure 5.2). The double mu-
tant trycpc at first glance appears a combination of those effects: a multitude
of large clusters [50]. These observations suggest a difference in inhibitor be-
haviour, namely that TRY is hypothesised to inhibit trichome formation on a
short spatial scale, whereas CPC is assumed to operate on long distance ranges
[50, 59]. Yet, these simple assumptions alone are not enough to reproduce the
observations of all three mutant phenotypes using any of the existing mod-
els. The phenotypes seen for the single mutants are not simply additive as
assumed, so instead of some linear combination of effects, the underlying sys-
tem shows a complexity that is not immediately and intuitively obvious. To

115



CPC
AC

TRYCol

try

cpc

AC
CPC

AC
TRY

trycpc

Figure 5.2: Wild-type (Col), inhibitor mutant phenotypes and postulated mecha-
nisms. Left: Phenotype. Middle: Trichome coordinates and their neighbouring con-
nections determined through Delaunay Triangulation. Right: Postulated protein pro-
files of active complex (AC), TRIPTYCHON (TRY) and CAPRICE (CPC), under the
assumption that TRY acts as a local inhibitor and CPC as a long-range inhibitor. This
leads to broad peaks in CPC (blue profile) and sharper, more localized peaks for TRY
(purple profile). As a result, in the mutants try and cpc, the absence of TRY leads to
broader peaks of AC and thus clusters at a larger distance; and the absence of CPC
leads to sharp but more frequent peaks of AC, and thus a higher density of trichomes.

gain a mechanistic understanding of these phenotypes, a mathematical model
developed and supported by experimental evidence is essential.
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To determine what elements are still missing from the explanation behind
the inhibitor mutant phenotypes and to learn more about what causes these
kind of phenotypes, we extend upon a previously published model [183]. We
show that it is not only the difference in mobility rates of inhibitors, but rather
a combination of effects that involve all other components in the patterning
network. Specifically, the model predicts three requirements. First, the role
of cell differentiation and its temporal effect is crucial in cluster formation
seen in the doublemutant phenotype. Second, unlike assumptions underlying
previous models, we assume mobility of activators, shown to be necessary to
reproduce mutant patterns in the mathematical model and experimentally
shown to be occurring for the positive regulators GL1 and TTG1. Finally, there
is a dependency on the redundancy of the inhibitors through the robustness
and versatility it infers on the system.

5.3 Results

5.3.1 Reproducing inhibitor mutants requires a temporal perturbation,
activator mobility and inhibitor redundancy

In developing the model, we started from a previously published version that
was established with the aim of reproducingmultiple aspects of amutant phe-
notype in one of its components, namely TTG1 [183]. As this model already
contained the inhibitors TRY and CPC, we initially tested whether it could
readily reproduce the try, cpc and trycpc phenotypes. Towards this end, we
quantified aspects of the patterns and focussed on reproducing two of those
quantities: trichome densities in the mutants relative to wild-type and the
observed cluster densities [50]. After a parameter search covering over two
million random parameter sets, we could not find a single set that was able
to reproduce all three mutant phenotypes. While this does not constitute an
exhaustive search of the 25-dimensional parameter space (which would be
computational infeasible), it is indicative of a lack of robustness in meeting
the particular criteria the model was subjected to, making it an implausible
representation of the biological mechanism underlying these mutants. Some
of these parameter sets could match certain individual phenotypes (e.g. the
increased trichome density in cpc), however, we noticed a consistent failure in
matching the double mutant, specifically the strong clustering behaviour in
combination with a density similar to wild-type.

This prompted us to reconsider the model and investigate which elements
were currently lacking. The initial results suggested that a mere lack of TRY
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Time step 1 Time step 2 Time step 3

New trichome

Mature trichome

Figure 5.3: Quasi steady state simulation of trycpc. From left to right, every grid
shows an intermediate steady state, where the green hexagons are high in active com-
plex (AC) at that moment in time and thus differentiate towards trichome cell-fate,
meaning that protein production is down-regulated in those selected cells. In the next
time step, the orange hexagons indicate cells that have differentiated in the preceding
steady state, which was used as initial conditions to reach the next quasi steady state,
leading to a new set of differentiating cells and to clusters of increasing size at each
quasi steady state.

and CPC in the system was insufficient to produce the nests of trichomes seen
in the double mutant, we therefore aimed to define the mechanism behind the
emergence of these large clusters more precisely and considered the impor-
tance of temporal differences between the trichomes within individual clus-
ters. As reported in earlier findings [50], the clusters in trycpc show a certain
developmental procedure where the initial location is determined by a single
trichome, followed by a ring-like expansion of younger trichomes around the
initiation site. This clear distinction in the timing of emergence led us to in-
troduce such a temporal mechanism into the model (Figure 5.3).

In our simulations, we assume a time-scale separation between pattern
formation and cell differentiation, given that processes underlying pattern
formation like protein binding occur on much faster time scales than e.g.,
cell division. In this framework, we decided to introduce a mechanism that
simulates the effects of cell differentiation through quasi steady state assump-
tions. This means that there are multiple quasi steady states within a single
simulation (Figure 5.3), where the model is repeatedly run until steady state
is reached, followed by cell differentiation of trichome cells. Cell differenti-
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ation may lead to a perturbation in the network in one of two ways: one is
that due to endoreduplication [185] the production of both activators and in-
hibitors is increased; another is that upon differentiation the patterning genes
are downregulated [186] as they are no longer required. According to the
model, the increased production would never lead to cluster formation in the
ring-like structure as seen in the double mutant, as this only sharpens the
peaks formed in the initial time steps. Only when we simulate the down-
regulation by strongly reducing or setting the relevant parameters to 0, do
we find the ring-like structure as seen in the double mutant. As there is no
experimental evidence available to verify which of the two scenarios are op-
erating in the trichome system in vivo, we rely on the simulation results and
assume downregulation upon differentiation in all of the performed simula-
tions. More generally, a mechanism involving histone modification upon cell
differentiation has been shown to reduce gene expression in plants [186, 187],
which would be in agreement with the perturbation as we simulate it, yet this
is a mechanism which is not specific to trichome cells in the way that it is
treated in the model.

On top of this timing effect, we found that mobility of activators was an-
other requirement for cluster formation of the type seen in the double mutant.
The round shape of the clusters seen in trycpcmutants is indicative of the role
of diffusion, which prompted us to consider this aspect in the model. Note
that previous iterations of trichome patterning models were able to form clus-
ters without this assumption of mobility, yet these were never of the size and
shape as seen in the trycpc phenotype. Mobility of TTG1 has been shown pre-
viously and was also included in previous models, but here we additionally
introduce the mobility of GL1 and GL3, limited to the free proteins and not
to the complexes that are formed between the activators, assuming that these
complexes would fall outside the size exclusion limit of the plasmodesmata
[188] and are mostly present in the cell nucleus [60].

Finally, the model is necessarily extended with the inclusion of a third in-
hibitor. This third inhibitor represents the redundancy in the inhibitors ETC1,
ETC2 and ETC3 (indicated only by ETC for the sake of brevity) [54, 56, 57, 59].
Note that this does not include the inhibitors TCL1 and TCL2 as these are
not regulated by the complexes consisting of either GL1 or TTG1 bound to
GL3 [53], unlike the other inhibitors in the system [52, 64]. In the model
this overarching ETC fulfils the role of sole inhibitor in the trycpc background
and as such plays a crucial role in the phenotype. For example, the diffu-
sion rate of ETC has a strong effect on the number of clusters formed and
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their size. Furthermore, the introduction of ETC and its regulation by the ac-
tive complexes in itself constitutes an activator-inhibitor type of sub-network,
capable of forming trichome-like patterns independently [38]. Without this
sub-motif, the patterns formed in the double mutant simulation would be
solely dependent on the activator-substrate type of patterns formed by the in-
teractions between TTG1 and GL3 [40, 183], which would not be sufficient to
reproduce the mutant phenotype, showing that the combination of these two
motifs and thus the introduction of a third inhibitor are essential.

The resulting model consists of 32 parameters and in order to constrain
this space beyond parameter sets that fulfil the phenotype-criteria, we make
use of qPCR data on different mutant backgrounds and attempt to reproduce
this with the model. This set of qPCR experiments does not only consist of
the inhibitor mutants, but also activator-knockouts, and therefore serves as a
more general criterium for the model to fulfil. Considering that the model is
on the protein-level and the qPCR data on the mRNA-level, we search only
for a qualitative agreement, where we classify the expression levels measured
by qPCR as either down-regulated, unchanged or up-regulated with respect
to wild-type levels. With the aim of keeping the model as simple as possi-
ble, we do not extend it by including mRNA-level processes. The parameter
sets that result in matching phenotypes as well as matching the qPCR data
(Figure 5.4) are considered to be the most accurate representations of the tri-
chome network and are analysed for their mechanistic behaviour in further
detail below.

5.3.2 The inhibitors filter pattern frequencies

Having identified a network and parameter sets capable of reproducing as-
pects of the try, cpc and trycpc phenotypes, we study the behaviour of this
network in closer detail. Specifically, we explore the observed opposing dif-
ferences in trichome densities between the single mutants.

We investigated the finding that try has a lower density than cpc and turn
towards a one-dimensional model of patterning in order to gain an under-
standing from a mathematical perspective. We determine the dispersion re-
lation of the 1D-system for wild-type and compare this to try and cpc as a
means to predict the number of trichomes that will be formed on the sim-
ulated grid (Figure 5.5A). From this we find that the loss of TRY shifts the
number of unstable modes in the opposite direction of cpc, such that try con-
sists of more unstable modes than cpc. This suggests that CPC functions as
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Figure 5.4: Qualitative fit of model to qPCR data for various mutant backgrounds.

a filter for high-densities where in its presence, the only allowable modes are
relatively high-frequency modes, thus leading to a high density pattern. As
a result of lacking this filtering, the try background shows a wider range of
unstable wavenumbers. This leads to a superposition of these unstable modes
after which a lower density pattern is formed. The effect of this superposi-
tion is visible in the change in the number of peaks found in the final pattern
(Figure 5.5B), thus providing an explanation for the lower trichome density
found in the mutant. In cpc we see the opposite effect: only relatively high-
frequency modes are unstable, forming a high-frequency pattern, i.e. high
trichome density (Figure 5.5C).

5.3.3 Stochasticity is required for realistic cluster size distribution

We aim for a more realistic representation of the clusters in trycpc and note
that there is a discrepancy between the clusters in terms of sizes and distri-
bution thereof. In our model, there is no stochasticity involved in the forma-
tion of clusters, thus forming ring-like structures consistent in a size that is
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Figure 5.5: Single mutant inhibitors and dispersion relation. A: Dispersion relation
for a 1-dimensional patterning system and for the different mutant backgrounds. B:
Simulation of try mutant. C: Simulation of cpc mutant.

determined by the number of quasi steady states that are simulated. To cap-
ture a degree of stochasticity as is seen in reality, we introduce a probability
of differentiation that is based on the concentration of activator complexes
inside the cell, as these complexes are considered to bind to promoters of
downstream targets that initiate trichome fate [61, 62, 64, 172]. While this
detail of probabilistic differentiation introduces the challenge of additional
unknown parameters, we aim to fine-tune these to match experimental ob-
servations. The probability parameters and the number of quasi steady states
simulated is chosen such that the cluster sizes reflect those seen in plants [50]
(Figure 5.6B). Furthermore, we qualitatively verify that the relative difference
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A B

Figure 5.6: Stochastic cell differentiation and cluster size distribution. A: Time re-
quired to reach steady state for each of the simulated steady states, showing that the
first trichomes take the longest time to initiate, followed by shorter times for the tri-
chomes that form the next layers of the cluster. B: Simulation of trycpc mutant with
stochastic cell differentiation, where differentiation occurs with a probability that de-
pends on the concentration of active complex, as given in (5.18). The pattern shown
here follows from the seven quasi steady states shown in A.

in duration before each steady state is reached (Figure 5.6A) reflects the age
difference seen in trichomes of developing leaves, where the first trichome is
the oldest and the slowest to initiate, followed by trichomes around it appear-
ing in shorter time spans [50].

5.4 Discussion

The cpcmutant shows many trichomes and the trymutant shows clusters; the
double mutant trycpc shows many clusters [50]. Although the trycpc pheno-
type at first glance appears a combination of the try and cpc single mutant
phenotypes, upon closer inspection this turns out to be a misleadingly sim-
ple assumption. The actual underlying mechanism shows a complexity that is
typical for biological systems and intuitively hard to grasp. To aid the explo-
ration of these non-linear mechanisms, we developed a mathematical model
based on previous explorations and extended by new observations. The result-
ing model includes new components and mechanisms which, taken together,
give a possible explanation behind the observed phenotypes that were previ-
ously not fully understood.
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5.4.1 Single mutant phenotypes are non-additive

The explanation behind both single mutant phenotypes relies on their as-
sumed differences in range of effect, where TRY is assumed to be locally in-
hibiting trichome fate and CPC on a longer scale [50, 59]. We find support for
these assumptions both in studying the dispersion relation and in the param-
eter sets that follow from matching the model with the phenotype and qPCR
criteria. However, we know from simulations with a smaller model includ-
ing only TTG1, GL3, GL1, TRY and CPC that this difference in behaviour is
not sufficient to reproduce the double mutant phenotype. We resolved this by
introducing a temporal perturbation that mimicked a presumed effect of cell
differentiation [186] as well as introducing a third inhibitor [54]. This shows
that there is a level of complexity behind the double mutation that goes be-
yond a mere lack of two inhibitors and that extends to the interconnectivity
of parts of the network, both in the form of a mechanism (cell differentiation
and activator mobility) as well as additional components (redundancy in the
inhibitors). This goes to show that a network such as the one identified for
trichomes does not follow linear logic the way it is intuitively often expected,
but exhibits a complexity that is much more convoluted. This level of com-
plexity is typical for biological systems but not often so readily accessible as
in the case of trichomes. As these phenotypes show similarities to other muta-
tions in plants (e.g. the too many mouths mutant of stomata [189]), the results
found here could lead to promising avenues of investigation for these kind of
patterning defects.

5.4.2 The model predicts a strong dependency on down-regulation of
genes upon cell differentiation

The simulation of cell differentiation was a crucial component in capturing
the double mutant phenotype. The idea to include it followed from the ob-
servation of differences in age of the trichomes within a cluster [50]. When
modelling this effect, we considered two opposite scenarios: up-regulation of
patterning genes as a result of endoreduplication [185] or down-regulation of
genes that are no longer needed after differentiation and after down-stream
targets have been activated [186, 187]. From our simulations we found that
only the latter scenario resulted in the ring-like structure of the clusters in
combination with the observed difference in initiation time. Note that this ad-
dition was not needed to reproduce the single mutant observations and that,
in addition, the mobility of activators was required for the most realistic clus-
ter shape. The postulated mechanism behind this down-regulation upon cell
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differentiation is that this lowers the production of activators and inhibitors
in the trichome peak which in non-differentiated cells shows the highest con-
centration levels for both the activators and inhibitors. Typically, the levels in
the epidermal cells are drastically lower, both in the model and experimen-
tal data. After the perturbation, this peak in the prospective-trichome cell
is no longer being maintained and so the activators and inhibitors spread to
the neighbouring cells, where in the case of the double mutant the level of
activators exceeds that of the inhibitor, thus forming a ring-like cluster. In
the opposite scenario of endoreduplication, the increased activation of genes
would lead to a higher peak, increasing both the amount of activator and
inhibitor such that it only sharpens the initial pattern. For this reason, the
down-regulation upon differentiation is predicted to be the prevailing mech-
anism.

5.4.3 Uncertainty in the model

There are some aspects that are not considered in the model but that could
play a role or provide an alternative explanation for the patterns, e.g. cell di-
vision [185] or intracellular transport [60]. The mechanisms and components
that are part of the final model were chosen with the purpose of arriving at
a hypothesis that could explain certain aspects of the phenotypes using the
least amount and only the simplest of assumptions, most of which followed
from biological evidence. As a result of the chosen simplifications, we ar-
rive at a hypothesis about what is at the basis of the patterning mechanism,
but cannot claim that it is the full picture . These simplifications were also
necessary in order to deal with the large amount of uncertainty surrounding
the model. As mentioned earlier, the model consists of 32 parameters, all of
which are unknown. We have data from literature to fix certain relative dif-
ferences between parameters and we fine-tune the parameters involving cell
differentiation based on observations, but this still leaves a large amount of
uncertainty. We have used a global sampling strategy in order to identify rel-
evant parameter sets and developed the model in incremental steps until the
parameter search yielded sets that matched all criteria, ultimately leading to
the model presented here.
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5.5 Methods

5.5.1 Deriving the mathematical model

The model proposed here is is adapted from a previously published trichome
patterning model [183] and extended by the inclusion of ETC1, 2 and 3 into a
single term, denoted by ETC [54]. Additionally, we included saturating terms
in the feedback loops involving the activating complex between TTG1 and
GL3 (AC1) and between GL1 and GL3 (AC2). To reduce the number of pa-
rameters and to arrive at a dimensionless system, we rescale the original sys-
tem of equations by the binding constant between TTG1 and GL3 (β) and the
degradation rate of AC1 (λ), i.e. all concentrations were rescaled by the factor
β/λ and time is rescaled to τ = tλ. This results in the following system of
coupled ordinary differential equations:

∂t[TTG1]j =θ1 − [TTG1]j (θ2 + [GL3]j ) +θ2θ3L̂[TTG1]j (5.1)

∂t[GL1]j =θ4 +
θ5[AC2]j

1+ [AC2]j /θ6
− [GL1]j (θ7 +θ8[GL3]j ) +θ7θ9L̂[GL1]j (5.2)

∂t[GL3]j =θ10 +
θ11[AC1]

2
j

1+ [AC1]2j /θ12
+

θ13[AC2]
2
j

1+ [AC2]2j /θ12

− [GL3]j (θ14 + [TTG1]j +θ8[GL1]j +θ15[TRY ]j (5.3)

+θ16[CPC]j +θ17[ETC]j ) +θ14θ18L̂[GL3]j (5.4)

∂t[TRY ]j =
θ19[AC1]

2
j

1+ [AC1]2j /θ20
+
θ19/δ1[AC2]

2
j

1+ [AC2]2j /θ20

− [TRY ]j (θ21 +θ15[GL3]j ) +θ21θ22L̂[TRY ]j (5.5)

∂t[CPC]j =
θ23/δ2[AC1]

2
j

1+ [AC1]2j /θ24
+

θ23[AC2]
2
j

1+ [AC2]2j /θ24

− [CPC]j (θ25 +θ16[GL3]j ) +θ25θ26L̂[CPC]j (5.6)

∂t[ETC]j =
θ27[AC1]

2
j

1+ [AC1]2j /θ28
+

θ29[AC2]
2
j

1+ [AC2]2j /θ28

− [ETC]j (θ30 −θ17[GL3]j ) +θ30θ31L̂[ETC]j (5.7)

∂t[AC1]j =[GL3]j [TTG1]j − [AC1]j (5.8)
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∂t[AC2]j =θ8[GL3]j [GL1]j −θ32[AC2]j (5.9)

Note that the saturation parameters θ12,θ20,θ24 and θ28 reoccur within
the same species for terms invovling activation by AC1 and AC2, which can be
interpreted as a limited number of binding sites of the respective promoter.
Furthermore, for TRY and CPC we assumed differential regulation by AC1
and AC2, where the activation of TRY by AC2 is reduced by a factor δ1 and
the activation of CPC by AC1 is reduced by a factor δ2. The values for these
reductions are taken from literature [64], where GUS promoter activation as-
says have shown a difference in activation of TRY and CPC for the different
combinations of TTG1, GL1 and GL3. According to these assays, δ1 = 2.5 and
δ2 = 7.2, which were thus fixed in the model.

The patterning model is simulated on a hexagonal grid and coupling be-
tween cells is described by

L̂[χ]x,y =[χ]y−1,x + [χ]y+1,x + [χ]y,x−1 + [χ]y,x+1 (5.10)

+ [χ]y+1,x−1 + [χ]y−1,x+1 − 6[χ]y,x

where χ is the molecular species under consideration and (x,y) the coordi-
nates of the cell indicated by the index j in (5.1) - (5.9).

5.5.2 Simulating cell differentiation

Upon closer inspection of the clusters found in the trycpc mutant, there ap-
peared to be a time-separation in the initiation of trichomes. Specifically, a
more mature trichome was found in the middle of the cluster and was sur-
rounded by younger, smaller trichomes. To include a similar form of time-
separation between the trichomes formed in the model simulations, we ran
the model to multiple steady states within a single simulation, where each
intermediate steady state was perturbed by local parameter changes. These
quasi steady states would simulate the different differentiation stages seen on
the leaf. The perturbations meant to simulate cell differentiation are applied
only to cells that are designated as trichomes, which were identified based on
a threshold-mechanism where a certain amount of AC1 and AC2 is expected
to lead to a change in cell fate. In our initial surveys, this threshold was taken
to be the half-maximum of the sum of AC1 and AC2 found at steady state, i.e.
the set of cells with index j that are designated as trichomes is given by

T =
{
j ∈ J

∣∣∣∣ ACj ≥ 1
2
ACmax

}
. (5.11)
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where J is the set of all cells on the grid. Later, we refined this to a proba-
bilistic threshold, described in more detail in section 5.5.4.

The perturbations are of a localized nature, meaning that only cells j ∈ T
undergo changes to the parameters while all j < T remain unchanged. We
consider two contrasting cases with regards to these parameter changes: 1)
due to endoreduplication the production and activation parameters are in-
creased in trichome cells and 2) after acquiring the cell fate, the pattern-
ing proteins are no longer required and production and activation terms are
turned off in trichome cells. The parameters which are changed in both these
cases are θ1, θ4, θ5, θ10, θ11, θ13, θ19, θ23, θ27 and θ29. Note that param-
eters like protein binding, transport and degradation remain unchanged. In
scenario 1 these parameters are increased 4-fold to reflect a 4-fold increase in
DNA-content; and in scenario 2 the aforementioned parameters are set to 0.
After this perturbation, the system is shifted away from the steady state and
so we rerun the simulation until the next steady state is reached. The number
of times this is repeated will influence the size of the clusters found in the
double mutant.

5.5.3 Parameter search

The model described in (5.1) - (5.9) consists of 32 parameters, all of which
are unknown. To deal with this large amount of uncertainty, we employ a
global parameter search involving a non-linear constrained optimization rou-
tine. This search has to satisfy multiple objectives and constraints, where the
objectives are formulated in a way that represents the try, cpc, trycpc mutant
phenotypes in terms of relative trichome density and clustering, as well as
matching the up- and down-regulation pattern of the qPCR data. The con-
traints are defined to ensure that a parameter set stays within the viable pat-
terning space by making use of linear stability anaylsis. Towards this end, we
make use of a genetic algorithm (GA) that uses a controlled, elitist algorithm,
which means that it generally favours individuals with a higher fitness value
while at the same time allowing for lower fitness scores if these individuals
help increase the diversity of the population [190].

The optimization problem considered here is a multi-objective problem,
which in its general form is formulated as

min
θ

(f1(θ), f2(θ), . . . , fk(θ)) (5.12)
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where the fi are the individual objective functions, k ≥ 2 the number of ob-
jectives and θ the parameter vector. The optimization problem for the in-
hibitor mutants considered here consists of four objectives. First, weminimize
the distance between the qPCR expression levels and the model predictions
through a sum-of-squares cost function

f1(θ) =
M∑
j=1

N∑
i=1

(ȳji (θ)− y
j
i )
2

y
j
i

2 (5.13)

where ȳji (θ) is the expression level predicted by the model of the i-th gene out

ofN total genes for the j-th mutant out ofM total mutants, and yji is the corre-
sponding datapoint. For details on how the qPCR data is used in combination
with the model we refer to section 5.5.5.

The second objective is aimed at capturing the appropriate trichome den-
sities (relative to wild-type) for each of the three mutants:

f2(θ) =
3∑
i=1

(ρ̄i (θ)− ρi )2 (5.14)

where ρ̄i (θ) is the trichome density predicted by the model for the i-th in-
hibitor mutant and ρi is the experimentally observed trichome density for the
try, cpc and trycpc phenotypes. Note that for the trycpc phenotype trichome
density is counted as the number of clusters, as individual trichome numbers
are indiscernible in the mutant leaves due to being too tightly packed.

In the third objective we aim to optimize the cluster densities in wild-type
and mutants to the experimentally observed densities by

f3(θ) =
4∑
i=1

(ν̄i (θ)− νi )2 (5.15)

where ν̄i (θ) is the cluster density predicted by the model for the i-th genotype
and νi is the experimentally observed cluster density for wildtype, try, cpc and
trycpc.

Finally, the fourth objective describes the clustering behaviour of the trycpc
phenotype given deterministic cluster formation:

f4(θ) = 1− r(θ). (5.16)
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In this objective, 0 ≤ r ≤ 1 is a measure of cluster packing, where r = 1 means
that all cells surrounding a trichome are differentiated into trichomes upon
the next steady state and r = 0 means none of the neighbouring cells differen-
tiate upon the next steady state.

Taken together, these four objectives guide the GA to approximate the
Pareto front [190]. Furthermore, the optimization is subjected the non-linear
constraint

c(θ) = Re(λmax) (5.17)

where λmax is the largest eigenvalue of the Jacobian. By determining whether
the real part of the largest eigenvalue is positive (i.e. c(θ) ≥ 0), we learn that
the parameter set θ can form a pattern [123], which constrains the allowable
range of parameters. Note that this range is also constrained by the choice of
bounds on the parameters θ. In this case, we set the interval for the each of
the parameters in θ to [0.01, 100], to allow a range of multiple orders of mag-
nitude.

The GA requires an initial population to start the search from. We gen-
erated this initial population through a quasi Monte Carlo approach where
we generated 10 million random parameter sets using a Sobol sequence [90]
and quantified the mutant patterns for each of these sets. The top 200 sets
that performed best on all four of the objectives described above were used as
initial population for the GA.

5.5.4 Probabilistic cell differentiation

Identifying trichomes by a thresholdmechanism as described in (5.11) is some-
what arbitrary in the choice of threshold level and is unlikely to occur in such
a deterministic fashion in real cells. While this is a useful simplification for
the parameter search described above, for simulations aimed to more accu-
rately reproduce the trycpc phenotype we decided to introduce a probability
of differentiation that is dependent on the amount of active complex in the
cells, which is assumed to drive the expression of down-stream targets re-
sponsible for deciding cell fate.

The probability of differentiation of cell j is given by

pj (xj ) =
1
2

(
1+ erf

xj −µ√
2σ

)
(5.18)
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where xj is the sum of AC1 and AC2 in cell j , and σ and µ determine the
width and centring of the error function [191]. The parameters σ and µ
are open parameters in this problem and are chosen to be µ = 1

2ACmax and

σ =
√

1
N

∑N
j=1(xj −µAC)2 where N is the number of cells on the grid and µAC is

the mean of the sum of AC1 and AC2 across the grid, i.e. σ is the standard de-
viation of the sum of AC. Note that µ and σ are determined by the parameter
set that reflects wildtype and is kept constant for simulations of the mutant
phenotypes, i.e. the first steady state in the wildtype scenario determines the
parameters of (5.18) for all subsequent simulations including the mutants.
However, between varying parameter sets, µ and σ will differ, depending on
the amount of AC.

5.5.5 Fitting the model to qPCR data

For each of the species in the model, expression levels have been determined
in the respective mutant backgrounds. In Supplementary table 1, the expres-
sion levels of ttg1, cpc, try, gl1, gl3 and trycpc are given relative to wildtype
levels. As shown in Figure 5.4, we simplify these levels to one of three states:
down-regulated, up-regulated or unchanged. It is this pattern of three pos-
sible levels among 6 mutants that we try to match with the model, where
we assume that these discrete, relative differences on the mRNA level are re-
flected by the protein levels as they are described by the model.

Given that some of these mutant phenotypes are glabrous (no trichomes
are formed), we check that these conditions are also true for the parameter
sets considered. This means that parameter sets that simulate the knock-out
of GL3 (glabrous leaves) should not produce any patterns, i.e. through using
linear stability analysis we determine that these parameter sets fall outside of
the Turing space [123]. To still obtain a prediction on up- or down-regulation,
we simulate these glabrous mutants in a single-cell model and compare this
to the average across the grid of the wildtype simulation. For all other cases
where mutants do form a pattern, we average over 12 simulations on the grid
with randomized initial conditions.
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5.6 Supplementary Information

5.6.1 Supplmentary table 1

Table 5.1: qPCR data relative to wildtype for different mutant backgrounds.

GL1+MYB23 GL3+EGL3 TTG1 CPC TRY

ttg1-21 0.201 0.951 0.000 0.244 0.358
cpc-2 1.143 1.426 0.905 0.000 1.049
try 2.555 0.617 0.987 2.570 0.000
gl1 myb23 0.000 0.241 1.045 0.240 1.917
gl3-3 egl3 0.073 0.000 0.878 0.077 0.388
cpc-2 try 3.803 0.541 0.497 0.000 0.000
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Schneeberger, Christian Fleck, Andrea Schrader, Martin Hülskamp
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6.1 Abstract

The genetic and molecular analysis of trichome development in Arabidopsis
thaliana has generated a detailed knowledge about the underlying regulatory
genes and networks. However, how rapidly these mechanisms diverge during
evolution is unknown. To address this problem, we used an unbiased forward
genetic approach to identify most genes involved in trichome development
in the related crucifer species Arabis alpina. In general, we found most tri-
chome mutant classes known in A. thaliana. We identified orthologous genes
of the relevant A. thaliana genes by sequence similarity and synteny and se-
quenced candidate genes in the A. alpina mutants. While in most cases we
found a highly similar gene-phenotype relationship as known from Arabidop-
sis, there were also striking differences in the regulation of trichome pattern-
ing, differentiation and morphogenesis. Our analysis of trichome patterning
suggests that the formation of two classes of trichomes is regulated differen-
tially by the homeodomain transcription factor AaGL2. Moreover, we show
that overexpression of the GL3 bHLH transcription factor in A. alpina leads to
the opposite phenotype as described in A. thaliana. Mathematical modeling
indicates that this non-intuitive behavior can be explained by different ratios
of GL3 and GL1 in the two species.
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6.2 Significance statement

Typically, comparative developmental studies focus on the question whether
key genes and the underlying processes are conserved over large evolutionary
distances. How the underlying gene regulatory network of a whole devel-
opmental process evolves is virtually unknown. This requires a functional
comparison (e.g. by genetics) of homologous processes in species that are
closely related enough to find similarities and distant enough to see func-
tional changes. We approach this question by genetically and molecularly
comparing trichome development in Arabidopsis thaliana with that in Arabis
alpina. We show which steps are regulated similarly and which are different.
A closer analysis of trichome patterning revealed fascinating changes in the
gene regulatory network. In particular the finding that overexpression of one
key regulator leads to opposite phenotypes in the two species suggested fun-
damental changes.

6.3 Introduction

Evolutionary genetics has been widely used to study how molecular changes
of gene functions or regulatory networks lead to phenotypic differences [74,
80, 192]. To understand the source of molecular variation that ultimately
results in phenotypic changes, micro-evolutionary approaches [79] and com-
parative studies of closely related species have been used [74, 80]. These ap-
proaches enable an understanding of functional changes of genes in devel-
opmental processes. In this work we study the evolution of leaf trichome
development. Leaf trichome development is best studied in A. thaliana. The
characterization of individual mutants in closely related species suggests that
trichome development has a common basis in crucifer [72, 73]. Yet, within
the crucifer family, trichomes exhibit a wide range of trichome density and
morphology phenotypes that correlate well with the phylogenic tree [193].
It is therefore conceivable that the basic regulatory machinery for trichome
development is conserved in the crucifer family but exhibits significant varia-
tion. We therefore reasoned that functional comparison of trichome develop-
ment of A. thalianawith that of another evolutionarily distant crucifer species
should enable us to recognize functional differences or diversifications. To-
wards this end we chose A. alpina as a second genetic model for trichome
development. A. alpina is diverged about 26 to 40 million years from A. tha-
liana and is in a distinct clade in the Brassicaceae family [194–196]. These
species might therefore be distant enough to find differences in the regula-
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tion of trichome development, while being closely enough related to compare
orthologous gene functions. To approach this problem, we decided to first
perform a genetic screen aiming to identify gene functions based on mutant
phenotypes and then to compare the spectrum of phenotypes to that known
in A. thaliana. In A. thaliana, trichomes develop on young leaves in regu-
lar patterns and are separated by protodermal cells [34]. Incipient trichomes
proceed through several rounds of DNA replication in the absence of cell di-
visions (endoreduplication) and emerge from the leaf surface [34]. Typically
three or four branches are formed in a regular arrangement before the cell
expands to its final size [34]. Genetic screens and subsequent molecular anal-
yses have revealed most genes relevant for the initiation and development of
trichomes [133, 169, 197]. Based onmutant phenotypes, various developmen-
tal steps have been defined [34]. The first step is the selection of individual
epidermal cells among others to adopt a trichome cell fate, which involves
positive and negative regulators of trichome development. They are consid-
ered to generate a trichome pattern through intercellular interactions [35, 36].
The initiation of trichome differentiation is a separate step and requires the
GLABRA2 gene [63]. Various genes are important for the proper endoredu-
plication driven cell enlargement [197–200]. Trichome branching is governed
by several genes that regulate either the number or the position of branches
[201, 202]. Regular cell expansion is defined by a group of mutants that are
characterized by grossly distorted trichomes [203]. Finally, maturation of tri-
chomes as recognized by the formation of small papilla on their outer surface
is dependent on genes of the glassy group [34, 204].

Leaf trichome development in A. alpina is reminiscent to that inA. tha-
liana [73]. In contrast to A. thaliana, two types of trichomes are formed on
A. alpina leaves. One class of small trichomes is regularly distributed and a
second class of much larger trichomes is interspersed with regular distances
to each other [73]. Leaf trichome development is readily accessible to genetic
approaches [73] and the molecular analysis is facilitated by the availability of
a fully sequenced genome [196, 205] and becauseA. alpina can be transformed
by Agrobacterium mediated floral dip [206].

In this study, we systematically screened an EMS mutagenized popula-
tion of A. alpina plants for trichome mutants. We identified mutants affecting
most steps of trichome development, as previously reported for A. thaliana.
Orthologous genes in A. alpina were identified based on sequence similarity
and synteny and candidate genes were sequenced in A. alpinamutants. While
most gene-phenotype relations in A. alpina were the same as in A. thaliana,
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we found some notable differences in the regulation of trichome patterning,
differentiation and morphogenesis.

6.4 Results

6.4.1 Trichome development in A. alpina

Trichomes in A. alpina densely cover the surface of adult leaves during veg-
etative development (Figure 6.1A). They are initiated at the base of young
leaves and in more distal regions between already existing trichomes ([73],
Figure 6.1B-D). At the leaf base, incipient trichomes are typically formed 4-5
cells away from each other. Subsequently, trichomes are spatially separated
due to expansion and cell divisions of the intervening epidermal cells. In
more distal regions, new trichomes are formed between more advanced tri-
chome stages. These are typically formed in a similar distance as between
incipient trichomes at the leaf base (typically 4-5 cells).

Similar as inA. thaliana [34, 207], trichome development proceeds through
a series of characteristic stages (Figure 6.1E-I). Incipient trichomes begin to
expand and grow perpendicular to the leaf surface (Figure 6.1E,F). Subse-
quently, trichomes typically undergo three branching events (Figure 6.1G,H)
followed by extensive elongation growth. Duringmaturation, numerous papil-
lae are formed on the trichome surface. It is noteworthy, that the cells immedi-
ately next to a mature trichome are shaped like normal epidermal pavement
cells (Figure 6.1J). This suggests that in contrast to A. thaliana [208], these
cells do not differentiate into socket cells. Cell growth in A. thaliana occurs
concomitant with an increase in nuclear size and DNA content due to several
rounds of endoreduplication, leading to an average DNA content of 32C in
mature trichome cells [199, 209]. We used DAPI staining to study the nuclear
size in different stages of trichome development in A. alpina. Incipient un-
branched trichomes already show increased nuclear sizes (Figure 6.1E,F). A
further increase in nuclear size was observed during branch formation (Fig-
ure 6.1G,H). Similar as in A. thaliana [201, 210], the nucleus moves up to the
branch points at this stage. We determined the relative DNA content of nuclei
in mature trichomes by comparing the DAPI fluorescence in trichomes with
that in stomata. In A. thaliana, stomata have a DNA content of 2C (30) and
were therefore used as a reference to judge the C value of trichome cells [210].
Using this strategy, we found an average C-value of 64C in A. alpina trichomes
(Figure 6.1K).When analyzing the population of the larger trichome class sep-
arately from the smaller trichome class, we found a clear separation such that
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Figure 6.1: Trichome development on A. alpina rosette leaves. . (A) Mature leaf;
trichomes densely cover the whole surface. (B) In slightly older stages, incipient tri-
chomes are found between older trichomes (arrowheads). (C) On very young leaves
incipient trichomes are found at the leaf base and advanced developmental stages in
more distal regions. (D) Schematic representation of the trichome distribution along
the proximal-distal axis on a very young leaf as shown in (C top) and an older leaf
as shown in (B bottom). Blue colored trichomes are intercalating between already ex-
isting ones. (E-J) Scanning Electron micrographs (upper pictures) and optical section
of DAPI stained trichomes (lower pictures) at different developmental stages. (E) In-
cipient trichomes beginning to expand. (F) Unbranched trichomes. (G) Two-branched
trichomes. (H) Four-branched trichomes. (I) Mature trichomes. (J) Top view of a ma-
ture trichome. Note that the immediately adjacent cells are shaped like pavement
cells. (K) Distribution of the C content of all mature trichomes. It ranges between 16C
to 128C (n=200). (L) Small (orange) and large trichome classes (purple). n=20.Scale
bars=10µm (A, B), 20µm (C, D), 10µm (E-I), 100µm (J).

the smaller trichome class has on average 16C and 32C and the larger tri-
chome class 64 to 128C (Figure 6.1L). This suggests that the small trichomes
undergo on average four endoreduplication rounds and the larger trichomes
five or six cycles.

6.4.2 Isolation of trichome mutants in A. alpina

We took a forward genetic approach to dissect trichome development into
functional steps. Towards this end, seeds of five M1 plants from two inde-
pendent EMS populations were pooled and about 48 M2 plants from each
pool were screened for trichome phenotypes. The first screen was done in an
A. alpina Pajares population representing 4165 M1 plants [206]. The second
screen was done in the A. alpina flowering time pep1-1 background that does
not have an obvious trichome phenotype compared to Pajares [206, 211–213].
Here we screened an M2 population derived from 6800 M1 plants. Trichome
mutant phenotypes were confirmed in theM3 generation. Our screens yielded
49 trichome mutants. The mutant spectrum of patterning and morphogenesis
mutants was similar to that in A. thaliana [210] though we did no find higher
trichome density mutants and glassy mutants that are otherwise normal in
shape were not found (Table S1).

We identified 13 mutant lines in which trichome initiation and/or their
distribution is affected. Eleven mutants show no trichomes on the leaf blade
of four-week old rosette leaves and variable numbers of trichomes at the leaf
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margin. Two lines were already reported to be Aattg1 alleles [73]. We ex-
cluded the presence of very small and aborted trichomes by analyzing the
leaf surface at a high magnification. The second class of patterning mutants
comprises two lines in which trichomes occur in clusters with the individual
trichomes being larger and over-branched (Figure 6.2B,D). Trichome clusters
contained two to three trichomes immediately next to each other. We also
found trichome clusters on young leaves indicating that the corresponding
gene is important to single out one trichome cell during trichome initiation
(data not shown).

We identified one mutant that initially appeared glabrous (Figure 6.2E),
however on closer inspection revealed two classes of trichomes: extremely
small and aborted trichomes and wild-type like small trichomes (Figure 6.2F).
The small trichomes were reminiscent of young unbranched trichomes. Their
shape, however, differed from young wild-type trichomes in that their cell
body exhibited a puzzle piece like form, that is characteristic of epidermal
pavement cells (Figure 6.2G). This suggests that trichome initiation was not
affected and that trichomes have a mixed trichome/pavement fate. The wild-
type trichomes were regularly distributed on the leaf surface at large distances
with typically one or two small trichome cells in between (Figure 6.2H). This
phenotype suggests the presence of two types of genetically distinct trichomes
in A. alpina that have not been observed in A. thaliana.

In addition, we isolated a number of mutants affecting the morphogenesis
of trichomes. One class comprising 24 mutants exhibited defects in branch
number or their spatial arrangement. A second class showed distorted and
twisted trichomes (Supplemental text, Figure S1,2, Table S2)

6.4.3 Identification of trichome genes in A. alpina

Given that A. alpina and A. thaliana are crucifers that diverged only about
26 to 40 million years ago [194, 195], we assumed that the majority of the
mutant phenotypes found in our screen are caused by mutations in the genes
orthologous to the respective A. thaliana genes. In a first step, we searched
for putative orthologous genes in the A. alpina genome based on sequence
similarity and synteny [214]. By these criteria, we identified orthologs of the
selected Arabidopsis genes in the A. alpina genome (Supplemental text, Figure
S3,4, Table S3).
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Figure 6.2: Phenotypes of patterning mutants. (A) Scanning electron microscope
(SEM) picture of a mature wild-type trichome. (B) SEM picture of a mature Aatry
mutant trichome. (C) SEM picture of an Aagl2mutant leaf showing the distribution of
large wild-type shaped trichomes and small aborted trichomes. (D) SEM picture of an
aborted Aagl2 mutant trichome. (E) Wild-type A. alpina (Pajares) leaf with large and
small trichomes. (F) 35S:AaGL3 with large trichomes. (Scale bars: A and B: 100 µm;
C: 500 µm; D: 50 µm; E and F: 1 mm.)

6.4.4 Identification of mutant-specific alleles

Under the assumption that mutations in A. alpina trichome genes lead to the
same phenotype as in A. thaliana, one would expect to find relevant mutations
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in the respective genes in the trichome mutants. We therefore sequenced can-
didate genes in selected trichome mutants focusing on the unambiguous phe-
notypes, similar as done before with AaTTG1 [73]. As summarized in Table
S4 we found 23 mutant-specific alleles.

The analysis of the eleven glabrous mutants revealed three lines with mu-
tations in the AaTTG1 gene, as reported before [73]. In the remaining eight
mutants we discovered relevant mutations in the AaGL3 gene (Figure S5).
Mutations included changes leading to acceptor splice site, premature STOP
codons or amino acid exchanges. These findings were unexpected, as At-
gl3 mutants have trichomes. Atgl3 Ategl3 double mutants are completely
glabrous indicating that GL3 and EGL3 act in a partially redundant manner in
A. thaliana [136]. Sequencing the AaEGL3 gene in four gl3 alleles revealed no
mutations (Table S5). Thus in A. alpina, AaGL3 possesses the full bHLH func-
tion in trichome patterning and AaEGL3 does not appear to be functionally
relevant in this context. However, rescue experiments show that the AaEGL3
protein can rescue the Atgl3 Ategl3 Arabidopsis mutant efficiently when ex-
pressed under the 35S promoter indicating that the protein is fully functional
in this context (Figure S6). We also sequenced the AaGL1 gene in all glabrous
mutants. None displayed mutations in the AaGL1 gene (Table S5).

Two patterning mutants exhibited trichome clusters reminiscent to try
mutants in A. thaliana. Sequence analysis revealed a premature STOP codon
in one mutant and a Leucine to Phenylalanine change in a conserved region
in the other. Both mutations are expected to lead to severe defects in protein
function, indicating that the two mutants are Aatry alleles (Figure S5).

The differentiation mutant displaying large and fairly normal trichomes
plus small underdeveloped trichomes has no clear counterpart in A. thaliana.
However, the population of underdeveloped trichomes shares similarities with
gl2 trichomes in A. thaliana. When sequencing the AaGL2 gene in this line, we
found a deletion of one base pair in exon 4 leading to a premature STOP codon
at amino acid position 348 (Figure S5).

The molecular analysis of the morphogenesis mutants also revealed mu-
tations in several known trichome morphogenesis genes (Supplemental text,
Figure S5).
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6.4.5 Analysis of the GL3 function in A. alpina

Our finding that mutations in GL3 result in a strong trichome phenotype in
A. alpina whereas in A. thaliana an additional mutation in EGL3 is required
for a glabrous phenotype, suggests a functional divergence of GL3 and EGL3
between the two species. In A. thaliana it was reported that Atgl3 single mu-
tants exhibit a weak trichome phenotype but none of the other ttg1 traits.
The Atgl3 Ategl3 double mutants strongly enhance the trichome phenotype,
show ectopic root hairs, lack anthocyanin and show a weak defect in seed coat
mucilage production [136]. Seed color is normal in Atgl3 Ategl3. Together
this suggests that AtGL3 and AtEGL3 act redundant in four TTG1 traits. As
Aagl3 single mutants in A. alpina display the same trichome phenotype as
the Atgl3 Ategl3 mutant in A. thaliana, we determined whether representa-
tive Aagl3 alleles of A. alpina, Aagl3-1 and Aagl3-2, show additional pheno-
types. Seed color was normal in both Aagl3 alleles (Figure S7A-C). The anal-
ysis of root hair formation revealed hairy roots (Figure S7 D-F). A closer in-
spection showed that all files including the N-files produced almost only root
hairs. Thus, similar as observed for trichomes, Aagl3mutants produce the full
AaTTG1 root hair phenotype suggesting that EGL3 has also no relevant func-
tion in root hair patterning. In contrast, seed coat mucilage production and
anthocyanin production in seedlings grown on 3% sucrose was unaffected in
both alleles (Figure S7 G-L).

To support the idea that the observed mutant phenotypes of Aagl3-1 and
Aagl3-2 alleles are caused by mutations in the GL3 gene, we performed a com-
plementation test. F1 plants showed a glabrous trichome phenotype and hairy
roots (Figure S8), indicating that the causal mutations are allelic.

To better understand the function of AaGL3 in A. alpina, we generated
transgenic plants expressing the AaGL3 gene under the 35S promoter. In A.
thaliana overexpression of AtGL3 leads to extra trichome formation [44] and
reduced root hair numbers [69] supporting the idea that AtGL3 promotes tri-
chome formation and non-root hair formation. We recovered two plants in
which we found 30 fold and 10 fold higher expression levels of AaGL3 as
compared to wild type in qRT-PCR experiments (Table S6-8). In the next gen-
eration, single plants were analyzed with respect to the trichome and root hair
phenotypes (Table S9-11). In four individual plants we confirmed the overex-
pression of AaGL3 by qRT-PCR (Table S7,8). In both independent lines we
found reduced root hair formation (Figure S9) further supporting that AaGL3
promotes non-root hair fate also in A. alpina. Trichome density was deter-
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Figure 6.3: Modeling A. thaliana and A. alpina wild-type and 35S:GL3 phenotypes.
(A) mRNA levels determined by qPCR of GL1 and TRY relative to GL3 for A. thaliana
(gray bars) and A. alpina (white bars). Note that in Arabis we find relatively low levels
of GL1 and relatively higher levels of TRY compared with Arabidopsis. (B) Schematic
network of the model. The GL1 basal production parameter is decreased (red arrow)
to reproduce A. alpina phenotypes.

mined on the third leaf when they reached a length of 0.6 to 1 cm. Trichome
density was reduced to 10% of that found in wild type (Table S9-11). This is
in sharp contrast to A. thaliana where overexpression of AtGL3 causes extra
trichome formation [44]. The reduced trichome density was also observed on
older leaves. Trichomes were fairly similar in size and regularly distributed
(Figure 6.2).

We reasoned that this non-intuitive difference in the response to GL3 over-
expression might be correlated with differences in the relative expression lev-
els of the core patterning genes GL1, GL3 and TRY. To test this assumption,
we compared their expression between Arabidopsis and Arabis in young leaves
corresponding to stages shown in Figure 6.1B by qPCR analysis. When com-
paring the relative expression levels of GL1 with that of GL3 we found a large
difference (Figure 6.3A). As compared to Arabidopsis the relative levels of GL1
levels were strongly reduced. To explore whether reduced GL1 levels relative
to GL3 are sufficient to explain the different responses to GL3 overexpres-
sion in Arabis, we used a modeling approach. We use a previously published
model that includes GL1 and GL3 that together form the activator complex
(AC) [38]. The AC activates TRY, which in turn forms the inhibitor complex
(IC) together with GL3 (Figure 6.3B) (35).

Using this model, we screened for parameter sets that lead to increased tri-
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chome numbers upon a simulated overexpression of GL3 (A. thaliana situation
(Figure 6.4A,C,E)). These sets were subjected to a second screen for parame-
ter sets in which the expression of GL1 was decreased and overexpression of
GL3 leads to less trichomes (A. alpina situation (Figure 6.4B,D,F)). Our results
show that the relative expression difference of GL1 compared to GL3 can ex-
plain the different response to the overexpression of GL3 in the two species.
A closer analysis of the model revealed that in both, the Arabidopsis and the
Arabis situation, overexpression of GL3 leads to an increase of the inhibitor
and activator activity, however, in the Arabis situation, the relative increase of
the inhibitor activity is more pronounced around the activator peaks (Figure
S10). This is consistent with the qPCR results in which the relative levels of
TRY are higher in Arabis. As a result, in the Arabidopsis situation overexpres-
sion of GL3 effectively leads to less repression and therefore a higher density.
By contrast, in the Arabis situation, only the strongest peaks survive and the
lower peaks are suppressed over time. This is reminiscent to presence of the
large trichomes and the lack of small trichomes in 35S:GL3 Arabis plants.

6.5 Discussion

In this study, we set out to systematically identify all genes involved in tri-
chome development in A. alpina by a forward genetic mutagenesis screen to
enable a comparison with the genetic inventory in A. thaliana. We reasoned
that the evolutionary distance between the two species is close enough to
compare orthologous processes and genes, yet distant enough to expect dif-
ferences. Our phenotypic comparison supports this hypothesis as trichome
patterning and morphogenesis in A. alpina is almost indistinguishable from
that in A. thaliana except for the presence of two differently sized trichome
classes and the absence of morphologically distinct accessory cells. We there-
fore expected genetic and molecular differences explaining the two classes of
trichomes. For all other patterning and morphogenetic aspects, we assumed
not to find major differences in the function of the involved genes.

6.5.1 How well does the mutant spectrum reflect the gene inventory?

EMS mutagenesis screens can be considered to induce random mutations in
the genome and as a consequence the frequency of deleterious mutations
should be similar in all genes. It is therefore in principle possible to judge
the saturation of the screen by the allele frequency. Our sequence analysis of
candidate genes in the respective mutants revealed on average 2.6 mutations
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Figure 6.4: Simulations of A. thaliana and A. alpina wild-type and 35S:GL3 pheno-
types. Simulation examples of (A) A. thaliana wild-type and (B) A. alpina wild-type
on a 1D grid discretized into 100 cells (x-axis). Concentrations of activating complex
(AC) and inactive complex (IC) are indicated by green and black lines, respectively. C
and E show the development of 35S:GL3 patterns for A. thaliana conditions over time,
where (C) is intermediate and (E) is the final state. D and F show the development of
35S:GL3 patterns for A. alpina conditions over time, where D is intermediate and (F)
is the final state.
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for each considered gene. Although, as in other studies, the distribution of al-
leles is very asymmetric, the allele frequency lies in a similar range as in other
systematic genetic screens [215]. In this context it is noteworthy, that we also
found several alleles of fairly small genes such as TRY. This suggests that we
have identified a fairly representative set of mutants.

6.5.2 Trichome patterning and differentiation: Differences and simi-
larities between A. alpina and A. thaliana

In A. thaliana, trichome initiation is governed by the WD40 gene AtTTG1,
the MYB gene AtGL1 and the redundantly acting bHLH genes AtGL3 and
AtEGL3 [8, 197]. Orthologous genes of these regulators are also present in the
A. alpina genome as judged by sequence similarity and synteny. It was there-
fore surprising that we found no gl1 mutant in our screen though this may be
due to statistical reasons. Our attempts to create transgenic lines suppress-
ing AaGL1 expression failed as we could not recover any transgenic plants.
All glabrous mutants carried either relevant mutations in AaTTG1 [73] or in
AaGL3. The latter is striking, as this indicates that Aagl3 mutants are com-
pletely devoid of trichomes. This is in sharp contrast to A. thaliana, where
only the additional loss of AtEGL3 results in a glabrous phenotype [136].
Our result indicates that the AaEGL3 gene in A. alpina has no function in
trichome patterning. Since AaEGL3 can efficiently rescue the A. thaliana At-
gl3 Ategl3 mutant when expressed from a heterologous promoter, it is likely
that the functional change is due to differences in the regulation of expres-
sion. Also the function of AaGL3 in trichome patterning of A. alpina appears
to be different as judged by our overexpression data. While overexpression
of AtGL3 in A. thaliana Columbia causes a higher trichome density, 7 to 30
fold overexpression of AaGL3 in A. alpina leads to a reduction of trichome
density. On the first glance this is difficult to understand. One possibility is
that in A. alpina overexpression of AaGL3 counteracts intercalating trichome
formation. In support of this, we found only similar sized trichomes on older
leaves. However, as both trichome size classes depend onAaGL3 andAaTTG1,
it is difficult to envision why only one patterning event should be sensitive to
AaGL3 overexpression. In principle it could be due to changes in the gene
regulatory network structure or additional regulators. A simpler explanation
would explain the difference by changes of the parameters in the Arabidop-
sis network. The latter was suggested to us by the finding that the relative
expression levels of GL1 and GL3 differs between the two species. Mathemat-
ical modeling revealed that a reduction of GL1 relative to GL3 is sufficient
to explain the different responses to GL3 overexpression. It is important to
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note that this mathematical explanation of the phenotypes is already possible
with a simple model capturing the protein-protein interactions and that this
conclusion is therefore also valid for any models extended by additional genes
and/or interactions.

Trichome patterning in A. thaliana involves also seven redundantly acting
inhibitor genes including AtTRY, AtCPC, AtETC1, AtETC2, AtETC3, AtTCL1
and AtTCL2. Among these, AtTRY and AtCPC are the most relevant as judged
by the single mutant phenotypes, though they show qualitatively different
phenotypes. While Attry mutants exhibit trichome clusters, Atcpc mutants
show a higher trichome density. It is not surprising that we did not find Aacpc
mutants in our screens as wild-type A. alpina plants display a very dense tri-
chome pattern and higher densities can easily be missed under screening con-
ditions. We did, however, find two Aatry alleles. Both show trichome clusters
and larger, more-branched trichomes. The latter is interesting as it indicates
that the dual function of the TRY gene in trichome patterning and branching
is evolutionary conserved and therefore possibly functionally relevant.

In A. thaliana, trichome differentiation is regulated by the AtGL2 gene
[198]. This is suggested by the Atgl2 mutant trichome phenotype: trichomes
are smaller, less branched, and in extreme cases, trichomes have a puzzle piece
like shape with a little bump suggesting that trichomes are initiated but lost
their trichome fate. TheArabis Aagl2mutant found in this study differs in that
only the small trichomes but not the large ones are affected. As our attempts
to verify the phenotype by miRNA suppression or rescue of the Aagl2mutant
failed because we could not recover any transformants the phenotype needs
to be interpretated with caution. Within this limits one possible explanation
is that AaGL2 is not necessary for the proper differentiation of large trichomes
implying that small and large trichomes are genetically distinct. An alterna-
tive explanation is that increased size can compensate the requirement for
AaGL2. This scenario is supported by the previous finding that Atgl2 A. tha-
liana mutants can be rescued in genetic situations in which the DNA content
and thereby trichome size is increased [185].

6.5.3 Trichome morphogenesis in A. alpina

Our phenotypic analysis of trichome morphogenesis revealed that the devel-
opment in A. alpina is very similar to that in A. thaliana. Also the range of
mutants is similar, as we identified under- and over-branched mutants, mu-
tants with irregular branching, larger and over-branched mutants and several
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distorted mutants. Moreover, the molecular analysis revealed that morpho-
genesis mutants exhibit specific mutations in genes known to be required in
Arabidopsis for the respective processes. However, several distorted mutants
showed no relevant mutations in the tested known DIS-genes. It is therefore
possible that mutations in additional, not yet identified genes lead to a dis-
torted phenotype in A. alpina.

6.5.4 Perspective

Our forward genetic approach in A. alpina has enabled us to recognize the
developmental processes and the underlying genes that are similar to that
in A. thaliana, as well as those that are different. Based on this work it will
be possible to unravel the molecular basis of the evolutionary differences of
trichome development between Arabidopsis and Arabis.

6.6 Methods

6.6.1 Plant material and growth conditions

All A. alpina mutants were isolated from EMS-mutagenized A. alpina Pajares
and pep1-1 populations [206]. A. alpina seeds on soil were stratified in dark-
ness at 4°C for five days and then placed in growth chambers under long day
(LD; 16 h light, 8 h darkness) conditions at 21◦C. Pajares required twelve
weeks of vernalization to flower whereas pep1-1 flowered in 80 days with-
out vernalization. For root hair file analysis, seeds were surface sterilized
with 70% (v/v) ethanol (5 min) and 2% sodium hypochlorite (w/v, 8 min).
Sterilized seeds were sown on 1x Murashige-Skoog plates lacking sucrose and
stratified at 4◦C for five days. Plants were grown on vertically positioned
plates for seven days under long day (LD) conditions (16h light, 8h darkness)
at 21◦C. Atgl3 Ategl3 double mutants [136] and A. thaliana Col-0 were used
for inter-species rescue experiments.

6.6.2 Sequence and synteny analysis

A. alpina gene sequences were analysed with the CLC DNA Workbench 5.6.1
(CLC bio, Aarhus, Denmark) by comparison with the coding sequences of the
relevant A. thaliana genes obtained from TAIR 10 (www.arabidopsis.org). NCBI
Blastn (2.2.28; http://blast.ncbi.nlm.nih.gov/Blast.cgi) [216] along with the
assembled A. alpina genome was used to confirm the synteny of the selected
genes using conserved order and appearance of the neighbouring genes. For
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sequence analysis, primers were designed outside the CDS of a given A. alpina
gene to sequence it in wild type and mutants. NCBI’s conserved domain
database (CDD; http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) was used
to search for conserved domains within the protein sequence [217]. The Net2-
Gene server was used to predict splicing sites (http://www.cbs.dtu.dk/services/
NetGene2/) [218].

6.6.3 Trichome and root hair analysis

Leaves were analysed when leaf number 6 was approximately 2 cm long, us-
ing the TrichEratops software [145]. The distances between trichomes were
calculated with R (http://www.r-project.org/). Leaf number three from 10-14
days old A. alpina seedlings was dissected and mounted on agarose and anal-
ysed as described previously [145]. The position of H-files was determined by
their position with respect to the underlying cortex cells on 7 day old plate-
grown seedlings. Between 10 and 15 H- and N-file cells were analysed in each
root.

6.6.4 Constructs and stable plant transformation

The binary vector pAMPAT-CaMV35S-GW was used to create
pAMPAT-CaMV35S:AaGL3 and pAMPAT- CaMV35S:AaEGL3 using the Gate-
way® system with PCR amplified AaGL3 and AaEGL3 coding sequences, re-
spectively (Table S12). The constructs were introduced in the A. thaliana gl3
egl3 double mutant [136] and in the Arabis alpina pep1-1 background [206]
by Agrobacterium-mediated transformation (strain GV3101-pMP90RK) us-
ing floral dip [219]. qPCR analysis was donewith established reference primers
(Supplemental text [220]).

6.6.5 Mathematical model

The model used to simulate the A. thaliana and A. alpina phenotypes was
based on the activator-inhibitor model as described before [38]. A small ad-
justment was made to this model by including the saturation of activation by

151



the activating complex (AC), resulting in the following set of equations:

∂t[GL1]j = k1 +
k2k3[AC]j
k3 + [AC]j

− [GL1]j (1 + [GL3]j ) (6.1)

∂t[GL3]j = k4 + k5[AC]j − [GL3]j (k6 + [GL1]j + k7[TRY ]j ) (6.2)

∂t[TRY ]j =
k8k9[AC]

2
j

k9 + [AC]2j
− [TRY ]j (k10 + k7[GL3]j ) + k10k11D̂[TRY ]j (6.3)

∂t[AC]j = [GL1]j [GL3]j − k12[AC]j (6.4)

These equations were solved for every cell j on a one-dimensional grid of
100 cells total. D̂ indicates the diffusion operator between cells. Note that a
change introduced to the previously published model is the inclusion of sat-
urating terms for the activation of GL1 and TRY by AC. This is needed to
prevent amounts of TRY and GL1 to increase very strongly as a result of the
feedback loops. In biology this saturation is realized by a limited number
of binding sites for the AC to the promoters of GL1 and TRY. Levels of AC
are used as an indicator for whether a cell is considered a trichome or non-
trichome cell. If AC levels are higher than half maximum a cell is designated
as a trichome.

For the parameter screen we employed a quasi-Monte-Carlo approach and
generated 5 million sets of 12 parameters using a scrambled Sobol sequence.
All of these sets were then checked for Turing instability [123], i.e. the ca-
pability to form a Turing pattern [3]. If a parameter set was capable of pat-
terning, the 35S:AtGL3 phenotype was tested by increasing the GL3 basal
production (k4) 2- to 10-fold. Then we checked whether overexpression of
GL3 resulted in an increase of trichome density of at least 20% compared to
wild-type, as observed in the A. thaliana 35S:GL3 phenotype. Next, the pa-
rameter for GL1 basal production (k1) is reduced by at least 5% and down to
at most a 10-fold reduction, where we start by testing the smallest parameter
changes first and move logarithmically down to the strongest reduction in k1.
If, after reducing k1, the network still forms a pattern, the GL3 overexpression
is again simulated as described above. If in this case the density is decreased
by at least 10%, this is considered to fit the A. alpina phenotype. Note that we
do not try to exactly reproduce the experimentally observed densities, given
that we cannot determine average densities from the data. Furthermore, the
aim of the model is not producing a quantitative fit, but rather explore the
opposite responses to GL3 overexpression. Therefore, this parameter search
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is based on the qualitative difference in behavior upon GL3 overexpression.

Densities are determined by numerical simulation, using randomized ini-
tial conditions for each simulation. The initial conditions are given by the
steady state of a single-cell model (i.e. D̂ = 0) plus small inhomogeneous per-
turbations, sampled from the standard uniform distribution. The density is
determined from an average over 100 simulations. The density obtained for
the 35S:GL3 cases is analyzed in comparison with corresponding the wild-
type density as described above.

6.7 Supplementary Information

The supplementary information for this chapter can be found online at doi.
org/10.1073/pnas.1819440116.
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Chapter 7

Comparative expression analysis in three
Brassicaceae species revealed compensatory
changes of the underlying gene regulatory
network

Jessica Pietsch*, Anna Deneer*, Christian Fleck and Martin Hülskamp
* Contributed equally

7.1 Introduction

Evolutionary differences and adaptive strategies within plants are driven by
the structure and function of the underlying gene regulatory networks (GRNs)
([221–223]). Even minute changes in a GRN can result in striking differences
between species ([224, 225]). In evolutionary developmental approaches, such
differences are studied in order to gain insight into the genetic basis of phe-
notypic diversity ([74, 80, 192]). A system that is well-suited for such an ap-
proach is trichome patterning in Arabidopsis thaliana and other Brassicaceae
species ([7, 37, 184]). Genetic analysis of trichome patterning in A. thaliana
has revealed a complex GRN that controls the regular distribution of tri-
chomes in the leaf epidermis ([9, 34, 169]). Most of the genes found in A. tha-
liana are present in A. alpina and appear to have the same function in regulat-
ing trichome patterning ([73]). This suggests that the core of the GRN found
in A. thaliana might be operating in other Brassicaceae as well. Therefore, the
evolutionary analysis of trichome patterning in different Brassicaceae species
may enable the identification of subtle changes of the underlying GRN.

In A. thaliana, trichomes are initiated in a regular pattern early in leaf
development. Genetic analysis identified mutants in which regular pattern
formation was disturbed and subsequent molecular analysis revealed the rel-
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evant genes ([34]). One group of genes promotes trichome formation and a
second group inhibits trichome formation ([35]). The core of the network is a
group of three genes, the R2R3MYB protein GLABRA1 (GL1) ([45, 134, 136]),
the bHLH protein GLABRA3 (GL3) ([44, 136, 160]) and the WD40 protein
TRANSPARANT TESTA GLABRA1 (TTG1) ([43, 162, 163]). The respective
proteins form a complex in which GL1 and TTG1 both bind to GL3 ([44, 64]).
This so-called MBW (MYB, bHLH,WD40) complex promotes trichome devel-
opment ([44]). In addition, MYB23 and EGL3 were found to act redundantly
with GL1 and GL3, respectively ([134–136]). A second group of genes act
as inhibitors of trichome formation. These are all encoded by small R3MYB
transcription factors including TRIPTYCHON (TRY) ([50, 52, 56, 139]), CAP-
RICE (CPC) ([50, 51]), ENHANCER OF TRY and CPC1, 2 and 3 (ETC1, ETC2,
ETC3) ([54, 59, 134]). TRY and CPC seem to be the major players as the single
mutants exhibit clear phenotypes which is enhanced in combinations with the
others suggesting redundant action ([50]). These inhibitors repress the func-
tion of the MBW complex by competing with GL1 for binding to GL3/EGL3.
The detailed analysis of the function of these genes led to two principles that
can explain the generation of trichome spacing patterns without pre-existing
information (de novo patterning). In short, the first principle is an activa-
tor inhibitor model ([5]): the three MBW proteins activate the expression of
the inhibitors, that can move within the tissue and repress the MBW function
([38, 64]). The second principle is an activator depletionmodel ([5]). Here, the
activator TTG1 is mobile and captured by GL3 in trichome precursors, which
in turn leads to a depletion of TTG1 in the neighbouring cells and thereby in-
hibition of trichome formation ([40, 141]). It is likely that both principles act
in parallel ([183]). Mathematical models have been developed to study the be-
haviour of these principles in more detail ([38, 40, 42, 183]). These principles
can explain how a trichome cell is selected. In the selected trichome cell, the
homeobox transcription factor gene GLABRA2 (GL2) is turned on and con-
sidered to initiate the differentiation into a trichome cell ([61, 138, 207]).

The systematic forward genetic screen for trichome mutants in A. alpina
has enabled the identification and functional characterization of trichome pat-
terning genes in this species ([184, 220]). Arabis alpina diverged from A. tha-
liana between 26 and 40 million years ago ([194–196]). At this evolutionary
distance it was possible to identify the gene orthologs to those in A. thaliana
by synteny on the chromosomes ([184]). It was therefore possible to unam-
biguously recognize not only the homologous genes, but also that two of the
seven inhibitor genes, TCL1 and ETC2, are missing. The genetic analysis re-
vealed two interesting changes in the GRN. First, the GL3 gene in A. alpina
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does not appear to act redundantly with EGL3. While in A. alpina the gl3 sin-
gle mutant is completely devoid of trichomes, it requires the gl3 egl3 double
mutant in A. thaliana to express the full phenotype ([184]). Other than that,
the structure of the GRN in A. alpina seems to the same as in A. thaliana. It
is, however, noteworthy, that the response of the network to overexpression of
GL3 is very different such that this causes the production of more trichomes
in A. thaliana and less in A. alpina. This difference in the behaviour can be
explained by different relative expression levels of two key genes, GL1 and
TRY, in the two species ([184]). Modelling revealed that this change in the pa-
rameters is sufficient to explain the different responses to GL3 overexpression.

In this work, we compared the relative expression levels of trichome pat-
terning genes in A. thaliana, A. alpina and C. hirsuta. The additional species
Cardamine hirsuta is estimated to have diverged between 13 and 43 million
years ago from A. thaliana ([226, 227]). For comparison between the species,
the expression levels of the trichome patterning genes were considered rela-
tive to GL3/EGL3 as all patterning proteins bind to GL3 thereby regulating
its activity. We observed striking differences raising the question whether and
how the GRN established in A. thaliana has adapted to this. We analysed
the differences by mathematical modelling and determined which parame-
ters (i.e. interactions and regulations in the GRN) could explain the observed
differences in the relative expression levels.

7.2 Methods

7.2.1 Primer establishment and validation

qPCR primersmustmeet particular requirements. Preferably intron-spanning
primers were designed using GenScript Real-time PCR Primer Design (www.
genscript.com) with an optimal melting temperature of 60±2◦C and sequence
specific amplicons of ideally 150-200 bp. They exhibit one single band of the
expected size in agarose gel electrophoresis and a single peak in the melting
curve. Amplification efficiency and correlation were determined based on se-
rial cDNA dilution steps (1:10, 1:20, 1:40, 1:80, 1:160, 1:320). Cq and log10
values of the dilution series were used to calculate the slope ∆ by

∆ =
∑N
i=1(xi − x̄)(yi − ȳ)∑N

i=1(xi − x̄)2
, (7.1)
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where N is the number of dilution steps. The slope served to calculate the
primer efficiency E by

E = 100 · (10
−1
∆ − 1). (7.2)

The R2 correlation of the Cq and the log10 values was calculated using

ρx,y =
Cov(X,Y )
σxσy

. (7.3)

Amplification efficiencies of 100% ± 20 for genes of interest and 100% ±10
for reference genes as well as a linear standard curve with a correlation of ≥
0.99 were accepted. Sequences were taken from TAIR (www.arabidopsis.org),
from Genomic resources for Arabis alpina (www.arabis-alpina.org) and from
Cardamine hirsuta genetic and genomic resource (http://chi.mpipz.mpg.de).

7.2.2 Sample preparation

Cotyledons as well as juvenile leaves (leaf one and two for Arabidopsis thaliana
and A. alpina, additionally leaf three for C. hirsuta) of plant seedlings were re-
moved to gather 200-400 µm sized leaves with on-going trichome patterning
machinery. Material of up to 45 plants was collected per biological repli-
cate, frozen in liquid nitrogen and stored at −80◦C until further processing.
RNA extraction was performed using the Tri-Reagent method including DNa-
seI treatment and quality control was ensured via bleach gel and photometry.
cDNA synthesis was carried out according to the manufacturer’s protocol (Re-
vertAid First Strand cDNA Synthesis Kit; Thermo Fisher Scientific) using 1.5
µg RNA per sample because pre-tests had revealed that 1 µL undiluted cDNA
based on 1 µg RNA were required to obtain Cq values < 30. qPCR protocols
were standardized using three biological as well as three technical replicates,
master mixes and always both reference genes on each plate.

7.2.3 Analysis qPCR data

A two-sided Grubbs test (α = 0.05) was performed to identify outliers. Nor-
malization of the data was conducted according to the geNormmanual ([228]),
describing gene expressions relatively to each other. Special considerations
are given to normalization factors and the individual primer efficiencies ε.
Thereby not a generalized gene duplication per cycle (1+1) is assumed, but
the individual amplification rate (1+ε) is used for further calculations. The
expression data of each species was normalized by two different reference
genes. Using the variability of the reference genes and not the Cq values,
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allows interspecies comparison even with different reference genes for each
organism.

7.2.4 Compiling GL1 synteny

Arabidopsis thaliana was used as reference to elaborate the synteny of GL1
comparing it with A. alpina and C. hirsuta. The AtGL1 sequence was used to
perform a BLAST search against the C. hirsuta CDS database (http://bioinfo.
mpipz.mpg.de/blast/cgi-bin/public_blast_cs.cgi). More than a dozen of loci
spanning the first three highest ranked genes were blasted against Arabidopsis
thaliana. The AaGL1 ortholog as well as its adjoining genes were identified us-
ing the 1x1 orthologs table from the Arabis alpina website (http://www.arabis-
alpina.org/data/ArabisAlpina/data/Aa_At_ortho_1x1.txt).

7.2.5 Mathematical modelling

The model consists of 8 components, which are modelled in the form of a
system of coupled ordinary differential equations. These components include
the proteins TTG1, GL1, GL3, TRY, CPC and ETC. Note that the species des-
ignated by GL1 and ETC are assumed to be the combined behavior of GL1,
MYB23 and ETC1, ETC2 and ETC3, respectively. Additionally, the complex
formation between GL3 and TTG1 and GL3 and GL1 is explicitly modelled,
whereas the binding between GL3 and the inhibitors TRY, CPC and ETC is
implicitly modelled since these do not feed back into the system. This model
consists of 31 parameters that describe processes such as degradation, bind-
ing, activation and transport. This model is based on previously published
versions and is extended by the inclusion of ETC ([38, 40, 183, 184]). The
system of equations is

∂t[TTG1]j =θ1 − [TTG1]j (θ2 +θ3[GL3]j ) +θ2θ4L̂[TTG1]j (7.4)

∂t[GL1]j =θ5 +θ6[AC2]j − [GL1]j (θ7 +θ8[GL3]j ) +θ7θ30L̂[GL1]j (7.5)

∂t[GL3]j =θ9 +
θ10θ11[AC1]

2
j

θ11 + [AC1]2j
+
θ12θ13[AC2]

2
j

θ13 + [AC2]2j
−

[GL3]j (θ14 +θ3[TTG1]j +θ8[GL1]j +θ15[TRY ]j+ (7.6)

θ16[CPC]j +θ17[ETC]j ) +θ14θ31L̂[GL3]j (7.7)

∂t[TRY ]j =θ18[AC1]
2
j − [TRY ]j (θ19 +θ15[GL3]j )+

θ19θ20L̂[TRY ]j (7.8)
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∂t[CPC]j =θ21[AC2]
2
j − [CPC]j (θ22 +θ16[GL3]j )+

θ22θ23L̂[CPC]j (7.9)

∂t[ETC]j =θ24[AC1]
2
j +θ25[AC2]

2
j − [ETC]j (θ26 −θ17[GL3]j )+

θ26θ27L̂[ETC]j (7.10)

∂t[AC1]j =θ3[GL3]j [TTG1]j −θ28[AC1]j (7.11)

∂t[AC2]j =θ8[GL3]j [GL1]j −θ29[AC2]j (7.12)

where L̂ indicates the coupling equation between cells, given by

L̂[χ]x,y =[χ]y−1,x + [χ]y+1,x + [χ]y,x−1 + [χ]y,x+1 (7.13)

+ [χ]y+1,x−1 + [χ]y−1,x+1 − 6[χ]y,x.

for any species χ and cell at coordinates (x,y). Patterns were simulated on a
grid of 20-by-20 cells with hexagonal connectivity on a domain with zero-flux
boundary conditions. The initial conditions are given by the steady state of a
single-cell model (i.e. L̂ = 0) plus small inhomogeneous perturbations, sam-
pled from the standard uniform distribution. The trichomes on the grid are
identified by cells that have relatively high amounts of active complex (AC1 +
AC2), specifically, cells that have more than the half-maximum of total AC are
designated as trichomes. The cluster density of trichomes was averaged over
10 simulations, each with randomized initial conditions. Parameter sets that
produced less than 10% clusters are used for further analysis.

Given that we are only interested in parameter sets that form patterns,
we apply linear stability anaylsis to identify these sets ([123]). In the domain
of interest, a diffusion-driven instability (Turing instability) occurs ([3]), re-
sulting in an inhomogeneous patterning state. In linear stability analysis, the
stability of a uniform steady state is verified by determining whether effects
of small perturbations to the ODE system decay over time. Turing instabil-
ity was tested by the following criteria: starting from a uniform steady state
(i) the steady state in the absence of diffusion is stable and (ii) the steady
state in the presence of diffusion is unstable ([123]). For criterion i this means
that all eigenvalues of the Jacobian of the system in (7.4) - (7.12) evaluated
at steady state must be negative. To perform the same test for criterion ii we
decoupled the system by Fourier transformation and analysed the eigenvalues
([38, 40, 183]), where the real part of at least one of the eigenvalues must be
positive.
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7.2.6 Parameter estimation

The parameters of the model are estimated through an optimization routine
where the qPCR data is used in a cost function. The goal is to arrive at a
distribution of values for these parameters for each of the species. Note that
this problem suffers from non-identifiability ([178]), i.e., no unique value or
bounded confidence interval can be determined for the parameters; for this,
additional data would be required that is simply not available. Nonetheless,
through a multi-start optimization routine that ensures multiple optimal so-
lutions, it is possible to deal with the uncertainty in the system and arrive at
predictions about possible genetic adaptations on a regulatory level that dif-
ferentiates the three species from each other.

The analysis used here requires solving a constrained multivariable min-
imization problem ([229]). Specifically, we aim to find the minimum of the
problem specified by

min
θ
f (θ) such that

c(θ) ≥ 0
lb ≤ θ ≤ ub

(7.14)

where c(θ) is a non-linear constraint function, f (θ) is a scalar cost-function
and lb and ub are the lower- and upper-bounds of the parameter vector θ.
The cost function f is a normalized sum-of-squares given by

f (θ) =
N∑
i=1

(ȳi (θ)− yi )2

y2i
(7.15)

where ȳi (θ) is the expression level of the i-th gene out of N total genes pre-
dicted by the model and yi is the corresponding datapoint. Given that the
model simulates the concentration in a tissue, ȳi (θ) is the average of gene i
across the tissue, relative to the sum of GL3 and EGL3, similar as the data.

The constraint function c(θ) is chosen such that the parameters θ fall in
the Turing Space, i.e. are capable of patterning. To achieve this, we make use
of linear stability analysis as described above and determine the eigenvalues
of the Jacobian of the system of equations. c(θ) is given by

c(θ) = Re(λmax) (7.16)

where λmax is the largest eigenvalue of the Jacobian. By determining whether
the real part of the largest eigenvalue is positive (i.e. c(θ) ≥ 0), we learn that
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the parameter set θ can form a pattern, which constrains the allowable range
of parameters. Note that this range is also constrained by the choice of bounds
(lb and ub) of the optimization problem. In this case, we set the interval for the
each of the parameters in θ to [0.01, 100], to allow a range of multiple orders
of magnitude. One further constraint, which is applied in post-processing, is
that the pattern produced by θ must not show any clusters of trichomes, as
is the case in all the patterns formed by the three species. As such, we limit
the range of parameter values to those that simulate a realistic pattern and
produce the best possible fit to the data according to f (θ). Finally, the opti-
mization problem is started frommultiple, randomly generated initial points.
This set of initial points is generated by a Sobol sequence to ensure a good cov-
erage of the parameter space ([90]). Starting from these randomly generated
initial points, the optimization converges to a local minimum that satisfies the
constraints, leading to a distribution of optimal parameter sets θ̂ that corre-
spond to the local minima. This procedure is followed until 100 optimized
parameter sets are obtained for each of the species.

These distributions are then used in a statistical analysis to determine
which of the parameter distributions are statistically different between the
species. Towards this end, we use the two-sample Kolmogorov-Smirnov (KS)
goodness-of-fit hypothesis test to determine if two empirical distributions are
drawn from the same (unknown) underlying population cumulative distribu-
tion functions ([230]).

7.2.7 Sensitivity analysis

The sensitivity of the trichome density to the each of the individual parame-
ters is determined, using a variation on the elementary effects (EE) test ([119,
231]). The EE is a one-at-a-time screening method, i.e., only one parameter
is varied at a time and the variation in the output is measured ([119, 231]).
For a model with N parameters, each parameter θi , i = 1, . . .N , is assumed to
vary across p selected levels in the parameter space. The region of experimen-
tation Ω is an N -dimensional p-level grid. In standard sensitivity practices,
parameters are assumed to be uniformly distributed in [0, 1] and then trans-
formed from the unit hypercube to their known distributions ([119]). In this
case, we adapt this region to ensure that the parameters fall within the Turing
Space. The lower limit of Ω is by default chosen to be 10−1 and the upper
limit 10, where every point ∆ in the grid is the perturbation applied to θi
for which the EEi is determined. In the case that either limit would shift θ
outside of the Turing space, then the lower limit is adjusted to the smallest
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value between [10−1, 1] that according to linear stability analysis falls within
the Turing space, and the upper limit is the largest value between [1, 10] that
falls within the Turing space. This means that the p-level grid in Ω can have
different upper and lower limits, depending on the allowable range according
to linear stability analysis, but always consists of the same number of grid-
points. Furthermore, these grid-points are chosen such that they are logarith-
mically spaced.

For the trichome patterning model, we have N = 31 and choose p = 10. We
perform the EE sensitivity analysis for the top 10 best-fitting parameter sets

θ̂ resulting from the optimization routine. For a given set θ̂
k
, k = 1, . . . ,10 the

EE of the i-th parameter is defined as:

EEi (θ̂
k
) =

Y (θ1, . . . ,θi−1,θi ,θi+1, . . . ,θN )−Y (θ̂
k
)

θi ·∆−θi
(7.17)

where∆ is a value in the p-level grid with the limits chosen as described above.
Then, the absolute values of the EEi , computed at p different grid points, are
averaged to get

ĒEi =
1
p

p∑
j=1

|EEji |. (7.18)

Finally, we average over all ĒEi for every θ̂
k
.

7.3 Results

7.3.1 Comparison of trichome gene expression in different species

All three species considered here, A. thaliana, A. alpina and C. hirsuta pro-
duce regularly spaced trichomes on leaves ([32, 184]). The trichome density
differs such that C. hirsuta has a lower density, and A. alpina a higher den-
sity as compared to A. thaliana. A meaningful quantitative comparison of tri-
chome density appears not to be possible as leaf sizes, growth dynamics and
the juvenile-to-adult transition differ making it arbitrary to choose the proper
mature leaves for comparison. We therefore focused on qualitative and ratio-
metric comparisons in this study.

A direct comparison of the expression levels of trichome genes between
species by qPCR is not possible for various reasons. In particular, the primers
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are different for the same genes and normalization was done with difference
reference genes. We therefore compared the expression levels between species
by normalizing the expression to the bHLH genes. The bHLH protein is the
central component of the MBW complex to which the activators TTG1 and
R2R3 MYB proteins bind ([44]) and on which the R3 MYB negative regula-
tors exert their repressive effect by competitive binding with the R2R3 MYBs
([38]). It is conceivable that the outcome of this GRN depends on the concen-
trations of the other patterning proteins relative to the bHLH. We therefore
considered the bHLH expression levels a good reference to judge and com-
pare to the relative changes of all other patterning genes. We combined GL3
and EGL3 for the comparison between the species because the two genes act
redundantly in A. thaliana and have similar molecular roles in trichome pat-
terning ([61, 69, 136]).

Another aspect to enable a comparison between the species is the choice
of plant material. For our qPCR experiments we used young leaves at devel-
opmental stages in which trichome patterning was still ongoing as recognized
by the presence of incipient and young stages of trichome development at the
base of leaves. These stages could be unambiguously identified in all three
species.

7.3.2 Relative trichome gene expression differs in A. thaliana, A. alpina
and C. hirsuta

In a first step, we identified the bonafide orthologs of the Arabidopsis trichome
patterning genes inA. alpina andC. hirsuta by sequence similarity and synteny
(Suppl. Figure S1). Primers were designed to meet the Minimum Information
for Publication of Quantitative Real-Time PCR Experiments (MIQE) guide-
lines ([232]).

Plants were grown on soil and young leaves were harvested at stages at
which incipient developing trichomes were seen. The first two leaves and
the hypocotyl were removed. Quantitative Real-Time PCR experiments were
done with three biological replicas and normalized to a set of species-specific
reference genes. To enable a comparison between species we normalized all
expressions with GL3/EGL3. Figure 2.1 shows the relative expression levels
of patterning genes normalized to the combined transcript levels of GL3 and
EGL3 which was set to one (see also Table S1). In A. thaliana, GL3/EGL3 ap-
pear to be the limiting factors among the other trichome activating genes (Fig-
ure 7.1). TTG1 expression is about14 fold higher and the expression of GL1
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Figure 7.1: Comparative patterning gene expression. Depicted are the expressions
and fold changes of 15 patterning genes in A. thaliana (blue), A. alpina (red), and C.
hirsuta (yellow) relative to the sum of GL3 and EGL3 in the respective species.

and MYB23 both show an about 2-fold higher expression. Consistent with the
previous finding that GL1 and MYB23 act redundantly in Arabidopsis ([135]),
they show a similar expression level and we combined their expression for
the modelling approach to reduce the complexity (see below). The relative
expression levels of the inhibitors were different with CPC, ETC1, ETC3 and
TCL2 being higher and ETC2 and TCL1 lower than GL3/EGL3.

The expression profile in A. alpina is fairly similar to that in A. thaliana. In
C. hirsuta we found a strikingly different pattern of the relative expression of
trichome patterning genes. Here, most of the patterning genes exhibit lower
expressions as compared to GL3/EGL3. In particular, the expression of GL1
and CPC were drastically lower as compared to the other two species.

7.3.3 GL1, MYB23 and WER expression differs in Arabidopsis thaliana,
A. alpina and C. hirsuta

The very low relative and also absolute expression levels of GL1 in C. hirsuta
raised the question whether the function of GL1 is redundantly provided by
MYB23 ([135]) or even WER ([233]). To study this in more detail, we com-
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Figure 7.2: Quantitative expression analysis of three MYB homologs in different
species and tissues. Depicted is the expression of GL1, MYB23, and WER in Ara-
bidopsis thaliana, A. alpina, and C. hirsuta in seedlings (blue), shoots (red), roots (yel-
low), tiny leaves (purple), and mature leaves (green), relative to GL1 expression in tiny
leaves of the respective species.

pared the expression of the three genes in five different tissues in the three
species (Figure 7.2). To facilitate a comparison in the context of trichome
patterning, we normalized the expression levels with respect to the GL1 ex-
pression in young leaves. As expected, GL1 and MYB23 are expressed in most
aerial tissues in Arabidopsis thaliana but not in the root whereas WER expres-
sion was detected strongly in the root. In A. alpina, GL1 and MYB23 expres-
sion levels are similarly high in seedlings, shoot, young leaves and roots. WER
expression was root specific. In C. hirsuta, GL1 and MYB23 expression was
absent or low in all tissues. Surprisingly, WER expression was not only high
in roots, but also in young leaves. Here, WER expression was 2.6 fold higher
than that of GL1. These findings suggest that the tissue specific functions of
GL1, MYB23 and WER might be different in the three species. Given that it
GL1 and WER proteins have equivalent function during trichome initiation
in A. thaliana ([134]) it is conceivable that the higher expression of WER can
substitute the low levels of GL1.
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7.3.4 Modelling to predict the molecular adaptations to relative ex-
pression differences between the three species

The functional comparison of the regulation between A. thaliana and A. alpina
suggests that the core of the underlying regulatory network of trichome pat-
terning is conserved ([184]). Consistent with this, all relevant orthologs of the
relevant A. thaliana genes are also found in C. hirsuta. The qPCR data show
striking differences in the relative expression levels. Given that trichome initi-
ation is driven by the activity of the MBW complex, in which the components
undergo competitive binding, it is surprising that the GRN can tolerate such
differences ([38, 64]). We used mathematical modelling to explore whether
the Arabidopsis-based GRN is capable of coping with such differing relative
expression patterns. And if so, which parameters can compensate for changes
in the relative expression levels and to which of these is the pattern most
sensitive? Towards this end, we developed a model based on previous ver-
sions ([38, 40, 183]) and consisting of TTG1, TRY, CPC, ETC1/ETC2/ETC3,
GL3/EGL3 and GL1/MYB23/WER (Figure 7.3A).

We define two criteria for the model to fulfil. First, the parameter set has
to reproduce the same relative differences as found for the patterning genes.
Second, it has to simulate realistic trichome patterns, i.e., patterns must not
show any clustering of trichomes ([32]). We varied all 31 parameters using a
non-linear optimization routine such that the model most accurately repro-
duces the expression data (Figure 3). This is surprisingly well possible for the
expression data sets of all three species with many different parameter sets.

The identification of a large number of parameter combinations for each
species enabled us to compare the distributions of the parameters between
the three species in search for striking differences. Towards this end, we used
a Kolmogorov-Smirnov test to identify parameter distributions that are sig-
nificantly different between the species. Out of the 31 parameters only 13
fulfilled this criterion and were considered parameters that are relevant for
compensating different expression ratios in all three species. The distribu-
tions are shown in Figure 4. The 13 parameters have significantly different
distributions for at least two of the species, indicating that the Arabidopsis-
based model can cope with different relative expression levels by compen-
satory changes of different parameters. For the other 18 parameters we did
not find a significant difference (Suppl. Figure S2).

Following from this approach are three distributions (one for every species)
for each of the 31 parameters. To identify the most relevant differences, we
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Figure 7.3: Expression levels in the model compared to qPCR data. A: Schematic
representation of model network. AC1 and AC2 are the active complexes TTG1 GL3
and GL1 GL3; IC1 and IC2 are the inactive complexes TRY GL3 and CPC GL3. B: Ex-
pression levels of genes in A. thaliana, A. alpina, and C. hirsuta relative to GL3+EGL3.
The qPCR data is indicated by grey crosses with error bars (representing biological
replicates) and the model expression levels are indicated by the bars (blue for A. tha-
liana, red for A. alpina, yellow for C. hirsuta), the model error (black error bars) is the
error over the 10 best fitting parameter sets.

focus only on a subset of 13 parameters (Figure 7.4). These 13 parameters
have significantly different distributions for at least two of the species as de-
termined by the Kolmogorov-Smirnov test ([230]). For the remaining 18 pa-
rameters we did not find a significant difference (Suppl. Figure S2).

This analysis revealed three interesting differences. First, all parameters
regulating the activity of TTG1 in Arabidopsis differ from the distributions of
Arabis and Cardamine (except for the diffusion rate of TTG1). It is conceivable
that this is due to the relatively high expression of TTG in Arabidopsis that
could be compensated by parameters changes reducing its activity such as the
basal production rate and degradation rate. Second, the parameters regulat-
ing TRY activity differ between Arabis and the other two species. The model
predicts a higher activation rate of TRY by the GL3 TTG1 complex in Arabis
that would explain the relatively high levels of TRY in this species. Third, the
regulation of CPC in Cardamine differs from the other two species. We found
significant differences for the activation of CPC by the GL3 Gl1 complex and
its degradation rate. Both would compensate for the relative low amount of
CPC in Cardamine. These three cases exemplify the versatility of the trichome
patterning network and show how, despite the varying underlying differences
between regulatory mechanisms, the same core network is capable of robustly
producing a realistic trichome pattern in all three species.
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Arabidopsis - Arabis

Arabidopsis - Cardamine

Arabis - Cardamine

Significant KS-test

Figure 7.4: Parameter profile densities. Parameter distributions that differed between
the species according to a Kolmogorov-Smirnov test, obtained from fitting the model
output to the qPCR data. The crosses indicate between which pair of species the dis-
tributions were found to statistically differ. The titles indicate the biological interpre-
tation behind the parameter θi on the x-axis.

The comparison of parameter distributions provides insight into the adapt-
ability of the network to the different expression levels but does not immedi-
ately provide information on the effects on trichome patterning. This is pos-
sible by determining the sensitivity of trichome density to changes in each of
the parameters in all three species (Figure 7.5). This allows predicitions on
which parameter is most influential in patterning and whether this varies be-
tween species.
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Figure 7.5: Sensitivity of parameters to trichome density. The elementary effects
(EEs) of each of the parameters θi in the model indicates the sensitivity of the trichome
density to changes in θi , sorted by the respective EE value. The error bars indicate the
standard deviation in the EE for the ten best-fitting parameter sets. The inset shows
the average and the spread (shaded region) of the trichome density (ρ̄r ) for the ten
best-fitting parameter sets at each of the ten grid points r of the EE test, for the most
sensitive parameter (grey) and the least sensitive parameter (blue).

170



7

Our sensitivity analysis predicts that for all three species the stability of
the TTG1 GL3 complexes (θ28) is one of the most sensitive parameters. In
A. thaliana and A. alpina the stability of the GL1 GL3 complex (θ29) and the
degradation rate of GL1 (θ7) are among the most sensitive parameters. In C.
hirsuta, the basal production of GL3/EGL3 is relevant (θ9) and the degrada-
tion of TTG1 (θ2). Taken together, the sensitivity analysis predicts that the
amount of the active complexes most strongly influences the trichome den-
sity and that this is a common feature in all three species. C. hirsuta differs
in that the role of GL3-TTG1 is more relevant than that of GL3-GL1. For an
overview of the biological interpretation of all other parameters in Figure 2.5
see Suppl. Table 2.

7.4 Discussion

In this study, we have compared the expression levels trichome patterning
genes in the three closely related Brassicaceae species A. thaliana, A. alpina
and C. hirsuta. We aimed to use the variation of the relative expression lev-
els to understand the potential of the GRN underlying trichome patterning.
For our mathematical modelling approach, we used a complex model that
considers the genetic interactions and simulates concentrations on the pro-
tein level to consider differential complex formations ([64]). The details of
transcription and translation are not explicitly modelled as this would add
another layer of complexity and thereby more parameters without gaining an
extra value in the absence of additional data. This approach enabled us to
evaluate the parameter changes with respect to many different aspects of the
patterning process including transcriptional regulation, differential complex
formation and stability of the transcript/protein. The possible downside is
that we have to consider a 31-dimensional parameter space making it neces-
sary to use statistical approaches to monitor the effect of different parameters
and their combinations.

What did we learn? First of all, the structure of the GRN network estab-
lished in A. thaliana is sufficient to generate a trichome pattern even if the
relative expression levels show an order of magnitude difference. Second, the
GRN compensates for differences in the relative expression patterns by chang-
ing other parameters. Not all, but only a subset of the parameters is important
for this. Third, one type of parameter – the stability of the MBW complexes
– is among the most important in all three species. These predictions might
be instrumental for future experiments as they help to focus on aspects of the
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GRN network that have not been studied so far.
A second unexpected result followed from our analysis of the relative tran-

script levels of the three R2R3MYBs GL1, MYB23 and WER. The three Ara-
bidopsis thaliana genes cluster together in one MYB subgroup and are charac-
terised by a unique amino acid motif in the eponymous MYB domain ([234])
and are likely to be the result of gene duplications. GL1 andMYB23 act redun-
dantly in the regulation of trichome patterning but have distinct functions in
the regulation of trichome branching ([134]). Both are only important for tri-
chome formation but not involved in root hair patterning, which is specifically
regulated by WER. This trait specificity is due to differences in the transcrip-
tional regulation as WER and GL1 are equivalent proteins ([235]). Also, over-
expression of MYB23 can rescue thewermutant phenotype indicating that the
protein can substitute WER in this context ([236]). In Arabidopsis we found
that GL1 and MYB23 are most strongly expressed in young leaves. WER ex-
pression was detectable but very low. When considering that the expression of
the three genes is important for their function and that the proteins are func-
tionally similar, it is conceivable that WER might have a function in trichome
development in Cardamine. In fact, by this argument, WER would be most
important in root and leaf patterning as it is also most prominently expressed
in roots. We therefore hypothesize that our findings reflect the evolutionary
sub-functionalization of the three homologous MYB genes in trichome and
root hair regulation. Functional assays, ideally including mutant analysis in
Cardamine will be required to test this hypothesis.

Our comparison of the relative transcript levels of the three R2R3MYBs
GL1, MYB23 and WER revealed surprising differences. While the two geneti-
cally relevant genes for trichome pattern GL1 and MYB23 are expressed most
strongly in young leaves, both are clearly expressed at a lower level as the
WER gene. Given that the expression of these three genes is important for
their function and that the proteins are functionally similar ([134]), this sug-
gests that WERmight have a function in trichome development in Cardamine.
In fact, by this argument, WER would be most important in root and leaf pat-
terning as it is also most prominently expressed in roots ([8, 233]). We there-
fore hypothesize that our findings reflect the evolutionary sub-functionalization
of the three homologous MYB genes in trichome and root hair regulation.
Functional assays, ideally including mutant analysis in Cardamine will be re-
quired to test this hypothesis.
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7.5 Supplementary information

7.5.1 Figures
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Figure 7.6: Synteny of all patterning genes in A. thaliana, A. alpina, and C. hirsuta.
Because the three species are closely related, it is possible to identify ortholog genes
based on the arrangement of neighboring genes. Each column represents one gene
locus. Filled circles display gene orthologs in all three species, empty circles in two
species. Pluses indicate additional genes and same letters indicate same genes. Merged
cells mean that two or more loci correspond to one gene.
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Figure 7.7: Parameter profile densities. Parameter distributions for which no signifi-
cant difference between the species according to a Kolmogorov-Smirnov test, obtained
from fitting the model output to the qPCR data.
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7.5.2 Tables

Table 7.1: Summary of all Cq values genes Listed are all Cq values of the reference
genes and investigated patterning genes in A. thaliana, A. alpina, and C. hirsuta
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Table 7.2: Overview of parameters in the model given in (7.4) - (7.12) and their biolog-
ical interpretation.

Parameter Interpretation

θ1 TTG1 basal production
θ2 TTG1 degradation
θ3 TTG1-GL3 binding
θ4 TTG1 diffusion
θ5 GL1 basal production
θ6 GL1 activation by AC2
θ7 GL1 degradation
θ8 GL1-GL3 binding
θ9 GL3 basal production
θ10 GL3 activation by AC1
θ11 Saturation of GL3 AC1 activation
θ12 GL3 activation by AC2
θ13 Saturation of GL3 AC2 activation
θ14 GL3 degradation
θ15 GL3-TRY binding
θ16 GL3-CPC binding
θ17 GL3-ETC binding
θ18 TRY activation by AC1
θ19 TRY degradation
θ20 TRY diffusion
θ21 CPC activation by AC2
θ22 CPC degradation
θ23 CPC diffusion
θ24 ETC activation by AC1
θ25 ETC activation by AC2
θ26 ETC degradation
θ27 ETC diffusion
θ28 AC1 degradation
θ29 AC2 degradation
θ30 GL1 diffusion
θ31 GL3 diffusion
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Chapter 8

Discussion

Every chapter of this thesis has treated different aspects of trichome pattern-
ing. We have seen how each aspect may be described by a mathematical
model. In Chapters 3 and 5 we have studied mutant phenotypes and devel-
oped models that provide predictions based on the mechanistic causes behind
those phenotypes. In Chapter 4 we have shown how biochemical interactions
can be quantitatively analysed through the use of various models that describe
different modes of protein binding. And, finally, in Chapters 6 and 7we stud-
ied the evolution of the gene regulatory networks behind trichome patterning
and we have used modelling approaches that have provided insight into the
observed differences between species. A common challenge in the aforemen-
tioned chapters is dealing with uncertainty, which will be discussed in the
first part of this chapter. Next, we discuss the simplifying assumptions that
were made to develop the models in this thesis and why these assumptions
were chosen. Consequently, we will discuss specific aspects of the novel in-
sights into trichome patterning that were found, followed by a discussion on
the generality of those findings.

8.1 Meaningful modelling under uncertainty

A common challenge in all of themodelling approaches in the thesis is dealing
with uncertainty. This topic has been treated in detail in Chapter 2. Specifi-
cally, the most prominent source of uncertainty we have to deal with in mod-
elling trichome patterning is that of incomplete knowledge and insufficient
data. The consequence thereof is that almost all of the models have uniden-
tifiable parameters [102, 237], with the exception of the models in Chapter
4, which describe the binding behaviour of the protein complex driving tri-
chome initiation. Although quantification of these binding constants was also
plagued by uncertainty in the form of inaccurate measurements (e.g. esti-
mating protein ratios through Western blot intensity), it still turned out to
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be possible to identify the relevant parameters using the available data. Note
that these binding models and corresponding data were on a much simpler
scale than the spatial patterning systems treated in the other chapters, mak-
ing it all the more challenging to arrive at meaningful models in these cases.
In the following, we will discuss how we have dealt with uncertainty for these
more challenging cases.

We have made use of global approaches in order to arrive at minimal net-
works that could explain experimental observations like the loss of TTG1 de-
pletion in the ttg1-9 mutant in Chapter 3 and the clustering behaviour in
the inhibitor mutants in Chapter 5. Such global constrained approaches de-
pend on a set of criteria that are derived from experimental data with the
aim of deriving a model that is as simple as possible (i.e., constrained by the
data) and for which all (or most) of the parameters have to be estimated by
global sampling procedures. The problem remains, however, that none of the
parameter sets that followed from these global searches are unique, i.e. the
models were structurally unidentifiable. The question is whether any predic-
tion made or hypothesis tested by the model could still be considered mean-
ingful when different combinations of parameters yield the same outcome,
this means that there exist multiple parameter sets that satisfy the criteria
(e.g., pattern quantities like trichome density) which the model should ful-
fil. Note that these different parameter values may correspond to differences
in biological processes, as illustrated by the following example: a parameter
set with an increased production of the activator GL1 shows the same pat-
tern as a parameter set with a decreased activity of the inhibitor TRY, namely
in both cases the trichome density is increased compared to ‘wild-type’. So,
with respect to the research question “What mechanism may cause an increase
in trichome density?”, the model cannot provide an unambiguous answer. As a
way to deal with these issues, throughout this thesis we have focussed on de-
veloping models that contained only the core components, where the choice
of what to include was guided by experimental observations and the model
output was strictly screened for multiple criteria through global parameter
searches. What these components are and how they follow from the chosen
criteria differs per research question. To illustrate this point, we next consider
the modelling approach that we followed in Chapter 3 to explain the ttg1-9
mutant.

In Chapter 3 we started with a substrate-depletion model that contained
only GL3 and TTG1 and soon found that it would be impossible to repro-
duce patterns as observed in ttg1-9 mutants. Given that the two models driv-
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ing trichome patterning (activator inhibitor and substrate-depletion) contain
overlapping genes, it logically followed to include an activator-inhibitor mo-
tif into the existing substrate-depletion model. While this extended model
was able to match the mutant phenotype, it could not reproduce the observed
loss of TTG1 depletion. This finally led us to include a second inhibitor into
the model, thus allowing differential inhibitor behaviour and increased ro-
bustness (i.e. pattern stability was less sensitive to the ttg1-9 mutation). In
following these steps, we arrived at a model that matched all the criteria that
characterized the ttg1-9 mutant. Although we could not pinpoint a single pa-
rameter set that uniquely defined these characteristics, we did show that out
of all of the tested networks, this final version was the only one for which
multiple parameter sets could be found that matched all the criteria. While
the initial hypothesis was that the loss of depletion was the main mechanism
behind the mutant phenotype [141], we showed that a model relying exclu-
sively on the depletion of TTG1 via its interaction with GL3 was not suffi-
cient and that there were more mechanisms at play, like the differential dimer
formation and differing ranges in effect of the inhibitors. And so, despite a
large amount of uncertainty, we found a core network that could robustly
(i.e., multiple points in parameter space) reproduce specific aspects of the
mutant, where smaller, simpler models could not. Note that this considera-
tion of ’robustness’ in terms of multiple parameter sets is meant to capture
the expected robustness of the trichome patterning system; given that all of
the parameters are unknown, we are searching for a region or multiple re-
gions in parameter space that can reproduce the pattern, which increases the
confidence that the core network has been found as opposed to a single or
only a couple of points in parameter space. In conclusion, the strength in
this approach did not lie in the identification of parameters, but rather to
show that a perturbation as seemingly small as a point mutation may lead to
a cascade of unexpected and non-linear events that ultimately describe the
full complexity behind the ttg1-9 phenotype. Such concepts would be hard
to grasp without the aid of a model and a global approach such as the one
employed in this chapter, which is a common problem in studies on pattern-
ing and development [238, 239]. In Chapter 2 we have described a method
which facilitates parameter searches such as the Monte Carlo (MC) approach
used in Chapter 3. Where MC is a straightforward brute-force method that
requires high sampling numbers, the spectral methods in Chapter 2 provide a
smarter andmore efficient choice of points for which the model output should
be sampled. As we have shown in the example of the Schnakenberg patterning
model in Chapter 2, the convergence of polynomial chaos expansions (PCEs)
is slow around bifurcations. As a way to circumvent these issues, we have
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applied Haar wavelets as alternative basis functions to the PCE. In the case
of patterning models, such discontinuities are to be expected and so an ap-
propriate basis function set could be chosen beforehand. However, in some
cases it is not immediately obvious and the initial use of PCE could show
slow convergence. In the last of example of Chapter 2 we have applied this
method to a trichome model and show that it achieved the same accuracy as
MC sampling 20 times faster. In order to use them most effectively, spectral
expansions require more a priori knowledge about the model behaviour than
MC approaches, like the existence of bifurcations mentioned before. In gen-
eral, spectral and other meta-modelling methods show great promise when
it comes to global systems approaches such as those described in this thesis.
While the use of spectral methods requires more background knowledge (e.g.,
appropriate basis functions) than the brute-force MC, we have shown that it
can be as simple as following a set of steps as described in Chapter 2. In our
view, this makes spectral methods widely applicable in the field of systems
biology.

8.2 Simplifying assumptions

The art of developing amodel requires careful consideration of the underlying
biological mechanisms. The relevant aspects are included into the model and
other details are abstracted away. Typically, these simplifactions are based on
certain assumptions that follow from biological knowledge. In the following,
we will discuss the relevant assumptions for trichome patterning and whether
these are valid. In particular, we focus on steady state assumptions, grid de-
sign and stochasticity.

8.2.1 Do steady state assumptions hold?

Trichome cells develop asynchronously across the leaf. The youngest tri-
chomes are found at the base of the leaf and the most mature ones at the tip
[34]. However, there is no gradient of development across the axis of the leaf,
since newer trichomes can intercalate in between older ones [34]. The final
pattern that results from these differences in initiation timing is one where
trichomes are regularly spaced on the leaf [32, 33]. In our model, we simu-
late patterns on a static domain and quantify pattern-features like density and
regularity at steady state. This is an obvious simplification from the dynamic
process of trichome initiation, where in later developmental stages the afore-
mentioned intercalation influences the pattern [34]. This means that our sim-
ulations reflect the initial pattern at the base of young leaf and assume that
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this functions as a pre-pattern for the mature leaf, thereby ignoring effects
like intercalation. Similarly, due to our static domain, we ignore the impact
of leaf growth and shape on the pattern. It has been shown that patterning by
reaction-diffusionmodels can be influenced by domain effects like growth and
geometry [20] and it is therefore conceivable that this plays a role in the later
stages of leaf development. Futhermore, in the phenotypes considered in this
thesis, there appeared to be no preferred localization towards certain parts of
the leaf [33], which is therefore not considered. Another assumption under-
lying this simplification is that the patterning proteins in the model function
together as a type of precursor pattern [240], that acts on a faster time-scale
than processes like cell-division and tissue growth, i.e., these processes on the
protein-level are assumed to be in equilibrium at the moment of trichome ini-
tiation. Given the difference in the relevant rates (e.g. the rate cell division
is in the order of hours, compared to protein binding rates which are in the
order of seconds), we consider this a plausible assumption. So far, a static do-
main and steady state simulations have proven useful in elucidating trichome
mutant phenotypes. The models in this thesis were simple enough to be able
to capture the essence of the core patterning principles. However, there is ev-
idence that the trichome patterning module is linked to that of cell-cycle and
-division [185]. To gain more understanding about how this influences the
pattern it would be required to extend the analysis to models that include cell
growth and division. Specialized packages for modelling plants, e.g., Virtual
Laboratory and L-studio [241], OpenAlea [242] and Virtual Leaf [243], could
facilitate the development of such a model.

8.2.2 Does the simulated grid capture the relevant aspects of plant tis-
sue?

In our simulations, we simulate the tissue of epidermal cells as a hexagonal
grid. This is based on the topological properties of the tissue which leads to
cells tending to have six neighbours on average [244, 245]. Our model is a
discretized version of the reaction-diffusion model, where every discretized
unit represents a cell or compartment and the change of concentration of
molecules within that cell is described by an ODE, i.e. reactions are local-
ized to a specific cell. This means that the system consists of Nspecies ×Ncell
number of coupled ODEs, where Nspecies is the number of chemical species
andNcell the total number of cells on the grid. By rescaling the concentrations
by the size of the cells h, we arrive at a mathematically equivalent system that
is independent of h [246]. There is no experimental evidence that epidermal
cells receive signalling from underlying cell layers that influence trichome

183



patterning [10]. Therefore, the simulations have zero-flux boundary condi-
tions, which means that none of the proteins can diffuse out of the domain
and there are no influences from outside the domain, i.e. the epidermis is
considered to be an isolated system in which trichome pattenring occurs. All
of these details together represent a simplified leaf epidermis. As a result of
these simplifications, the connectivity between cells plays an important role
in patterning.

In our models, cells are connected to their neighbours and components
which are assumed to be non-cell-autonomous can move between connected
cells. This effect is modelled as jumps between cells (similar as in e.g., Er-
ban and Chapman [247]). This movement is uniform, i.e., the probability of
a molecule ’jumping’ to a neighbouring cell is equal for each of the six neigh-
bours. Given that the movement of patterning proteins is assumed to occur
via symplastic transport by the plasmodesmata, this deterministic transport
is a simplification. The permeability as well as the distribution of plasmodes-
mata are ways of controlling the transport through the channels [248], which
has been shown to be influential in the patterning of lateral root formation
[249]. Not much is known yet about the role of plasmodesmata in trichome
patterning, but given the importance of the mobility of activators and in-
hibitors, it is likely that the regulation of transport can be a crucial factor
in patterning [250]. In the models in this thesis, the focus has been on the
interactions between patterning genes and proteins. Therefore, details like
regulated transport have not been considered. However, it could be an in-
teresting aspect for future studies, especially in the case of cluster formation
as seen in the try cpc double mutant, where mobility plays a crucial role. An
additional transport-regulating mechanism which has not been included in
trichome patterning models so far is the sub-cellular localization of proteins.
It has been shown in A. thaliana that the protein MYC1 regulates the transport
of activators and inhibitors to and from the nucleus [60]. As a result of shut-
tling proteins to the nucleus, they are sequestered in that cell, meaning that
the nuclear shuttling by MYC1 may function as a way of regulating transport
and activity of activators and inhibitors.

8.2.3 The role of stochasticity in trichome patterning

In our model as well as in reaction-diffusion models in general, the initial
conditions are random perturbations about the homogeneous steady state [3,
123]. This means that from the same point in parameter space, different pat-
terns can arise due to the slight variations in initial conditions. In the case of
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trichome patterning, this could be one of the sources that causes the differ-
ences between individual leaves and plants, where no two trichome patterns
are exactly the same [32]. However, this is not the only source of stochasticity
that one can expect to play a role in pattern variability. In Arabidopsis, gene
expression has been shown to be noisy [32, 33, 251] which may be a part of
the quasi-regularity seen in trichome patterns. For example, stochastic fluc-
tuations in gene expression have been shown by Okamoto et al. to increase the
variability in the trichome distribution pattern [39]. As has been shown for
Turing’s reaction-diffusion model, this stochasticity could improve robustness
[20], which likely holds relevance for trichome patterning as well.

So far, we have only treated gene fluctuations in the initial conditions and
not in the individual components. In Chapter 3we have quantified the extent
of irregularity of the ttg1-9 pattern which at first glance appeared random-
ized. We have shown that seemingly random aspects of the pattern were not
characteristic of a homogeneous random patterning process, e.g. the proba-
bility of cluster formation in a random process depends inversely on density
(the opposite of what is seen in the mutant). We also found correlation di-
mensions smaller than expected for a random process, which indicated that
the observed variability seen in the pattern depended for a considerable part
on deterministic factors [146]. In this case, we reasoned that the added com-
plexity of stochastic gene expression would not be necessary to capture the
core principles behind the mutant phenotype. It is conceivable that there are
mutants which will be sensitive or dependent on stochastic processes. For ex-
ample, in the pattern formation of giant cells in Arabidopsis, it has been found
that fluctuations in the AtML1 transcription factor may be critical for the pat-
terning process [252, 253]. Given that the MBW complex plays a role in both
the formation of giant cells and trichomes, a similar process may be relevant
for trichome patterning as well.

8.3 Findings on mechanisms of trichome patterning

In the previous sections we have seen the influence of uncertainty and the
assumptions underlying the models in the thesis. Here, we will discuss the
most important novel findings that followed from our modelling approaches.
First, we discuss the potential role of cell differentiation on patterning, as
highlighted in Chapter 5. Building upon this, we discuss the finding that the
mobility of patterning proteins was crucial in Chapter 5. Finally, we discuss
the role of the complex formation that reoccurs in every model in this thesis
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and describe the newly found interactions that are relevant for patterning.

8.3.1 Cell differentiation and patterning

In Chapter 5 we have dealt with similar issues surrounding the inhibitor mu-
tants. The development of the model was not merely a matter of adding ad-
ditional biologically relevant components to the network (as was the case in
Chapter 3), but rather the introduction of an additional mechanism. When
we discovered that the hypothesized network could not reproduce the double
mutant phenotype, we did not think the answer lies in extending the net-
work further, but rather in the lack of a missing element. For this reason, we
turned back to the biological evidence and asked what the difference was be-
tween the double mutant patterns in the model and those seen in Arabidopsis.
Schellmann et al. observed that trichomes in the double mutant clusters ap-
peared to show an age difference, suggesting that there is some link between
the inhibitors and the timing of trichome initiation [50]. In our model, we
postulated that this link could be the effect of cell differentiation, which af-
fects the regulation of the patterning genes after trichome cell fate has been
established. The model predicts that patterning genes are down-regulated
or completely turned off upon differentiation, which in the case of the dou-
ble mutant may lead to clustering behaviour. We also tested the opposite:
due to endoreduplication the DNA content and thus the amount of pattern-
ing proteins is increased. For this type of perturbation we found no effect,
i.e. the pattern at steady state was not changed after the perturbation. Bram-
siepe et al. have shown that a reduction in endoreduplication can override
the patterning defect in the try cpc double mutant, which indicates that en-
doreduplication is likely to play a role in the mutant cluster formation [185].
However, in our model, merely the effect of increased DNA content as a result
of endoreduplication is not the factor that leads to clusters with different initi-
ation times of individual trichomes within the cluster. Following the network
postulated by Bramsiepe et al.[185], it is likely that endoreduplication events
play a role after initiation and during trichome development, not exclusively
at the moment of differentiation as it is modelled in Chapter 5. Although in
our model it was sufficient to simulate a mechanism of negative regulation at
steady state to provide an explanation for the try cpc phenotype, it is easy to
envision a role for endoreduplication as a fine-tuning mechanism influenced
by patterning proteins which stabilizes cell fate, functioning in parallel with
the down-regulation of genes upon differentiation as we simulated it on our
model.
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8.3.2 Mobility of patterning proteins

An additional mechanism that was influential in reproducing the try cpc phe-
notype was the mobility of the activator proteins. This has been shown for
some of the components in the network, but for now only assumed for the
others. Initial bombardment experiments in leek cells have shown promising
results for GL1 (on-going research) where movement between cells was de-
tected, but requires further validation to show that this occurs in leaves of A.
thaliana as well. Given that transport of these proteins likely occurs via plas-
modesmata, we have only included mobility terms for the single proteins, not
the complexes between them. These complexes are transcriptionally active
and are therefore likely found in the nucleus [60]. Note that this assumption
of plasmodesmatal transport comes with a certain complexity (e.g., diffusion
is not uniform as described previously) that is currently not captured by any
of the existing trichome patterning models, which was discussed in more de-
tail in Section 8.2 above.

8.3.3 The role of the MBW complex in patterning

The MYB-bHLH-WD40 (MBW) complex plays a crucial role in trichome pat-
terning. In Chapter 4 we have studied the interaction of the MBW compo-
nents in closer detail. Through binding assays by LUMIER, we have quantified
the relative dissociation constants for combinations of GL3, TTG1, GL1, TRY
and CPC. Surprisingly, we found that the activators showed stronger binding
than the inhibitors, raising the question how inhibitors compensate for this
effect in exerting their repressive function. Using the estimated dissociation
constants, we predicted that TRY requires to be present in at least four-fold
higher amounts than GL3 in order have 50% inactive complexes. This would
suggest that in cells in which trichome cell fate is repressed, inhibitors would
have to be present in abundance compared to activators. It is unlikely that
this is the only mechanism by which inhibition is regulated, e.g., regulation
of sub-cellular localization of activators and inhibitors could also play an im-
portant role [60]. In addition to the mobility of the activators, the inhibitor
mobility is just as crucial. As described in the Introduction, activator-inhibitor
models show stringent demands on the differing diffusion rates of activators
and inhibitors. It has been shown [23], however, that extensions to the origi-
nal two-component system can alleviate this stringency, i.e., a broader range
of diffusion rates may still lead to stable patterns . The results from our model
are in line with these findings. In the case of the try cpc mutant, it is the dif-
ference in the mobility of the individual inhibitors that plays a crucial role in
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regulating cluster- and trichome-density, where we found varying ranges of
mobility in activators. As their single mutant phenotypes suggest [50], CPC
acts on a long range and TRY on short ranges, which was in line with the pa-
rameters that reproduced the criteria for the double mutant in our model.

Finally, we have seen how this MBW complex is capable of driving tri-
chome patterning under differing expression levels as seen in the compara-
tive genetic studies in Chapters 6 and 7. These studies showed that the core
patterning network is surprisingly flexible under varying conditions. What
has typically been attributed to such robustness is the functional redundancy
in plant GRNs [254–256], also in the case of trichome patterning [35]. In
comparing between closely related species like the Brassicaceae considered in
Chapters 6 and 7, the core network consisting of three inhibitors and three
activators was enough to reproduce the observed evolutionary differences on
the gene expression levels. The role of redundancy will likely become even
more important when considering individual mutations between species in
potential future studies, as we have already seen in Chapter 6 for the oppo-
site phenotypes in A. thaliana and A. alpina.

8.4 Generality of trichome patterning models

Several basic principles can be identified in trichome patterning. For one, as-
pects like lateral inhibition and local activation are based on models by Gierer
and Meinhardt, and the preceding reaction-diffusion model of Turing [3, 5].
In those models, patterning is assumed to start with a field of cells that have
equal amounts of concentrations in activators and inhibitors, where stochastic
fluctuations break this equilibrium, followed by the enhancement of small, lo-
cal differences by autocatalytic loops. This in turn leads to local accumulation
of activators and inhibitors, thus specifying which cells may eventually obtain
trichome identity. In trichome patterning we also consider this to be themech-
anism by which patterns are formed, given that these patterns develop with-
out any pre-existing information. The same principle is also found in other
patterning systems, such as Delta-Notch signalling in e.g., theDrosophilawing
vein system [257], and the formation of stripes in zebrafish [258]. In plants,
patterning systems based on similar principles have also been found, like
the vascular patterning of plant stems [259], and root hair patterning, which
shows a large genetic overlap with trichome patterning [8]. Although it is
apparent that different systems based on the same patterning principles have
already been described, there are certain advantages to the trichome system
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that make it especially suited to studies on these principles. One advantage is
the ease of genetic manipulation, as is evident from the isolation of many pat-
terning mutants [34]. Another advantage is the accessibility of the network
itself, which appears to consist of relatively simple interactions, thus allowing
an analysis beyond qualitative and intuitive understanding, towards one that
can be quantified. In such a quantitative approach, mathematical models such
as the ones applied in this thesis and other publications [38–42] are essential
in capturing the essence of the core aspects of spatial patterning. Specific
to the trichome network, the existence of the autocatalytic feedback-loop –
a crucial mechanism for breaking the initial symmetry in reaction-diffusion
models – is yet to be shown experimentally. Progress towards this is being
made through optogenetics approaches in single cells where activators can be
controlled in spatial and temporal precision, such that feedback mechanisms
could potentially be identified. If the activator auto-catalytic feedback-loops
could be identified in that way, it would confirm one of the crucial mecha-
nisms predicted by the models. This mechanism is the requirement for the
development of patterns in activator-inhibitor models by the dominance of
the activator peak over the inhibitor peak. So far, experiments have shown
that the activator and inhibitor peaks overlap in position in trichome pattern-
ing, however, it has not been confirmed that the respective production rates
are such that activator amounts dominate inhibitor amounts at those posi-
tions.

Another general feature of the trichome system is the role of the MBW
complex. This complex is known to regulate multiple processes in plants,
such as anthocyanin pigmentation [260], regulation of the flavonoid path-
way [67], root hair formation [8], seed coat pigmentation, seed coat mucilage
production [261] and stomata- and pavement cell differentiation [66]. Find-
ings like the difference in dissociation constants of the MBW-components in
Chapter 4 and the mechanisms of competitive binding that underlie trichome
patterning [38, 64], are relevant for these other contexts as well. Individual
differences are expected, e.g., the role of WER in root patterning [233], but the
molecular basis of MBW interactions constitutes general features. As we have
seen in Chapters 6 and 7 and as is reviewed by Robinson and Roeder [66],
these features are conserved in different species, making it a suitable system
for studies on evolutionary comparisons.
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8.5 Conclusion and outlook

The way natural systems organise themselves into functional shape, form and
structure is a phenomenon that has evoked the interest of biologists for cen-
turies. More recently, also mathematicians and physicists have started to con-
tribute to questions on pattern formation in living organisms through mod-
elling approaches. In this thesis, trichome pattern formation in Arabidopsis
thaliana and related species has been used as a model system to study spatial
patterning in plant development. In answering questions about mutant phe-
notypes, molecular and genetic interactions, and evolutionary differences, we
have used mathematical models to help unravel the complexity behind the
trichome patterning system.

We have used mathematical models to test hypotheses (e.g. the loss of de-
pletion results in patterning defects in TTG1 mutants in Chapter 3) as well
as arriving at new hypotheses about relevant mechanisms in patterning (e.g.
down-regulation of patterning genes upon differentiation results in clusters
in inhibitor mutants in Chapter 5). We have shown validation of models (e.g.
rescue of ttg1-9 clustering phenotype by expressing TRY under the CPC pro-
moter in Chapter 3) as well as deriving predictions that still require experi-
mental verification (e.g. mobility of activators in Chapter 5). All in all, the
models in each chapter have aided our understanding of trichome pattern-
ing and the general principles behind it, despite being faced with challenges
such as large amounts of uncertainty. Many questions still remain, such as the
impact of leaf growth and stochasticity in gene expression and transport, in
which models will certainly prove to be instrumental.

From an evolutionary perspective, combined genetic and modelling ap-
proaches such as the ones developed in Chapter 6 and 7, could be useful in
identifying the relevant genes in other plant species. Such comparative stud-
ies can reveal how gene regulatory networks evolve and adapt to differing
circumstances and genetic influences, as seen in different accessions of Ara-
bidopsis [39, 262–264]. Such findings could be relevant in species that hold
value for crop industry, for example the trichomes of cotton plants which are
used in textile industry [76], or the glandular trichomes of Artemisia annua
which produce artimisinin, used in drugs for malaria treatment [77].

The aim of this thesis was to provide minimal models for a conceptual de-
scription that captures the essential features of trichome pattern formation.
In this we tackled experimental and theoretical challenges and contributed to
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unravelling mechanistic characteristics of the patterning model, which con-
sists of principles that are generic to many other systems. Like other pattern-
ing systems, the modelling of trichome patterning comes with certain chal-
lenges, such as dealing with large amounts of uncertainty. Despite this, it has
proven to be an excellent model system due to its relative simplicity and ease
of genetic manipulability, and will undoubtedly continue to prove its worth
in future research on pattern formation and plant development.
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Summary

Trichomes are unicellular hairs that originate from epidermal cells and show
a regular distribution on aerial surfaces of the plant. They are thought to pro-
tect plants from adverse conditions, including UV light and herbivore attack,
and are an important source of a number of phytochemicals. Experimental
studies have revealed an intricate and extensive network of genes underlying
the regulation of trichome development in the model plant Arabidopsis tha-
liana. The groups of proteins – and their interactions and regulations involved
– have been found across different developmental processes and plant species.
This makes the formation of trichomes an excellent model system for studying
cell differentiation, development and pattern formation in plants. Trichome
patterns are generated de novo, meaning they are independent of cell lin-
eage or signalling from underlying cell layers, thus a dynamic self-regulatory
mechanism is required. To elucidate how self-regulatory mechanisms operate
in trichome patterning, studies on mutant phenotypes have been instrumen-
tal. This is one of the advantages of the trichome system: genetic perturba-
tions often result in observable patterning defects, which has revealed a wide
array of mutant phenotypes inArabidopsis. Intriguingly, many of these pheno-
types are contradictory to current understanding or are hard to explainmerely
by intuition and the currently available data. The use of mathematical mod-
elling approaches has greatly aided the elucidation of mechanisms that form
the core of trichome patterning. In this thesis, we have treated several mod-
els which have been formulated based on experimental observations, with the
aim of describing the genetic and molecular basis of trichome patterning.

In Chapter 1 a general introduction is given on pattern formation in bi-
ology and how this is related to trichomes. At the basis of the mathematical
theory behind pattern formation are the reaction-diffusion models first de-
veloped by Alan Turing in 1952. In this chapter, we have reviewed the basic
principles of Turing’s theory and have considered extensions to the reaction-
diffusion models, namely the activator-inhibitor (AD) and activator depletion
(AD) models. These two principles play an important role in trichome pat-
terning, as is evident from the genetic analysis of the trichome gene regula-
tory network that was summarized in this chapter. Finally, we introduced the
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theory behind dealing with uncertainty that is one of the most challenging
aspects of developing models on trichome pattern formation.

In Chapter 2 we consider the use of spectral methods for the purpose of
uncertainty quantification, specifically in the context of biological systems.
We show how these methods can be used as an alternative to commonly used
Monte Carlo (MC)methods. WhereMCmethods typically rely on a high num-
ber of samples, the scheme proposed in this chapter provides a way of choos-
ing these samples in an efficient way. As such, it is especially suitable for cases
where models are computationally expensive to solve and where brute-force
approaches like MC would be infeasible. We show how the method can be
adapted to deal with difficulties often encountered in biological systems, such
as high-dimensionality and bifurcations.

The trichome mutant studied in Chapter 3 shows a complex change in
pattern as the result of a point mutation that strongly reduces the interaction
between two of the core patterning protein. In this chapter, we have seen how
the mechanism and phenotypic consequences of modifying the active com-
plex pool as a consequence of a point-mutation in TTG1 leads to increased tri-
chome cluster frequency and TTG1 depletion. We analyzed weak ttg1 alleles,
particularly ttg1-9, which produces few but clustered trichomes (in contrast
to the glabrous ttg1-1 allele). We find that TTG1-9 retains minimal interac-
tion with GL3, which is not sufficiently strong to ensure nuclear retention.
ttg1-9 mutants have no TRY expression and less CPC than wild-type. This
suggests a scenario in which a weak interaction of TTG1-GL3 is sufficient to
produce some antagonism to GL1-GL3 – based on the observation that CPC
expression is reduced compared to wild-type – but not enough that it results
in productive TTG1-GL3mediated activation of TRY. Given that trichome pat-
terning depends on two parallel principles (activator-inhibitor and activator
depletion), both these models were tested individually for the consequence
of reduced binding between TTG1 and GL3. Whereas in the AI model, re-
duced binding strength almost never led to the formation of clusters, in the
AD model cluster frequency was almost always higher than observed in ttg1-
9. A combined model (AIAD) produces more reasonable cluster estimates and
shows loss of TTG1 depletion as is observed in mutant plants.

The MYB-bHLH-WD (MBW) protein complex drives trichome initiation.
In Chapter 4we combinded LUMIER binding assays with mathematical mod-
els to quantitatively characterize the MBW complex formation. We follow up
on the reported competitive binding of TTG1-GL1-GL3 reported in Pesch et

226



al., 2015, and use our newly obtained insights to make predictions on the
expected composition of the various possible combinations of the MBW com-
plexes found in planta, as well as the expected consequences thereof on pat-
tern formation. A challenge here was to derive a method that would allow
the quantification of dissociation constants of insoluble proteins. Through a
ratiometric approach where we quantified all interactions relative to the core
component of the MBW complex (the bHLH protein, GL3), we show that the
activator proteins GL1 and TTG1 have similar binding strengths to each other,
and bind stronger than the inhibitor proteins TRY and CPC. Furthermore, we
found a model with negative cooperativity between GL1 and TTG1 to be the
most parsimonious with the data, defining a possible scenario of the compet-
itive behaviour shown by Pesch et al. in more detail.

Both TRY and CPC negatively regulate trichome initiation through bind-
ing to GL3 and counteracting GL3-complex formation with other activators.
Constitutive overexpression of TRY or CPC results in loss of trichomes; the
try cpc double mutants show large clusters of trichomes. Although TRY and
CPC proteins are 55% identical, try single mutants show increased number of
clusters but decreased number of trichomes, whereas cpc single mutants show
no clusters but increased number of trichomes (higher density). In Chapter
5, we developed a model that provides a possible explanation for these puz-
zling phenotypes. The pre-existing hypothesis on these mutant phenotypes
was that TRY is acting on short ranges of effect, whereas CPC is acting on
longer ranges. While testing this hypothesis with the model in Chapter 5,
we found that the differing inhibitor mobility could explain the single mu-
tant phenotypes, but that it was not sufficient to reproduce the clustering
behaviour observed in the double mutant. This indicated that the mutation
effects were not simply additive as previously assumed. We therefore looked
to other explanations and developed a model that simulated a simplified form
of cell-differentiation, in which patterning genes were down-regulated upon
differentiation. This addition led to the observed cluster formation in the dou-
ble mutant and is predicted to be an important mechanism in explaining this
mutant.

In Chapters 6 and 7 we have studied trichome patterning from an evo-
lutionary perspective. By comparing closely related Brassicaceae species, we
have seen how the same underlying network can adapt to the varying expres-
sion levels observed betweenArabidopsis thaliana, Arabis alpina andCardamine
hirsuta. In Chapter 6 we have used a modelling approach to explain two op-
posite phenotypes following from the same mutation between A. thaliana and
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A. alpina. Where overexpression of GL3 in A. thaliana leads to an increased
number of trichomes, in A. alpina the density is decreased. Guided by the
observation that GL1 expression levels are lower in the wild-type of A. alpina
compared to A. thaliana, our model predicted that this change would be suf-
ficient to explain the opposite effect of GL3 overexpression. In Chapter 7
we additionally compared expression levels of patterning genes in Cardamine
hirsuta. We used amathematical model to identify which of the possible adap-
tations in the network may lead to the observed differences between species.
Furthermore, a sensitivity analysis predicted that the density of the trichome
pattern was most sensitive to the stability of the MBW complexes in all three
species.

Finally, Chapter 8 provides a general discussion of the work in the preced-
ing chapters. Here, we review the challenges we have faced when modelling
trichome patterning, novel findings and assumptions are discussed, and con-
cluding remarks are given – specifically for the trichome system, but also in
the context of developmental and patterning studies in general – on the rele-
vance of our findings
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Samenvatting

Trichomen zijn eencellige haren die ontstaan op de epidermis en een regel-
matige distributie vertonen op de uitwendige oppervlakten van de plant. De
veronderstelling is dat trichomen planten beschermen tegen ongunstige om-
standigheden, zoals blootstelling aan Uv-licht en planteneters, en zijn een
belangrijke bron van verscheidene fytochemische substanties. Experimenten
hebben een ingewikkeld en uitgebreid netwerk van genen onthuld wat ten
grondslag ligt van de regulatie van trichoom ontwikkeling in de model-plant
Arabidopsis. De groepen eiwitten – en bijbehorende interacties en regulaties
daarvan – zijn gevonden in meerdere ontwikkelingsprocessen en plantensoor-
ten. Dit maakt de vorming van patronen van trichomen een uitstekend model
systeem voor het onderzoeken van cel differentiatie, ontwikkeling en patroon-
vorming in planten. Patronen van trichomen worden de novo gevormd, wat
betekent dat de vorming onafhankelijk is van cellulaire afstamming en sig-
nalen van onderliggende cellagen, en er dus een dynamisch, zelfregulerend
proces nodig is. Bij de verheldering van hoe dergelijke zelfregulerende pro-
cessen functioneren in patroon-vorming van trichomen is het bestuderen van
gemuteerde fenotypes van groot nut geweest. Dit is een van de voordelen van
het trichoom systeem: genetische verstoringen resulteren vaak in een waar-
neembaar effect in patroon-afwijkingen, wat een breed scala aan gemuteerde
fenotypes in Arabidopsis heeft voortgebracht. Veel van deze fenotypes zijn
moeilijk uit te leggen aan de hand van uitsluitend intuïtieve interpretaties en
de beschikbare data. Het gebruik van wiskundige modellen heeft een grote
bijdrage geleverd in het ophelderen van de mechanismen die de kern vormen
van trichoom patroonformatie. In deze thesis hebben we verschillendemodel-
len behandeld die geformuleerd zijn op basis van experimentele observaties,
met het doel om de genetische en moleculaire basis van trichoom patroonfor-
matie te beschrijven.

Hoofdstuk 1 bestaat uit een algemene introductie op het gebied van pa-
troonformatie in de biologie en hoe dit gerelateerd is aan trichomen. Aan
de basis van de wiskundige theorie achter patroonformatie liggen de reactie-
diffusie modellen die voor het eerst ontwikkeld zijn door Alan Turing in 1952.
In dit hoofdstuk hebben we een overzicht gegeven van de basis principes van
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Turing’s theorie en hebben we extensies op dit model in beschouwing geno-
men, namelijk de activator-inhibitor (AI) en activator depletion (AD) model-
len. Deze twee principes spelen een belangrijke rol in trichoom patroonvor-
ming, zoals blijkt uit de analyse van regulerende netwerk van genen zoals die
is samengevat in dit hoofdstuk. Ten slotte introduceren we de theorie achter
hoe we omgaan met onzekerheid, wat een van de grootste uitdagingen is in
het ontwikkelen van modellen voor trichoom patroonvorming.

In Hoofdstuk 2 beschouwen we het gebruik van spectrale methoden ten
behoeve van onzekerheids kwantificatie, specifiek in het geval van biologi-
sche systemen. We laten zien hoe deze methoden ingezet kunnen worden als
een alternatief voor de veelgebruikte Monte Carlo (MC) methoden. Terwijl
MC methoden gebaseerd zijn een groot aantal toetsingen, is het schema wat
voorgesteld wordt in dit hoofdstuk een manier om deze toetsingen op een ef-
ficiënte manier te kiezen. Als zodanig is deze methode vooral geschikt in het
geval waarbij het model rekenkundig gezien kostbaar is om op te lossen en
waar brute-kracht methoden als MC onhaalbaar zouden zijn. We laten zien
hoe de methode kan worden aangepast om om te kunnen gaan met moeilijk-
heden die vaak voorkomen in het geval van biologische systemen, zoals hoge
dimensionaliteit en bifurcaties.

De trichoom mutant die bestudeerd is in Hoofdstuk 3 laat een complexe
verandering in het patroon zien als gevolg van een puntmutatie waarbij de in-
teractie tussen twee relevante eiwitten is verzwakt. In dit hoofdstuk zien we
hoe het mechanisme en de fenotypische gevolgen van het veranderen van de
actieve eiwitcomplexen – tot stand gebracht door een puntmutatie in TTG1 –
leidt tot een toename in clusters van trichomen en TTG1 uitputting. We heb-
ben zwakke ttg1 allelen onderzocht, met nadruk op ttg1-9 die minder maar
geclusterde trichomen vormt (in tegenstelling tot het kale ttg1-1 allel). We
zien dat TTG1-9 minimale interactie behoudt met GL3, wat niet sterk genoeg
is om te verzekeren dat de eiwitten in de nucleus blijven. ttg1-9 mutanten
hebben geen expressie van TRY en minder CPC dan wild-type. Dit suggereert
een scenario waarbij de zwakke interactie tussen TTG1-GL3 genoeg is om an-
tagonisme te vertonen met GL1-GL3 – gebaseerd op de waarneming dat CPC
expressie verminderd is vergeleken met wild-type – maar niet genoeg dat het
resulteert in TTG1-GL3 gereguleerde activatie van TRY. Aangezien trichoom
patronen afhankelijk zijn van twee parallelle principes (AI en AD), zijn beide
modellen getest voor het gevolg van de verzwakte binding tussen TTG1 en
GL3. Terwijl in het AI model de verzwakte binding bijna nooit leidde tot for-
matie van clusters, was in het ADmodel de cluster frequentie consistent hoger
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dan waargenomen voor ttg1-9. Een gecombineerd model (AIAD) produceerde
redelijkere cluster schattingen en vertoonde een gebrek aan TTG1 uitputting
zoals ook waargenomen voor de gemuteerde planten.

Het MYB-bHLH-WD (MBW) eiwit complex stimuleert de initialisatie van
trichomen. In Hoofdstuk 4 hebben we LUMIER proeven gecombineerd met
wiskundige modellen om de formatie van het MBW complex kwantitatief
te karakteriseren. We volgen onderzoek over de competitieve binding van
TTG1-GL1-GL3 door Pesch et al., 2015, op enmaken gebruik van onze nieuwe
inzichten door voorspellingen te maken over de verwachte samenstelling van
de mogelijke combinaties van MBW complexen in planten. Een uitdaging
hierbij was om een methode te ontwikkelen die de kwantificatie van dissoci-
atie constanten van onoplosbare eiwitten mogelijk kon maken. Met behulp
van een ratiometrische aanpak waarbij we alle interacties relatief nemen aan
de kern van het MBW complex (het bHLH eiwit, GL3), laten we zien dat de
activator eiwitten GL1 en TTG1 gelijkwaardige bindingssterkten hebben, en
sterker binden dan de remmende eiwitten TRY en CPC. Daarnaast zagen we
dat een model met negatieve coöperativiteit het beste overeenkomt met de
data, en daarmee in meer detail een mogelijk scenario definieert van de com-
petitieve binding zoals getoond door Pesch et al.

TRY en CPC hebben een negatief regulerend effect op initialisatie van tri-
chomen via hun binding met GL3 waarbij ze GL3-complex formatie met acti-
vators tegenwerken. Constitutieve over-expressie van TRY of CPC resulteert
in afwezigheid van trichomen; de try cpc dubbel mutant vertoont grote clus-
ters van trichomen. Hoewel TRY en CPC eiwitten zijn die 55% identiek zijn,
vertonen de try mutant een toename in clusters en afname in aan aantal tri-
chomes, terwijl de cpc mutant geen clusters maar een toename in aantal tri-
chomen vertoont. In Hoofdstuk 5 hebben we een model ontwikkeld wat een
mogelijke verklaring kan geven voor deze raadselachtige fenotypes. De reeds
bestaande hypothese over de gemuteerde fenotypes was dat TRY op korte af-
standen effectief is en CPC op lange afstanden. Tijdens het testen van deze
hypothese met het model in Hoofdstuk 4 zagen we dat het verschil in mo-
biliteit van de remmers wel de enkele mutanten kon verklaren, maar niet de
dubbel mutant. Dit gaf aan dat de effecten van deze mutaties niet simpelweg
additief waren zoals eerder aangenomen. Daarom keken we naar andere ver-
klaringen en ontwikkelden een model dat een gesimplificeerde vorm van cel
differentiatie simuleerde waarbij patroonvormende genen minder tot expres-
sie kwamen. Deze toevoeging leidde tot de geobserveerde cluster formatie in
de dubbel mutant en de voorspelling is dat dit een belangrijk mechanisme is
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in de verklaring van deze mutant.

In Hoofdstukken 6 en 7 hebben we trichoom patroonvorming bestudeerd
vanuit een evolutionair perspectief. Door nauw verwante Brassicaceae soorten
te vergelijken hebben we gezien hoe het onderliggende netwerk zich kan aan-
passen aan de verscheidene expressie-niveaus die waargenomen zijn voorAra-
bidopsis thaliana, Arabis alpina en Cardamine hirsuta. In Hoofdstuk 6 hebben
we een modelleerbenadering gebruikt om de twee tegenovergestelde fenoty-
pen as gevolg van dezelfde mutatie tussen A. thaliana en A.alpina te verklaren.
Terwijl over-expressie van GL3 inA. thaliana leidt tot een toename in trichoom
aantallen, leidt dezeflde mutatie in A. alpina tot lagere trichoom aantallen.
Geleid door de observatie dat GL1 expressie niveaus in de wild-types van A.
alpina lager waren dan die van A. thaliana, voorspelde ons model dat deze
verandering voldoende is om de tegenovergestelde fenotypes van de soorten
te verklaren. In Hoofdstuk 7 hebben we daarnaast ook de expressie niveaus
van de patroonvormende genen in Cardamine hirsuta bepaald. We hebben een
wiskundig model gebruik om te identificeren welke mogelijk adaptaties in
het netwerk kunnen leiden tot de waargenomen verschillen tussen de soor-
ten. Bovendien voorspelde een gevoeligheidsanalyse dat de dichtheid van het
trichoom patroon het meest gevoelig was voor veranderingen in de stabiliteit
van het MBW complex in alle drie de soorten.

Ten slotte verschaft Hoofdstuk 8 een algemene discussie van het werk uit
de voorgaande hoofdstukken. Hier kijken we terug naar de uitdagingen die
we zijn tegenkomen bij het modelleren van trichoom patronen, nieuwe be-
vindingen en assumpties worden bediscussieerd, en afsluitende opmerkingen
over de relevantie van onze bevindingen – specifiek voor het trichoom sys-
teem, maar ook in de context van ontwikkelings- en patroon-onderzoek in het
algemeen – worden besproken.
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