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Abstract: The spatial extent and incidence of Lyme disease is increasing in the United States, particu-
larly in the Upper Midwest and Northeast. Many previous studies have explored the drivers of its
spatial pattern, however, few studies tried to explore the drivers for the changes of Lyme disease. We
here compared the spatial patterns of changes of human Lyme cases and incidence in the Northeast
and Upper Midwest between 2003–2005 and 2015–2017, and applied two different approaches (i.e., a
statistical regularization approach and model averaging) to investigate the climatic and landscape
factors affecting the risk change between the two periods. Our results suggested that changes in land-
use variables generally showed different relationships with changes of human Lyme risk between
the two regions. Changes of variables related to human-use areas showed opposite correlations in
two regions. Besides, forest area and forest edge density generally negatively correlated with the
change of human Lyme risk. In the context of ongoing habitat change, we consider this study may
provide new insight into understanding the responses of human Lyme disease to these changes, and
contribute to a better prediction in the future.

Keywords: Lyme disease; Borrelia burgdorferi; landscape factors; climatic factors; risk change

1. Introduction

Lyme disease, as one of the most influential tick-borne diseases in North America,
is now still spreading geographically and increasing in incidence in the United States of
America, particularly in the upper Midwestern and northeastern states [1,2]. It has been
suggested that the reported number of human cases in the USA has tripled between 2004
and 2016 [3]. Lyme disease has become a serious public health concern and a recent study
made a prediction that human Lyme cases in the USA will increase by 20% in the next
two decades [4]. Better understanding the spatial pattern of Lyme disease and the driving
factors is not only beneficial to its prediction but also contributes to better prevention [5].

The transmission of Borrelia burgdorferi, the spirochetal bacterium causing Lyme dis-
ease, is complex, involving several vertebrate host species and tick vectors. Thus any
factor influencing their survival and/or distributions is able to affect disease risk [6]. Many
studies have explored the factors that affect Lyme disease risk in the USA [7,8].

These studies suggested that climatic factors (e.g., temperature and precipitation) are
capable of playing important roles in disease spread [9–13], as these variables can not only
directly affect tick survival, but also influence tick activity and host finding rates [8,14].
However, the effects of these variables might not be linear. For example, experimental
studies have suggested that both extreme cold and extreme hot temperatures are able
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to decrease both tick survival and host-seeking activity [14–16]. Moreover, the effects of
climatic variables on tick density may also vary between different regions. For example,
a previous study with ten-year fieldwork suggested that precipitation in early summer
or late spring can favor tick survival and increase tick density in northeastern United
States [17]. However, a study in Canada showed that climate warming with a higher
average daily minimum summer temperature was positively associated with tick densities,
and suggested that a relatively warm microclimate may even benefit tick populations [13] .
A recent study also demonstrated that the climatic variables generally had opposite effects
on Lyme cases in the Northeast and Upper Midwest of the USA [5].

Besides of climatic variables, several landscape factors have also been suggested to
correlate with Lyme risk [18,19]. For example, previous studies suggested that the presence
of forest generally increases the risk of Lyme disease [20,21]. A dense forest litter leads
to a moisture condition and provides suitable habitats for both ticks and small mammal
host species [22,23]. In addition, the fragmentation of forest habitat is also able to influence
human Lyme risk not only due to its effect on the movements or distributions of host species,
but also through its impact on the contacts between human and tick vectors [2,19,24,25].
For example, the edge density between forests and residential areas in the Northeast of the
USA was positively correlated with Lyme disease incidence [26]. One of the main reasons is
that the vegetation in this edge habitat is a preferred habitat for many host species of ticks,
such as small rodent species and the white-tailed deer [24]. However, habitat fragmentation
may also slow down disease spread because of the restriction on host movements in
isolated patches [27]. For instance, a previous study found a lower prevalence of B. afzelii
in islands compared to that in the mainland in the United Kingdom [28]. In addition,
human incidence of Lyme disease was lower in fragmented landscapes around Connecticut,
although both tick density and infection prevalence in ticks showed positive relationships
with fragmentation [24].

When retrospecting these studies, we found that almost all these studies explored
the drivers for the spatial patterns of Lyme risk, while rare studies, to our knowledge,
investigated the drivers for the changes in Lyme risk. Therefore, in this study, we mainly
aim to explore the spatial patterns of changes in Lyme disease risk in the United States.
As several recent studies demonstrated that the climatic and landscape factors may exert
different effects on human Lyme risk in the Upper Midwest and Northeast [5,18], we also
compare the differences in risk factors between the two regions. This study can contribute
to a better understanding of the drivers of disease risk change in the context of ongoing
climate change and increasing forest fragmentation.

2. Materials and Methods
2.1. Lyme Disease Data

The study area included six states in the Upper Midwest and thirteen states in the
Northeast (Figure 1), where the human Lyme cases were most frequently reported and
accounted for almost 90% of all human cases in the USA (Centers for Disease Control and
Prevention, CDC). It has been suggested that the disease in these two regions was mainly
transmitted by the blacklegged tick, Ixodes scapularis [12,14]. According to a previous
study [7], we here excluded those counties without the establishment of I. scapularis popu-
lations, as climatic and landscape factors play quite important roles in tick development
and survival [26], and including the counties without tick might weaken the effects of
these factors. In addition, as the spatial extent of Lyme disease is still spreading, we only
included the counties where human cases were reported during 2003–2005 to avoid false
absences (i.e., counties that reported human cases as zero before disease establishment).
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Figure 1. Spatial pattern of the number of human Lyme cases in 2003–2005 (a), 2007–2009 (b),
2011–2013 (c), and 2015–2017 (b).

As the life cycle of I. scapularis usually passes through 3 years [26], we consider
comparing Lyme disease risk between two single years might not fully represent the
true risk changes. Therefore, we collected the annual number of human Lyme cases and
incidence for each county during two periods (i.e., 2003–2005 and 2015–2017) from the
CDC (https://www.cdc.gov/ (accessed on 25 May 2020)). We then calculated the changes
of human Lyme cases between two periods as:

∆LymeRisk = log
(

total number of human cases in 2015–2017
total number of human cases in 2003–2005

)
(1)

We also calculated the changes of Lyme incidence between the two periods in the
same way.

2.2. Data of Predictors

As several previous studies suggested that climatic variables one year prior might
be more predictive for Lyme disease risk [29], we here calculated, the seasonal mean

https://www.cdc.gov/
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temperature and precipitation (Table 1) during 2002–2004 and 2014–2016 for each county,
based on the monthly values of these variables (with a grid cell of 0.5 × 0.5 degree) obtained
from the Climate Research Unit datasets (CRUs) [30].

Table 1. Description of climatic and landscape factors used in this study. X and Y relate to the season
(for climatic variables) and land cover class (for landscape variables).

Predictors Descriptions Notes

Pre_X Seasonal mean precipitation in previous year X = (1. spring; 2. summer; 3. autumn; 4. Winter)
MeanT_X Seasonal mean temperature in previous year

CA_Y Total area of a land cover class
Y = (21–24,41–43)ED_Y Edge density of a land cover at the region

We collected the land-use cover maps for 2004 and 2016 from the National Land Cover
Database (NLCD) [31]. Following previous studies [26], we here focused on seven land
cover classes, four of which represent human-use area: developed-open space (class 21),
developed space with low intensity (class 22), developed space with medium intensity
(class 23), and developed space -high intensity (class 24). Another three classes related to
forest habitat and represented, respectively, deciduous forest (class 41), evergreen forest
(class 42), and mixed forest (class 43). We calculated the total area (CA) and the edge density
(ED) for each land cover class and for each county (Table 1).

For each county, we calculated the changes of seasonal mean precipitation between
the two periods (Pre_X) as:

Pre_X =
Pre_X(2014–2016)− Pre_X(2002–2004)

Pre_X(2002–2004)
(2)

For the seasonal mean temperature, the changes of variables (MeanT_X) were calcu-
lated as the mean values of 2014–2016 minus those of 2002–2004. The changes of landscape
variables between two periods were calculated in asimilar way with changes in precipitation.

2.3. Statistical Analyses

To investigate the effects of predictors on the changes in human Lyme risk between
the two periods, we used general linear mixed models (LMM) with state as a random
factor to control for the between-state variations. All predictor variables were scaled before
performing LMMs.

We first fitted univariate models to test the effect of each predictor, and identified
potential risk factors as the vairables with a p-value < 0.05 in univariate analyses. With
these potential risk factors, we then conducted LASSO (Least absolute shrinkage and
selection operator) regression, which was recently introduced into ecological studies [32],
to construct multiple regression models. As a statistical regularization approach (LASSO
regression), LASSO regression can not only deal with independent variables with multi-
collinearity, but also improve models’ predictive accuracy by trading off between bias
and variance in parameter estimates [33]. In LASSO regression, ten-fold cross selection
(CV) is usually applied to find the turning regularization parameter, λ. However, disease
data usually show spatial autocorrelation, which may bias the standard CV due to the
dependency between training data and validation data [34]. We here applied a spatial
CV [35] that can potentially reduce the overestimate of the real capacity of the spatial model
to make reliable predictions in areas distant from the training set, and thus is important
for evaluating the extrapolation capacity of a given model [35]. In this spatial CV, the
data for the Upper Midwest and the Northeast, based on the State of the sample, were
respectively divided into six-folds and thirteen-folds. Then, the spatial CV was performed
to generate the optimal regularization parameter, λ, which then was used to construct the
final LASSO model.
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To test the robustness of our results from LASSO regression, we also performed
traditional model averaging in multiple regression analyses. In these analyses, we first
checked for the multi-collinearity by calculating the Pearson correlation coefficients (r)
between the potential risk factors from the univariate analyses. For those variables that
showed high multi-collinearity (with r > 0.7), we only used the variable with the smallest
p-value in model averaging analyses [36]. We ranked the candidate models based on the
changed AICc values [37]. We then considered the models within ∆AICc < 2 as competing
models, and averaged the regression coefficient of each independent variable. In both
univariate and multiple models, we control for the effect of area size by retaining the area
of county (AREA) in the model, and the variable AREA was not penalized in LASSO.
Statistical analyses were conducted in R 4.0.2 using the package lme4 [38], MuMIn [39] and
glmnet [40].

3. Results
3.1. Univariate Regression Analyses

The univariate regression analyses for the changes of the human Lyme case numbers
(Table 2) showed similar results with the changes of human Lyme incidence (Table 3). For
climatic variables, change of mean spring temperature was negatively correlated with
the changes of human Lyme risk in Upper Midwest of the United States, while showed
a positive correlation with risk changes in the Northeast. In the Northeast, the change in
disease risk was negatively associated with the changes in the mean spring and winter
precipitation, while positively correlated with changes in the mean summer precipitation.
Changes of disease risk in the Upper Midwest showed negative correlations with changes
of mean precipitation in summer and winter, while positive correlation with precipitation
in autumn.

Table 2. Univariate regression results (standardized regression coefficient, b, and t) for the indepen-
dent variables correlated with the changes of the number of human Lyme cases in the Upper Midwest
(UM) and Northeast (NE).

Variables Upper Midwest Northeast
b t b t

Mean spring temperature −0.35 −2.15 * 0.37 3.42 ***
Mean summer temperature −0.12 −1.39 0.28 2.64 **
Mean autumn temperature −0.21 −1.48 0.42 2.77 **
Mean winter temperature 0.07 0.75 0.13 0.86
Mean spring precipitation −0.07 −0.59 −0.89 −8.36 ***

Mean summer precipitation −0.30 −2.99 ** 0.30 3.21 **
Mean autumn precipitation 0.47 4.76 *** 0.062 0.49
Mean winter precipitation −0.22 −2.18 * −1.18 −7.18 ***
Cover area of open space 0.29 3.71 *** −0.08 −0.97

Edge density of open space 0.37 4.93 *** −0.17 −2.22 *
Cover area of low-intensity space 0.25 3.21 ** −0.19 −2.45 *

Edge density of low-intensity space 0.27 3.54 *** −0.18 −2.20 *
Cover area of medium-intensity space 0.18 2.18 * −0.14 −1.62

Edge density of
medium-intensity space 0.22 2.76 ** −0.13 −1.50

Cover area of high-intensity space 0.02 0.23 −0.04 −0.47
Edge density of high-intensity space 0.14 1.78 −0.06 −0.68

Cover area of deciduous forest −0.20 −2.75 ** 0.24 3.01 **
Edge density of deciduous forest −0.38 −4.87 *** 0.01 0.14

Cover area of evergreen forest 0.04 0.49 −0.08 −1.05
Edge density of evergreen forest −0.04 −0.49 −0.19 −2.45 *

Cover area of mixed forest −0.18 −2.20 * −0.11 −1.45
Edge density of mixed forest −0.18 −2.25 * −0.19 −2.45 *

* p < 0.05; ** p < 0.01, *** p < 0.001.

For landscape factors, all indicators related to the human-use area (except for class 24)
showed positive correlations with the changes of human Lyme risk in the Upper Midwest,
while indicators related to developed-open space (class 21) and developed-low intensity
space (class 22) showed negative correlations in the Northeast (Tables 2 and 3). Deciduous
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forest variables showed negative associations with risk changes in the Upper Midwest,
while positive correlations in the Northeast. In addition, risk change in the Upper Midwest
was also negatively correlated with mixed forest, and risk change in the Northeast was also
natively correlated with the edge densities of evergreen forest and mixed forest.

Table 3. Univariate regression results (standardized regression coefficient, b, and t) for the indepen-
dent variables correlated with the changes of human Lyme incidence in the Northeast (NE) and
Upper Midwest (UM) United Sates.

Predictors
Upper Midwest Northeast

b t b t

Mean spring temperature −0.36 −2.22 * 0.39 3.63 ***
Mean summer temperature −0.13 −1.53 0.30 2.83 **
Mean autumn temperature −0.24 −1.67 0.45 2.93 **
Mean winter temperature 0.06 0.64 0.13 0.84
Mean spring precipitation −0.08 −0.67 −0.92 −8.63 ***

Mean summer precipitation −0.30 −2.94 ** 0.32 3.32 **
Mean autumn precipitation 0.46 4.65 *** 0.08 0.61
Mean winter precipitation −0.20 −2.07 * −1.19 −7.22 ***
Cover area of open space 0.24 3.08 ** −0.12 −1.48

Edge density of open space 0.3 4.27 *** −0.22 −2.76 **
Cover area of low-intensity space 0.19 2.49 * −0.25 −3.17 **

Edge density of low-intensity space 0.22 2.81 ** −0.24 −2.93 **
Cover area of medium-intensity space 0.13 1.67 −0.20 −2.31 *

Edge density of
medium-intensity space 0.18 2.21 * −0.19 −2.21 *

Cover area of high-intensity space −0.01 −0.12 −0.07 −0.89
Edge density of high-intensity space 0.10 1.31 −0.11 −1.26

Cover area of deciduous forest −0.19 −2.59 ** 0.25 3.02 **
Edge density of deciduous forest −0.36 −4.61 *** 0.02 0.20

Cover area of evergreen forest 0.04 0.48 −0.07 −0.95
Edge density of evergreen forest −0.04 −0.49 −0.18 −2.40 *

Cover area of mixed forest −0.16 −2.04 * −0.10 −1.33
Edge density of mixed forest −0.17 −2.10 * −0.17 −2.27 *

* p < 0.05; ** p < 0.01, *** p < 0.001.

3.2. Multiple Regression Analyses

Generally, analyses on the change of human Lyme cases and incidence generated
similar results for both LASSO regression (Figure 2) and model averaging (Figure 3). In
both the Upper Midwest and the Northeast, the results only showed slight differences
between LASSO regression and model averaging.

In the Upper Midwest (Figures 2a and 3a), both the change of case number and
incidence were negatively correlated with the changes of mean precipitation in summer
(Pre_2), and the edge density of deciduous forests (ED_41); while positively correlated with
the mean precipitation in autumn (Pre_3), the edge densities of open space (ED_21) and
medium-intensity space (ED_23). LASSO regression (Figure 2a) also identified a negative
correlation of the mean temperature in spring (MeanT_1).

In the Northeast (Figures 2b and 3b), the results suggested that the risk change was
positively associated with the change of mean temperature in spring (MeanT_1) and the
cover area of deciduous forest (CA_41), while negatively correlated with the changes of
mean precipitation in spring (Pre_1) and winter (Pre_4), and the edge density of mixed
forest (ED_43). LASSO regression (Figure 2b) also identified a positive correlation of the
mean precipitation in summer (Pre_2) and a negative correlation of edge density of open
space (ED_21).
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4. Discussion

In this study, we compared the spatial patterns of human Lyme risk in the Upper
Midwest and Northeast of United States in two periods (2003–2005 and 2015–2017), and
investigated the correlations between the changes of landscape/climatic factors and risk
change. The results from univariate analyses suggested that climate and landscape variables
generally showed different, even opposite, relationships with the changes in human Lyme
risk in the Upper Midwest and Northeast. In addition, we used both model averaging and
LASSO regression to construct the multiple regression models, which identified several
but distinct risk factors for the two regions. In this discussion, we first discuss the effects
of climatic and landscape factors on the change of human Lyme risk. Then, we compare
the results from LASSO and model averaging and focus on the potential applications of
LASSO approach and spatial cross validation. Finally, we acknowledge the limitation of
this study and give suggestions for future research.

4.1. Effects of Climatic Factors

In our analyses, for precipitation variables, we found that change of mean summer pre-
cipitation was positively associated with the changes of human Lyme risk in the Northeast,
which is consistent with a previous study showing that precipitation in early summer can
favor tick survival in the Northeast [17]. However, the changes of mean spring and winter
precipitation were negatively associated with changes of human risk changes in the North-
east. We consider this might be caused by the effects of precipitation on food availability
for rodent species, many of which are competent hosts for Lyme disease. In the Northeast,
the rainfall in winter and spring (86 mm and 101 mm respectively) were much higher than
those in the Upper Midwest (24 mm and 77 mm respectively). Increasing winter and spring
rainfall in this region might rot the food collected by rodents, reducing rodent abundance.
For temperature variables, the results showed that changes in mean spring temperature
were negatively associated with human risk changes in Upper Midwest, which is consistent
with our expectation that ticks are vulnerable to high temperature. However, the positive
effect of mean temperature we identified in the Northeast did not follow this expectation,
but was consistent with a previous study suggesting that a high temperature at ground
level is able to promote tick abundance [13]. In general, these results, consistent with
several previous studies, showed that climatic variables could show considerably different
effects on Lyme risk among different regions [5,29], and indicated that the changes of Lyme
disease in these two regions might show different responses to the ongoing climate change.

4.2. Effects of Landscape Factors

For landscape factors, we found that, for each land cover type, the total area (CA) and
the edge density (ED) are highly correlated, therefore, it is difficult to know which index had
the true causal effect on the change of Lyme risk. Our results from the univariate regression
analyses suggested that the landscape variables related to develop-space (class 21–23) gen-
erally had opposite effects on the risk change in the two regions, with positive associations
in Upper Midwest and negative associations in the Northeast. We consider this result might
be caused by the difference of development between the two regions. Generally, counties in
the Upper Midwest were less developed than those in the Northeast, as suggested by lower
percentage of develop-space area in the Upper Midwest (10.79% in 2003–2005) than that in
the Northeast (21.61% in 2003–2005). Increasing develop-space area in the Upper Midwest
may cause more edges between human residences and forests, leading to an increase in
the contact rates between people and ticks. However, the negative effects of develop-space
area identified in the Northeast were not consistent with previous studies, and needs more
studies to explore the underlying mechanisms. For forest related factors, the deciduous
forest has opposite correlations between the Upper Midwest and the Northeast. In the
Upper Midwest, decreasing forests, particularly deciduous forest, might be correlated
with more contacts of human to forests and ticks, thus can increase human Lyme disease
risk. In addition, evergreen forests (class 42) and mixed forests (class 43) generally had
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negative effects on Lyme disease risk, which was consistent to several previous studies
assuming that these forests might be poor environments for ticks regarding to temperature
and precipitation as they were generally located in mountainous areas [26]. In general, the
climatic and landscape factors showed divergent effects on the changes in human Lyme
risk in the two regions. We consider this result might attribute to the differences in tick and
pathogen dispersal and distributions between the regions, which can be contributed by the
differences in the dominant reservoir host species [3].

4.3. LASSO and Model Averaging

Landscape metrics are notorious numerous, and some of them are correlated with
each other, including these metrics, particularly the metrics without explicit hypotheses,
may lead to a high chance of detecting spurious correlations and over-fit of the model.
Moreover, as disease risk data usually show spatial autocorrelation (e.g., cluster geographi-
cally), random partition of the data into training and validation sets can lead to over-fit of
the spatial model and overestimate the capacity of the model to make reliable predictions
in regions far away from the training set [35]. We thus here applied a LASSO approach
integrated with spatial cross validation (spatial CV), together with traditional model av-
eraging approach, to construct multiple regression models. The results from these two
different approaches were quite similar. We consider this might be caused by the little
spatial-autocorrelation of the change in Lyme risk, as suggested by low Moran’s I indices
(0.131 and 0.134 for case number change and incidence change in the Upper Midwest, 0.056
and 0.051 in the Northeast).

With increasing high-resolution land cover data and advances in remote sensing
techniques, scientists have been showing more and more interest in exploring the roles
of landscape factors on pathogen transmission [41,42]. We consider our approach could
be applied in the future studies which try to map the risk of infectious diseases using
landscape metrics.

4.4. Limitations

We must admit that the Lyme case number obtained from CDC might be an underesti-
mate of actual human cases. Particularly, different states may apply different approaches to
gather case data. Including state as a random effect in our analyses was able to control for,
to some extent, the differences in surveillance way among states. In addition, we admit
that other socioeconomic (e.g., human behavior) or biotic factors (e.g., tick density, host
community composition, etc.) could be also important in determining human Lyme disease
risk. However, due to the lack of landscape-scale data of these factors, we could not control
for these factors. Finally, this study focus on the correlations between Lyme risk changes
and predictors, and may not disclose the causality underlying the detected relationships,
we thus suggest future studies could explore the underlying mechanisms with more field
data, such as the fluctuation of rodent density or tick density. Despite of the limitations of
our analyses, this study is the first study, to our knowledge, trying to investigate and com-
pare the drivers of spatial patterns in Lyme risk change in two “highly endemic” regions in
the United States. In addition, we consider the findings here in Lyme disease may also be
applied in other I. scapularis-transmitted diseases, such as Anaplasmosis and Babesiosis
which are also most frequently reported in the Upper Midwest and the Northeast.

5. Conclusions

In this study, we compared the spatial patterns of human Lyme disease in the Upper
Midwest and Northeast of United States in two periods (2003–2005 and 2015–2017), and
investigate the correlations of the changes in climatic and landscape variables with these
patterns. Our analyses demonstrated that variables related to climate and landscape factors
generally had different, even opposite, effects on the changes of human Lyme disease in the
two regions. Besides, even in the same region, the correlations of changes of precipitation
vary among different seasons. Changes of human-use area show opposite effects on
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changes of human Lyme disease in these two regions. Generally, our results indicated that
the changes of human Lyme disease in the two regions may show different responses to the
ongoing changes in climate and land use, which might be beneficial to the future prediction
of Lyme disease. As this is a correlation analysis which cannot disclose the causality for the
detected relationships, we suggest future studies could explore the ecological mechanisms
underlying the correlations we found, by collecting detailed field data such as rodent and
tick density.

Author Contributions: Conceptualization, Y.M., Y.D. and Z.Y.X.H.; Data collection, Y.M., G.H. and
R.Y.; Data processing, Y.M., R.Y. and G.H.; Data analyses, Y.M., G.H. and Y.X.G.W.; Supervision,
Z.Y.X.H. and Y.D.; Writing—original draft, Y.M. and G.H.; Writing—review & editing, R.Y., Y.X.G.W.
and Y.D.; funding acquisition, Z.Y.X.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
31870400.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Lyme disease data was collected from CDC (https://www.cdc.gov/
lyme/stats/tables.html) (accessed on 25 May 2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turney, S.; Gonzalez, A.; Millien, V. The negative relationship between mammal host diversity and Lyme disease incidence

strengthens through time. Ecology 2014, 95, 3244–3250. [CrossRef]
2. Wang, Y.X.; Matson, K.D.; Xu, Y.; Prins, H.H.; Huang, Z.Y.; de Boer, W.F. Forest connectivity, host assemblage characteristics of

local and neighboring counties, and temperature jointly shape the spatial expansion of lyme disease in United States. Remote.
Sens. 2019, 11, 2354. [CrossRef]

3. Gardner, A.M.; Pawlikowski, N.C.; Hamer, S.A.; Hickling, G.J.; Miller, J.R.; Schotthoefer, A.M.; Tsao, J.I.; Allan, B.F. Landscape
features predict the current and forecast the future geographic spread of Lyme disease. Proc. R. Soc. B 2020, 287, 20202278.
[CrossRef] [PubMed]

4. Dumic, I.; Severnini, E. “Ticking bomb”: The impact of climate change on the incidence of Lyme disease. Can. J. Infect. Dis. Med.
2018, 2018, 5719081. [CrossRef] [PubMed]

5. Dong, Y.; Huang, Z.; Zhang, Y.; Wang, Y.X.; La, Y. Comparing the Climatic and Landscape Risk Factors for Lyme Disease Cases in
the Upper Midwest and Northeast United States. Int. J. Environ. Res. Public Health 2020, 17, 1548. [CrossRef] [PubMed]

6. Hofmeester, T.R.; Jansen, P.A.; Wijnen, H.J.; Coipan, E.C.; Fonville, M.; Prins, H.H.; Sprong, H.; van Wieren, S.E. Cascading effects
of predator activity on tick-borne disease risk. Proc. R. Soc. B 2017, 284, 20170453. [CrossRef]

7. Eisen, R.J.; Piesman, J.; Zielinski-Gutierrez, E.; Eisen, L. What do we need to know about disease ecology to prevent Lyme disease
in the northeastern United States? J. Med. Entomol. 2012, 49, 11–22. [CrossRef]

8. Kilpatrick, A.M.; Dobson, A.D.; Levi, T.; Salkeld, D.J.; Swei, A.; Ginsberg, H.S.; Kjemtrup, A.; Padgett, K.A.; Jensen, P.M.; Fish, D.
Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc.
B Biol. Sci. 2017, 372, 20160117. [CrossRef]

9. Ostfeld, R.S.; Canham, C.D.; Oggenfuss, K.; Winchcombe, R.J.; Keesing, F. Climate, Deer, Rodents, and Acorns as Determinants of
Variation in Lyme-Disease Risk. PLoS Biol. 2006, 4, e145. [CrossRef]

10. Lindgren, E.; Tälleklint, L.; Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the
disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000, 108, 119–123. [CrossRef]

11. McPherson, M.; García-García, A.; Cuesta-Valero, F.J.; Beltrami, H.; Hansen-Ketchum, P.; MacDougall, D.; Ogden, N.H. Expansion
of the Lyme disease vector Ixodes scapularis in Canada inferred from CMIP5 climate projections. Environ. Health Perspect. 2017,
125, 057008. [CrossRef] [PubMed]

12. Eisen, R.J.; Eisen, L.; Ogden, N.H.; Beard, C.B. Linkages of weather and climate with Ixodes scapularis and Ixodes pacificus
(Acari: Ixodidae), enzootic transmission of Borrelia burgdorferi, and Lyme disease in North America. J. Med. Entomol. 2016, 53,
250–261. [CrossRef] [PubMed]

13. Werden, L.; Barker, I.K.; Bowman, J.; Gonzales, E.K.; Leighton, P.A.; Lindsay, L.R.; Jardine, C.M. Geography, deer, and host
biodiversity shape the pattern of Lyme disease emergence in the Thousand Islands archipelago of Ontario, Canada. PLoS ONE
2014, 9, e85640. [CrossRef] [PubMed]

14. Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. B Biol. Sci. 2015,
370, 20140051. [CrossRef] [PubMed]

https://www.cdc.gov/lyme/stats/tables.html
https://www.cdc.gov/lyme/stats/tables.html
http://doi.org/10.1890/14-0980.1
http://doi.org/10.3390/rs11202354
http://doi.org/10.1098/rspb.2020.2278
http://www.ncbi.nlm.nih.gov/pubmed/33352074
http://doi.org/10.1155/2018/5719081
http://www.ncbi.nlm.nih.gov/pubmed/30473737
http://doi.org/10.3390/ijerph17051548
http://www.ncbi.nlm.nih.gov/pubmed/32121283
http://doi.org/10.1098/rspb.2017.0453
http://doi.org/10.1603/ME11138
http://doi.org/10.1098/rstb.2016.0117
http://doi.org/10.1371/journal.pbio.0040145
http://doi.org/10.1289/ehp.00108119
http://doi.org/10.1289/EHP57
http://www.ncbi.nlm.nih.gov/pubmed/28599266
http://doi.org/10.1093/jme/tjv199
http://www.ncbi.nlm.nih.gov/pubmed/26681789
http://doi.org/10.1371/journal.pone.0085640
http://www.ncbi.nlm.nih.gov/pubmed/24416435
http://doi.org/10.1098/rstb.2014.0051
http://www.ncbi.nlm.nih.gov/pubmed/25688022


Sustainability 2022, 14, 5802 11 of 11

15. Clark, D.D. Lower temperature limits for activity of several Ixodid ticks (Acari: Ixodidae): Effects of body size and rate of
temperature change. J. Med. Entomol. 1995, 4, 449–452. [CrossRef]

16. Ogden, N.H.; Lindsay, L.R.; Beauchamp, G.; Charron, D.; Maarouf, A.; O’Callaghan, C.J.; Waltner-Toews, D.; Barker, I.K.
Investigation of Relationships Between Temperature and Developmental Rates of Tick Ixodes scapularis (Acari: Ixodidae) in the
Laboratory and Field. J. Med. Entomol. 2004, 41, 622–633. [CrossRef]

17. McCabe, G.J.; Bunnell, J.E. Precipitation and the occurrence of Lyme disease in the northeastern United States. Vector. Borne.
Zoonotic. Dis. 2004, 4, 143–148. [CrossRef]

18. Ballard, K.; Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted
regression. Appl. Geogr. 2021, 127, 102383. [CrossRef]

19. Diuk-Wasser, M.A.; VanAcker, M.C.; Fernandez, M.P. Impact of Land Use Changes and Habitat Fragmentation on the Eco-
epidemiology of Tick-Borne Diseases. J. Med. Entomol. 2020, 58, 1546–1564. [CrossRef]

20. Killilea, M.E.; Swei, A.; Lane, R.S.; Briggs, C.J.; Ostfeld, R.S. Spatial dynamics of lyme disease: A review. Ecohealth 2008, 5, 167–195.
[CrossRef]

21. Wood, C.L.; Lafferty, K.D. Biodiversity and disease: A synthesis of ecological perspectives on Lyme disease transmission. Trends
Ecol. Evol. 2013, 28, 239–247. [CrossRef] [PubMed]

22. Bertrand, M.R.; Wilson, M.L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in nature: Life
cycle and study design implications. J. Med. Entomol. 1996, 33, 619–627. [CrossRef] [PubMed]

23. Schulze, T.L.; Jordan, R.A.; Hung, R.W. Suppression of subadult Ixodes scapularis (Acari: Ixodidae) following removal of leaf
litter. J. Med. Entomol. 1995, 32, 730–733. [CrossRef] [PubMed]

24. Brownstein, J.S.; Skelly, D.K.; Holford, T.R.; Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk.
Oecologia 2005, 146, 469–475. [CrossRef] [PubMed]

25. Horobik, V.; Keesing, F.; Ostfeld, R.S. Abundance and Borrelia burgdorferi-infection prevalence of nymphal Ixodes scapularis
ticks along forest–field edges. EcoHealth 2006, 3, 262–268. [CrossRef]

26. Tran, P.M.; Waller, L. Effects of landscape fragmentation and climate on Lyme disease incidence in the northeastern United States.
Ecohealth 2013, 10, 394–404. [CrossRef] [PubMed]

27. Li, S.; Hartemink, N.; Speybroeck, N.; Vanwambeke, S.O. Consequences of landscape fragmentation on Lyme disease risk: A
cellular automata approach. PLoS ONE 2012, 7, e39612. [CrossRef]

28. Millins, C.; Dickinson, E.R.; Isakovic, P.; Gilbert, L.; Wojciechowska, A.; Paterson, V.; Tao, F.; Jahn, M.; Kilbride, E.; Birtles, R.; et al.
Landscape structure affects the prevalence and distribution of a tick-borne zoonotic pathogen. Parasit Vector 2018, 11, 621.
[CrossRef]

29. Schauber, E.M.; Ostfeld, R.S.; Evans, J.; Andrew, S. What is the best predictor of annual Lyme disease incidence: Weather, mice, or
acorns? Ecol. Appl. 2005, 15, 575–586. [CrossRef]

30. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.
10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [CrossRef]

31. Wickham, J.; Homer, C.; Vogelmann, J.; McKerrow, A.; Mueller, R.; Herold, N.; Coulston, J. The multi-resolution land characteristics
(MRLC) consortium—20 years of development and integration of USA national land cover data. Remote. Sens. 2014, 6, 7424–7441.
[CrossRef]

32. Tredennick, A.T.; Hooker, G.; Ellner, S.P.; Adler, P.B. A practical guide to selecting models for exploration, inference, and prediction
in ecology. Ecology 2021, 102, e03336. [CrossRef]

33. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New
York, NY, USA, 2009.

34. Randin, C.F.; Dirnböck, T.; Dullinger, S.; Zimmermann, N.E.; Zappa, M.; Guisan, A. Are niche-based species distribution models
transferable in space? J. Biogeogr. 2006, 33, 1689–1703. [CrossRef]

35. Dhingra, M.S.; Artois, J.; Robinson, T.P.; Linard, C.; Chaiban, C.; Xenarios, I.; Engler, R.; Liechti, R.; Kuznetsov, D.; Xiao, X. Global
mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation. eLife 2016, 5,
e19571. [CrossRef] [PubMed]

36. Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods. Ecol. Evol.
2010, 1, 3–14. [CrossRef]

37. Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC model selection and multimodel inference in behavioral ecology: Some
background, observations, and comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [CrossRef]

38. Bates, D.; Sarkar, D.; Bates, M.D.; Matrix, L. The lme4 package. R Package Version 2007, 2, 74.
39. Barton, K. MuMIn: Multi-Model Inference. 2009. Available online: http://r-forge.r-project.org/projects/mumin/ (accessed on

23 April 2022).
40. Hastie, T.; Qian, J.; Tay, K. An Introduction to Glmnet. CRAN R Repositary. 2021. Available online: https://cloud.r-project.org/

web/packages/glmnet/vignettes/glmnet.pdf (accessed on 23 April 2022).
41. Ostfeld, R.S.; Glass, G.E.; Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 2005, 20,

328–336. [CrossRef]
42. Estrada-Peña, A.; Ostfeld, R.S.; Peterson, A.T.; Poulin, R.; de la Fuente, J. Effects of environmental change on zoonotic disease risk:

An ecological primer. Trends Parasitol. 2014, 30, 205–214. [CrossRef]

http://doi.org/10.1093/jmedent/32.4.449
http://doi.org/10.1603/0022-2585-41.4.622
http://doi.org/10.1089/1530366041210765
http://doi.org/10.1016/j.apgeog.2020.102383
http://doi.org/10.1093/jme/tjaa209
http://doi.org/10.1007/s10393-008-0171-3
http://doi.org/10.1016/j.tree.2012.10.011
http://www.ncbi.nlm.nih.gov/pubmed/23182683
http://doi.org/10.1093/jmedent/33.4.619
http://www.ncbi.nlm.nih.gov/pubmed/8699457
http://doi.org/10.1093/jmedent/32.5.730
http://www.ncbi.nlm.nih.gov/pubmed/7473629
http://doi.org/10.1007/s00442-005-0251-9
http://www.ncbi.nlm.nih.gov/pubmed/16187106
http://doi.org/10.1007/s10393-006-0065-1
http://doi.org/10.1007/s10393-013-0890-y
http://www.ncbi.nlm.nih.gov/pubmed/24419663
http://doi.org/10.1371/journal.pone.0039612
http://doi.org/10.1186/s13071-018-3200-2
http://doi.org/10.1890/03-5370
http://doi.org/10.1002/joc.3711
http://doi.org/10.3390/rs6087424
http://doi.org/10.1002/ecy.3336
http://doi.org/10.1111/j.1365-2699.2006.01466.x
http://doi.org/10.7554/eLife.19571
http://www.ncbi.nlm.nih.gov/pubmed/27885988
http://doi.org/10.1111/j.2041-210X.2009.00001.x
http://doi.org/10.1007/s00265-010-1029-6
http://r-forge.r-project.org/projects/mumin/
https://cloud.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
https://cloud.r-project.org/web/packages/glmnet/vignettes/glmnet.pdf
http://doi.org/10.1016/j.tree.2005.03.009
http://doi.org/10.1016/j.pt.2014.02.003

	Introduction 
	Materials and Methods 
	Lyme Disease Data 
	Data of Predictors 
	Statistical Analyses 

	Results 
	Univariate Regression Analyses 
	Multiple Regression Analyses 

	Discussion 
	Effects of Climatic Factors 
	Effects of Landscape Factors 
	LASSO and Model Averaging 
	Limitations 

	Conclusions 
	References

