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Adenylate cyclase
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Acetate kinase

Adenosine diphosphate

Adenosine triphosphate

Adenylpyrophosphatase

Adenylate cyclase Cyclic adenosine monophosphate

Cyclic adenosine monophosphate

Cyclic-AMP and redox responsive transcription factor Cyclic-AMP
dependent regulatory protein Diacylglycerol

Coenzyme A dehydrogenase

Cyclic-AMP dependent regulatory protein

Diacylglycerol

DevRST is a two-component regulator and sensor, which regulate genes
coding for proteins that help Mtb prepare for dormancy and subsequent
resuscitation

Diacylglycerol phosphate

Enolase

A virulence associated transcriptional regulator upregulated by PhoP
Fructose 6-phosphate

Fructose-bisphosphate aldolase

Fructose-1,6-bisphosphatase

Glucose 6-phosphate

Glyceraldehyde-3-phosphate

Glyceraldehyde 3-phosphate

Extracellular glucose
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Iron-dependent regulator
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Lactate

Lactate dehydrogenase

A histone like regulator that binds AT-rich regions virulence islands,
acting as a global regulator to aid in the adaptation to extremes in oxygen
availability

Manganese-dependent transcriptional repressor

Mycoplasma pneumonia

A two component sensor and regulator that responds to cell envelop
stress

Mycobacterium tuberculosis

Nicotinamide adenine dinucleotide

Reduced nicotinamide adenine dinucleotide

Over-expression

Pyruvate dehydrogenase

Phthiocerol dimycocerosates
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PiInt
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Phosphoenolpyruvate

Phosphofructokinase

Phosphoglucose isomerase

Phosphoglycerate kinase

Two component system, regulator and kinase which regulate many
(virulence-)genes involved in adaptation to hypoxia (low oxygen).
Orthophosphate

Phosphotransacetylase

Phosphotransferase system

Pyruvate kinase

Pyruvate

Extracytoplasmic alternative Sigma factor E, involved in response to low
pH and cell stress

Zinc uptake regulator



Table of Contents

LiSts Of ADDIEVIATIONS. ...ccciuieieiieieiiieieiieeeiteeeteecte e e ere e ettt e e seeessaaeessraeessaeesssesssnessssnenas i
Table Of CONTENES. ... ..iiiiiiiiieieieeeteceeee ettt e st e s e s be e s saneesanas iii
CRAPLET Tttt ettt e ettt e e bt e st e e bt e s b e e s aeesneesaaennas 1
INETOAUCTION vttt ettt e e te e sttt e st e e e sab e e s ssbaesasneesnnems 1
1.1 Bacterial pathogens — to be or not to be .......ccoeeieiiiiiiiiiiiiiiiiieeieee 2
1.2 Model pathogenic bacteria .........ccceeieeiiieiieiiieeeciieecceec e eee e 2
1.3  Bacterial strategies to cause infection ..........cccccuieeeeciieeieciiieeccceeeeeee e, 3
1.4 Need for Systems Biology to understand infections ..........cccccccveeevecvieeeennnnenn. 5
1.5 The systems biology t0OIDOX.....c.ccevuerruiiriiriiiiinieeiteteeeteee e 5
1.6  FAIR and interoperable data..........ccccccueeiiiiiiieiiiiiieiiriiecceieeececeee e 9
1.7 Thesis objective and outline .........c.cceevueeviinieniiniiiiieeeeeee e 10
Chapter 2 Regulation of three virulence strategies of Mycobacterium
tUDETCULOSIS: A SUCCESS STOTY .. .ueieuiieiieeieeiieeieeete ettt e ste et et e s st e sabeeereesbe e s st e e sneeeaee 13
P23 -\ 0151 o ¢ (1 SRRSOt 14
P> T § 418 4o 16 10 (e1 8 (0) s DUNUNUNNNUN U U U U TP 14
2.3 Divalent metals at the interface of Mtb host interaction ...........ccccvvvvvvvvveennens 15
2.4 Three main virulence strategies of Mth........ccccceevueeveiniieririinneinienieeieeen. 21
2.5 Success through tight regulation of virulence strategies ..........cccccceeecuvveeennns 31
2.6  Supplementary Materials ........ccccceeveriiiniieeiienienieeeeeeee et 35
2.7  ACKNOWIEdZMENTS.....cciiiiiiiiiiiieicteeccceecce e e e saae e 35
Chapter 3 Deploying a Synchronous Network Data Integration framework do
identify gene regulatory motifs in Mycobacterium tuberculosis................ccccuveenn.e. 37
LS 7% SN 6315 w0 Yo 15 (ci 5 (o) 4 HRRRRRR U TP 38
3.2  Materials and Method ..........coooooiiiieeeeeeeeeeeeeeeeeeeeceecccee e 39
3.3 RESUILS ...ttt e e e et e e e e e e e e e e e e e s e s snsssssssnnsrnararrrararan 45
RS I N D) 161§ 1) (o) WU TP TP 52
Chapter 4 Phenotype and multi-omics comparison of Staphylococcus and
Streptococcus uncovers pathogenic traits and predicts zoonotic potential................ 55
4.1 ADSITACT ..uuueiiiiitiiieiititiiiitttetterteter e ereeeeeeeeeeeseeesssssssssssssssssssssssssssssssssssrsssssrnrnn 56
4.2 Background.........cooouiiiiiiiiiieeieccec e st s 57
4.3 RESUILS. ..ttt ee e e eeee e e e e e e s s ss s sssssssssssasaasrrararrrrrarans 58
4.4 DISCUSSION .....uueeiiiiiieieeececittee e e e e eeeeiereeeee e arreeeeeeeeesnsssseeaeeessensssssaeeesssssnnnsnns 74
WO S ©70) s Tel 11 1S3 10 o - J U TR 77

4.6 MEENOAS ...uvvieieeiieeecceeeeee ettt e e et e e e e ra e e e e rae e e e e anaaeeeans 78



4.7  Supplementary material..........ccccoeeviieiiiiiiiiiineeceeee e 81
4.8  Authors’ contribUtionsS........ccccouiiiieciiieecciee e 82
4.9 FUNAING....utiiiiiiiiiiteccce ettt e e re e e s s saae e e s baae s s ssaaeeesneaaeas 82

Chapter 5 Predicting Mycoplasma tissue and host specificity from genome
sequences 83

5.1 ADSITACE ...uueieiiiiiiiiiiiiiiiiittietrereeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssssnsssssssssssssssssssssrrsrrrsrarans 84
[o¥C- I 531 w0 1o 13 (ei 1 (o) 4 WU 85
5.3 Materials and methods .........cccueeeeeiiieieciieecccee e 86
5.4 Results & DISCUSSION ...ccoeiiiiiiiiiiiiiiiiiiiiiirteeeereeee e e eeee e e e e e e e eeeeaes 88
5.5 Predicting host and tissue trophiSm.........ccceceeeeieeriiieicieerrieeeee e 91
5.6 CONCIUSION ..uutuiiiiiiiiiiieriiiieiierieeereeeeeeeeeeeereeeeeeeeeeeseesessssssssssssssssssssssssssssssssssssnnns 95
5.7 FUNAING..ciiiiiiiiiiieeceeeeeeete ettt ee s e e s ae e s ae e s te e s aa e e nes 96
5.8  AUthor CONtIIDULION . ...cciiiiiiiiiicccccceeeeeeceeeeeeeeee e e e e e 96
5.9  Supplementary material ......c...ccoeieriiiriiiniiiiiee e 96
Chapter 6 Exploring the adaptability and robustness of M. pneumoniae central
CATDON METADOLISINL... . uueiiiiiiiiiiiiiiiiiiiietrrtretereee e eeeeeeeeeeeeeeeeeeeeesessesssssssssssssssnsssssssnnnes 97
(ST -\ o 1] 6 ¢ [ S 98
(SJE T § 41 o 16 L0 Le1 (o) s DUNUNURR U U U TP 98
6.3 Materials and MethodS .....cooooeeiieeeeeeeeeeeeeeeeeeeeeeee s 99
6.4  RESUILS....ueiieieeee e e e re e e e ra e e e e aa e e e s e nnae e s e nsaeeeennns 106
(IS /6] s 161 1113 (o) 4 KU 121
6.6  AcKknOwWledZemEeNnt ..........coocueeiuiiniiiiiiieeteteee et 121
(SRR 0701 115 10171 6 0] s RO UURRRRRPTT 122
6.8  Competing INTETeSTS.....ccoivuiiiiiiiiiieiee ettt 122
6.9 Corresponding aUthOTS........cccviiiiiiiiieiiciiiecccieccee e ere e e aae s 122
6.10  Supplementary material...........ccoeeueiriiiiiiiiniieeee e 122
Chapter 7 General DiSCUSSION .....cc.uveeiiiiieeiiiiieeeeiitececiteeeeeireeeesreeeeesevaeeessnvneeaens 123
25 W §'s 16 4o 16 11 U1 6 (o) s WU SRS 124
7.2 What are the patterns in bacterial pathogen host interaction?................... 124
7.3 Methodological strengths and limitations .........ccccceeeveeevieencieensieneieeenenn. 131
SUITIINIATY ..o eeeeeeeeereereeeeeeeeeeeeeeaeassssssssssssssssssssnsnsssnsssssssnsnnsnnnnnnnnns 145
RELEIEIICES ..vvvveeeeeeeeeeiteeeeee ettt e e e eeeeaaeeeeeeeaaaaeeeeeeeeesssaseeeeeeeeesssssssaeeeeeeesnnnnes 147
List Of pUDLICATIONS ..c.uvieeeiiiiiieiiteeteet ettt e s e e aae e 189
Overview of completed training activities ...........cceceeveeriierniensieniieneeeeeeeeeeeeeens 190
ACKNOWIEAZEIMENLTS ....coieiiiiiiiiiieeccieeeccee ettt e et e e e e ae e e e s svae e s s saaeessssnaeesnnns 192

FUNAING oottt e e et e e s et e e e e sbae e e e naaeeeeensanaeennnens 195



Chapter 1

Introduction



10 | Chapter1

1.1 Bacterial pathogens — to be or not to be

Bacteria have adapted to a great many environments. Bacteria can live on icy glaciers,
in hot underwater geysers or even on radioactive material in uranium mines [1], [2].
From the food we eat, to the water we drink and the air that we breathe, everywhere
we find bacteria. Bacteria have evolved to live in nearly any environment and can break
down nearly any chemical component we know of. It should therefore not come as a
surprise that bacteria have also evolved to live together with higher organisms such as
plants insects, animals, and humans. Some of these bacteria live in harmony with their
host with either one or both organisms benefitting. We call these symbiotic bacteria
commensals. Commensal bacteria enable, for instance, their host organisms to break
down complex metabolites in their gut and help protect them against bacterial and
viral pathogens [3]. However, not all bacteria live in harmony with their host. Bacteria
that live on a host causing illness, we call pathogenic bacteria. However, there is no
clear separation between “friendly” commensal bacteria and “unfriendly” pathogenic
bacteria. Commensal bacteria, such as Staphylococcus aureus, can turn pathogenic
when they get access to the bloodstream [4]. “Bad” bacteria, like Streptococcus
pneumoniae, can in in some cases help protect against infection by other “bad”
bacteria like S. aureus [5]. Whether bacteria contribute to the wellbeing of a host
depends on a multitude of factors, such as a) the complex interplay with the microbial
community present, b), the overall health and immune state of the host, ¢) abundance
of available nutrients in the host environment d) the tissue or location at which
bacteria occur in the host. All these factors in the system at large, determine the
wellbeing of both the bacteria and the host they live on.

1.2 Model pathogenic bacteria

Within this thesis various pathogens were studied using common concepts, methods,
and strategies. M. tuberculosis, M. pneumoniae, Staphylococcus and Streptococcus
species such as Staphylococcus aureus and Streptococcus pneumoniae were studied.
These species share some properties, such as having an abundance of omics data and
literature information available to study them. M. tuberculosis [6] and M.
pneumoniae [7] are considered model organisms. These organisms were not only
selected within this thesis based on their societal relevance but were also selected as
suitable for Systems Biology approaches due to the abundance of data we have on
them. Analyses that integrate multiple omics data, as well as comparisons between
model predictions, such as predictions on gene essentiality and experimental results
such as transposon mutagenesis essentiality data, is of course only possible if such data
is available.

Here we would like to briefly introduce the above-mentioned species. In Chapters 2
and 3 we studied M. tuberculosis and identified three virulence strategies as well as
the environmental and regulatory cascade that controls these three virulence
strategies. M. tuberculosis is an obligate intracellular human pathogen [6] of great
societal relevance. It is estimated that M. tuberculosis was responsible for 1.3 million
deaths in 2021 in non-HIV infected patients and is one of the top 10 leading causes of
death worldwide [8]. Although the relative occurrence of multi-drug resistant and
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extreme drug resistant M. tuberculosis infections have not increased in the last 2 years
[8], their treatment is expensive and lengthy with an average of 9 months [8].
M. tuberculosis is a special bacterium with a highly impervious waxy coating of
mycolic acids and a very long replication time. This waxy coating as well as the ability
of M. tuberculosis to enter a dormant near metabolic inactive state, make it resistant
to many drugs [9], [10] and resilient against many stresses encountered in the human
host. M. tuberculosis uses multiple strategies such as immune modulation, immune
modulation, dormancy and phagosomal rupture [11]. Better understanding of how
M. tuberculosis interact with its human host can help the development of new
Tuberculosis vaccines or systems medicine approaches to shorten treatments, reduce
costs and human suffering. One of the main problems in treating M. tuberculosis is its
ability to adapt and enter a dormant state in which it is nearly immune to all kind of
drugs. Understanding the environmental cues that regulate the three virulence
strategies of M. tuberculosis and the switch to dormancy, could for example be used
in treatments to trick M. tuberculosis to reactivate prematurely, leading to quicker
bacterial clearance.

In Chapter 4 we compare various Staphylococcus and Streptococcus species. These
species include the well-known opportunistic pathogen Staphylococcus aureus which
kills around 20.000 people in the US yearly [12], as well as Streptococcus pneumoniae,
a commensal of the nose and oral cavity, responsible for killing millions a year
worldwide as opportunistic pathogen [13]. Staphylococcus and Streptococcus species
can grow in aerobic environments but are facultative anaerobes that produce lactate
as part of their fermentation pathway. There are also various animal and some plant
pathogens among Staphylococcus and Streptococcus species, such as Streptococcus
suis [14] and Streptococcus agalactiae [15] which can infect humans. The ability of
some pathogenic bacteria to jump from a host to humans is called zoonosis and is
referred to as ‘zoonotic potential’ within this thesis.

In Chapter 5 we analyse the central carbon metabolism of M. pneumoniae and in
Chapter 6 we predict the host and tissue specificity of various Mycoplasma’s.
Mycoplasmas are minimal intracellular and extracellular pathogens [16].
Mycoplasmas can stimulate their own uptake by host cells and primarily survive by
evading the hosts immune response [17]. The Mycoplasma species group includes
many commensals and opportunistic animal, plant and human pathogens [18]
including intracellular pathogens such as M. hyorhinis [16] as well as pathogens such
as M. hyopneumoniae which can be survive both intracellular and extracellular [19].
M. pneumoniae is an extremely slow growing organism with a doubling time of 20-60
hours [20]. M. pneumonia does not have a cell wall, instead it has an external cell
membrane depended on the exogenous supply of fatty acids such as
phosphatidylcholine, cardiolipin, phosphatidic acid and phosphatidylglycerol,
sphingomyelin, glycolipids, cholesterol and diacyl-glycerol from its host [21].

1.3 Bacterial strategies to cause infection

Illnesses caused by bacteria are complex and involve many molecular interactions that
are part of strategies deployed by both the host and by the bacterial invader. Like in
‘The Art of War’ by Sun Tzu [22], there are many strategies to beat one’s opponent.
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Some bacteria, like Mycoplasma, use a stealth approach by being as small, minimal,
and slow growing as possible. Mycoplasma mimic their host on their surface in the
hope to slip by the defences. Other bacteria take the offensive and try to overstimulate
the immune response with toxins, such as some Staphylococcus and Streptococci
bacteria, causing severe conditions such as toxic shock syndrome [19]. Yet, others like
Mycobacterium tuberculosis can switch between several strategies such as mimicking
the host on their surface, modulating the immune response, creating pores in the
phagosomes of the macrophages cells that envelop them or going in a dormant like
state for decades before re-emerging. Although bacterial pathogens use combinations
of different strategies, there are similarities, overlaps in their strategies and overlap in
the molecular building blocks that facilitate these strategies. As such, understanding
one pathogen can help improve understanding of another pathogen. Pathogenic genes
and the knowledge of their function is, in many cases, transferable between pathogens.

Of great societal relevance and interest to this author are the abilities of some bacterial
pathogens to pass from animal or insect to human. These are called zoonotic
pathogens. There are both bacterial and viral zoonotic diseases. Some examples of the
zoonotic viruses are the HIV virus which originates from chimpanzees [23], the corona
virus COVID-19 [24] which is suspected to originate from bats [25], [26] and more
recently the 2022 outbreak of the Monkeypox virus [27] which originates from
monkeys, chimpanzees and various rodents [28]. From these zoonotic viruses,
Especially HIV and COVID-19 have caused great societal disruption and human
suffering. Also many bacterial zoonotic pathogens have great impact human society
such as Streptococcus suis [14] and Streptococcus agalactiae [15] which can be
transferred from pigs and aquatic species to humans respectively. A more ancient and
deadly zoonotic intracellular bacterial pathogen is Yersinia pestis [29], which caused
bubonic plagues for at least 5000 years killing large parts of the European population
during 14th—18th century [30], [31]. The impact of viral and bacterial zoonotic
pathogens on society is great. Animal pathogens comprise and endless reservoir to the
ever expanding pool of pathogens that can infect humans [32]. This ever-expanding
pool of pathogens combined with increased multi-drug resistance and extreme drug
resistance of both human and animal bacterial pathogens, is one of the great
challenges humans must overcome in the 215t century [28]. The pool of known and
unknown antibiotics is limited. The “WHO has declared antimicrobial resistance to be
one of the top 10 global public health threats” in their 2022 report [19]. Understanding
the complex interplay between human and bacterial pathogens, to better understand
zoonosis, as well as to find systems approaches to combat pathogens in synergy with
traditional antibiotics, is of great relevance nowadays.

To understand the complex interactions between pathogenic bacteria and their host,
large amounts of genomics, transcriptomics, proteomics, metabolomics, and
phenomics data are needed. These five ‘omics’ data deal respectively with information
on genes in the DNA, mRNA used to transcribe these genes, proteins that are
synthesised based the mRNA, metabolites synthesized by enzymes and the phenotypic
properties of bacteria. For the rest of this thesis, I will refer to these data types jointly
as ‘omics data’. Since the whole is more than the sum of its parts systems approaches
are needed to integrate and analyse all these omics data and to gain greater
understanding of the biological system they represent. The field of Systems Biology
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emerged to study combinations of these various omics data and the complex systems
they represent since the whole is more than its parts [33].

1.4 Need for Systems Biology to understand infections

Holistic approaches that utilise multiple omics data are needed to understand complex
systems such as the interactions between humans and bacterial pathogens. Systems
Biology is a field that emerged naturally to deal with the increasing abundance of
molecular and biological data as well as the increasing awareness of the complexity of
life. The Human Genome project which started in 1990 and was finished in 2003 [34],
can be seen as both a Bioinformatics or a Systems Biology projects. Since the project
required large scale collaborative efforts, standardization, and computational
approaches to deal with the vast abundance of sequencing data, the project paved the
way for Systems Biology. Systems Biology is an important shift in paradigm, where
opposed to reductionistic approaches that focusses on the parts, the system as a whole
is studied.

Systems Biologist recognized that that the whole is greater than the sum of its parts.
Properties such as emergence [33], robustness [35], modularity and oscillation [36]
can emerge from network motives such as feedforward and feedback control systems.
Systems Biology uses a holistic approach to identify such properties [33], [37]. For
some the word ‘holistic’ is associated to ‘vagueness’ and ‘pseudoscience’. Nothing
could be more wrong though. Systems Biology is a highly transdisciplinary field using
advanced qualitative and quantitative scientific methodologies, data integration,
statistics and (mathematical-) modelling to gain greater understanding of biology
[38]. Systems Biology is differently defined by different experts in the field. Some
approach it from chemistry, physics or biology perspective, however, most including
this author agree systems biology is at its core an engineering approach applied to the
study of biological systems [39], [40]. Systems Biology requires tinkering and
detective work as we demonstrated in Chapters 2 and 3 and like in engineering,
standardization of tools and data is key to the success of any project Systems Biology.
A great example of such standardization is FAIR data management which aims to
make data Findable, Accessible, Interoperable and Reusable [41]. We will further
discuss the importance of proper standards for Systems Biology in the section FAIR
and interoperable data. Systems biology comprises different disciplines and a rich set
of tools and methodologies out of which the scientist must select the right combination
to solve the problem at hand while considering the available data.

1.5 The systems biology toolbox
Similarity and guilt by association

Inference based on similarity is the most used tool in bioinformatics and systems
biology. Most genes and proteins are assigned functions based on similarity to genes
and proteins with a known function. All chapters in this this thesis use protein
annotation by searching proteins with domain signatures in the PFAM protein family
database [42]. Similarity can be based on DNA or protein sequence alignment. More
commonly nowadays, more advanced methods such as similarity based on HMMs
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models [43] of protein domains are used. Examples of guilt by association are the
inference of a function or property based on connections in a graph, being part of the
same cluster or close distance in a network. Similarity can be based on many aspects
such as “underlying encoding, references to biological entities, quantitative behaviour,
qualitative behaviour, mathematical equations and parameters and network
structure” as defined by Liebermeister and Waltemath et al. [43] For example, when
comparing models, one can use references to biological entities such as two reactions
in two models involving metabolites with the exact same identifiers, means these
reactions are likely to be similar. Underlying encoding, such as the SBML model
version and level, means that models might be easier to compare than models from
different modelling versions. Models with similar network structure, mathematical
equation and similar parameters are likely to model the same pathways, possibly from
the same organism.

Pattern recognition

Biology contains patterns that are associated to certain properties. Examples of
patterns are a) positive and negative feedback loops in signalling and metabolism b)
regulatory motifs in the DNA or RNA which are patterns that bind specific
transcription factors, proteins that orchestrate which proteins are to be expresses in a
certain condition c) patterns that capture a protein domain. Examples of tools that use
pattern recognition in their basis are domain annotation software such as
InterProScan [44] which annotates protein domains by searching for protein
signatures in various protein signature databases such as the PFAM [42]. Protein
domain models are built by identifying structural similarities in the multiple sequence
alignments of proteins with high sequence similarity. Similarly, tools like MEME [43]
detect binding motifs in the upstream regions of co-expressed genes based on multiple
sequence alignment.

Network analysis

Using various omics data, networks of interactions can be mapped. Networks can
represent interactions, connection, or similarity between different entities such as
metabolites, proteins, genes, or messenger RNA. For example, a network could be
based on protein-protein interactions or similarity in gene expression based on mRNA
data, or correlation between metabolites concentration in various conditions.
Networks provide an ‘unordered’ graphical representation of these system and can
help identify clusters, modules, or patterns, in a graph. With unordered, I mean
networks can be ordered using various network ordering algorithms but do not use a
reference map or fixed reference layout. A cluster in a metabolite-metabolite
correlation network can for example, be used to identify feed forward and feedback
loops to be implemented in biochemical network models [40]. Clusters in
transcriptomics data can be used to identify clusters of co-regulated genes [45].
Networks and heatmaps are often used to identify similarity based on clustering.
Networks based on similarity score can however be calculated using many different
similarity algorithms, each with their advantages and disadvantages. For example,
Pearson Correlation and cosine similarity are invariant to scaling, which is very useful
when working with metabolite data or text mining where you search for similarity in
patterns, not similarity in absolute values. Additionally, Pearson correlation has the
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added advantage of being invariant to adding a constant. This means similarity is still
discovered if there is a systematic error in the measurements of some metabolites [46].
However, Pearson’s Correlation evaluates the linear correlation between entities. In
case of non-linear relationships Spearman rank-order correlation would be better at
detecting similarity. More advanced methods such Context Likelihood [47] and
Probabilistic Context Likelihood of Relatedness (PCLRC) which extends upon CLR,
work even better when detecting non-linear relationships between metabolites [48].
Metabolite networks can appear linear, since many metabolites are linearly produced,
and their concentration roughly linearly increase with small changes in substrate
concentrations or enzyme concentration. However, metabolism in its essence is non-
linear, since biochemical reactions are constrained by the Michaelis—Menten kinetics
of their enzymes, resulting in hyperbolic enzyme reaction curves or sigmoidal reaction
curves in reactions that involve allosteric control [49]. Hence, trying to capture these
nonlinear relationships using Pearson correlation is sub-optimal. Explicit modelling
using differential equations as demonstrated in chapter 6, is more fitting to capture
non-linear correlations from metabolite data [50]. With the above examples, we hope
to illustrate that there is no single method that works best for detecting similarity,
since different methods have different strengths and weaknesses in defining similarity.

Different software for visualising networks is available. In this thesis we used a
Synchronous Network Data Integration framework (SyNDI) [51], and its predecessor
software for Data Integration Visualization and Analysis (DIVA) [52], to
simultaneously visualise multiple omics network of M. tuberculosis. Visual
exploration of simultaneously displayed omics networks is a very powerful tool for
gaining knowledge of a biological system and for hypothesis building. In Chapters 2
and 3 we use networks based on literature and multiple omics data to identify
modules and regulatory binding sites associated to M. tuberculosis pathogenesis. In
Chapter 6 we use a graph based on correlation between abundance of different
metabolites in metabolomics data to identify pathways that might be limiting for
growth of M. pneumoniae. In Chapters 4 and 5 we use co-occurrence of domains
belonging to a biological functional group in other organisms to infer domain
functional group annotation.

Modularity and mapping

Large complex systems can be broken down into functional units which are referred
to as ‘modules’. For example, a group or proteins that are regulated together and form
an iron uptake system are together defined as a module called ‘iron uptake system’.
Similarly, complex metabolic pathways can be broken down into modules based on the
thermodynamics and allosteric control that separate them from other modules.
Modularity can be based on the combination of some properties, such as similarity in
location, expression, or physical interaction between proteins. Ideally, one would like
modules to be completely decoupled and independent from one another, especially if
one would like to use a module in Synthetic Biology approaches [49]. One example of
using modularity are maps of metabolism such as the Roche Applied Science
‘Biochemical Pathway’s map [53]. Visual maps, such as the Roche ‘Biochemical
‘pathway map, are important to understand the complex systems they depict. This is
reflected in the increased integration of visualisation tools in modelling environments
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used in Systems Biology such as PathwayTools [54] and Escher [49] and model
platforms such as Seek [55] and Bigg model database [56]. Visualisations and maps
create order in the chaos, and are in this authors opinion, undoubtedly one of the most
helpful tools in the Systems Biology Toolbox. The saying, a picture is worth a thousand
words, also holds true in Systems Biology. In Chapter 2 we demonstrate how we build
a modular map of M. tuberculosis pathogenesis where we identified modules based on
gene co-expression in transcriptomics datasets, physical interactions among proteins,
co-occurrence of gene or protein names in abstracts of scientific literature and
functional similarity based on gene functional annotation. An example of where we
identify modularity within this thesis is the detection of modules in central carbon
metabolism by extensively analysing a dynamic model. Iterative rounds of model
simulation and parameter estimation lead to the identification of modules in Chapter
6. Defining such modules in biological systems puts artificial boundaries and should
not lead to the illusion of true decoupling and independence of these systems. In my
opinion, balancing a reductionist approach that emphasis order, and a holistic
approach that recognizes there are modules and emerging properties within a system,
is what lead to the greatest understanding of biological systems. Creating modules and
maps has been shown to be a useful simplification that help to increase understanding
of otherwise unfathomably complex systems.

Mathematical modelling

Mathematical modelling such as constraint-based GEnome scale metabolic Models
(GEM’s) [55] or dynamic models of metabolism [55] are used to understand
metabolism and to identify bottlenecks in metabolism. Dynamic models have the
advantage of explicitly modelling enzymes kinetics, being able to capture and predict
the dynamic behaviour on changes to internal or external stimuli, regulation as well as
systems properties [57]. Living cells often contain thousands of reactions. Modelling
such large systems dynamically is currently only possible by collapsing pathways and
simplifying their representation to nearly linear reactions. Choosing modelling
equations as well as fitting parameters to data is a non-trivial task [58]. Dynamic
models are extremely data hungry, requiring large amounts of quantitative metabolite
time-series data, even larger amounts of steady state data for parameter estimations
or enzyme kinetic measurements. GEMs on the other hand require much less data and
are great for constraint-based modelling, where one wants to optimize the yield of
biomass, or a biomass associated product. GEMs are used to simulate fluxes through
a metabolic network at a steady states using Flux Balance Analysis (FBA)[59] while
dynamic FBA can be used to simulate a broader range of dynamic condition [60].
Although GEMs are oversimplified models, especially when a product is directly
related to growth such as is the case of the biomass, they are very effective in predicting
maximal possible yields and substrate utilization. An example of the use of GEMs in
this thesis can be found in Chapter 4 and an example of dynamic modelling of
metabolism, using differential equations, can be found in Chapter 6.

“Machine learning and Al models”, are often referred to as black box models that are
used to predict properties by training and testing them on certain data [61]. The black
box part means the models themselves do not mathematically resemble the structure
of the systems they try to simulate or classify and that makes it harder to understand
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why a black box model made a certain classification [61]. Despite being ‘black box’
models, machine learning models can be very useful for classification and can in many
cases still be analysed to identify which features are important for the prediction of
specific classes [61]. Furthermore, some machine learning models such as
Classification Trees and Random Forest models are relative straight forward to
interpret. An example of machine learning models to predict phenotypic models can
be found in Chapters 4 and 5.

1.6 FAIR and interoperable data

As discussed in previous paragraphs, biological systems are complex and involve many
types of data which scientist like to abbreviate as ‘omics’ data. Great progress has been
made to standardize data generation and storage in the life sciences. Examples of such
progress are harmonization of data and model standardization as part of the EU
COMBINE project [62], improved infrastructure for FAIR data managements such as
the European Open Science Cloud (EOSC) [63], the incorporation of FAIR data
management as part of the FAIR funding model [64]. Other examples of such progress
are the use of semantic web technology for genome annotation pipelines [65],
community amplicon analysis [62], computational modelling [66] and web-based
cataloguing and sharing heterogeneous scientific research datasets, models or
simulations, processes and research outcomes using FAIRDOM-Seek [67].
Furthermore, data generation is increasingly standardized, automated, and large
scale. Large scale highly standardized data enables the use of Al in the discovery of
biopharmaceuticals [68], personalised medicine [69] and the quantitative analysis of
bacterial communities [70].

FAIR data management principles are defined as making data Findable, Accessible,
Interoperable and Reusable [41]. FAIR data management enables scientist to reuse
data, explore data and answer more complex questions more efficiently. FAIR data
management is also very important for the social accountability of using public
research funds. By making data FAIR by design, the chance of that data being re-used
in future scientific studies increases dramatically. Findable and Accessible research
data is rather common nowadays, with many peer-reviewed journals requiring access
to the research data for publishing. However, the Interoperability and Reusability of
data are often still lacking [71]. In order for data to be Interoperable and Reusable,
data needs to be both human and machine interpretable [41]. This requires the data to
be standardized in annotation, in data format as well as in the ontologies [72] that
structure the data. FAIR data management often involves semantically stored data as
Research Description Framework (RDF) [72]. RDF standardizes the storage of any
type of data in the most rudimentary form, subject-predicate-object triples [66]. The
properties and structure of RDF data is defined by one or more Ontologies. Semantic
data has the benefit of being easy to query, even multiple databases are interoperable
due to the use of standardized data format, identifiers, and ontologies [61]. This makes
it possible to easily query over multiple databases. Semantic data enables scientist to
freely explore multiple datasets, ask complex questions, or use machine approaches to
find new correlations, with very little effort. This means that semantically stored FAIR
data can benefit science and society for a much longer time than one time use
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generated data. In this thesis I used a semantic annotation pipeline to annotate data,
queried data from various external databases which use semantic data annotation in
Chapters 4 and 5. I stored experimental data and modelling data from one of our
projects in a semantic database as discussed in Chapter 6 to adhere to the FAIR data
management principles.

1.7 Thesis objective and outline

The overarching objective of this thesis is to improve understanding of interactions
between bacterial pathogens and their various hosts. The main research question I try
to answer is:

“What are the patterns in bacterial pathogen host interaction?”
Sub questions that I will address within the various chapters are:

1. What are the strategies used by various pathogens to cause illness?
. What are the strategies a model organism like M. tuberculosis deploys to infect

the host?

3. How do functional groups of proteins associate to differences in pathogen host
interaction?

4. Which genes confer zoonotic ability to bacteria?

5. Which genes determine the host and tissue specificity of bacterial pathogens?

6. What are the properties of M. pneumoniae central carbon metabolism to
adapt to different environmental conditions?

The various chapters use common concepts and a portfolio of strategies and
methodologies to address the biology of pathogens and their interaction with their
hosts. Below, I list the different chapters of this thesis.

In Chapter 2 I create a visual and modular overview of the three virulence strategies
of Mycobacterium tuberculosis (Mtb). In this study I integrated literature information
and available omics data to come to a system understanding of Mtb. I produced a
visual map of the regulation of the three major virulence strategies as well as smaller
maps of the complex regulatory systems of these three virulence strategies. These
maps highlight the identified regulatory cascade that controls the different strategies
in pathogen host interaction in response to environmental stimuli, such as the
availability of divalent metals.

In Chapter 3, we provide examples of how Synchronous Network Data Integration
framework (SyNDI) was used to identify two espACD associated stress clusters and
their regulatory binding site and how we identified the sigma factor, SigE, as regulator
of a sub cluster of the group of genes commonly regulated DevR, the dormancy
regulated. In this work, regulated genes were identified using and iterative approach
of motif identification through Meme [43] and motif scanning or matching by Fimo

[73].

In Chapter 4 I performed a multi-omics comparison of Staphylococcus and
Streptococcus bacteria using genomic, transcriptomic data and transposon
mutagenesis data, to uncovers pathogenic traits such as ‘zoonotic potential’. In this
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chapter I used genomic and transcriptomic data as well as transposon mutagenesis
essentiality data and various methodologies such as PCA, tSNE, phylogenetic trees,
heatmaps, Genome Scale Metabolic modelling, and Random Forest classification.
Jointly, these methods helped to identify interesting clusters of bacteria, their
phenotypic traits as well as the proteins associated to these phenotypic traits.

In Chapter 5 I integrated genomic and physiological data to predict which hosts and
tissue various Mycoplasma bacteria infect. In this chapter I identified possible
proteins responsible for the ability of some Mycoplasma’s to opportunistically infect
humans when having access to the blood stream, as well as various protein factors
associated to host and tissue types.

In Chapter 6 I present a dynamic model of central carbon metabolism of
Mycoplasma pneumoniae to identify bottlenecks and metabolic dependencies. This
dynamic model was used to investigated central carbon metabolism with the objective
to improve growth of Mycoplasma’s for optimal vaccine production. Robustness was
identified as an inherent property of Mycoplasma pneumoniae metabolism and two
main control hubs in central carbon metabolism were identified. Via analysis of
metabolomics data, I identified some potential metabolic dependencies of M.
pneumoniae on its human host.

In Chapter 7 I look back and discuss the various successes, failures and bottlenecks
encountered in this thesis. Additionally, I discuss the future perspective of the various
methodologies used this thesis.
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2.1 Abstract

Tuberculosis remains one of the deadliest diseases. Increased prevalence of multi and
extensively drug resistant M. tuberculosis strains makes treating tuberculosis
increasingly challenging. To develop novel intervention strategies, detailed
understanding of the molecular mechanisms behind the success of this pathogen is
required. Here, we review recent literature to provide a systems level overview of the
molecular and cellular components involved in divalent metal homeostasis and their
role in regulating the three main virulence strategies of M. tuberculosis: immune
modulation, dormancy, and phagosome escape. We provide a visual and modular
overview of these components and their regulation. Our analysis identified a single
regulatory cascade for these three virulence strategies that respond to limited
availability of divalent metals in the phagosome.

Keywords: Mycobacteria, virulence, immune modulation, dormancy, escape,
phagosome, divalent metal, pore, cAMP, manganese, iron, zinc, esx

2.2 Introduction

Mycobacterium tuberculosis (Mtb) is the most successful known intracellular
pathogen infecting roughly one third of the world population and killing about 1.3
million people in 2017 alone [74]. Treating Mtb infection is increasingly difficult due
to increasing number of drug resistant, multi drug resistant, and extensively drug
resistant strains [74]. To come up with new drug targets and treatment strategies,
there is an urgent need to understand the molecular mechanisms supporting the
success of this versatile pathogen. Here, we will review the regulation of three
important survival strategies of Mtb: immune modulation, dormancy and phagosome

escape [9], [75], [76].

Firstly, Mtb is a master in immune modulation. Its ability to interfere with host cell
signalling-pathways allows it to carefully balance production of cytokines involved in
activation of the pro-inflammatory and anti-inflammatory response [77], [78]. By
balancing the pro- and anti-inflammatory immune response, Mtb delays phagosome
maturation, harvests essential nutrients, and stimulates the formation of alveolar
macrophage-dominated granulomas that shield it from more effective immune cells
[79]. Secondly, when residing in the hypoxic granuloma, Mtb enters a metabolically
near inactive and non-replicating dormant state in which it is immune to most types
of drugs [80]. Mtb manipulates the macrophages to accumulate lipids, providing it
with the nutrients required to sustain dormancy for multiple decades [79], [81]-[84].
Thirdly, Mtb has a highly regulated pore formation system that it uses to escape from
the phagosome into the cytosol, resulting into necrosis of the host cell and
dissemination of the bacilli [85], [86].

The fine-tuned regulation of these three virulence strategies is what makes Mtb such
a successful pathogen. A large body of literature exist on these virulence strategies and
the molecular components that constitute them. However, there have been few
attempts to provide a systems wide overview of these three virulence strategies, their
molecular components, and their regulation. Divalent metals play an important role
in the regulation of some key aspects of these strategies [87]-[89]. Here, we will
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present an overview of their involvement in this regulatory process. Detailed
inspection of available knowledge pinpoints a single regulatory cascade as a main
control hub for these three-virulence strategies, representing their interconnectivity
as subsequent stages encountered in pathogen host interaction. A modular overview
of the molecular components involved in divalent metal homeostasis and their
components involved in the three virulence strategies can be found in Supplementary
Files 1 and 2. In the following, we will discuss these components and the
environmental cues that control them, and we will highlight the role of divalent metals
in the phagosome.

2.3 Divalent metals at the interface of Mtb host interaction

Divalent metals such as iron, zinc, and manganese are required for proliferation and
survival of all living organisms. Divalent metals appear, in all living beings, nearly
exclusively as constituents of proteins and act as cofactors in many essential enzymes
and environmental sensors [90]. Iron is the most commonly used divalent metal
cofactor [90]. Iron containing enzymes are involved, among other processes, in
electron transfer, maintaining redox balance and detoxification [91]. Manganese has
the strongest affinity for ATP and is the preferred cofactor in cAMP production [92],
[93]. Zinc plays a vital role as cofactor for numerous enzymes and DNA binding
proteins, and serves as a structural scaffold for several proteins [94].

To prevent growth of bacteria, the host uses high affinity iron binding proteins such as
lactoferrin, ferritin and transferrin, to keep the concentrations of free iron in the blood
low, in the so-called iron sparing response [88], [95]. These proteins also bind other
divalent metals such as manganese, albeit with lower specificity than iron. Similarly,
calprotectin functions as high affinity calcium binding protein but also binds
manganese, zinc and iron in the blood [96]. During infection, macrophages withdraw
approximately 30% of the total circulating iron from the blood stream to restrict their
availability, making macrophages environments rich in divalent metals [97]. Some
intracellular pathogens use this defense mechanism to their advantage by stimulating
phagocytosis by macrophages to get access to divalent metals and other nutrients. Mtb
specifically targets alveolar macrophages which are rich in divalent metals while
having reduced bactericidal abilities compared to other macrophages [84], [97].

Upon ingestion by a macrophage, Mtb is engulfed in a special compartment called the
phagosome, in a process known as phagocytosis. The phagosome then fuses with
vesicles containing enzymes and other proteins that facilitate the bacterial digestion
process. Phagocytosis is a rapid process leading to phagosomal-endosomal fusion in
approximately 3-4 minutes, acidification of the phagosome within 23-32 min and
fusion with lysosome in 74-120 minutes, based on experiments with epithelial
macrophages [98]. However, Mtb blocks phagosome maturation in an early phase
leading to fusion with early endosomes and a pH of approximately 5.5 [99].

The macrophage continuously exports divalent metals out of the phagosome via
Nramp1 and Nramp2 in a pH dependent manner. Many cell types express Nramp2
while only macrophages express Nrampi. Nrmap1i is mechanistically similar to
Nramp2 but has a much higher specificity for manganese (Mn) compared to Nramp2
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[89], [99], [100]. Mn is required as cofactor for the bacteria to break down oxidative
compounds produced in the phagosome such as H:0- [88], [92], [101]. Thus,
restricting Mn availability in the phagosome by recruitment of Nrmap1 is an essential
defence against intracellular pathogens. Nramp2 functions optimally around pH 6, a
condition found in the early phagosome while Nramp1 has an optimal activity at a pH
of 4.5 [89], [101]. Nramp1 is recruited to the membrane of maturing phagosomes and
is associated with enhanced recruitment of the vacuolar V-H+-ATPase -positive
endosomes and/or lysosomes, resulting in acidification of the phagosome from pH 6.5
to 5.5 [99], [102]. Nramp2 is regulated separately from Nramp1 and co-localizes with
transferrin receptors to early endosomes as well as with V-H+-ATPase which provides
the electro-genic force needed for Nramp1 and Nrampz2 to operate [103], [104]. Thus,
metal availability in the phagosome is tightly regulated by the host through the
combined action of Nramp1 and Nramp2. Blocking phagosome maturation is an
effective strategy to create an environment in which Mtb can outcompete divalent
metal export from the phagosome. Mtb uses special high affinity siderophores
(mycobactin) to gain access to divalent metals from both extracellular transferrin and
the intracellular iron pool [97].

Within Mtb iron, zinc and manganese homeostasis are regulated by IdeR, Zur
(previously known as FurB) and MntR respectively [91], [94], [105]. Ligation of Fe2+
to IdeR and Zn2+ to Zur stabilizes the formation of dimers that have strong affinity to
binding sites involved in suppressing the genes in their respective regulons [87], [91],
[106]. MntR in Bacillus subtilis contains two manganese binding sites as well as a
dimerization site similar to IdeR and Zur [107]. There is a significant overlap between
IdeR, Zur and MntR regulated genes, see Figure 1. An overview of regulation of
molecular component by divalent metal regulators, IdeR, Zur and MntR can be found
in Supplementary Files 1 and 2. These three regulators each suppress the main operon
of genes coding for the ESX-3 secretion system and associated PE, PPE and Esx
proteins homologues of ESAT-6 and CFP-10 (EsxA and EsxB) [105]. We will further
discuss the ESX-3 transport system in a section below. In the following sections, we
will discuss main characteristics of genes regulated by Fe, Zn and Mn respectively.

Nt
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Figure 1. Number of genes in the IdeR, Zur and MntR regulons.
2.3.1 Iron homeostasis and redox sensing

Mtb produces high affinity hydrophilic and lipophilic siderophores, termed carboxy-
mycobactin and mycobactin respectively. Mycobactin can bypass the phagosome
membrane to scavenge iron from the extracellular iron storage protein transferrin
[97], [108]—[110]. In addition, Mtb actively synthesizes deoxy-mycobactin during iron
starvation [111].

Mtb combines the expression of a dedicated iron acquisition machinery with cellular
components involved in immune modulation. By limiting acidification of the
phagosome, Mtb maintains favourable conditions in which it can outperform active
export of divalent metals by the macrophage’s transporter Nramp1. Mtb’s success in
acquiring iron is illustrated by a 20 fold increase of iron concentrations in the
phagosome between 1 and 24 hours of macrophage infection [104]. However, high iron
concentrations renders Mtb much more vulnerable to the formation oxygen and
nitrogen radicals upon phagosome maturation, as iron functions as a catalyst in the
formation of radicals via the Fenton reaction [112]. Tight regulation of iron
homeostasis is therefore essential, making IdeR an interesting drug target [113]. Mtb
has adapted to deal with oxidative stress outside of the cell but is relatively vulnerable
to endogenously generated oxidative stress in comparison to M. smegmatis [112]. Due
to this vulnerability, vitamin-C is an effective drug to combat Mtb in the early stage of
infection by inducing the Fenton reaction in iron rich phagosomes [114]. The oxidative
conditions encountered in the phagosome leads to oxidation of the intracellular iron
pool. Oxidation of the iron pool de-represses IdeR regulated genes among which some
are involved in virulence. Upregulating expression of virulence genes in low iron and
oxidative conditions is a common response in intracellular pathogens and has been
observed in Shigella dysenteriae, Corynebacterium diphtheniae, Yersinia pestis and
Yersinia pseudotuberculosis, as well as in Mtb [115], [116].

The iron pool within Mtb and the phagosome functions as redox sensor to the oxidative
conditions encountered in the early phagosome. In oxidative conditions, ferrous iron
(Fe2+) is oxidized to ferric iron (Fe3+) [117]. Ferric iron does not bind to IdeR, leading
to upregulation of IdeR suppressed genes in oxidative conditions [113]. Genes
suppressed by IdeR code for proteins involved in siderophore synthesis (mbtA-G),
secretion (mmpL4/5, mmpS4/5) and uptake (irtAB) as well as 11 ESX-3 genes, among
other [118]—-[120]. Even though IdeR mainly functions as iron dependent repressor,
IdeR also induces transcription of four genes. Among the induced genes, bfrB and, in
a lesser extend bfrrA, code for mycobacterial ferritin-like iron storage proteins which
prevent overload of iron within Mtb [91], [121]. Analysis of the promoter region of bfrB
revealed it contains two tandem IdeR binding sites involved in alleviating repression
by Lsr2. Lsr2 is a histone like regulator that binds AT-rich regions virulence islands,
including those coding for ESX-1, espACD and PDIM coding genes, acting as a global
regulator to aid in the adaptation to extremes in oxygen availability [121]-[126].
Combined regulation of BfrB by Lsr2 and IdeR, suggests iron storage by BfrB is
suppressed by Lsr2 during infection under changing oxygen conditions unless IdeR
detects availability of intracellular ferrous iron which indicates a lack of oxidative
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conditions. BfrA is required for efficient utilization of stored iron under low iron
conditions, while BfrB is required for storage of iron under high iron conditions [127].

Iron homeostasis is an essential process for bacterial survival; therefore, its cellular
components are interesting drug targets. This was shown in a knockout study of the
mmpS4/5 siderophore secretion, which resulted in limited intracellular availability of
iron as well as intracellular accumulation of siderophores toxic to Mtb [128]. Another
interesting drug target is HupB, a nucleoid-associated protein that protects Mtb
against reactive oxygen species, regulates siderophore synthesis and was proposed to
facilitate transfer of iron from ferri-carboxymycobactin to mycobactin [129], [130].
HupB stimulates transcription of its own operon in the absence of IdeR-Fe2*[130].

IdeR also regulates genes involved in response to oxidative and acidic stress, among
which the two-component system PhoPR. Two-component systems contain a histidine
kinase sensor that senses specific environmental stimulus and a response regulator
that gets phosphorylated by the sensor upon specific environmental stimuli. Many
two-component regulators, among which PhoPR, also regulate their own operon [131].
Presence of multiple binding sites allows both positive and negative regulation
depending on the concentration and phosphorylation state of the response regulator,
as is the case for PhoPR [132], [133]. PhoPR is the main regulator of the oxidative and
acidic stress response, but also is the initial step in a regulatory cascade controlling
pore formation and phagosome escape. Six putative IdeR binding sites upstream of
the phoP-phoR operon where located of which five where observed to bind IdeR in
presence of iron [134]. Nevertheless, the exact role of IdeR in upstream binding of
PhoPR remains to be determined.

Oxidation of the iron pool is also sensed by proteins containing iron-sulphur clusters
such as the enzyme aconitase (Acn) and the regulators FurA and WhiB1-7. Acn
catalyzes the isomerization of citrate to isocitrate via cis-aconitate in normal
conditions. However, in low iron or oxidative conditions it binds to and suppresses
translation of IdeR-mRNA while increasing translation of TrxC-mRNA [135]. The
function of Acn as redox sensitive translational regulator is conserved in many
organisms [117], [136].

FurA (ferric uptake regulator A) regulates the oxidative stress response by modulating
expression of the operon coding for FurA and the KatG catalase [137]. KatG is essential
for the breakdown of H-0- radicals formed upon phagosome endosome fusion and
activates the anti-cell-wall drug isoniazid. Recently, transcriptional activation of furA-
katG was found to be regulated by RbpA, which is induced by H20- in a SigE
dependent manner [138].

A third iron sensitive regulator is WhiB7. WhiB proteins are iron- sulphur cluster
containing redox-sensing transcription factors. WhiB7 expression is auto-regulated by
binding to its own promoter in response to antibiotics or redox stress [139]. An 80-
fold upregulation of WhiB7 was observed upon treatment with antibiotics that bind to
the 30S ribosomal subunit such as kanamycin and streptomycin [139]. WhiB7 is
upregulated by iron starvation and was shown to induce transcription of eis and tap
[140], two antibiotic resistance genes. Upregulation of eis increases secretion of IL-10
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and slightly represses production of TNF-a by the host. IL-10 and TNF-a are involved
in the anti-inflammatory and pro-inflammatory responses respectively [141].

In summary, oxidation of the iron pool is an important environmental cue to activate
molecular components involved in iron sequestering, immune modulation, and
virulence. IdeR, FurA, Acn, WhiB7, Lsr2 and SigE are all involved in the response to
the oxidative conditions encountered in the phagosome and subsequent adaption
through expression of a vast repertoire of molecules involved in iron homeostasis as
well as genes involved in modulation of the immune response.

2.3.2 Manganese homeostasis and cAMP production

Manganese is one of the most abundant metal elements in nature [142]. Mn is involved
in enzymes of diverse functionality such as photosynthesis as well as detoxification:
Mn is used as cofactor for both synthesis and degradation of H-0-, superoxide and
radicals [88]. The oxidative burst is a very effective bactericidal process to defend
against intracellular pathogens such as Mtb and Y. Pestis [125], [143], [144]. As
previously stated MntR is a regulator of Mn homoeostasis, however MntR is
dispensable for Mtb growth in human and/or mice macrophages due to the limited
availability of Mn in the phagosome. Manganese transport on the other hand is
required for virulence and to break down oxygen radicals [105]. Mtb contains two
superoxide dismutase’s, SodA and SodC. SodA uses manganese as preferred cofactor
and requires CtpC for metalation and export to the phagosome. Interestingly, ctpC
transcription is induced in the presence of PhoP while sodA is predicted to contain
upstream cAMP-CRP binding sites implicating it in its regulation [131], [145].

Another role of Mn we would like to discuss here is the Mn dependent activation of
cAMP production in the early phagosome which was first proposed by S. Reddy et al.
in 2001 [93]. S. Reddy and co-workers studied kinetics of membranes containing Mtb
adenylyl cyclase CyA (Rvi625c). Their study revealed that the Michaelis-Menten
constant (Km) for Mn-ATP is 70-fold lower than for Mg-ATP. This results in a 47-fold
activation by imM Mn-ATP compared to 1imM of Mg-ATP at physiological conditions
[93]. Mn is also essential for the CRP regulated, virulence associated type III
phosphodiesterase Rvo805 [146], [147].

During infection, intracellular cAMP concentration increases ~50 fold and this is
associated with a decrease in pH from 6.7 to 5.5 [148]. Among the 15 Adenylate
Cyclases (AC) present in Mtb H37Rv, CyA has the highest measured cAMP production
while AC (Rv1264) functions optimally at pH 6, which is the typically found at the early
phagosome [148], [149]. Mtb was shown to secrete cAMP in a burst into the
macrophage cytosol, resulting in a 10 fold increase in the host’s TNF-a concentration,
an important inducer of granuloma formation [150]. Rv0386 is needed for this cAMP
burst [150].

The MntR regulon contains mntH (Rvo924c), coding for Mramp, an Nramp homolog
that imports manganese (Mn) in a pH dependent manner; mntABCD (Rv1283c-
Rvi1280c) coding for an ATP dependent manganese transporter and Rv2477c coding
for a manganese dependent ATPase which optimally functions at pH 5.2 [151].
Interestingly, Rv2477c was postulated to be involved in resistance to tetracyclines and
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macrolides [151]. Additionally, MntR as well as Zur regulate Rv2059-Rv2060 coding
for two components of an incomplete ABC transporter of unknown function. Rv2059-
Therefore, it is more likely that this transporter is involved in transporting other
divalent cations like Co2*, Cu2* or Ca2+ to substitute Mn and Zn in some conditions. A
second possibility is that this operon codes for a divalent cation exporter, to counter
the side effect of unwanted uptake of divalent cations such as Cu?* by the high
expression of manganese and zinc transporters [105]. Manganese uptake plays an
important role in virulence of many bacteria. For instance, supplementing Salmonella
typhimurium with manganese prior to infecting macrophages, decreased its lethal
dose 50 fold [152]. Similarly, manganese acquisition in the gut was shown to allow S.
typhimurium and Salmonella enterica to evade neutrophil killing by calprotectin and
reactive oxygen species, while patients with mutations in manganese transporter
Nramp1 were shown to be much more susceptible to pathogens such as Mtb [92], [99],

[125], [143], [153], [154].

MntR regulates WhiB6 which regulates espACD and some DevR (previously known as
DosR) regulated genes [155]. DevR is the main regulator of dormancy and espACD is
involved in pore formation [156] and will be discussed below. The WhiB6 Fe-S cluster
is necessary for the negative control of the devR regulon and positive control of the
ESX-1secretion system, whereas apo-WhiB6 induces the dosR regulon and suppresses
ESX-1 expression in M. marinum [156]. A model was proposed where holo-WhiB6
positively regulate ESX-1 operon while upon reaction with reactive oxygen species and
NO, apo-WhiB6 and WhiB6-DNIC are formed respectively. Both apo-WhiB6 and
WhiB6-DNIC activate DevR regulated genes to shift metabolism and maintain energy
and redox homeostasis [156].

MntR interacts with toxin-antitoxin system RelJ and RelK in which MntR functions as
antitoxin [157], [158]. Additionally, VapBC26, and VapB30 toxin-antitoxin system
both requires Mg or Mn for their ribonuclease activity which to inhibits growth [159],
[160]. These results indicate Mn might function as environmental cue in the regulation
of growth.

2.3.3 Zinc homeostasis

The third and final divalent cation we would like to discuss is zinc, the only redox stable
divalent metal of the three. As previously stated, zinc homeostasis is regulated by Zur
(FurB), a Zn2+ dependent repressor. Zur knockout studies identified 32 genes that are
upregulated in the zur knockout mutant of which 24 belong to eight transcriptional
units that were shown to be directly regulated by Zur [94]. Zur expression levels are
regulated by SmtB encoded for by smtB, an upstream gene which is co-operonic with
zur. SmtB functions as a repressor, which is deactivated upon binding to Zn2+ [94].

There are three possible zinc uptake systems regulated by Zur. Firstly, Zur regulates
the sitABC like genes (Rv2059-2060) which are also regulated by MntR that were
previously discussed. This suggest that this transporter might function as Zn importer
[92], [161], [162]. Secondly, Zur regulates Rvo106 coding for a protein similar to the
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B. subtilis putative zinc low-affinity transporter YciCas [161]. Thirdly, EsxG-EsxH
proteins were shown to be able to bind zinc which might implicated them in zinc
transport [163].

Other interesting targets of Zur are five genes coding for ribosomal proteins that can
function in the absence of zinc, in contrast to their zinc dependent counterparts which
normally bind to the 30S ribosomal subunits [94], [164]. Although Zur was found to
be able to positively regulate some genes in other pathogenic bacteria via repression
of non-coding small RNAs, no such regulation was found in a zur knockout Mtb
mutant [87].

2.4 Three main virulence strategies of Mtb

The three virulence strategies discussed in this review, namely immune modulation,
dormancy, and phagosome escape, represent subsequent stages in Mtb-host
interaction. These strategies extend and complement each other, which is reflected in
their regulation. While many pathogens directly express components involved in
phagosome escape, Mtb keeps a low profile and activates key virulence strategies such
as phagosome escape only when immune modulation fails, and the phagosome
becomes inhospitable. However, immune modulation also complements phagosome
escape and dormancy since immune modulation leads to conditions such as
granuloma formation and cholesterol accumulation which is needed to prepare Mtb
for dormancy and phagosome escape.

2.4.1 Immune modulation

Mtb uses a number of virulence proteins, complex lipids and secreted metabolites, to
modulate the immune response and arrest phagosome maturation to prevent fusion
with late endosomes and lysosomes [75], [148], [165]-[169]. In case of successful
immune modulation, phagosome maturation is halted resulting in a pH of
approximately 5.5 [99], [102]. The macrophage controls intracellular trafficking,
including phagosome maturation, through 42 distinct Rab GTPases. Rabs is
associated with phagosomes immediately after phagocytosis and normally diffuses
quickly, allowing Rab7 to associate to the phagosome, which allows fusion of the
phagosome with lysosomes. Studies with M. bovis have shown that mycobacteria halts
phagosome maturation, by blocking vesicle fusion between stages controlled by Rabs
and Rab7, with no Rab7 being accumulated in macrophages even after 7 days [167].
Similarly for Mtb, Rab7 was shown to be recruited to the phagosome but its premature
release prevents fusion of the phagosome with late endosomes [165], [170].

In addition to the earlier discussed ESX-3 secreted proteins, several other proteins and
molecules are involved in blocking phagosome maturation. Secreted tyrosine
phosphatase (PtpA) is involved in the exclusion of the vacuolar V-ATPase preventing
acidification and fusion with lysosomes [168], [171]. cAMP secreted by Mtb blocks
phagosome lysosome fusion by inhibiting actin assembly [169]. Additionally, a
number of virulence lipids interfere with the phagosome Golgi trafficking needed for
maturation of the phagosome [170], [172]. Among these are trehalose monomycolate
and dimycolate, phthiocerol dimycocerosate (PDIM), sulpholipid-1, diacyl trehalose,
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and pentacyl trehalose. Of these lipids, PDIM was shown to play a role in phagosome
escape and will be discussed in the section below.

Mtb is very successful in balancing the expression of molecular systems involved in
activating the pro- and anti- inflammatory responses of the host to direct the immune
response to favourable conditions for its survival. Mtb achieves this balance through
multitude sensors and that integrate many environmental cues. One important family
of regulators involved in sensing internal conditions are the iron-sulphur cluster
containing WhiB family of regulators, already mentioned in the section on iron
homeostasis. Different WhiB regulators have different redox potential and sensitivity
to oxidative agents such as O> NO and for some, thioredoxin like protein disulphide
reductase activity has been reported [139], [173]-[175]. Many WhiB genes are
regulated by cAMP-CRP [139], as summarized in Figure 2.

WhiB1 is an essential regulator that senses NO, is regulated by cAMP-CRP and is
associated with resuscitation [175], [176]. WhiB4 is associated to the oxidative stress
response while WhiBj5 is required for resuscitation [177], [178]. DNA binding has only
been experimentally proven for WhiB1, WhiB2, WhiB3, WhiB6 and WhiB7 [139],
[156]. Interestingly, WhiB1-3 are induced, upon nutrient limitation, by exogenous
cAMP and during infection indicating they are involved in sensing the redox state of
Mtb [179]. For WhiB1-3 it was shown that their DNA binding ability is enabled by NO
by bringing their iron-sulphur cluster in their nitrosylated or apo-form [139], [180].
WhiB2 and WhiB3 are down regulated in presence of O- while others like WhiB3,
WhiB6, and WhiB7 are upregulated in early or late hypoxic response. Of the WhiB
genes, WhiB7 is most upregulated in the macrophage with a 13 fold induction while
being 80 fold induced by antibiotics that bind the 30S ribosomal unit [174]. WhiB3
senses NO and O: via its iron-sulphur cluster [144] and regulates genes involved in
assimilation of propionate, a byproduct of cholesterol degradation, into virulence
lipids [181]—-[184]. Virulence lipids regulated by WhiB3 include sulfolipids,
diacyltrehaloses, and polyacyltrehaloses which result in both higher pro- and anti-
inflammatory cytokine levels, and function as redox sync [45], [182]. WhiB3, PhoP and
Lsr2 bind to and regulate the whiB3 operon. MprAB might induce whiB3 through
upregulation of Rvoo81 which was predicted to induce the whiB3 operon [45]. In
addition, WhiB3 together with DevSTR regulates expression of tgsz which is needed
for the production of triacylglycerol, a storage lipid which without Mtb cannot
resuscitate from dormancy [81], [144], [185]. WhiB1 is associated with resuscitation as
it induces transcription of whib1, rpfA, ahpC and Rv3616¢ groEL2 in the absence of
NO upon upregulation of WhiB1 by cAMP-CRP [175]. Interestingly, WhiB1 also
interacts with GlgB, which is essential for optimal growth of Mtb, by reducing
intramolecular disulfide bonds [139], [175], [178].

For a full review of WhiB proteins we refer to the excellent paper by Larsson et al [174].
For a review of the function of WhiB like proteins and a network view of WhiB1-3
regulated genes and their connection to other virulence factors such as cAMP and CRP
we refer to the review by Fei Zheng et al [139]. An overview of WhiB regulators and the
environmental cues they respond to can be found in Figure 2.



Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story | 31

WhiB proteins

Rv3219 WhiB1
Rv3260c WhiB2
Rv3416 WhiB3
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Figure 2. WhiB1-7 transcriptional response to environmental stresses. Proteins from the WhiB _family
are presented in the squares. The circles in the top indicate environmental cues (02, NO, cAMP
availability) or infection stages (initial or long-term hypoxic response). Squares represent different
environments (mouse lung and JJ774 macrophage like cells). Arrows indicated regulation (green for
induction, red for inhibition of transcription) with the line width indicating the strength of the
interaction [139], [174].

Two highly regulated virulence systems are EspACD, involved in phagosome escape,
and GroEL2, an abundant chaperonin involved in blocking apoptosis. Regulation of
GroEL2 is summarized in Figure 3. GroEL2 is a highly antigenic gene associated with
increased release of IL-10 and TNF-a which is also associated with cAMP secretion
into the cytoplasm of the macrophage [148], [150], [169], [180], [186]. GroEL2 forms
a dimer and is normally associated to the cell wall. However, Hip1 cleaves cell wall
associated GroEL2 to form monomers that are able to cross the phagosome membrane
and inhibit apoptosis by interacting with mitochondrial mortalin [187], [188]. In this
way Hip1 modulates the macrophage responses by limiting macrophage activation and
dampening the activation of TLR2-dependent pro-inflammatory responses [188].
Interestingly, Hip1 has also been reported to function as lipase, making the proteolytic
function of Hip1 somewhat disputed [189]. Mtb inhibits apoptosis of the macrophage
through aggregation of mitochondria around the phagosome and increased activation
of mitochondria resulting in limited cytochrome C release, an important inducer of
apoptosis [190].

CMR and HrcA positively regulate groEL2 expression upon acidic and anaerobic
stress [180], [191]. CRP induces whiB1 expression in presence of cAMP while WhiB1
represses its own operon as well as GroEL2 in the presence of NO [180], [192]. GroEL2
is therefore only expressed in the presence of CMR or heat stress or while NO is absent
(See Figure 3). GroEL2 expression is induced 24 hours post infection, but not at 2
hours after infection while other CMR regulated genes, like Rv1265 and PE_PGRS6,
are induced at 2 hours post-infection [193].
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Figure 3. Regulation of GroEL2. Squares represent proteins, circles represent pools of simple
chemicals, environmental cues or factors. Green lines indicate induction of transcription while red
lines indicate inhibition of transcription. Black lines indicate causal effects.

2.4.2 ESX-3 secretion system

The ESX-3 secretion system is the only one of the five ESX systems that is essential for
in vitro growth of Mtb [194], [195]. ESX-3 is involved in divalent metal homeostasis
and immune modulation. ESX secretion systems are specialized secretion systems for
the transport of extracellular proteins across the hydrophobic, and highly
impermeable, cell wall of Mtb [166], [196].

Regulatory binding site for all three divalent metal regulators IdeR, Zur and MntR can
be found in the ESX-3 core operon promoter [119], [163], as summarized in Table 1.
The triple control of ESX-3 might allow Mtb to switch partly to other divalent metals
in the absence of one of these three. This hypothesis is supported by the observation
that siderophore knockout mutants low in iron contain much higher zinc
concentrations [104]. However, many ESX-3 associated genes are regulated by only
one or two of these regulators, indicating dedicated roles in homeostasis of specific
metals [197].

Table 1. Suppression of ESX-3 core genes and associated genes by IdeR, Zur and MntR.

Gene IdeR Zur MntR
esx3-operon’ | 1 1 1
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All three divalent metal regulators regulate EsxG and EsxH which play an essential
role in secretion of PE and PPE proteins [197]. PE and PPE proteins have immune
modulating properties and comprise nearly 10% of the coding potential of the Mtb
genome [198]. A large number of studies exist on the immune modulating properties
of ESX-3 secreted PE and PPE proteins [195], [197]-[203]. The ESX-3 secreted
protein pair EsxG-EsxH, targets the endosomal sorting complex to impair fusion of
the phagosome with the lysosomes, while increasing association with the endocytic
pathway leading to fusion with transferrin containing vesicles [163], [166], [195]. PE5-
PPE4 were found to be critical for the siderophore-mediated iron-acquisition
functions of ESX-3 [197]. PPE38 Inhibits Macrophage MHC Class I expression,
dampens CD8+ T-Cell responses and was shown to be required for virulence of M.
marinum [202], [203]. PPE37 was found to reduce the production pro-inflammatory
factors tumor necrosis factor alpha and IL-6 [200]. Pe_pgrs61 binds to TLR2 in a Ca2+
dependent manner, leading to increased IL-10 production, while PE5 and PE15 trigger
activation of the host MAP kinases required for IL-10 production [198], [201]. IL-10 is
an important anti-inflammatory cytokine. IL-10 reduces the expression of iNOS,
limiting production of nitric oxide (NO) in the phagosome [195], [198]. Enhanced IL-
10 expression plays an important role in inhibiting early protective immunity and
blocking phagosome activation [204], [205]. In addition, a direct role for IL-10 in Mtb
reactivation has been observed [204]. Interestingly, IL-10 also modulates lipid
metabolism by enhancing uptake and efflux of cholesterol in macrophages [204]-
[206]. Mtb is known to induce foamy macrophage using immune modulating proteins
as well as secreted lipids to deregulate the macrophages lipid metabolism via the
macrophage lipid-sensing nuclear receptors PPARy and TR4 [84], [205]. One study
reported observing Mtb to exploited host vesicle trafficking and lipid storage by the
recruitment of iron bound mycobactin to lipid droplets which move to and discharge
their content in the phagosome [108]. Another study found that Mtb uses membrane
vesicles containing immune modulating molecules as well as Mycobactin to interact
with the macrophage during infection [207]. Further research is needed to investigate
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the proposed synergy between modulation of host vesicle trafficking, lipid acquisition
and iron acquisition.

2.4.3 Phagosome escape and pore formation

The second main virulence strategy deployed by Mtb is phagosome escape. A model of
regulation of pore formation can be found in Figure 4. ESX-1 and ESX-1 secreted
proteins EsxA (ESAT-6) and EsxB (CFP-10) have been implicated in phagosome
escape of many Mycobateria such as M. marinum, M. kansii and Mtb [208]—-[211].
The virulence lipid phthiocerol dimycocerosates (PDIM) and EsxA from Mtb were
shown to interact with the host cell membrane and in concert, induce phagosome
membrane damage and rupture in infected macrophages [211], [212]. A recent study
reported that many claims about pore formation at neutral pH are due to
contamination with detergent from the washing step [76]. The same study found
membrane-lysing capabilities for EsxA only to occur below pH 5, to be contact
dependent, and accompanied by gross membrane disruptions rather than discrete
pores. For the sake of simplicity, we refer here to the process of cytosolic access as pore
formation although more research is needed to find out if cytosolic access is only
achieved through lesions or also through formation of pores.

The ESX-1 secretion system is involved in secretion of virulence proteins among which
those shown to be involved in pore formation and phagosome escape EsxA (ESAT-6)
and EsxB (CFP-10), secretion associated proteins EspA-D, EspF and secreted immune
modulating PE and PPE proteins [196], [213]-[215]. Although EsxB is the main pore
forming protein, other ESX-1 secreted genes are required for EsxB secretion and
proper functioning of the ESX-1 secretion machinery. EspD stabilizes the extracellular
levels of EspA and EspC, and it is required for EsxA secretion but does not require
ESX-1 for its own secretion [216]. Secretion of EspA, EspC, EsxA is codependent on
each other, suggesting they might be secreted as a multimeric complex or that they are
part of the secretion machinery itself [217], [218]. This theory is supported by a study
showing that EspA forms dimers by disulphide bond formation after secretion;
disruption of this disulphide bond affects cell wall stability as well as the functioning
of the whole ESX-1 secretion system [219]. Recently, an EspC-multimeric complex was
observed to form filamentous structure that could represent a secretion needle [220].
Inactivation of MyCP1 protease causes hyper-activation of ESX-1 while protease
inhibition leads to attenuated virulence during chronic infection [221], [222]. A
balanced activation and deactivation of ESX-1 through MycP1 proteolysis of EspB is
required during chronic infection. MyCP1 and MyCP5 are required for stability of the
ESX-1 and ESX-5 secretion complex respectively [223]. Without ESX-1, Mtb is unable
to disrupt the phagosome membrane and make contact with the cytosol, leading to
highly diminished pathogenicity [213].

ESX-1 and secreted factors EsxA and EsxB are regulated by the two-component
systems PhoPR, previously mentioned. The importance of PhoP for virulence was
confirmed in knockout studies that showed phoP knockout mutants to be attenuated
in mouse bone marrow derived macrophages, lungs, livers and spleen [224]. A single
point mutation in phoP in Mtb H37Ra decreases the DNA affinity of PhoP and strongly
contributes to the reduced virulence of this strain [225]. PhoPR regulated genes are
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upregulated in acidic and oxidative conditions. Recently studies show that PhoP
interacts with SigE, which is upregulated in acidic pH and upon cell stress [226].
Additionally, polyphosphate was implicated to be needed for normal transcription of
phoP as well as well as for transcriptional regulation of sigE by MprAB, although these
results could not be reproduced [227], [228]. PhoP/R influences transcription of some
80 (according to some sources up to 150 [229]) genes directly as well as the
transcription of a large number of genes indirectly via upregulation of WhiB6, EspR,
DevS/R and WhiB3 [45], [131].

EspR is a transcriptional regulator upregulated by PhoP. EspR induces transcription
of the espACD (Rv3612-16¢) operon which is essential for escape from the phago(-
lyso)some [216], [219], [230]. PhoP therefore controls, directly (espB/E-L) or
indirectly (espA/C/D), the 13 Esp proteins secreted by ESX-1 [230]-[232] Recently it
was found that holo-WhiB6 increases transcription of its own operon, the ESX-1
regulon and suppressed the DevR regulon, while apo-WhiB6 formed in anaerobic
conditions and by prolonged exposure to NO, suppresses the ESX-1 regulon and
induces the DevR dormancy regulon [156]. Interestingly, gene expression of EsxB by
WhiB6 was highly induced after 30-min of NO exposure, decreased at 60 minutes and
is highly reduced after 3 hours of exposure to NO, indicating a short but intense
activation of espACD by holo-WhiB6. Additionally binding sites for WhiB6 and
Rv0081, a transcriptional factor regulated by MprAB, were predicted upstream of
espACD [155]. These results suggest WhiB6, which is induced by PhoPR and MntR,
plays an essential role in the regulation of phagosome escape and dormancy.

Induction of transcription of espACD by EspR requires the presence of PhoP [230]. In
addition, MprAB, Lsr2 and CRP bind to the promotor region of espACD operon. Lsr2
represses transcription of both the espACD and the ESX-1 operon [155], while CRP
binding inhibits expression of espACD[233]. Lsr2 binds to AT rich regions in the DNA,
mostly virulence genes and is required for adaptation to extreme oxygen conditions
[124], [125]. We hypothesize it is likely that Lsr2 represses the operon containing ESX-
1 genes and espACD in oxidative conditions. This could serve to avoid further
aggravation of the immune response. MprAB functions as a repressor of the espACD
operon in cellular stress conditions, however MprA/B is also required for full
expression of espACD. It is plausible to assume both positive and negative regulation
by MprAB occurs based on the presence of multiple binding sites for MprA and two
transcriptional start in the espACD operon [155].

Like the post-translational activation of GroEL2 by HiP1, membrane lysing capability
of EsxA is activated only upon dissociation of EsxA from EsxB in acidic environment
(pH 4-5) encountered when the phagosome matures. Acetylation improves
dissociation of EsxA from EsxB at higher pH, a model where acetylation leads to
reduced virulence was proposed [234]. Interestingly, acetylation of proteins in Mtb is
cAMP dependent [210]. Taken together, these studies indicate pore formation is
strictly regulated, most likely only occurs when cAMP is depleted (no cAMP-CRP),
might be inhibited by sudden changes in oxidative conditions (Lsr2), the phagosome
acidifies and become hypoxic (PhoPR) and pore formation is transiently inducted by
WhiB6 upon sensing NO[156]. MprAB further modifies activation of espACD, most
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likely both positively upon initial cell damage and negatively after prolonged cell stress
and accumulation of polyphosphate, as indicated in Figure 4.

It should be mentioned that in addition to their role as regulators, Lsr2, CRP and EspR
have also been characterized as nucleoid-associated proteins and as such might serve
additional functions such as structuring the organization of the chromosome and, as

has been shown for ESX-1 and espACD operon to protect DNA region from oxygen
radicals [124], [233], [235].
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2.4.4 Dormancy and modulation of granuloma formation

The third virulence strategy deployed by Mtb is onset of dormancy. Dormancy is a non-
replicating and metabolically near inactive state at which Mtb is immune to most drugs
and can survive for decades [9], [81]. Dormancy occurs upon formation of mostly
hypoxic granulomas [236]. Immune modulation that stimulates granuloma formation
will therefore be discussed as a part of the dormancy virulence strategy.

When Mtb runs out of cAMP to secrete thereby suppressing phagosome lysosome
fusion, the macrophages phagosome will fuse with late endosomes and lysosomes. As
a result, the phagosome becomes increasingly hostile with lower pH, production of
oxygen radicals and NO and fusion with vesicles containing lysozymes. In contrast,
conditions encountered in granulomas are slightly more favourable for Mtb.
Granulomas have reduced capacity to form oxidative radicals [83].

Mtb stimulates TNF-a production which leads to granuloma formation among others
through secretion of cAMP into the cytosol [141], [204], [237]. A number of studies
indicate that granuloma may be dispensable for preventing bacterial dissemination
and may actually contribute to Mtb persistence and shield Mtb from more successful
immune cells [79], [82], [83]. According to some models, Mtb containing granuloma’s
contain two types of macrophages: classically activated and alternatively
activated[79]. Mtb shifts the macrophage population within the granuloma from being
classically activated to alternatively activated macrophage which produce more anti-
inflammatory cytokines (IL-10, TGF-f3) and arginase, which compete with iNOS for
the use of arginine as a substrate reducing NO production [79], [83], [238]. A balance
of pro-inflammatory and anti-inflammatory response via stimulation of TNF-a and
IFN-y production is needed for granuloma formation while IL-10 is the main negative
regulator for this response, inhibiting formation of dense and hypoxic mature fibrotic
granuloma’s [79], [204]. Moreover, parameter sensitivity analysis for a granuloma
model, showed IL-10 had the strongest influence on myofibroblast numbers at 300
day post infection and indicated IL-10 to play a major role in preventing differentiation
of immune cells needed to develop protective immunity [79], [204].

Several regulators allow Mtb to sense and adapt to hypoxia and maturation of the
phagosome. The most important of these regulators is the two-component regulator
DevRST which regulate genes coding for proteins that help Mtb prepare for dormancy
and subsequent resuscitation [239]-[241]. A visual representation of DevRST
response to environmental cues is present as part of Supplementary File 1. Both DevS
and DevT can activate the DevR regulon through phosphorylation of DevR which
autoregulates its own operon through cooperative binding to two binding sites [10],
[240]-[242]. DevT provides initial activation of the DevR regulon through
phosphorylation of DevR and has the strongest sensitivity to CO and a weaker binding
to NO and O compared to DevS. DevsS is sufficient for DevR activation after 5 days of
infection [243], [244]. DevS phosphorylates DevR even in the presence of small
concentrations of NO, negatively regulates the DevR regulon through phosphatase
activity in the presence of O= while positively regulating the DevR regulon in reducing
conditions [243], [245], [246].
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Interestingly, even under non-inducing conditions, and as such no phosphorylation of
DevR, the DevR regulon is activated upon high enough concentrations of DevR,
providing a possible explanation for enduring induction of the DevR regulon which
might occur after prolonged autoactivation of its own regulon [10]. Among DevR
regulated genes there are a few types of regulation. While some genes are strongly
upregulated within a few hours of infection others are only mildly induced after 12-24
hours in hypoxic and high NO conditions [242]. DevR and other two-component
regulators can fine tune expression of genes through the presence of multiple binding
sites and through phosphorylation which stimulates cooperative binding [241].

CO is released by the enzymatic activity of heme oxygenase-1 (HO-1) in lungs infected
by Mtb [247], [248]. CO is an important dormancy inducer. Interestingly, Mtb has a
unique heme scavenging and degrading systems that does not produce CO allowing
Mtb to degrade heme without inducing the immune response or its own dormancy
regulon.

Interestingly, there is evidence for two DevR regulated proteins to be involved in
stabilizing the 30S ribosomal units under hypoxic conditions, while slowing down
translation and protein synthesis in the process [236], [249]. Mtb uses lipids such as
cholesterol as primary nutrient in this phase of infection via genes regulated by KstR
and IdeR [45][183], while upregulating production of TAG via tgs1 which is under
control of DevR and Whib3 [144].

Protein-protein interaction was observed between Devl and NarL, a lone two-
component response regulator involved in nitrate and nitrite respiration in
Escherechia coli [250]-[252]. Although the genes regulated by NarL in Mtb are
unknown, we argue it is plausible that NarL is involved in regulation of nirB, narU,
narX, narU, nuoB that are currently thought to be part of the DevR regulon.

NO is produced in the maturing phagosome and is an important dormancy cue sensed
by DevT and DevS. Mtb expresses two truncated heme proteins, GIbN and GIbO, that
help it detoxify from nitrate containing oxygen radicals such as NO while residing in
the macrophage [253]—[256].

Interestingly, GIbN is co-transcribed with [pRI coding for Lipoprotein Lprl, which
Acts as a lysozyme inhibitor [257]. The GIbN-IpR1 Activated isoniazid inhibits
truncated hemoglobin N that protects against reactive nitrogen and oxygen species as
well as AcpM, which is required for mycolic-acid production [87], [258]-[260]. NO
was found to help Mtb to survive in hypoxic and acidic conditions through anaerobic
respiration [252], [261]. In addition, nitrate respiration plays an important role in
dormancy and protection against hypoxic and acidic stress [261], [262].

Although DevRST and WhiB3 are involved in the preparation for dormancy, the
enduring hypoxic response measured in a devR knockout mutant showed 230 genes
to be differentially expressed with roughly half of them upregulated in in the first day
of hypoxia and the other half only upregulated at 4 and 7 days of hypoxia [263]. These
results indicate many genes involved in the enduring hypoxia response are not
regulated by DevR. Resuscitation from dormancy is more elusive and less studied than
dormancy. Resuscitation involves CIgR and both SigH and SigE are upregulated upon
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reaeration [264]. Also cAMP-CRP plays a role in resuscitation as it upregulates rpfA
one of the five resuscitation promoting factors [192], [265], [266].

2.5 Success through tight regulation of virulence strategies

Mtb anticipates changes in the interaction with the host by upregulating both internal
and external sensors and regulators involved in sensing progression of the immune
response. This allows the bacteria to adjust more quickly to progression of the immune
response. External sensors involved in survival in the macrophage consists mostly of
two-component regulators [229] (such as DevRST, PhoPR, MprAB, SenX3-RegX3,
NarL) while for internal sensors, WhiB family proteins and regulators such as CRP and
CMR are used. These sensors and regulators appear interconnected, thus forming a
single regulatory cascade that controls the three virulence strategies, as represented in
Figure 5. This regulatory cascade integrates many internal (as cAMP, Mn, Mg,
oxidative conditions, and presence of NO) and external environmental cues
(phagosome pH or cell wall damage) for fine-tuned regulation of key virulence
systems. Examples of such virulence systems downstream this cascade are GroEL2,
ESX-1, EsxAB and EspACD. Pore formation by EsxA depends on the regulation of
ESX-1 by PhoP, Lsr2 and WhiB6, and on regulation of EspACD by Lsr2, EspR, PhoPR,
MprAB, WhiB6 and Rvoo081. Post translationally, pore formation by EsxA is regulated
by proteolytic activity of MycP1, acetylation of EsxA and dissociation of EsxA-EsxB
upon acidification of the phagosome [85], [124], [125], [155], [156], [208], [210],
[233]—-[235]. Similarly, GroEL2 is regulated by CRP, WhiB1, HrCA and Mg2*
starvation and post-translationally regulated by proteolytic cleavage by Hip1 [180],
[187], [188], [191]-[193].
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in squares. The large arrow on the top represents the progression of the immune response.

There is a great amount of overlap in this cascade, so that multiple environmental
signals are considered in the regulation of these genes, as indicated in Figure 5. For
example, some PhoPR regulated genes are predicted to have cAMP-CRP binding sites
[267]. These genes are upregulated upon oxidative stress and low pH but suppressed
in the presence of cAMP-CRP, as is the case for espACD[268]. Some PhoPR regulated
genes are also regulated by DevRST, WhiB3 and by MprAB. An even larger overlap
exists in genes regulated by DevRST and MprAB, indicating integration of CO, NO,
hypoxia and cell stress in the regulation of these genes [269]-[271]. We argue that
based on the overlapping regulation of the three virulence strategies, these strategies
extend and overlap each other. The order of activation of these strategies is likely to
vary depending on the dynamics between Mtb and the host. Timing of specific
virulence strategies also vary for different Mitb strains [272]. Some strains gain
cytosolic access within hours of phagocytosis while others require 3-10 days [85],

[272].

Pore or lesion formation is linked to immune modulation. Cytosolic access is need for
secretion of cAMP and other immune modulating factors, such as GroEL2, into the
macrophage cytosol [272]. There are still many unanswered questions regarding the
exact role and regulation of GroEL2. Firstly, it is unknown at which conditions
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proteolysis of GroEL2 by Hip1 (Rv2224c) occurs. Secondly, Hip1 was reported to
mainly function as lipase in one study [189], further research is needed to confirm
whether GroEL2 is a direct substrate of Hip1. Strict regulation of GroEL2 suggests it
to have an important role in virulence.

Interestingly, there are many parallels in regulation of virulence systems between Mtb
and other pathogens. Understanding Mtb as one of the most successful intracellular
pathogens can therefore provide insight in common strategies deployed by
intracellular pathogens. For instance, positive regulation of virulence genes by PhoPR
and suppression by cAMP-CRP appears to occur in more pathogens. In Y. pestis, PhoP
directly binds to and transcriptionally activates crp and cyA leading to merging of the
PhoPQ and CRP-cAMP regulon [273]. Similarly, a major virulence island is positively
regulated by PhoP while being suppressed by cAMP-CRP in S. typhimurium [274]. In
Mtb, PhoPR regulates pro-inflammatory virulence genes such as the ESX-1 operon as
well as genes involved in protecting against oxidative stress, when cAMP is depleted.
cAMP does not only suppress phagosome maturation but also acts as an internal
sensor of phagosome maturation, through pH dependent secretion of cAMP.

Some aspects in the regulation of PhoPR and cAMP in Mtb require more research.
Firstly, the function of multiple IdeR binding sites upstream of the phoPR suggests
complex regulation of the phoPR operon by IdeR and thus by iron bioavailability.
Secondly, the exact cue for activation of PhoP remains unknown. Upregulation of
phoPR in acidic conditions has been observed as well as under Mg2+ starvation,
however this later observation could not be reproduced [181]. Transcriptional analysis
of Mtb showed many genes in the PhoPR regulon to be upregulated during the first
hours of infection (20 min to 2 hours) while the phagosome acidified from pH of 6.5
to pH 5.5 [137]. PhoPR stimulates expression of aprABC, an important regulator of
the intracellular pH [181]. These results indicated PhoPR directly or indirectly senses
pH. Recently, it was discovered that PhoP interacts with acid inducible
extracytoplasmic sigma factor SigE, providing a possible explanation for activation of
the PhoP regulon at low pH [226]. Extracytoplasmic sigma factors provide a means of
regulating gene expression in response to various extracellular changes, hence their
name.

Secondly, we argue entrance of Mtb in the early phagosome is likely to lead to higher
abundance of Mn. Pathogenic Mycobacteria species such as Mtb and M. avium, have
high manganese concentrations at 1 and at 24 hour after infection compared to non-
pathogenic M. smegmatis [104]. Mn availability might also be affected by Mramp, a
pH dependent Mn H+ symporter with maximal activity between pH 5.5 and 6.5
matching the conditions found in the early phagosome. Mn is an important cofactor
for cAMP synthesis, and it is likely to increase cAMP production in the early
phagosome. cAMP-CRP and PhoPR co-regulate virulence genes directly or via
regulators such as WhiB6, which is linked to Mn deficiency. Based on the strong
affinity of PhoP for Mn we hypothesize Mn might play a role in both cAMP and PhoPR
regulation [92], [154]. Depletion of Mn and secretion of cAMP might lead to de-
repression of cAMP-CRP suppressed genes such as espACD as well as activation of
these genes through PhoPR.
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Thirdly, polyphosphate is needed for optimal PhoP activation [227]. Polyphosphates
are potent inhibitors of type III adenylyl cyclases in M. bovis which agrees with the
opposing roles of cAMP-CRP and PhoPR in respectively inducing genes involved in
the anti- and pro-inflammatory response in Mtb and other pathogens. Polyphosphate
is implicated in the activation of PhoP and is part of one of two positive feedback loops
in the regulation of mprAB and sigE [226]—-[228]. Polyphosphates kinase production
is conserved in all bacteria and is associated to induction of dormancy and activation
of virulence genes in many pathogens [275]. Knockout polyphosphate kinases ppki1
mutants, have reduced biofilm formation, are more susceptible to drugs and are
impaired in growth in guinea pigs [227], [276]. Interestingly, SigE is involved in
regulation of polyphosphate. MprAB and SigX3-RegX3, induce transcription of sigE
upon cell wall stress or phosphate starvation, while anti sigma factor RseA binds to
and neutralizes SigE in reducing conditions [277], [278]. RseA is degraded by
ClpC1P2-dependent proteolytic activity depending on its phosphorylation by the
eukaryotic-like Ser/Thr protein kinase PknB [278]. SigE, polyphosphate and MprAB
are involved in a double positive feedback loops through polyphosphate and ClpC1P2
of which a visual model is provided by Manganelli et al [278]. Polyphosphate functions
as phosphate donor for MprAB under low ATP condition. Additionally, SigE regulates
the transcription of the furA-katG operon in response to oxidative stress in
Mycobacteria [138]. SigE knockout strains are strongly attenuated and a recent study
shows a sigE knockout strain provide an even more effective live vaccine than BCG
[279]. Taken together, these studies indicate SigE plays an important role in adapting
to low pH, cell wall and oxidative stress through upregulation furA-katG, activation of
some PhoPR induced genes, MprAB and inhibition of cAMP-CRP through
polyphosphate production. The interplay of SigE, polyphosphate and the hypothesized
role of Mn in PhoPR and cAMP regulation should be further investigated.

Another aspect we want to address is the link between IdeR, cAMP, cholesterol
degradation and phagosome escape. IdeR, KstR KstR2 co-regulate the cholesterol
degradation pathway in M. bovis [183]. We suggest a similar synergy between IdeR
regulation and cholesterol degradation in Mtb. Transcription of cholesterol
degradation genes in Mtb is dependent on the presence of CyA [280]. Regulation of
cholesterol degradation by IdeR and cAMP would suggest access to cholesterol is
associated to the initial stage of Mtb host interaction when the iron pool is oxidized
and cAMP is produced to avoid phagosome maturation. Interestingly, EsxA and other
pore forming toxins specifically inserts themselves into phosphor lipid
(phosphatidylcholine) and cholesterol-containing liposomes [234], [281]. Giant foamy
macrophages rich in cholesterol are at the center of Mtb containing granuloma’s that
turn necrotic [79], [83], [84], [205], [281]. Accumulation of cholesterol was shown to
be essential for uptake of Mtb by the macrophage [282]. Additionally, cholesterol was
shown to increase association of TACO, a coat protein that prevents degradation of
Mycobacteria upon fusion with lysosomes [282]. We argue that accumulation of
cholesterol in macrophages not only increases Mtb survival in the phagosome by
serving as carbon source, but also might assists in its escape from the phagosome.

In summary, in this review we provide an overview for understanding divalent metal
homeostasis and their role in regulating three essential virulence strategies of Mtb:
immune modulation, dormancy and escape. Sensors of environmental and internal
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cues, including divalent metal availability, form a single regulatory cascade that
controls these three virulence strategies. The role of polyphosphate, cAMP and
manganese in this cascade requires further investigation.

2.6 Supplementary Materials

Supplementary =~ Materials: The following are available online at
http://www.mdpi.com/1422-0067/19/2/347/s1. All Supplementary files, Figures as
well as additional code not present in the supplementary files of the published
manuscript are available at: https://github.com/NielsZondervan/PhD Thesis.
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3.1 Introduction

Mycobacterium tuberculosis (Mtb) is responsible for an approximate 1.3 million
deaths in non-HIV infect patients in 2021 and is one of the top 10 leading causes of
death worldwide [8]. Mtb evolved from a group of ancient pathogens [283], adapting
its persistence virulence systems over thousands of years to become one of the most
successful bacterial pathogens [284], [285]. Its long evolutionary relationships with
humans made Mtb adjust to an obligate intracellular pathogenic lifestyle using various
pathogenic strategies such as immune modulation [286], dormancy [9] and
phagosomal escape [272]. Although M. tuberculosis is considered highly resistant to
horizontal gene transfer, there is evidence that during its evolution large scale gene
deletion and horizontal gene transfer took place [287]. For example, some virulence
proteins such as EsxA and EsxB can be found in other pathogens such as S. aureus
[288] and Streptococcus suis [289]. Other systems such as the poly-polyketide
metabolism of Mtb and Yersiniae pestis, show some similarities and are vulnerabilite
to the same drugs [51] while 19 Mtb genes coding for polyketide synthesis are
suspected to be of Eukaryotic origin [290]. The diversity in strategies and molecular
building blocks to cause virulence makes Mtb a good model organism of bacterial
pathogenesis. The vast amount of omics data available for Mtb make Mtb suitable for
Systems Biology Approaches [6], [52], [291]. Systems Biology looks at the system at
large, for example, by building large networks based on genomics, transcriptomics,
proteomics, or metabolomics data. Biomolecules such as genes, proteins and
metabolites are represented as nodes while their interactions are represented as edges.
Edges represent different types of interactions or associations depending on the
studied biomolecules and the considered datatypes. For example, a network of
transcriptional similarity would show genes with similar expression patterns over a
range of conditions. A network based on protein-protein interaction would show
physical interaction between proteins, while in some cases the network shows more
general associations such in the case of STRING db [51] that includes physical
interactions and predicted functional associations. Additional information, such as the
presence of common motifs in the upstream regions of the considered genes or
experimentally validated associations can further strengthen the reliability of the
obtained networks.

Multiple methods have been developed to infer networks from different types of omics
data [292], [293]. and integrative approaches have been developed to generate
consensus networks combining the strengths from the multiple methods through a
wisdom of the crowds approach [51]. In addition to combining all information in a
consensus network, an alternative approach is to synchronously browse multiple
networks including the consensus network, as sometimes similarities and associations
can only be seen in one or a few omics data types by applying dedicated methods and
approaches. Synchronous Network Data Integration framework SyNDI [51] and its
predecessor DIVA [52] provide a framework to allow simultaneous visualisation,
selection and browsing over multiple networks. Networks can be either generate top-
down from experimental data using various algorithms or constructed bottom-up
from biological pathway databases such as the Wikipathway database [294]. These
multiple network data integration frameworks include an approach -called
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Meme2Fimo [52]. Meme2Fimo combines iterative motif elicitation in the upstream
regions of genes found in close neighbourhood in a reference network, using MEME
[43] and the identification of additional genes in the same network region also
harbouring the elicited motif, using FIMO [73]. The iterative motive elicitation and
matching is complemented with network neighbourhood considerations thereby
leading to more accurate predictions on regulatory mechanisms.

ESX-1 is a type VII secretion system required for the secretion of virulence proteins
such as EsxA (ESAT-6) and EsxB (CFP-10). These are involved in immune modulation
and phagosome escape [11], [85], [295]. EspACD is required for EsxA-EsxB secretion
and pore formation [52], [216]. Multiple regulators such as PhoP, EspR, MprA, CRP
are involved in modulation of ESX-1 and its secreted factors [233]. The transcription
factor DevR mediates the hypoxic response of M. tuberculosis and triggers the onset
of dormancy which enables long term survival of the bacteria within the lung
granulomas of the human host [296]. DevR regulon is essential for persistence and
pathogenesis of M. tuberculosis [297]. ChipSeq experiments initially identified over
600 gene targets for DevR [45]. Integration of heterogeneous molecular networks with
this data led to the identification of five groups of genes with distinct expression
profiles among this initial set [52]. Here, we present the exploration of the regulation
of ESX-1 associated genes espA, C and D and the role of DevR in regulating these genes
and the identification of additional biding motifs associated to DevR in M. tuberculosis
using the SyNDI framework. This analysis has previously been briefly presented to
illustrate the use of SyNDI (Lindfords et al.) and here we present a more extended
version.

3.2 Materials and Method

3.2.1 Meme2Fimo

Meme2Fimo [52] is a tool to iteratively identify a motif and search for genes that
contain a motif in their upstream binding site in combination with network mining.
We can summarize this method as a three-step protocol. For more technical details
we refer to the method section within the SyNDI paper [52].

1) The approach starts by manually selecting an initial cluster of genes that are in
the neighbourhood of each other in a network of interest. For example, a cluster
of genes in a co-expression network. The selected cluster of genes is used in
identifying a motif using Meme [298].

2) The second step is to use Fimo [73] to locate any other occurrences of motifs
identified in step one within the complete genome. All occurrence of similar
motifs in the upstream binding region of genes are scored and ordered
according to their p-value. Genes with a low p-value indicate the found motif
found upstream is more like the motif that was searched for. Similar motifs,
with a p-value below a cut-off value, can be used as input for a new round of
motif building. Step one and two can be repeated until the motif search returns
no new genes below the p-value cut-off, meaning that subsequent iterations
would not change results or until the researcher is satisfied with the identified
motif and its associated genes.
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3) The third step is to identify sub-clusters within a cluster of genes. There are two
ways to identify such sub clusters. First, one can remove the expression data
from conditions that are associated to a motif found in a cluster of genes, and
generate a new co-expression network without this data [52].
The second way, which used within this chapter, is to deselect genes that are
already associated to a motif.

Both MEME [43] and Fimo [73] are used with default settings. Upstream regions
considered contain intergenic regions of up to 1000b. In some cases, a naive operon
extension is applied where all consecutive genes in the same strand are in an operon,
if the intergenic distance is less than 1000b.

We combined this approach with literature search as well as searching in online motif
databases manually to see if the motifs are associated to a known regulator. For a
visual representation of the Meme2Fimo workflow, see Figure 6.

Initial set of genes

v

Identify conditions linked
to main regulatory event

Remove conditions from
compendium and build
new network

v

Analyze clusters in new

network(s)
genes

o i i Bl o 8
Iterate
] upstream I
i sequences |
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Figure 6. Pipeline to uncover additional regulatory layers. Step 1: Identify conditions linked to the
main regulatory event for the initial gene set. This can be done using bi-clustering techniques or by
direct comparison with the expression levels of the regulator (if known). Step 2: Build co-expression
networks in the remaining conditions. Alternatively, instead of building a new network, the
researcher can deselect genes with a known upstream binding motif. Step 3: Identify the closest
neighbours of the selected genes in the new networks. Step 4: iterative round of motif
identification/matching to identify the secondary motif and the set of genes with this motif in their
upstream regions [43].
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3.2.2 Multiple networks

A pipeline for the reconstruction of gene co-expression networks from a compendium
of expression data was described in [52] to where we refer the reader for additional
details. This pipeline is highly customizable, and its default values correspond to the
following brief description. From a gene expression compendium, similarity between
gene expression profiles is scored using Pearson’s correlation for each gene pair. The
significance of the similarity is scored using an estimate for the null model based on
the rest of the similarity scores obtained for the members of the pair evaluated
independently [47]. A generalization of the data processing inequality is iteratively
applied to prune possible spurious associations from the network [299]. Stand-alone
scripts implementing this pipeline can be retrieved from Additional file 3 of [52].

Here, we used SyNDI framework to synchronously represent and explore the following
networks built on M. tuberculosis data.

In our explorations we use the following network views.

e CLR [47]: Co-expression Network using the Context likelihood of relatedness
algorithm

e STRING.db fusion: STRING network based on fusion between proteins in other
bacteria

e STRING.db: STRING Neighbourhood network, indicates genes are frequently
occurring in the same genomic neighbourhood, which indicates genes might be
involved in the same function or pathway.

e (bbh)networks: operon and BLAST based homology network, shows duplicated
genomic regions and homology.

For a description of the pipeline that generated these networks, we refer to the article
by J. van Dam et al. [52]. In the following sections we will describe for each exploration
path details on the genes that were selected for each round of iterative motif searches.
Annotation for genes in the results section were retrieved from Tuberculist [300] and
or BioCyc [301] unless otherwise specified through its references.

3.2.3 Identification of an ESX-1 associated genes espACD binding motif
1.1) Select genes within CLR network ESX-1 related cluster:

Rv3615c; Rv3613c; Rvi639c; Rvi387; Rv36i12c; Rv2406c¢; Rvi386; Rvi284;
Rv3616¢; Rv2632¢c; Rv2302; Rv3614c

1.2) Fusion network select genes in neighbourhood:

Rv3615¢c; Rv3613c; Rvi639c; Rvi387; Rv36i12c; Rv2406c; Rvi386; Rvi284;
Rv3616¢c; Rv2632c; Rv2302; Rv3614c; Rvoi43c; Rv3709c; Rvi738; Rvi293;
Rvi1294; Rvoo80; Rvo569; Rv3341; Rv2623; Rv2837c; Rv2626¢; Rvoo56; Rv3907c
* See homology pairs in bbh network in Table 1

1.3) New selection, select all homologs of TB31.7 in bbh network:
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Rv3134c; Rv2624c; Rv2623; Rv1996; Rv2005¢; Rv2026¢; Rv2028c¢
1.4) Naive operon extension:

Rv3134c; Rv2624c; Rv2623; Rvig96; Rv2005c; Rv2026¢; Rv2028c; Rv3i3sc;
Rv3132c¢; Rv3135; Rv3136; Rv3137; Rv3138; Rv3139; Rv3140; Ru3i41; Rvi997;
Rv2004c; Rv2003c; Rv2006; Rv2025¢; Rv2024c; Rv2023c; Rv2022c¢; Rv2021c;
Rv2020c¢; Rv2027¢

1.5) Apply Meme2Fimo
1.6) Take top hits from Meme2Fimo result:

Rvi1731; Rv3134c; Rv1997; Rv1996; Rv3135; Rv2006; Rv2623; Rvi730c; Rv2005¢;
Rv2023c; Rv2024c

1.7) Apply Meme2Fimo: motif D

1.8) Select genes whose upstream regions containing the motif from Meme2Fimo
final selection:

gabD2; Rviz3oc; PPE50; Rv3134c; otsBi; Rv2005c; Rvi996; TB31.7; ctpF;
Rv2024c; Rv2023¢c

3.2.4 Identification of universal stress protein motif associated to ESX-1

2a.1) New selection, reselect all homologs in bbh network of TB31.7: Rv3134c;
Rv2624c; Rv2623; Rvi996; Rv2005¢; Rv2026¢; Rv2028c¢

2a.2) Select related genes in STRING neighbourhood network:

Rvo844c; Rv3134c; Rv3133c; Rv2624c; Rv2625c; Rv2626¢; Rv3132c; Rv2620c;
Rv2621c; Rv2627c; Rvo845; Rvi997; Rvi996; Rv199s; Rv2619c; Rv2032; Rv2006;
Rv2004c; Rv2003c; Rvigg2c; Rvigg3c; Rviggqc; Rv2031c; Rv2o30c; Rv2622;
Rv2623; Rv2029c; Rv2005¢c; Rv2026¢; Rv2025¢c; Rv2028c; Rv2027c¢

2a.3) Select extra related genes seen by subsequent numbering (possible operon) and
also co-expression in CLR network: Rvo844c; Rv3134c; Rv3133c; Rv2624c;
Rv2625c; Rv2626¢; Rv3i32c; Rv2620c; Rv2621c; Rv2627c¢; Rvo845; Rvigg97;
Rv1996; Rvi995; Rv2619c; Rv2032; Rv2006; Rv2004c; Rv2003c; Rviggzc;
Rv1993c; Rvigg4c; Rv2031ic; Rv2030c; Rv2622; Rv2623; Rv2029c; Rv2005c;
Rv2026¢; Rv2025¢c; Rv2028c; Rv2027¢; Rv2617c

2a.4) Select extra related genes in STRING neighbourhood network:
Rvo844c; Rv3134c; Rv3i33c; Rv2624c; Rv2625c; Rv2626¢; Rv3132c¢; Rv2620c;
Rv2621c; Rv2627c; Rvo845; Rvi997; Rvig96; Rvi99s; Rv2619c; Rv2032; Rv2006;
Rv2004c; Rv2003c; Rvigg92c; Rvigg3c; Rvigg4c; Rv203ic; Rv2030c; Rv2622;
Rv2623; Rv2029c; Rv2005¢; Rv2026¢; Rv2025c¢; Rv2028c; Rv2027¢; Rv2617c;
Rv2618c

2a.5) Apply Meme2Fimo: motif E
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2a.6) Select genes whose upstream regions containing the motif from Meme2Fimo
result: Rv2618; Rv2617c; Rv1995; Rvi994c; otsBi; Rv2005¢; acg; hspX; Rvo845;
narL; Rv2622; Rv262ic; ctpF

3.2.5 Identification of universal stress protein motif associated to ESX-1
within DevR

2b.1) Select genes within CLR network ESX-1 related cluster:

Rv3615c; Rv3613c; Rvi639c; Rvi387; Ruv36i12c; Rv2406c¢; Rvi386; Rvi284;
Rv3616¢; Rv2632c; Rv2302; Rv3614c

2b.2) Deselect all known ESX-1 associated genes:
Rv2406¢; Rv2302; Rv2632c¢
2b.3) Select related genes fusion network, all 3 are in the same blob:

Rv2632c; Rv2302; Rv2406c¢; Rvoiq3c; Rv2623; Rviz38; Rv2837c¢c; Rv2626c¢;
Rv0056; Rvoo80; Rvo569; Rv3341; Rv3709c; Rvi293; Rvi294; Rv3907c

2b.4) Select related genes in STRING-neighborhood network, 3 genes are in one blob
(TB31.7, RV1738, Rv0o080):

Rv2632c; Rv2302; Rv2406c¢; Rvoi43c; Rv2623; Rvi738; Rv2837c; Rv2626¢;
Rv0056; Rvoo80; Rvo569; Rv3341; Rv3709c; Rvi293; Rvi294; Rv3907c; Rv2620c;
Rv2621c; Rvoo78A; Rv2619c; Rvoo79; Rv2748c; Rv2751; Rv2750; Rv2622;
Rvi1736¢; Rvi737c; Rvi734c; Rviy35¢; Rviz32c; Rviz33c; Rv2749

2b.5) Select all homologous in bbh network of TB31.7:

Rv1738; Rv2632c; Rv2626c; Rv2620c; Rv2621c; Rv2302; Rv3341; Rv3709c;
Rv2837¢c; Rvoo78A; Rv2619c; Rv2406c¢; Rvoos56; Rvoo79; Rvoo8o; Rv39o7c;
Rv2748c; Rv2751; Rv2750; Rvi293; Rvi294; Rvoi43c; Rv2622; Rv2623; Rvi7z36c;
Rvi737¢; Rviz34c; Rviy3sc; Rviz32c; Rviz33c; Rv2749; Rvo569; Rv2026¢;
Rv3134c; Rv2624c; Rv1996; Rv2028c; Rv2005¢

2b.6) Apply Meme2Fimo
2b.7) Take list of top hits from Meme2Fimo result:

Rv1733C; Rvoo079; Rvi737C; Rvi738; Rvig96; Rv2623; Rv2005C; Rv3134C;
Rv1735C; Rvi1734C; Rvo569; Rv2626C; Rvi997; Rv2825C; Rv2031C; Rv2032; R
v3033; Rv2338C; Rv2339; Rvo848; RV0961; Rvo574C; Rv1643; Rvo667; Rvi015C;
Rv2795C; Rvi574; Rvos522; Rv1813C

2b.8) Q select (hold q key down while doing the selection) to make a sub-selection in
the current selection of genes, in this case a sub-selection within the selected genes in
the DevR regulon related cluster in the CLR network:

Rv1738; Rv3134c; Rv2626¢c; Rvos74c; Rvi997; Rv1i996; Rvoo79; Rvi8i3c; Rv2032;
Rv2031c; Rv2623; Rv2005¢; Rvi737c; Rviz33c; Rvo569
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2b.9) Apply Meme2Fimo

2b.10) Take top hits from Meme2Fimo result:
Rvi1737C; Rvi738; Rvi813C; Rv2031C; Rv2032; Rvo079; Rvig96; Rvos574C;
Rv2623; Rv2005C; Rvi733C; Rvi1997; Rv3134C; Rv3130C; Rv3131; Rvo848;
Rv0569; Rv3409C; Rv1628C; Rvi1629; Rv2626C

2b.11) Apply Meme2Fimo: motif C

2b.12) Select genes whose upstream regions containing the motif from Meme2Fimo
final selection:

Rv1738; narK2; acg; hspX; Rv3131; tgsi; Rvooy9; TB31.7; Rvi813c; Rv2005¢;
Rvos74c; ctpF; Rv1996; cysK2; Rv3134c; Rvi733c; polA; Rv1628c

3.2.6 Identification of a likely SigE binding motif within the DevR
regulon

3.1) Continue from step 3.4:

Rv2632c; Rv2302; Rv2406c¢; Rvoiq3c; Rv2623; Rviz38; Rv2837c¢; Rv2626c¢;
Rvo0056; Rvoo80; Rvo569; Rv3341; Rv3709c; Rvi293; Rvi294; Rv3907c; Rv2620c;
Rv2621c; Rvoo78A; Rv2619c; Rvoo79; Rv2748c; Rv2751; Rv2750; Rv2622;
Rvi1736¢; Rvi737c; Rvi734c; Rviy35¢; Rviz32c; Rviz33c; Rv2749

3.2) Q select only genes in the DevR regulon related cluster in CLR
network:

Rvi1738; Rv2626c; Rvoo79; Rvoo80; Rv2623; Rviz37c; Rviz33c; Rvo569;
Rv2625c; Rv2624c; Rvoo81; Rvos570

3.3) Naive operon extend:

Rvi1738; Rv2626c; Rv0o079; Rvoo80; Rv2623; Rviz37ce; Rviz33c; Rvo569;
Rv2625c; Rv2624c; Rvoo81; Rvos570; Rviz36c; Rvizs3se; Rvizi34ce; Rvizsac;
Rv0082; Rvoo83; Rvoo84; Rvoo85; Rvoo86; Rvoo87; Rvoo88; Rvoo89; Ruvo090;
Rv0091; Rvoo92

3.4) add select in neighbourhood connect 2 large groups &
remove TB31.7 as neighbours are not in DevR regulon:

Rv1738; Rv2624c; Rv2625c¢; Rv2626c; Rv2627c; Rvoo79; Rvoo81; Rvoo8o;
Rv0083; Rvoo82; Rvoo86; Rvoo87; Rvoo84; Rvoo85; Rvoo88; Rvoo89; Ruvo090;
Rv0092; Rvo091; Rvo570; Rv2628; Rv2629; Rvi736¢; Rviz37c; Rviz34c; Rvizsse;
Rvi1732c; Rvi733¢c; Rvo569; Rvo567; Rvo568; Rv2631; Ru2630

3.5) Apply Meme2Fimo
3.6) Take top hits from Meme2Fimo result:

Rvoo79; Rvi737C; Rvi738; Rv2031C; Rv2032; Rvi733C; Rv2627C; Rv2628;
Rv1735C; Rv2629; Rv1997; Rvoo89; Rvo569; Rvi1734C
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3.7 Apply Meme2Fimo: motif B

3.8) Select genes whose upstream regions containing the motif from Meme2Fimo
final selection:

Rv0079; Rv1738; narK2; acg; hspX; Rv2628; Rv2627c; ctpF; Rviz33c; Rv2629;
cysK2; Rvi735c; Rviz34c; Rvo569; Rvoo80

3.3 Results

3.3.1 Identification of an ESX-1 associated genes espACD binding motif

ESX-1 related genes, espACD, and other closely positioned genes in the CLR network
were selected. The CLR network is build based on gene co-expression data. The gene
selection was transferred to the fusion network. The fusion network from STRING
[302] network is based on fusion between proteins in other bacteria and co-
occurrences in the same operon. Three additional genes were identified in their
neighbourhood. This selection was further enlarged with genes in their neighbourhood
previously reported in the DevR regulon [52]. Transferring the selection to the bbh
network, that contain operon and BLAST based homologs, led to the identification of
three pairs of homologous genes. In each pair one gene belongs to the ESX-1 related
gene set whereas the other one is in the DevR regulon and are shown in Table 2.

Table 2. Hypothetical homologous complex.

ESX-1 CLUSTER RELATED DEVR CLUSTER RELATED
RVo0569 Rv2302
RV2632C Rvi1738
RV2406C* Rv2626¢*
Rvoo8o
TB31.7

Pairs of homolog genes in the ESX-1 and DeuR related clusters of two hypothetical homologous
complexes. * low similarity (E-value 3e-09 < network visualization threshold)

In the fusion network, genes in these homology pairs within the DevR regulon appear
as a densely connected cluster, together with Rvoo80 and TB31.7. TB31.7 is a universal
stress protein family protein responding to stress signals, interacts with cAMP [303]
and has been shown to be involved in growth arrest during latent infection [304],
[305]. To further investigate the role of TB31.7 a new selection was made in the bbh
network by adding six TB31.7 homologs, five of which are in the DevR regulon.
Meme2Fimo was iteratively used to explore upstream sequences of these genes.
Finally, a conserved motif similar to the one reported for DevR was identified and is
shown in Figure 7.
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However, some distinct features appear showing that regulation of these ESX-1 related
genes is complex, integrating signals from hypoxia via DevR as well as signals from
cell stress signals via TB31.7 homologs.

Similarities and differences between the various motifs will be discussed in more detail
in the section “Motif comparison”. The final list of genes used to build this motif can
be found in Table 3.

Table 3. Final selection of genes used to build motif D of ESX-1, espACD associated stress
response.

Locus tag or name Functional information

gabD2 Putative succinate-semialdehyde
dehydrogenase

Rv1730c Possible penicillin-binding protein

PPE50 Suspected to be involved in epitope
variation [306]

Rv3134c Universal stress protein family protein,

part of DevR-DevS operon

otsB1 trehalose-phosphatase
Rv2005¢ Universal stress protein family protein
Rv1996 Universal stress protein family protein,

predicted possible vaccine candidate (See
Zvi et al., 2008).

TB31.7 a universal stress protein family protein
involved in growth arrest

ctpF probable metal cation transporter P-type
ATPase A (CtpF)
Rv2024c¢ Conserved hypothetical protein

Rv2023c NA
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Figure 7. Comparison of DevR and ESX-1 related motifs. a DevR motif as reported in [242] (b)
Exploration path 3 motif. ¢ Exploration path 2 motif 2. d Exploration path 1 motif. e Exploration path
2 motif 1. See Fig. 7 for the legend (E. Lindfors et al.[51]).

Most of the genes in the final cluster are associated to response to against stress in the
phagosome. For example, Rvi730c is possibly penicillin binding, Rv3134c is part of
the DevR-Devs operon and is involved in phosphor relay of DevR, otsB1 is involved in
Mycolic acid synthesis, Rv2005c Is linked to phenotypic fluoroquinolone resistance
[307], Rv1996is linked to zinc efflux to protect from zinc poisoning, TB31.7 codes for
a universal stress protein, Rv2024c is mamB DNA methylation [308]. EspACD is a
highly regulated virulence operon, see Figure 8.
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was earlier presented as Figure 4 in chapter 1.

We see that the homologs and similarly regulated gene we identified are all involved
in adaptation to intraphagosomally stress conditions such as hypoxia, antibiotics of
which some are known to be regulated by PhoP and link to preparation for dormancy.
These findings are in line with what know about the regulation of EspACD, which we
identify as a key hub in regulation of virulence and phagosomal pore formation and
subsequent escape as well as preparation for dormancy. The unknown regulator of
these ESX-1 associated genes would be in interesting drug targets, since it makes Mtb
unable to escape and more vulnerable to drugs and the immune system.

3.3.2 Identification of universal stress protein motif associated to ESX-1

To further investigate the TB31.7 universal stress protein gene and its homologs, we
selected them and neighbouring genes within the neighbourhood network. Upstream
regulatory regions analysis led to the description of another motif Figure 77, Motif E.
A subset of genes (Rv2621c, Rv2622), coding for a possible transcriptional regulator
and methyltransferase, with this motif in their upstream regions appear in the CLR
network with a cluster of genes related to mycolic acid synthesis (Table 4). The ratio
of free and bound mycolic acids is known to change under hypoxia and cell wall stress
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[45]. We further investigated TB31.7 homologs that are part of the DevR regulon and
identified motif (Table 5).

Table 4. Final selection of genes used to build motif D, TB31.7 associated stress proteins.

Locus tag or

name
Rv2618

Rv2617¢
Rv1995
Rv1994c
otsB1
Rv2005¢

acg
hspX

Rvo845
narL
Rv2622
Rv2621c
ctpF

Functional information

Conserved hypothetical protein

Probable transmembrane protein

Unknown protein

Metal sensor transcriptional regulator CmtR (ArsR-SmtB family)
TPP; trehalose-phosphatase

Universal stress protein family protein. Predicted possible vaccine
candidate (See Zvi et al., 2008).
Putative NAD(P)H nitroreductase acg

HspX promotes the polar localization of mycobacterial protein
aggregates
Possible two component sensor kinase

NarL, nitrate/nitrite response regulator protein

Possible methyltransferase (methylase)

Possible transcriptional regulatory protein

probable metal cation transporter P-type ATPase A (CtpF)

Table 5. Final selection of genes used to build motif E, TB31.7 associated stress proteins
within the DeuvR regulon, Motif E.

Locus tag or

name
Rv1738

narKz
acg
hspX

Rv3131
tgs1
Rvoo79

TB31.7
Rvi1813c
Rv2005¢
Rvo574c¢
ctpF
Rv1996

Functional information

Conserved protein, implicated in the onset of nonreplicating
persistence [309]

narK2 encodes a nitrate, H* symporter

Putative NAD(P)H nitroreductase acg

HspX promotes the polar localization of mycobacterial protein
aggregates

Conserved protein

NA

Part of DevR regulon, appears to be involved in the regulation of
translation through the interaction of its product with bacterial
ribosomal subunits [309]

NA

Conserved hypothetical protein

Universal stress protein family protein

Conserved hypothetical protein

probable metal cation transporter P-type ATPase A (CtpF)
Universal stress protein family protein
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cysK2 O-Phospho-l-Serine-Dependent S-Sulfocysteine Synthase
Rv3134c Universal stress protein family protein

Rv1733¢c Probable conserved transmembrane protein

polA DNA polymerase I, DNA repair

Rv1628c Conserved protein

3.3.3 Identification of a likely SigE binding motif within the DevR
regulon

We explored the DevR regulon to identify elements with additional regulatory
influences. USPs homologs to TB31.7 with the DevR regulon and genes in the same
operons were selected. Transferring the selection to the gene neighborhood network
showed the relationship between these two related groups and suggested some genes
to be further included in the selection. Yet another motif (Figure 2,Table 6) was
described in the upstream regions of these genes. This motif is similar to the binding
motif of the AlgU sigma factor from P. aeruginosa which is homologous to SigE in M.
tuberculosis [310]. SigE and SigH together with MprAB function to detect and protect
against cell stress such as misfolded proteins, heat shock, acidic pH, exposure to
detergent, and oxidative stress. These conditions are associated with failed immune
modulation which is related to the DevR regulated dormancy regulon [310], [311].
Moreover, Rvoo80, which is also in the DevR regulon, has been reported as a
regulatory hub of the hypoxia response regulated by MprA [45], [269]. The identified
binding motif shows similarity to the motifs detected upstream of genes
experimentally shown to be regulated by SigE and SigH regulated genes [51], NarK2
is involved in nitrate expulsion, Tgs1 is involved in triacylglycerol production, Rvo574
is a possible polyglutamate synthase involved in encapsulation and cysK2 is a probable
cysteine synthetase [300]. Most of the genes identified in the SigE regulon are of
unknown or hypothetical function. However, for many it is known they are expressed
in hypoxia and dormancy conditions and some like hspX are known to be directly
DevR regulated [300].

Table 6. Final selection of genes used to identify the likely SigE binding motif.

Locus tag or name Functional information

Rvoo079 Part of DevR regulon, appears to be involved in the regulation of
translation through the interaction of its product with bacterial
ribosomal subunits [309]

Rv1738 Conserved protein, implicated in the onset of nonreplicating
persistence [309]

narK2 narK2 encodes a nitrate, H* symporter

acg Putative NAD(P)H nitroreductase acg

hspX HspX promotes the polar localization of mycobacterial protein
aggregates

Rv2628 Hypothetical protein, associated with latent tuberculosis
infection [309]

Rv2627c Conserved protein

ctpF probable metal cation transporter P-type ATPase A (CtpF)
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Rv1733c¢c Probable conserved transmembrane protein

Rv2629 Conserved protein

cysKk2 NA

Rv1735¢c Hypothetical membrane protein, part of DevR

Rv1734c¢ Conserved hypothetical protein. Similar to Acetyltransferase
from Chlamydia pneumoniae

Rv0569 Conserved protein

Rvoo80 Homolog of Rv2406c¢ which contains a cAMP and CRP-binding
element

3.3.4 Motif comparison

Figure 9 shows five related binding motifs. The location of these motifs is shown in
Figure 10. The groups of genes controlled by these motifs are shared as shown in
Figure 5. Inspection of the locations of the motifs shows their overlaps in the upstream
regions of the various shared genes of motifs B, C and D, which indicates that the
shifted motifs might still be functional. The general DevR motif GGGNCNNNNGNCCC
is palindromic, whereas motif BGGGNCNNAAGTC has a unique element, which is not
palindromic. Both SigE and DevR are related to the modulation of process directly
related to growth within human macrophages, the similarity between this motif and
the AlgU motif in P. aeruginosa led us to hypothesize that DevR and SigE can bind to
the same regions. Furthermore, motif D GGGNCNTTNGTC also has a unique element,
NAA in motif B is replaced by TTN. The palindromic motif E lacks the characteristic
GGGNCNNNNGNCCC pattern describing the general DevR binding motif. Only the
GTC is conserved in comparison to the other motifs. The regions it matches are close
(14 and 37 nucleotides) to the regions matched by motif B. Therefore, we hypothesize
that this motif might be associated to additional regulatory elements.

[B]€ DB

narkK2- <=> Rv1738 ~GCCGGCTCAGT
Rv1733c ~CAGCAGGCGGG
cysK2- ~CGCTTCTGCAT

AATGTGGCAGACTTTC~
TATCCGACAATAAAAC~
CGCGGCACTGGATGGG~

GGGCCGGAAGTCC
GGGGCGAAAGTCC
GGGCCGGAAGTCA

Rv0079- ~ACGGACGCGCACRGGGCCCAAAGTCCCATGCCAAATGTGGGCTG~
acg- <=> hspX ~GTGGCCAGGGCTRGGGACAGAAGTCCOLGAAGCGCGGGCCATTT~ M~
ctpF- ~M~CCGGTGTGGATCRGGGCCGTAAGTCAT . CACTGCAGGGACCTAC~
Rv3134- ~CCGCTATCTCCCASGGGCCCTTCCTCCCCACCTGAGGGCCGTTAG~
Rv2005¢c- ~AGTCACCGGTCATSAGGCTTTAGTCCCCAATCGGACGGCCAACC~
Rv1996- ~GCGATCGCGTCAGSAGGCGATGGTCCCTAACCCAAGGGCATTAG~
TB31.7 ~GGGTTTTGCTCAGSAGGCCCTTTGTCACTAGCCCAACGGGCTTAG~

Figure 9. Shifted motif alignment. Marked region denotes the region containing the sequence to which
the motif matches. The regions marked for the motif D regions are shifted. See Fig. 7 for the legend (E.
Lindfors et al.[51])
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Figure 10. Shared genes. Presence of binding motifs A, B, C and D in gene upstream regions. See Fig.
7 for Legends A, B, C and D motif description See Fig. 9 for the legend (E. Lindfors et al. [51])

3.4 Discussion

We have shown how SyNDI can be used to explore and better understand complex
regulated systems such as ESX-1 and associated virulence proteins in Mtb. In addition,
we were able to detect multiple and related binding motifs within the DevR regulon
which have not yet been described in the literature, including a motif that we
hypothesize it is related to Mtb SigE. Identification of regulatory motifs is not only
important to increase our understanding of regulation, but also to identify potential
drug and knock out (KO) targets for vaccine development. In exploration path 1, we
identified a regulatory binding site of which its unknown regulator would be an
interesting drug target based on the multiple genes in this regulon being involved to
adapting to hypoxic and cellular stress as well as two genes involved in antibiotic
resistance and one gene known to protect against metal poisoning. Similarly, we
identified a binding motif of SigE which is involved in the stress response which we
show, overlaps with the DevR, dormancy regulon. SigE is needed to arrest phagosome
maturation [312]. KO mutants of SigE show increased susceptibility to heat and
chemical stress [290]. SigE KO mutants were shown to be effective vaccine candidates
in guinea pig [279] and to be even more effective as vaccine candidate in combination
with faD26 KO in a mouse model [313]. Similarly, combined faD26 and PhoP KO
mutants were shown to be an effective in vaccination, although the lack of a
functioning ESX-1 system reduced the immunity against wild type Mtb [290]. Based
on our results, it can be easily understood why SigE is a potential vaccine or drug
targets.

As we can see in the alignment of the four identified regulatory motifs, they overlap.
This overlap indicates regulation of these virulence associated genes is likely to be
complex involving multiple regulators with overlapping binding sites, as well as
complex regulation through cooperative binding of DevR to multiple upstream
binding [241], [314] and cooperative binding of MprAB to multiple binding sites [315].
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MprAB regulates SigB and SigE involved in the stress response [315] while PepD [311].
and RspA [316] regulate SigE which according to our findings regulates some genes
present in the DevR regulon. Only by large scale mapping of all these regulators, their
regulatory binding motifs, and the genes they regulate, can we hope to understand the
complexity of regulation in Mtb.

The Meme2Fimo method which we used to unravel gene regulation in Mtb, illustrates
a few common elements of the data-drive hypothesis generation research performed
in in Systems Biology: the use of a) (multi-)omics data to identify clusters of interest,
b) iterative approaches to identify and refine clusters and remove noise and c)
Integration with existing knowledge from online resources and literature to
contextualize the findings. Here, the exploration started with the question “are there
sub clusters of genes in the SigE and DevR regulon regulated by other regulatory
proteins?” Integrative solutions such as Diva and SyNDI are important because they
allow researchers to explore and identify clusters and motifs and to answer biological
questions in a reasonable amount time. The Meme2Femo tool used for segregating
motifs was effective, however it still required manual input from the user to select and
deselect genes for each iteration. Full automation of the exact workflow involving
manual selections in multiple networks is not yet possible. Users can make intelligent
decisions over multiple network which a computer algorithm cannot mimic. However,
it is very well possible to perform automatic cluster detection and as such automatic
identification of motifs in a selected network. The most logical choice for automated
cluster and motif detection would be automatic cluster detection in networks such as
the CLR network which we used extensively in all discussed explorations. Better
integration of automated cluster and motif detection with manual curation could be a
topic for future research.
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4.1 Abstract
Background

Staphylococcus and Streptococcus species can cause many different diseases,
ranging from mild skin infections to life-threatening necrotizing fasciitis. Both
genera consist of commensal species that colonize the skin and nose of humans and
animals, and of which some can display a pathogenic phenotype.

Results

We compared 235 Staphylococcus and 315 Streptococcus genomes based on their
protein domain content. We show the relationships between protein persistence and
essentiality by integrating essentiality predictions from two metabolic models and
essentiality measurements from six large-scale transposon mutagenesis experiments.
We identified clusters of strains within species based on proteins associated to
similar biological processes. We built Random Forest classifiers that predicted the
zoonotic potential. Furthermore, we identified shared attributes between of
Staphylococcus aureus and Streptococcus pyogenes that allow them to cause
necrotizing fasciitis.

Conclusions

Differences observed in clustering of strains based on functional groups of proteins
correlate with phenotypes such as host tropism, capability to infect multiple hosts
and drug resistance. Our method provides a solid basis towards large-scale
prediction of phenotypes based on genomic information.
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4.2 Background

Species from the genera Staphylococcus and Streptococcus are mostly commensals
that live as part of the microbiota of various animals and humans [317]. Some of them
are opportunistic pathogens, displaying a pathogenic phenotype when the immune
system of the host is compromised or the epithelial barrier is damaged [318]-[321].

Few comparative genomic studies have been performed to analyse the evolution and
the pathogenesis of Staphylococcus and Streptococcus species: the comparisons of the
genomes of 11 Staphylococcus species determined that horizontal gene transfer of
virulence factors is an important factor in adaptation of S. aureus to humans [322];
another study showed that protein domain based metabolic diversity among
Streptococcus species could be used to identify differences in the metabolism of the
highly pathogenic serotype 2 S. suis compared to other Streptococci [323]. Another
study confirmed these results and showed that metabolic capability predicted using
genome scale models (GEMs) could be used to identify Streptococcus strain specific
biomarkers and metabolic determinants of virulence [324].

Protein domains and protein-domain architectures have been shown to be a fast and
efficient method to define groups of functionally equivalent proteins that were used
for comparative genomic studies [325], [326], including Staphylococcus and
Streptococcus [327]-[329]. However, at the best of our knowledge, no work exists
focusing on similarities and differences within and between Staphylococcus and
Streptococcus genomes.

In this study we performed a comparative analysis of 235 and 315 fully sequenced
Staphylococci and Streptococci genomes by annotating their proteins based on their
domain content. We integrated this protein annotation with genome-scale metabolic-
modelling predictions, transcriptomic and transposon-mutagenesis data sets to study
gene essentiality and persistence. All annotation used in this paper as well as GO
information is based on genomics annotation from databases based mainly on
bacterial genomics studies. In this paper we compare within and between
Staphylococcus and Streptococcus species with the objective to identify both
difference and similarities in genomic properties as well as in specific combinations of
genes that give rise to pathogenic phenotypes. We compared the clustering of
Staphylococcus and Streptococcus genomes based on proteins selected using on Gene
Ontology (GO) terms associated with clinical phenotypes such drug resistance,
pathogenesis, and tissue and host tropism. Furthermore, we used the functional
grouping of proteins to predict zoonotic potential of S. suis and S. agalactiae, that is
their ability to infect multiple hosts including humans. Finally, we compared S. aureus
and S. pyogenes to identify the genomic basis for their shared ability to cause severe
bacterial infections like necrotizing fasciitis. Our results are compared throughout the
paper with findings from literature.
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4.3 Results

4.3.1 Pan- and core genome analysis

The size of the pan- and core genomes of Staphylococcus and Streptococcus was
determined based on protein domain content (Figure 11). The pangenome contains
all proteins present in the analysed genomes. The core genome contains only proteins
that are present in all genomes and represents their genomic essence [330]. The ratio
of the sizes of the core- and pan genome are 0.22 (557/2563) for Staphylococcus and
0.17 (458/2725) for Streptococcus. A Heaps’ regression model was used to estimate
the closedness of the pangenome [331]. The closedness of the pangenome represents
how much the addition of more genome sequences is expected to increase the number
of proteins in the pangenome. For both Staphylococcus (a = 1.10+ 0.02) and
Streptococcus (a = 1.12+ 0.01) the pangenome was found to be closed (i.e few new
genes are added as news strains are discovered/sequenced). Additional plots of the
estimated pan- and core genomes size and the Heaps’ regression model can be found
in supplementary material [see Additional file 5].
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Figure 11. Mean observed and estimated size of the pan- and core genome. The shadowed area
shows variation over 10 times sampling.
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4.3.2 Protein persistence and essentiality

Persistence of proteins over all Staphylococcus and all Streptococcus species was
calculated. Protein persistence data was combined with model predictions of
essentiality and experimentally determined essentiality data. Experimentally
determined essentiality (labelled as EXP) is available for growth on rich media
resembling in vivo conditions. GEMs predictions were made using minimal media
conditions for all combinations of carbon, nitrogen, sulphur, and phosphorus sources.
Simulations on rich media conditions were therefore indirectly performed since all
rich media compounds are present in the models as exchange reactions and all
combinations of these exchange reactions functioning as carbon, nitrogen, sulphur,
and phosphor sources were tested for essentiality. We used GEM to predict gene
essentiality for Staphylococcus aureus NTCTC 8325 and Streptococcus pyogenes
M49. The total number of medium combinations based on C, N, S, P sources was 12432
for Staphylococcus and 714 for Streptococcus. The number of tested conditions for
Staphylococcus is much larger than the Streptococcus model since the Staphylococcus
model can use all amino acids as alternative nitrogen source through deamination,
greatly increasing the number of minimal media combinations. The Staphylococcus
model can use all amino acids as alternative nitrogen source through deamination,
greatly increasing the number of minimal media combinations” Protein persistence,
in silico predictions of essential and in vitro essentiality data for Staphylococcus and
Streptococcus were integrated based on their associated locus tags. Both GEM based
and experimentally determined essentiality correlated with a high persistence, while
essentiality by both criteria is associated with an even higher persistence (see Table 7
and Figure 12). Proteins experimentally determined or GEM predicted to be
essentiality are significantly different from the average protein persistence (Student’s
t-test, p-value = 5 x 104) for both Staphylococcus and Streptococcus.

Table 7. Persistence of Staphylococcus (Staph.) and Streptococcus (Strep.) for all proteins,
proteins associated to Genome Metabolic model (GEM) essential genes and experimentally
(EXP) determined essential genes.

Group Avg persistence Avg persistence
Staph. Strep.

All 0.60 + 0.44 (N=2655) 0.42 + 0.42 (N=3047)

GEM-essential 0.94 + 0.14 (N=153) 0.98 £ 0.09 (N=225)

Exp-Essential 0.97 + 0.03 (N=411) 0.97 £ 0.12 (N=254)

EXP&GEM-Essential 0.94 + 0.01 (N=46) 0.98 £ 0.00 (N=113)
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Figure 12. Protein persistence. A) Staphylococcus, B) Streptococcus. Group labels: All= all proteins,
GEM = in silico predicted to be essential using a Genome Scale Metabolic model, Exp-Essential =
experimentally determined to be essential. Combined group strains

4.3.3 Variability of gene expression and gene essentiality

Essentiality and domain persistence information for Staphylococcus was combined
with the variability of transcription (measured by log- fold changes). The variability in
expression for experimentally determined essential and non-essential genes as well as
for persistent and non-persistent genes were compared (Figure 13). The fold change
transcription levels of experimentally determined essential genes are significantly less
variable than the transcription levels of non-essential genes (Student’s t-test, p-value
= 5 x 10714) as well as for persistent genes (Student’s t-test, p-value = 0.000124)).
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Figure 13. Transcriptional variability of essential and non-essential genes in Staphylococcus. Box plots
show Variability values for both groups. Difference between mean values is significant (p-val < 0.01).
(B) Transcriptional variability of persistent and non-persistent genes (genes with persistence lower
or higher than 0.95, respectively). Box plots show Variability values for both groups. Difference
between mean values is significant (p-val < 0.01)

4.3.4 Functional analysis of pathogenesis and pathogenicity

For this analysis, we filtered proteins from Staphylococcus and Streptococcus on their
association to 17 genome ontology (GO) biological process terms associated to
pathogenesis and pathogenicity identified from literature (Table 8). Filtering
included all proteins associated to either the 17 main GO terms or any of their
descendent terms. For all GO terms, proteins were found in both Staphylococcus and
Streptococcus (Table 9). The ratio of proteins per GO function to the total number of
proteins is similar for Staphylococcus and Streptococcus except for the group
‘Biological adhesions’ which has a larger fraction of proteins associated in
Streptococcus than in Staphylococcus.

Table 8. Gene Ontology (GO) terms used to select proteins based on their domain content for
functional trees, PCA and t-SNA analysis. GO terms that are direct children of the ‘Biological
process’ GO term are marked with an asterisk (*).

GOID DESCRIPTION
G0:0008150 Biological process
GO0:0008152 *Metabolic process
GO:0017144 Drug metabolic process
G0:0042493 Response to drug
GO0:0023052 *Signalling
G0:0065007 *Biological regulation
GO0:0022610 *Biological adhesion
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G0:0044406 Adhesion of symbiont to host

G0O:0051704 Multi-organism process

G0:0044419 Inter species interaction between organisms

GO:0042710 Biofilm formation

G0:0098743 Cell aggregation

G0O:0044403 Symbiont process

G0:0009372 Quorum sensing

GO0:0035821 Modification of morphology or physiology of other
organism

G0:0009405 Pathogenesis

Table 9. Number of proteins in the pangenome of Staphylococcus and the pangenome of
Streptococcus per GO term. Root ontology terms, terms without a parent, are marked in
their description with an asterixis (*). GO terms are order as such that descendent GO term.

FILTER DESCRIPTION STAPH STREP
All proteins 2655 3047
GO:0008150 Biological process 1974 2222
GO:0008152 *Metabolic process 1661 1871
GO:0017144 Drug metabolic process 59 77
G0:0042493 Response to drug 56 60
G0:0023052 *Signalling 217 280
GO0:0065007 | *Biological regulation 823 929
G0:0022610 *Biological adhesion 70 147
G0:0044406 | Adhesion of symbiont to host 2 3
GO:0051704 Multi-organism process 348 456
G0:0044419 Inter species interaction between organisms 210 309
GO:0042710 Biofilm formation 9 10
G0:0098743 Cell aggregation 7 10
G0:0044403 Symbiont process 150 202
G0:0009372 Quorum sensing 7 7
GO0:0035821 Modification of morphology or physiology of 45 74
other organism
G0:0009405 Pathogenesis 65 115

Functional trees, PCA and t-SNE plots were used to compare the (dis-)similarity in
clustering of the genomes based on functional groups of proteins compared to
clustering based on all proteins. Dissimilarity was calculated using the Euclidean
distances of genomes in the functional trees and by scaling these distances to values
between 0 and 1 to make them comparable. Functional trees, PCA plots and t-SNE
plots for Staphylococcus can be found in supplementary material [Additional file 6,7
and 8]. Functional trees, PCA plots and t-SNE pots for Streptococcus can be found in
supplementary material [Additional file 9, 10 and 11]. PCA plots and t-SNE plots for
Staphylococcus and Streptococcus species combined can be found in supplementary
material [Additional file 12 and 13].
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Heatmaps were used to investigate which proteins are absent for each species. Each of
these analyses and visualization methods has their own strength and weaknesses in
showing the differences in clustering. In the following we highlight some of the
differences in clustering of Staphylococcus and Streptococcus genomes based on
proteins annotated per GO term as compared to clustering based on all proteins.

4.3.5 Correlation between GO functional groups of proteins

We calculated the correlation between functional trees to compare the similarity in
clustering per GO functional group of proteins (Figure 14 A-B). The correlation
between functional trees is higher for children and parent GO terms as well as for GO
terms with similar functions such as ‘drug metabolic process ‘and ‘response to drug’.
In general, we see that functional trees based on fewer proteins have a lower
correlation than functional trees based on many proteins. These results were expected
since fewer proteins means less information to separate strains resulting in merging
of branches in the tree. An interesting exception to this rule is the ‘symbiont process’
functional tree which has the lowest correlation with other functional trees for
Staphylococcus even though there is a high number of proteins associated to this GO
term.

There are some notable differences when comparing the correlation between
functional trees for Staphylococcus and Streptococcus. For Staphylococcus, the
‘pathogenesis’ clusters together with the functional tree ‘modification of morphology
or physiology of other organisms’. For Streptococcus, the functional tree of
‘pathogenesis’ clusters together with the functional tree of ‘biological adhesion’. Many
‘modification of host morphology’ proteins in Staphylococcus are also associated to
the GO term ‘pathogenesis’ while many ‘biological adhesion’ proteins in Streptococcus
are associated to the GO term ‘pathogenesis’. These results could indicate that
modification of host morphology is important for the pathology of Staphylococcus
strains while biological adhesion is more important for the pathology of Streptococcus.

4.3.6 Horizontal gene transfer of proteins related to pathogenesis

The PCA plot based on all proteins combining Staphylococcus and Streptococcus
genomes supplementary material [Additional file 12 and 13], shows genomes of the
same species to cluster together as we would expect (Figure 15-A). The PCA plot
based on presence/absence of proteins involved in Response to drug (GO:0042493)
shows genomes are not always separated on the species level, however, there is a clear
separation between Staphylococcus and Streptococcus genomes (Figure 15-B).
However, both in the PCA (Figure 15-C) and in t-SNE plots based on proteins
associated to the GO term ‘Pathogenesis’ proteins, Staphylococcus and Streptococcus
species cluster together.
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Figure 15. (A) PCA based on all proteins in Staphylococcus and Streptococcus. (B) PCA based on
proteins association to ‘response to drug’ (GO:0042493). (C) PCA based on proteins associated to
‘pathogenesis’ (GO:009405). Fraction of variance explained by each PC is indicated in the axis

Analysis of the presence and absence of proteins associated to ‘pathogenesis’ reveals
that Staphylococcus sciuri GCA:002072755 and Staphylococcus haemolytic us
GCA:001611955 only contain one pathogenesis protein (PF04647) that is not present
in any Streptococcus strain. This protein, PF04647 ArgB, is part of a quorum sensing
system. Also S. saprophyticus GCA:002209265 only contains one protein not present
in any Streptococcus strain. This protein, PF05480, is a haemolytic protein unique to
Staphylococcus. Among Streptococci, S. parauberis six S. iniae and seven S.
thermophilus strains lack any pathogenesis protein that separates them from
Staphylococcus.

4.3.7 Domain shuffling of pathogenic proteins

The Staphylococcus pangenome contains 52 domains present in 65 proteins
associated to the GO term ‘pathogenesis’ while the Streptococcus pangenome contains
88 domains present in 118 proteins associated to the GO term ‘pathogenesis’. 20% of
pathogenic proteins in Staphylococcus and 25% of the pathogenic proteins in
Streptococcus consist of a few pathogenesis associated domains combined with
domains not directly associated to pathogenesis. This implies that domain shuffling
might be an important evolutionary factor for these pathogens. In Staphylococcus
46% (30/65) and in Streptococcus 72% (85/118) of the pathogenesis associated
proteins contain multiple domains. This percentage is much higher than the average
percentage of multi-domain proteins of 8.9% and 9.2% for Staphylococcus and
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Streptococcus respectively. It could be argued that proteins involved in pathogenesis
would more often require multiple domains since many of them are cell-wall
associated, secreted or contain multiple domains to facilitate interaction between host
and the pathogen. The importance of cell wall associated proteins is reflected by the
high percentage of 40% of pathogenesis proteins in Staphylococcus and 66%
Streptococcus that contain LPXTG cell-wall anchor domain PF00746. The importance
of this domain for pathogenesis was shown in a S. aureus mutant with a knockout of
srtA coding for a class A sortase, which is required for secretion of proteins containing
the LPXTG motif. This mutant was unable to form abscess lesions in organ tissues or
cause lethal bacteraemia when inoculated in the blood stream of mice [40].

4.3.8 Staphylococcus aureus multi-drug resistance

We investigated the clustering of S. aureus genomes in the functional tree associated
to the terms “response to drug”. We selected the genome of S. aureus sub species
aureus MRSA 252 (GCA:000011505), which is known to be a multiple drug resistant
strain [332]. Next, we searched literature for information about drug resistance for
eight genomes that cluster together with this strain in the functional tree response to
drug. For seven of these strains (JH1, JH9, Mus0, Mu3, To131, 04-20981), evidence
was found for these strains to be multi-drug resistant as well as identifying two
pathogenicity islands as the cause of their resistance [333]-[337]. For the last genome
(GCA:001640885), no literature or other information could be retrieved. This genome
has exactly the same proteins associated to response to drug as the seven strains for
which multi drug resistance was reported in literature. Therefore, we can speculate
that this strain may have the same multi drug resistance phenotype.

4.3.9 Streptococcus suis pathogenesis zoonotic potential

Large differences in clustering were observed for S. suis genomes in the functional
trees relating to ‘biological adhesion’, ‘modification of morphology or physiology of
other organism’ and ‘pathogenesis’, supplementary material [Additional file 9]. S. suis
genomes form two groups in the functional tree of biological adhesion, and three
groups in the functional tree of pathogenesis and ‘modification of morphology or
physiology of other organism’.

Similarly, different groups can be distinguished in the PCA plot based on these three
functional groups, as shown in Figure 16 A-C. We included information from
literature on zoonotic species, namely S. inae, S. agalactiae, S. dysgalactiae S. iniae
and, S. equi zooepidemicus and S. suis serotype 2 strains and serotype information
and host isolation information for S. suis and S. agalactiae strains in the labels of
Figure 16 A-C. Two S. suis clusters can be distinguished in the PCA score plot based
on proteins related to ‘modification of morphology or physiology of other organism’
(Figure 16 B) and the PCA based on ‘pathogenesis’ proteins (Figure 16 C): the first
cluster contains 7 out of the 12 serotype 2 strains, as well as serotype 1, 1,2, 4, 16, while
the second cluster contains 5 serotype 2 strains as well as strains with serotype 3, 7, 9
14 and Chz which were all isolated from pigs. The first group contains S. suis zoonotic
strains of which some are isolated from pig and some from humans. The second group
contains are non-zoonotic strains all isolated from pigs.
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Figure 16. PCA plot of Streptococcus strains based on all proteins (A), proteins filtered on ‘modification
of morphology or physiology of other organism’ (B) and proteins filtered on ‘pathogenesis’ (C). S. suis
serotypes are shown in the label, genomes from species mentioned in literature as having zoonotic
capabilities are marked with a triangle and the isolation host is marked in the label with D=dog,
F=fish, H=human, P=pig, T=toad. Genomes predicted in this study to have zoonotic potential are
coloured red while strains in the cluster predicted not to have zoonotic potential are coloured blue.
Fraction of variance explained by each PC is indicated in the axis.
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4.3.10 Streptococcus agalactiae zoonotic potential

Like S. suis, S. agalactiae forms two clusters when clustering on GO biological
functional groups of proteins. Based on their isolation host, we can see that a cluster
contains strains that are zoonotic while the other contains strains that are non-
zoonotic. These two groups of S. agalactiae strains are better separated when using t-
t-SNE plots based on all proteins and proteins involved in biological adhesion and
pathogenesis (Figure 17 A-C) suggesting the existence of few proteins that are
present in every genome in each group.

4.3.11 Identification of proteins that confer zoonotic potential

We used Random Forest, a machine learning approach, to investigate the association
between genome content and phenotype using 75% of the data for training and 25% of
the data for validation. Specifically, presence/absence of proteins filtered on
association to GO Biological functions involved in pathogenesis to predict zoonotic
potential S. suis and S. agalactiae, and we investigated which proteins are responsible
for the zoonotic potential in these two species. We used functional groups of proteins
that were shown to separate zoonotic and non-zoonotic strains for S. suis (Figure 16
B-C) and for S. agalactiae (Figure 17 B-C) to train a Random Forest classifier. We
investigated their overall importance for prediction as well as their contribution to
predicting the class non-zoonotic, and the class zoonotic potential as shown in Figure
18 A-D. Where, the ‘Impact’ measure indicates the relevance of a protein of the
prediction of given class. The ‘importance’ shows the proteins overall importance for
the random forest classifier. Random Forest classifiers as well as the optimal hyper
parameters can be found in [see Additional file 14].

The protein domain content of the five most important proteins for S. suis
classification based on ‘modification of morphology or physiology of other organism’
proteins are: 1) PF01289 a thiol-activated cytolysin, 2) PF17440 thiol-activated
cytolysin beta sandwich domain, 3 ) PF00910 replication initiation protein involved in
viral RNA duplication 3) PF00078;PF08388;PF13655 group II intron reverse
transcriptase/maturase, 4) PF03432 a relaxase involved in transfer of plasmids, 5)
PF00665 Prokaryotic N-terminal methylation motif often found in pilins and other
proteins involved in secretion (Figure 18A). The most important proteins for S. suis
classification based on ‘pathogenesis’ proteins are 1) PF01289 thiol-activated
cytolysin, 2) PF17440 a thiol-activated cytolysin beta sandwich domain, 3) PFo7564
hypothetical protein containing a domain of unknown function, 4) PF00092;
PF00746 chemotaxin protein 5) PF00746;PF08363;PF16364 a glucan binding protein
(Figure 18B).
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The S. suis classifiers based on ‘modification of morphology or physiology of other
organism’ proteins as well the classifier based on ‘pathogenesis’ proteins, predict S.
suis zoonotic potential with 100% accuracy solely based on the presence of either
PF01289, a thiol-activated cytolysin or PF17440, a thiol-activated cytolysin beta
sandwich Figure 18 A-B).
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Figure 18. Protein feature contribution to predict the class ‘non-zoonotic’ and ‘zoonotic’ as well as the
overall importance of the protein feature for classification. A) The five most important ‘modification
of morphology or physiology of other organism’ proteins used to classify S. suis. B) The five most
important ‘pathogenesis’ proteins used to classify S. suis. C) The five most important ‘biological
adhesion’ proteins used to classify S. agalactiae. D) The five most important ‘pathogenesis’ proteins
used to classify S. agalactiae.

The most important features for S. agalactiae classification based on ‘biological
adhesion’ proteins are 1) PF02872 a 5'-nucleotidase-C 2) PFo00746;PFo8017
Fibrinogen binding protein A, 3) PF00746; PF8428; PF08829; PF174802 surface
protein Rib and 4) PF00746;PF16555; PF16569; PF16570 pilus complex 5)
PF00746;PF11966 a cell wall anchored linked to a ySIRK signal domain (Figure 18
C). The most important features for S. agalactiae -classification based on
“pathogenesis’ proteins are 1) PF00746;PF08017 Fibrinogen binding protein , 2)
PF00746;PF8428;PF08829;PF17480 2) surface protein Rib and 3)
PF00746;PF16555;PF16569;PF16570 pilus complex 4) PF00746;PF11966 a cell wall
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anchored linked to a ySIRK signal domain 5) PFo2225;PF07554, a serine protease
(Figure 18D).

For S. agalactiae classification, 5'-nucleotidase-C can predict training data with 100%
accuracy and test data with 94% accuracy.

4.3.12 Virulence factors of necrotising fasciitis

We compared Staphylococcus aureus and Streptococcus pyogenes since both are a
major cause of (monomicrobial) necrotizing fasciitis. Both S. aureus [338]-[340] and
S. pyogenes [341], [342] fully lyse red blood cells, induce toxic shock syndrome as well
as bind and invade epithelial host cells. Based on their GO term association S. aureus
has 21 proteins associated to pathogenesis that occur in nearly all S. aureus genomes
and only rarely in any other Staphylococcus specie (Table 10). Some of these
pathogenesis proteins can directly be linked to pathogenesis proteins reported in
literature for S. aureus [343] and for S. pyogenes [344]. An exact match with proteins
reported in literature is however not always possible due to differences in annotation.
When considering virulence factors that are not unique to S. aureus or S. pyogenes
the number of virulence factors is about 1.5 times as many as reported in literature

[345].

Table 10. Proteins associated to S. aureus Pathogenesis (GO: GO:0009405). Domains that
are shared between S. aureus and S. pyogenes are underlined. Proteins that are shared have
are written in bold.

PROTEIN DESCRIPTION

PF00746; PF07501; LPXTG cell wall anchor; G5 domain, suggested

PF17041 adhesion, in peptide that cleaves IgA; E domain, rod
like structure

PF00746; PF17210 LPXTG cell wall anchor, SdrD B-like domain, involved
in adhesion to nose squamous cells [346]

PF13545 Crp-like helix-turn-helix domain, possibly cAMP
interaction

PFo05543 Staphopain peptidase C47, secreted cysteine protease

PF14731 Staphopain proregion

PFo3373 Octapeptide repeat, part of SpA virulence factor
frequently used to type S. aureus strains [347]

PF07968 Haemolysin, part of the Leukocidin/Hemolysin toxin
family

PF09199 Staphylococcal superantigen-like OB-fold domain,
interact with IgA, inhibits the end stage of complement
activation and IgA binding to Fc-a-R [348]

PFo02216 SpAB protein domain, immunoglobin binding domain

PF02876 Staphylococcal/Streptococcal toxin, beta-grasp
domain

PF11621 C3 binding domain 4 of IgG-bind protein SB

PFo1123 Enterotoxin type B, supertoxin, involved in food
poisoning, causing the immune system to release a




80 | Chapterg

large number of cytokines that lead to significant

inflammation
PFo03642 MAP domain, major histocompatibility complex class II
analog
PF00746;PF01476 LPXTG cell wall anchor motif; LysM domain found in
many receptors, peptidoglycan-binding protein [328]
PF00746;PF02986 LPXTG cell wall anchor motif; Fibronectin binding
repeat, enables uptake by host cell
PF00746;PF05031 LPXTG cell wall anchor motif; Iron Transport-
associated domain, heme and/or hemoprotein-binding
PFo07564 Domain of Unknown Function (DUF1542), several

proteins containing this domain are involved in
antibiotic resistance and/or cell adhesion

PF09023 Staphostatin B inhibits the cysteine protease
Staphopain B

PFo02821 Streptokinase (SK) is a thrombolytic medication and
enzyme, breaks down blood cloths

PF01468 GA module, GA modules may promote bacterial growth

and virulence in mammalian hosts by scavenging
albumin-bound nutrients and camouflaging the
bacteria

PF07554;PF07564;PF08428  FIVAR domain, likely binds fibronectin or more
specifically N-acetyl glucosamine, occurs in proteins
involved in methicillin resistance; Domain of Unknown
Function (DUF1542); Rib/alpha-like repeat. Occurs in
some Rib, a thought to confer protective immunity.
Occurs in some Streptococcus surface proteins.
Extracellular matrix-binding protein Ebh

We looked at shared proteins as well as functional alternatives to find the molecular
basis for necrotising fasciitis and we used the PFAM description of protein domains as
well as description of proteins based on the locus tags associated to these proteins. We
found that both S. aureus and S. pyogenes contain proteins involved in fibronectin
binding, wound invasion, haemolysis, cell adhesion, IgA and IgG binding, multiple
(super-)toxins as well as proteins involved in resisting phagocytosis and invading host
cells (Table 10, Figure 15). For example, PFo1123 and PF02876 toxin [3-grasp
domain together form Enterotoxin type 2 which is important for causing the toxic
shock [320], [349]. Enterotoxin type 2 antibodies are currently in clinical trials tested
and have shown potential in treating necrotizing fasciitis [350].

S. pyogenes has 10 proteins that present in all S. pyogenes species and only occur
separately in a few other Streptococcus strains (Table 11, Figure 15). Five of these
proteins are associated to the ability of S. pyogenes to bind to and break down fibrin
in blood cloths [342]. Other proteins include toxin and enterotoxin, involved in over-
activation of the immune response [351], [352], fibrin binding proteins, involved in
adhesion and intracellular access of host cells, as well as proteases, involved in
resistance to phagocytosis [353]. S. pyogenes has fewer proteins that are unique to this
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species compared to S. aureus since many other Streptococcus strains produce some
of the pathogenic proteins present in S. pyogenes [354].

Table 11.

Table 11. Proteins associated to S. pyogenes Pathogenesis (GO: GO:0009405). Domains that
are shared between S. aureus and S. pyogenes are underlined. Proteins that are shared are
written in bold.

PROTEIN DESCRIPTION

PFo2821 Streptokinase, breaks down blood cloths

PFo01640 Peptidase C10 family

PFo1123 Enterotoxin type B, super antigen involved in food poisoning
PF02876 Staphylococcal/Streptococcal toxin, beta-grasp domain
PFo03734 L,D-transpeptidase catalytic domain, peptidoglycan binding

PF00746; PFo1391 LPXTG cell wall anchor motif; Collagen helix, rod like
structure, coagulation-fibrinolytic binding in blood, Scl1
adhesin specifically recognizes the wound microenvironment
[355]

PF00746; PFo2370 LPXTG cell wall anchor motif; M protein repeat, binds IgA,
major virulence factor involved in host cell invasion and
resistance to phagocytosis [356]

PF00746; PFo8017 LPXTG cell wall anchor motif; Fibronogen binding protein,
members of this family include the fibrinogen receptor, FbsA
which mediates platelet aggregation

PF00746; PF02986 LPXTG cell wall anchor motif; Fibronectin binding repeat,
mediate adherence to host cells, enable the colonisation of
wound tissue and blood clots

PF00092; PF00746; | Von Willebrand factor type A domain domains participate in

PF02986 numerous biological events (e.g. cell adhesion, migration,
homing, pattern formation, and signal transduction); LPXTG
cell wall anchor motif; Fibronectin binding repeat

Only three proteins associated to pathogenesis are shared between S. aureus and S.
pyogenes, Enterotoxin B C-terminal domain (PF02876), Enterotoxin B N-terminal
beta-grasp domain (PFo1123) and Fibronectin binding protein (PF00746;PF02986).
Both fibronectin binding protein A (FnbpA) and B (FnbpB) are expressed during
infection conditions and were shown to be complexly regulated by a large number of
regulators such as sigma factors and two component systems by Mader et al. [357].
Among these proteins identified in our study are potential biomarkers. FnbpA was
found not to be essential in KO studies [358], but was found to be essential in a rapid
shotgun antisense RNA method to identify essential genes in S. aureus. [359]. No
essentiality information is available for FnbpB. S. aureus fibronectin binding protein
A (FnbpA) is called fibronectin binding protein X (SfbX) in S. pyogenes. For S. aureus,
FnbpA was found to be essential for entry in the host cells [360]. FnbpA has functional
homologs in other species such as S. epidermidis, however all homologs lack the C-
terminal multiple fibronectin binding repeats variants present in FnbpA, of which at
least one high affinity binding repeat is needed for host cell uptake [349], [361], [362].
A SfbX knockout mutants was shown to be only minimally affect S. pyogenes ability
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to infect epithelial host cells [363]. Enterotoxin type B, is a super toxin involved in
over-activation of the immune response and interferes with phagocytosis by
supressing the generation of myeloid-derived suppressor cells [364]-[366].

4.4 Discussion

The Staphylococcus and Streptococcus genera were compared on their genomic
properties. Both genera have a similar ratio of their pan and core genome size. It
should be considered that this analysis has been done with all fully assembled genomes
data that were available at the time of the study. In our study we do not separate
between pathogenic and non-pathogenic species since there are several ways to infect
humans and animals. Instead, we use the underlying annotation of proteins marked
as being involved in GO functions associated to pathogenesis to investigate patterns in
pathogenesis. The choice not to define before-hand if species are pathogenic is
deliberate since we recognize there are many forms of pathogenesis which depend on
both species as well as the infection site as we discuss in the sections “Streptococcus
suis pathogenesis zoonotic potential” and in the section “Streptococcus agalactiae
zoonotic potential”. We do however recognize the selected population affect our results
as can be seen for in the ratio of their pan and core genome size found in this study.
The alpha value of 1.12 found in our study for Streptococcus is higher than the 0.87
values reported by Koehorst et al (12). This difference can be explained by the number
of genomes analysed which was 314 in our study opposed to 60 in the study by
Koehorst et al. Additionally, we allowed a maximum of one genome per species to be
selected in our sampling approach to avoid population bias introduced by species with
many sequenced genomes such as S. aureus which was not the case in the analysis of
by Koehorst et al (12)

Similar to what was found for Pseudomonas [325], gene expression variability of
essential genes was found to be less than the expression variability of non-essential
genes in both S. aureus and S. pyogenes.

Combination of experimentally determined essentiality and GEM based essentiality
prediction were shown to be associated to a higher protein persistence than each of
them individually. These results are to be expected since In vitro essentiality
measurements are often only available for one condition, while GEM can easily be used
to predict essentiality over multiple media conditions. Our GEM analysis predicted 153
Staphylococcus aureus genes to be essential in 90% of the minimal medium
combination tested, while 163 genes were found to be essential for growth on rich
medium and minimal medium. For Streptococcus, 196 genes were found to be
essential in 90% of the minimal medium combinations tested, while no genes were
found to be essential on rich medium. The Streptococcus model contains exchange
reactions for all nutrients necessary for growth, meaning only the biomass reaction
was found to be essential. Since we know from experimental results that there are
several essential genes in S. pyogenes, we chose our method of testing all minimal
medium compounds to best balance false positive and false negative results while
keeping a unified method for our GEM essentiality analysis in both S. aureus and S.
pyogenes. Similar to what has been experimentally observed and was shown by
previous published GEM simulations [324], our simulations show that
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Staphylococcus can use amino acids as alternative carbon source for survival in the
host [367]. A possible limitation of this approach is that GEM predictions can only be
made for metabolic (and their associated) proteins. Although many highly persistent
genes tend to be essential, not all are highly persistent. This indicated alternatives in
essentiality exist [368]. Similarly, many non-essential genes do have a high
persistence, indicating they might be essential for Staphylococcus or Streptococcus
specific functions such as survival and growth in non-lab conditions such as those
found in the host.

Differences in pathogenesis, essentiality as well as other properties such as drug
resistance, arise from different selection pressures for individual species within genera
[369]. For example, similar to what was found in this study, a recent study shows that
although streptococcal virulence factors have no clear patterns among species groups,
some virulence factors were shown to be congruous with the evolution of species
groups [329]. Core genes together with accessory genes form a complex network that
comprise the molecular basis of virulence in Staphylococcus and Streptococcus [370],
[371]. Within some individual species, strong selective pressure exist as was shown for
S. aureus MRSA resistant species where there is an interplay of two strong
evolutionary selective pressures: 1) the host type and 2) the antibiotics used in
treatment which varies between humans, pets and livestock [372], [373]

We compared the similarity and differences between Staphylococcus and
Streptococcus based on the clustering of species in GO functional trees. Some notable
differences where observed between Staphylococcus and Streptoccus. Many
‘modification of host morphology’ proteins in Staphylococcus are also associated to
the GO term ‘pathogenesis’ while many ‘biological adhesion’ proteins in Streptococcus
are associated to the GO term ‘pathogenesis’. These results could indicate that
modification of host morphology is important for the pathology of Staphylococcus
strains while biological adhesion is more important for the pathology of Streptococcus.

Next, we looked at which pathogenesis proteins separate Staphylococcus from
Streptococcus species. Analysis of the presence and absence of proteins associated to
‘pathogenesis’ reveals that Staphylococcus sciuri GCA:002072755 and
Staphylococcus haemolytic us GCA:001611955 only contain one pathogenesis protein
(PFo4647) that is not present in any Streptococcus strain. These results could indicate
that horizontal gene transfer of pathogenic proteins occurred between Staphylococcus
and Streptococcus or that they only carry pathogenesis proteins derived from a
common ancestor.

Additionally, some pathogenic proteins only occur in one or a few genomes, indicating
horizontal gene transfer from species outside the Staphylococcus and Streptococcus
genus. Horizontal gene transfer is known to be a driving factor in the development of
pathogenesis in Staphylococcus and Streptococcus [318], [322], [374]-[376]. For
example, fibronectin binding domain PF02986 has been acquired by Staphylococcus
and Streptococcus from an animal host, further spread among different Streptococci
and Staphylococci through horizontal gene transfer, and further evolved through
domain shuffling [354], [377].
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Clustering of Streptococcus and Staphylococcus species based on different GO
functional groups revealed sub cluster to be present for S. suis based on GO functional
groups ‘modification of host morphorlogy’ and ‘pathogenesis’ and revealed a sub
cluster to be present for S. agalactiae based on GO functional groups ‘biological
adhesion’ and ‘pathogenesis’. What is more, these sub cluster coincides with the
potential to infect multiple hosts. It is known that predominantly S. suis serotype 2
strains are associated to zoonotic potential [378], [379]. However, as we could see in
Figure 16 A-C, serotype information is not able to separate zoonotic and non-
zoonotic S. suis strains.

Based on their isolation host we can see that the first group are S. suis strains are
zoonotic, while the second group are non-zoonotic strains. Furthermore, human
infections with strains for all serotypes in the first cluster have been reported [380],
[381]: these results show that these functional groups of proteins can be used to predict
the S. suis zoonotic potential. Interestingly, the zoonotic group of S. suis strains
clusters with the human and dog oral commensal S. intermedius which can cause
meningitis through brain abscesses as well as liver abscesses and in some rare cases
endocarditis [382]. Since S. suis and S. intermedius are distantly related, this
clustering is specific for proteins with functions in modification of host morphology
and pathogenesis.

The similarity of phenotypes such as causing meningitis and tropism for brain and
liver, suggests these traits may be caused by ‘modification of morphology or physiology
of other organism’ and ‘pathogenesis’ proteins, and suggest a causal relationship
between the proteins associated to these GO terms and the observed phenotype.

Investigation of proteins required to predict S. suis zoonotic potential using a random
forest classifier revealed PF01289 thiol-activated cytolysin, 2) PF17440 a thiol-
activated cytolysin beta sandwich domain to be the two most important factors
associated to zoonotic potential. In support of these findings, it was found that a S. suis
cytolysin knockout mutant made the strain non-haemolytic and non-cytotoxic for
cultured macrophage-like cells [383] while increased secretion of thiol activated
cytolysins was shown to directly cause epithelial cell damage in humans, allowing S.
suis to spread into deeper tissues [384]. Based on these studies it appears these two
cytolysins are involved information of a pore-forming complex in cholesterol
containing host membranes, which explains their importance for conferring zoonotic
potential.

It has been suggested that S. agalactiae may have jumped from animals to humans in
a certain moment of the evolution although it is still debatable if this zoonotic potential
remains nowadays [15]. Here, we show that based on their genomic content S.
agalactiae can be separated in two groups, one that is zoonotic and infects humans,
fish, and dog, and one group that only infects fish. This separation can be made based
on all proteins, indicating zoonotic and non-zoonotic species are likely to have
separated some time ago. In the t-SNE plots of biological adhesion and pathogenesis
a third group can be seen of strains that infects mainly fish but also cow and human.
This third cluster contains S. agalactiae strains that infect human most likely originate
from this cluster and have further adapted to their human host by acquisition of
proteins involved in biological adhesion and pathogenesis. The strains in this group
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appear to retain zoonotic potential since the cluster contains isolates from humans,
fish, and dog.

Investigation of proteins required to predict S. agalactiae zoonotic potential using a
random forest classifier revealed multiple proteins to be important for classifying
species as zoonotic. S. agalactiae 5-nucleotidase-C is present in two proteins:
Trifunctional nucleotide phospho-esterase protein YfkN precursor and Endonuclease
YhcR precursor. Secreted nucleases play a role in evasion of the human innate immune
response via destruction of extracellular traps and interference with phagocytosis
signals [385]. Fibrinogen binding protein A allows S. agalactiae to attach to fibrinogen
and to aggregate platelets [386]. Rib protein contains a Rib domain that confers
protective immunity and an alpha C and alpha N protein domains involved in invasion
and translocation along human epithelial cells according to their PFAM description.
The pilus complex contains Pillin D1, Pillin B and Pillin D3 domains and contributes
to the initial attachment and invasion of lung and cervical epithelial cells [386].
PFo2225;PF07554 CSPA serine protease breaks down three chemokines that

attract and activate neutrophils [387].

In summary, all proteins important for classification of zoonotic potential appear to
be causal to the zoonotic potential phenotype. Of these proteins, nucleosidases YfkN,
YhcR and fibrinogen binding protein appear to be the most important factors for S.
agalactiae zoonotic potential.

4.5 Conclusions

In this study we dissected Staphylococcus and Streptococcus pathogenesis through
the systematic and integrated analysis of genomic, functional, metabolic, and
expression data. Both genera were found to have a closed pangenome and lower
expression variation for essential and highly persistent genes than for non-essential
and low persistent genes. The study of functional groups of proteins in the pangenome
of Staphylococcus and Streptococcus involved in pathogenesis, indicates that domain
shuffling and horizontal gene transfer have played an important role in the
development and acquisition of pathogenesis proteins of Staphylococcus and
Streptococcus species.

The analysis of bacterial clusters based on functional groups of proteins involved in
pathogenesis shows that clustering of strains correlates with phenotypes such as
zoonotic potential. Comparison between S. aureus and S. pyogenes indicate three
proteins, Enterotoxin B C-terminal domain, Enterotoxin B N-terminal beta-grasp
domain together with several functionally equivalent proteins allow Staphylococcus
aureus and Streptococcus pyogenes to cause necrotizing fasciitis.

We have also shown that prediction of the phenotype zoonotic potential only requires
information about a few proteins, suggesting a direct causal relationship with zoonotic
potential. These findings will enable further research in each of the areas addressed,
whereas the approaches and methods herein deployed provide a solid basis towards
large-scale prediction of phenotypes based on genomic information.
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4.6 Methods
4.6.1 Genome retrieval and annotation

All available completely assembled genomes of 235 Staphylococcus and 315
Streptococcus strains were downloaded as EMBL files from EBI-ENA using the Python
EnaBrowserTool [388]. Lists of these genomes accession number, name and taxon ID
can be found in supplementary material [Additional file 1&2]. Genome EMBL files
were converted to RDF and de novo annotation was performed storing the results in a
graph file per genome using SAPP, a Semantic Annotation Platform with Provenance
[65] and the GBOL ontology [389]. Gene calling was performed using Prodigal with
codon table 11 [390]. Annotation was performed using InterProScan version 5.25
[391]. Protein domains were identified by InterProScan by their Pfam identifier [42].
The GNU “parallel” package was used to perform all of the above steps in parallel [65].

The graph files were loaded in GraphDB Free version 8.4.1 in order to query the
annotated genomes. Additionally, taxonomic information from UniProt was
downloaded in RDF format and loaded in GraphDB. The GraphDB SPARQL endpoint
was queried using the Python SPARQLWrapper [392] package and the R Curl package
[393] to retrieve information and store them as matrixes given in supplementary
material [see Additional file 3&4]. These files were used for all subsequent analyses.

4.6.2 Estimation of the size of the pan- and core genome

Proteins were compared based on their Pfam domain content. We defined protein
domain content as the alphabetical order of all unique domains associated with a given
protein. A matrix was built to collect information on the presence or absence of
proteins in each genome. Two sampling approaches were used: 1) genomes were
randomly selected from all genomes in the analysed genera and 2) a maximum of one
genome per species was selected to avoid bias introduced by species with many
sequenced genomes. One up to the total number of genomes were sampled and
analysed using the micropan R package [394] to investigate the effect of the number
of genomes on the estimation of the size of the pan- and core genome. Additionally,
these samples we used to estimate the sizes of the pan- and core genome using a
binomial mixture model using the micropan BinomixEstimate function with 5000
permutations and a core detect probability of 1. The process was repeated 10 times to
estimate the variance of the estimated size of the pan- and core genomes. The Heaps’
function was used to fit a Heaps’ regression model; a >1 indicates convergence of the
size of the pan-genome and that it is closed.

4.6.3 Variability of gene expression and its association to persistence

Gene variability was calculated based on 156 S. aureus RNA samples from 44
conditions ranging from laboratory to conditions mimicking infection, measured by
Tiling arrays [357]. These 44 conditions can be categorized in four groups: 1) rich
medium (TSB), 2) minimal medium (CDM), 3) cell culture media (RPMI, pMEM) 4)
in human plasma (plasma), 5) growth with human bronchial epithelial cell line S9 and
the human monocyte cell line THP-1.
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Samples were taken at different time points and for infection simulations oxygen
availability was limited at later time points. For a complete description of the
conditions we refer to S1 Data in the original paper by U. Mader et al [357]. For every
gene we considered its expression profile over all samples and a variability value was
calculated as the ratio between the standard deviation and the mean expression value
using the same approach as in Koehorst et al. [325].

4.6.4 Protein persistence and essentiality

We defined the persistence of a gene as

. N (orth
Persistence = N (orth)

where N (orth) is the number of genomes carrying a given orthologue and N is the
number of genomes searched [395]. Orthologue genes were identified as genes with
identical protein domain content. Locus tags associated to the genes were inferred
from the original annotation and used to integrated genome wide gene essentiality
data from transposon mutagenesis studies for Staphylococcus strains S0385 grown on
whole porcine blood [396], NCTC8325 Newman grown on BHI broth [358] and JE2
grown on Handke mannitol medium [397] and Streptococcus strains S. pyogenes
M1T1 strain 5448 and M49 strain NZ131 grown in rich Todd-Hewitt Yeast (THY)
medium [398].

4.6.5 GEM-based predictions of essentiality

Gene essentiality analysis based on genome scale modelling was performed using the
genome-scale, constraint-based metabolic model (GEM) of S. aureus NTCTC 8325
[324] and the GEM model of S. pyogenes M49 [399]. First, a minimal medium was
determined using the ‘cobrapy minimal_medium function’. All carbon, nitrogen,
sulphur and phosphor sources from the medium that could support growth were
detected by substituting the default carbon, nitrogen, sulphur and phosphor sources.
All combinations of minimal media containing these carbon, nitrogen, sulphur and
phosphor sources were generated.

Gene essentiality for all combinations of minimal media containing these carbon,
nitrogen, sulphur and phosphor were tested by performing single gene deletions
followed by flux balance analysis optimizing for growth. If a gene knock-out reduced
predicted growth for the media compositions below 1% the gene was considered
conditionally essential. Genes predicted to be conditionally essential in at least 90% of
the in-silico media compositions were marked as essential. All optimizations were
performed using the Gurobi optimizer 8.1 [400] with COBRApy 0.13.4[401] and
Python 3.6.

4.6.6 Functional Analysis

Genome information was retrieved from associated literature and from the Biosample
database [402], including serotype information and zoonotic potential and isolation-
host. Zoonotic classification was derived from literature for S. inae [403]-[406], S.
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agalactiae [15], S. dysgalactiae, S. equi [407]-[409] and at the serotype level for S.
suis [410]—-[412]. For all zoonotic Streptococcus species data about the isolation host
was retrieved from the Biosamples databases [413] or literature [379], [380], [421],
[381], [414]—-[420]. Additional Gene Ontology (GO) annotation from the GODM (GO
Domain Miner) database [345] was added to proteins based on their domain content,
increasing the number of GO terms by approximately 10-fold compared to GO term
annotation retrieved from the InterPro database. Literature was used to select 17 GO
terms in the Biological process ontology with known or suspected association to
pathogenesis [422]-[426] (Error! Reference source not found.).

The presence/absence matrix of proteins was filtered on proteins annotated with any
of the 17 GO terms (Error! Reference source not found.) or their descendent GO
terms using the R GO.db package [427]. The filtered matrix was used to calculate the
Euclidean distance between genomes. Hierarchical complete-linkage clustering was
used to generate dendrograms. These GO-specific dendrograms were compared to a
reference dendrogram based on all proteins.

Because these dendrograms are based on annotation of proteins for a specific function,
we will refer to them as ‘functional trees’. Euclidean distances of genomes in the
functional trees and the reference tree were calculated and scaled to values between 0
and 1 using the R scale function using the minimum value for centring, and (min —
max) for scaling. Scaled values were used to calculate similarity scores for the position
of genomes in each functional tree compared to the reference. These similarity scores
were calculated as the Pearson correlation between the scaled Euclidean distances of
genomes in the functional tree and the scaled Euclidean distance in the reference tree.
Interactive heatmap were generated showing the presence and absence of proteins per
genome, while showing the similarity in the side column to highlight differences
compared to the reference tree. These interactive graphs were generated using the
dendextend and heatmaply packages [428], [429]. Similarity scores for functional
trees were calculated using the dendextend cor_cophenetic function.

Matrix manipulations, Principal Component Analysis (PCA), t-Distributed Stochastic
Neighbour Embedding (t-SNE) and graphs were performed using R 3.6.1 [430], the
prcomp command, and the Rtsne 0.15 [431] and ggplot2 2.3.2.1 [432] packages. t-SNE
was performed with default parameters.

4.6.7 Random Forest classification

Proteins belonging to GO categories ‘pathogenesis’, ‘modification of morphology or
physiology of other organisms’ and ‘biological adhesions’, were used to train Random
Forests classifiers for S. suis and S. agalactiae strains to predict whether they belong
to the class ‘zoonotic potential’ on ‘non-zoonotic potential’. This classification was
based on the clustering of in PCA and t-SNE plots which revealed the presence of a
zoonotic and a non-zoonotic group of strains. Data was split in 75% training data and
25% validation data.

Data was loaded using Python 3.6, pandas 0.24.2. Skicit-learn 0.20.3 used to load
data and train Random Forest classifiers. Treeinterpreter 0.1.0 was used to interpret
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feature (protein) importance for classification in general and feature contribution to
predict specific classes. Grid search for 300 combinations of parameters was
performed optimizing the parameters n_ estimators, max_features, max_depth,
min_samples_split, and the min_samples. Iterative rounds of feature reduction, that
is removal of the protein which least contribute to the classification, followed by
hyper parameter optimization, was used to find the minimal set of features (proteins)
needed to classify both training and test data. Feature importance and contribution
were plotted using matplotlib 3.0.3.

4.7 Supplementary material
All supplementary information is available at:

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-021-07388-
6#Sec25

Additional file 1 - List of Staphylococcus genomes (XLSX 15 KB)

Additional file 2 - List of Streptococcus genomes (XLSX 18 KB)
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5.1 Abstract

This paper investigates which Mycoplasma proteins are most predictive of tissue and
host trophism and to which functional groups of proteins they belong. We retrieved
and annotated 432 Mycoplasma genomes and combined their genome information
with host and tissue isolation data. We compared clustering of Mycoplasma and M.
pneumoniae strains based on different functional groups of proteins. We found that
proteins belonging to the Gene Ontology (GO) Biological process group ‘Interspecies
interaction between organisms’ proteins are most important for predicting the
pathogenesis of Mycoplasma strains, while those belonging to ‘Quorum sensing’ and
‘Biofilm formation’ proteins are most important for predicting pathogenesis of M.
pneumoniae.

Two Random Forest Classifiers were trained to accurately predicts host and tissue
specificity based on only 12 proteins. For Mycoplasma host specificity CTP synthase
complex, magnesium transporter MgtE, and glycine cleavage system are most
important for correctly classifying Mycoplasma strains that infect humans including
opportunistic zoonotic strains. For tissue specificity, we found that a) known virulence
and adhesions factor Methionine sulphate reductase MetA is predictive of urinary tract
infecting Mycoplasmas b) an extra cytoplasmic thiamine binding lipoprotein is most
predictive of gastro-intestinal infecting Mycoplasmas and c) a type I restriction
endonuclease is most predictive of respiratory infecting Mycoplasmas and d) a
branched-chain amino acid transport system is most predictive for blood infecting
Mycoplasmas.

Keywords

Muycoplasma; trophism; zoonotic; zoonosis pathogenic; traits; phenotype;
prediction; machine-learning; random-forest; classifier
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5.2 Introduction

Mycoplasmas are bacteria that adapted to live in their host environment through
genome reduction, resulting in a small genome and small cell size [433], [434]. Despite
their small genome size, Mycoplasmas still contain many genes that are not essential
but enhance growth in the various host conditions encountered [368], [435], [436].
Mycoplasmas have greatly reduced metabolic capabilities growing only in the
fastidious conditions of their selective host [20]. This makes it hard to grow
Mycoplasma on serum free defined media. For M. pneumoniae, a defined media was
developed by analysing their membrane components and metabolic capabilities and
adding those lipids to the medium that normally are directly recruited from the host
environment [21], [437], [438].

Because of their strong host adaptation, pathogenesis of Mycoplasmas is hard to typify
since their ability to infect and survive in a host is largely a systematic property of their
obligatory pathogenic lifestyle, and not the result of a well-defined set of virulence
proteins. Only few Mycoplasma proteins are directly categorised as pathogenic based
on their GO Biological Function annotation. Examples of these proteins are M.
pnueumoniae CARD toxins, adhesins, motility proteins and hydrogen peroxide
production which are directly associated to virulence [439], [440]. These virulence
proteins are however not essential, while many metabolic proteins such as glycerol
metabolism proteins GlpF and GlpK are essential for M. pneumoniae growth in host
conditions [441].

Previously, clustering based on functional groups of proteins was successfully used to
predict pathogenic traits such as zoonotic potential for Streptococcus suis and
Streptococcus agalactiae [44]. Here we use a similar approach combined which
systematic collection of meta-data from the BioSamples database [442], to identify
those proteins predictive of Mycoplasma host and tissue infection types. The
BioSample database contains tissue and host isolation data for a larger number of
Mycoplasmas than was previously available for Streptococcus suis and Streptococcus
agalactiae, allowing for better training and validation of machine learning models. We
adjusted our approach to Mycoplasmas by selecting those functional groups of
proteins known from literature to be important for pathogenesis of Mycoplasmas. We
compared clustering of 430 Mycoplasmas based on 19 Gene ontology (GO) Biological
process categories of proteins associated with pathogenesis to identify functional
groups of proteins important for Mycoplasmas in general as well as M. pneumonia
pathogenesis. We combined this approach with random forest classification to
accurately predicts 3 host and 4 tissue isolation sites for Mycoplasma genomes and to
identify those proteins important for each host and tissue type.
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5.3 Materials and methods

5.3.1 Genome retrieval and annotation

We retrieved 430 completely assembled Mycoplasma genomes from EBI-ENA using
the Python EnaBrowserTool [388]. A list of these genomes can be found in
Supplementary material 1A. Semantic Annotation Platform with Provenance (SAPP)
[65] and Genome Biology Ontology Language (GBOL) [389] were used to perform de
novo annotation and to store annotated genomes as graph files. Gene calling was
performed using Prodigal 2.6.3 with codon table 4 [390]. Protein domains were
identified by InterProScan 83.0 by their Pfam identifier [42]. The GNU “parallel”
package version 20161222 was used to perform all the above steps in parallel [65].
Graph files were loaded in GraphDB Free version 9.7.0. Additionally, taxonomic
information from UniProt was downloaded in RDF format and loaded in GraphDB.
The GraphDB SPARQL endpoint was queried using the Python SPARQLWrapper
[392] package and the R Curl package [393]. Genes are annotated by their protein
signature, which we defined as the protein PFAM domains present in the protein. We
defined such signature by ascendingly ordering all domains present in a protein
concatenated with a ”;” between the different domains.

5.3.2 Functional Analysis

Meta data for 430 genomes and 187 species was retrieved from the Biosamples [442]
database using their API and was stored in GraphDB. The Biosample data was
normalised by combining different metadata fields and standardizing the labels used
for host and tissue types and was combined with taxonomic information from UniProt.
Gene Ontology (GO) annotation from the GODM (GO Domain Miner) database [345]
was added to protein annotation based on their domain content. The GraphDB
SPARQL endpoint was queried using the Python SPARQLWrapper [392] package and
the R Curl package [393] to retrieve information and store them as tab-separated files.
These tab-separated files were used for all subsequent analyses. We used a literature
study to identify 19 GO Biological process ontology terms with known or suspected
association to pathogenesis [422]—-[426].

M. pneumoniae genomes were overrepresented in the dataset (165 out of 430
genomes), therefore we reduced the number of M. pneumoniae genomes to 12
randomly selected genomes. Functional trees were build based on each of the 19 GO
Biological functional groups of proteins as well as a reference tree based on all
proteins. We analysed the similarity in cophenetic clustering of these 19 functional
trees using the R dendextend package version 1.13.2. In addition, we repeated the
clustering of these functional trees using only the 165 Mycoplasma pneumoniae
genomes. The results of the cophenetic clustering of these functional trees based on all
Mycoplasmas and M. pneumoniae were compared and plotted using the R pheatmap
package version 1.0.12.
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5.3.3 Random Forest classification

Two Random Forest classifiers were trained using sklearn version 0.24.2 to predict
host and tissue trophism of Mycoplasma species. The host classifier was trained to
predict the three host classes: human, pig-boar, ruminant. The tissue isolation site
classifier was trained to predict 4 isolation sites: respiratory, blood, gastro-intestinal
track, and uri-genital track. The data was cleaned by removing all classes with less
than 5 instances before splitting the data into 75% Training and 25% Test samples. The
classifier was scored based on ‘fi_macro’, meaning that for each class, the
performance is weighted equally irrespective of the number of samples, scoring the
classifier while balancing false positives and negatives.

Hyper parameter optimization was performed using a grid search for 300
combinations of the parameters n_estimators, max_features, max_depth,
min_samples_split, and min_samples. Ten times Cross validation and out of bag
samples were used to avoid overfitting on the training data. The trained Random
Forest classifiers were used as basis to iteratively reduce features, using
Treeinterpreter 0.1.0 to interpret feature (protein) importance for overall
classification as well as for specific tissue and host classes. For each iteration, the least
important feature was removed until a set of the 12 most predictive features (proteins)
were left. Lastly, we performed a second round of grid hyper parameter optimization
when using the reduced set of protein feature. The heatmaply R package version 1.0.12
was used to plot feature importance and contribution.
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5.4 Results & Discussion

The 436 annotated genomes contained 2306 unique proteins, of which 10% were
multi-domain proteins. Genomic information was merged with GO Biological function
annotation for proteins and with sample isolation metadata for the 436 Mycoplasma
genomes from the BioSamples database. Host isolation data was available for 394
genomes and tissue-isolation information was available for 157 genomes. We
normalized the metadata by combining different metadata fields standardizing labels
to describe the same infection host and tissue in different samples. M. pneumoniae
was overrepresented in the original data set with 165 out the 430 genomes. Therefore,
we limited the number of M. pneumoniae genomes to 12 randomly selected genomes
in our Mycoplasma dataset resulting in a dataset of 277 genomes. The 165 M.
pneumoniae genomes were kept as a separate dataset.

5.4.1 Clustering based on GO functional groups of proteins

Based on literature research, we created a list of 19 GO categories expected to be
associated to pathogenesis. We investigated the cophenetic distance between
phylogenetic trees based on these 19 GO categories as well as a reference tree based on
all proteins. The cophenetic distance is a measure of distance between genomes that
have been clustered in two dendrograms providing a single similarity score between
two trees. By combining all pairwise cophenetic distance scores we can create a
heatmap showing the (dis)-similarity of trees based on the 19 GO functional groups of
proteins (see Figure 19). A list of the 19 GO IDs with their labels can be found in
Table 12.

We compared the heatmap of the similarity of these 19 trees based on the 277
Mycoplasma genomes with the similarity of the 19 trees based on 165 M. pneumoniae
genomes. The objective of this comparison was to learn which GO functional groups
of proteins have the highest similarity in clustering of genomes based on
‘Pathogenesis’ proteins cluster. By performing the clustering both for Mycoplasma
genomes in general as well as for M. pneumoniae genomes only, we identified which
functional groups of proteins are likely to be important for Mycoplasma pathogenesis
as well as which functional groups of proteins are most likely to be important for M.
pneumoniae pathogenesis (Figure 19).
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Table 12. GO ID's associated to Pathogenesis together with their names.
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GO ID DESCRIPTION

GO:0008150 Biological process

GO0:0008152 *Metabolic process

G0:0006629 Lipid metabolic process

G0:0006643 membrane lipid metabolic process

GO:0017144 Drug metabolic process

G0:0042493 Response to drug

GO0:0023052 *Signalling

GO0:0065007 *Biological regulation

GO0:0022610 *Biological adhesion

G0:0044406 Adhesion of symbiont to host

G0O:0051704 Multi-organism process

GO0:0044419 Inter species interaction between organisms

GO:0042710 Biofilm formation

G0:0098743 Cell aggregation

G0:0044403 Symbiont process

G0:0009372 Quorum sensing

GO0:0035821 Modification of morphology or physiology of other
organism

G0:0009405 Pathogenesis

G0:0046903 Secretion

As can be seen in Figure 19, for Mycoplasma, the tree based on proteins belonging
to the GO category ‘Inter species interaction between organisms’ (GO:0044419) has




98 | Chapters

the highest similarity with the tree based on proteins annotated with the GO term
‘Pathogenesis’ (GO:0009405). We postulate that this high similarity might indicate
that pathogenesis of M. pneumoniae involves proteins with functions in ‘Symbiont or
Multi interspecies interactions’. Further investigation shows that this similarity was
due to a high overlap in annotation, resulting in the same proteins being in both
functional groups of proteins. All 26 Mycoplasma proteins annotated with the GO
term ‘Pathogenesis’ contained at least one domain, which is also present in the 147
proteins annotated belonging to ‘Interspecies interaction between organisms’. This
overlap in annotation shows that these 26 proteins from the GO Biological functional
group ‘Interspecies interaction between organisms’ is at least important for
Mycoplasma pathogenesis.

For M. pneumoniae, the trees based on ‘Quorum sensing’ (GO:0009372) and ‘Biofilm
formation’ (GO:0042710) on proteins belonging to the GO category proteins have the
highest similarity (1.0) as the tree based on proteins belonging to the GO category
‘Pathogenesis’. Not a single protein in these three categories is present in any of the
other three GO categories, ruling out overlap in annotation as the reason for the high
similarity of the trees. The high similarity in clustering might therefore indicate that
proteins in the categories ‘Quorum sensing’ and ‘Biofilm formation’ are important for
M. pneumoniae’s pathogenesis.

Multiple studies support the notion that biofilm formation is important for M.
pneumoniae’s pathogenesis. For example, Type 1 and Type 2 M. pneumoniae which
have different phenotypes have different biofilms [443]. Biofilm formation is
implicated in in chronic infections, with M. pneumoniae cells aggregation being
important for infections [444]. We found no studies confirming the importance of
‘Quorum sensing’ sensing for M. pneumoniae pathogenesis. However, it would not
come as a surprise if Quorum sensing would be important for M. pneumoniae
pathogenesis since quorum sensing plays an important role in pathogenesis of other
lung infecting bacteria such as Streptococcus pneumoniae [445] and Klebsiella
pneumoniae by regulating virulence systems such as ESX-3, biofilm formation, and
secretion of PgaA porin [446], [447]. M. pneumoniae virulence systems such as CARD
toxins are upregulated when in contact with host cells and in acidic conditions. We
postulate that quorum sensing proteins are likely to be involved in pathogenesis by for
example sensing host conditions, cell to cell contact to regulate motility, and virulence.

5.4.2 Zoonotic potential

Only two zoonotic strains were identified in our dataset, GCA:001005165 and
GCA:000012765, belonging to the M. capricolum species group. Two out of the 13
strains were isolated from humans, 2 from goats and 1 from a Tibetan Antilope. The
remaining 8 M. capricolum genomes have no host isolation data available. We see that
M. capricolum is taxonomically mixed with M. leachii which infects cow. The other M.
capricolum isolates are mostly from the respiratory tract, while one zoonotic strain
was found in the bloodstream. For the other, no tissue isolation data is available. We
hypothesize that M. capricolum zoonotic capability is likely limited to infecting the
blood stream. In general, it appears that Mycoplasma species are so adjusted to their
host that they have a limited zoonotic potential [433].



Predicting Mycoplasma tissue and host specificity from genome sequences | 99

5.5 Predicting host and tissue trophism

Two random forest classifiers were built to predict Mycoplasma strains host and tissue
infection site respectively. The data was filtered on host classes with a minimum of 5
strains associated to them, resulting in 125 genomes and 3 classes for the host
classifier: human, pig-boar, ruminant.

Similarly, data was filtered on tissue classes with a minimum of 5 strains associated to
them, resulting in 91 genomes and 4 classes for the tissue classifier: blood, gastro-
intestinal, respiratory, and uri-genital tracks.

The resulting datasets were separated in 75% training and 25% test data. Models were
fitted with all protein features using hyper parameter tuning followed by iterative
feature reduction to select a set of the 12 most important protein features for
classification. A final round of hyper parameter optimization was performed. Models
were trained giving equal weight to each class to consider unequal numbers of the
classes in both training and test data.

The resulting classifiers predict host and tissue specificity with a high precision on
independent dataset not used to train the classifiers (Table 13). An overview of
optimal hyper parameters as well as the scores for the classifier for both the full and
the reduced set of features 12 features, and confusion matrixes can be found in
Supplementary file 1B.

Table 13. Classifier score on independent test data using the 12 most important protein
features.

SCORE HOST SCORE TISSUE
CLASSIFIER CLASSIFIER
PRECISION \ 0.94 0.89
RECALL ' 0.89 0.88
FSCORE ' 0.91 0.88

The classifiers predict the provided classes with great accuracy, precision, and recall
using only 12 features. The 12 protein features were analysed for their contribution
and overall importance for classification. No overlap between the features used by
these two classifiers was observed. For the host classifier, we see that more protein
features are predictive of a single isolation host type. For the tissue classifier, we see
that more protein features are more synergistic in their prediction, being associated to
multiple tissue isolation sites.

5.5.1 Host classification

The host classifier using >2000 features performed only slightly better with a f1_score
of 0.97 versus 0.94 using the most 12 important features (Supplementary material 1B).
A slightly lower f1_score for the test than training data is to be expected since it is
likely that some rarely occurring proteins only occur in the training data and not in the
test data. Inspection of the confusion matrix (Supplementary material 1B) revealed
one strain isolated from a human and one strain isolated from a pig-boar genome to
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be wrongly classified. One of these genomes, GCA_ 001005165, belongs to a zoonotic
Mycoplasma capricolum isolated from human blood which was misclassified as being
isolated from a ruminant. The misclassification as well as the absence of any clear
difference in its pathogenesis proteins from other M. capricolum strains indicates this
zoonotic potential might be the result of opportunism. The other of the two
misclassified genome is GCA_000815065 from M. flocculare, which was wrongly
classified as being isolated from a ruminant.

5.5.2 Tissue classification

The tissue isolation site classifier using all >2000 features performed only slightly
better with a f1_score of the 0.89 versus an f1_score of 0.84 when only using the 12
most important features. Only three genomes (GCA_000319465, GCA_012934855
and GCA_017389835) were misclassified based on the classifier with the 12 most
important features. The first genome is from Muycoplasma haemominutum
'‘Birmingham 1'; the second genome is from M. phocoena infects the urinary tract of
harbour porpoise; and the third genome is from an unspecified Mycoplasma from the
gut microbiome of a buffalo. The first two genomes are from species that only occur 1
time in our dataset while the third genome turned out to be from the gut microbiome
and not to be associated to an infection of the gut. Although the three examples above
show that tissue isolation site for some genomes of rarely occurring host are
misclassified, we do see that the tissue isolation site for other rarely occurring hosts in
our dataset, such as one dog (GCA_000238995) and two cats (GCA_000186985,
GCA_000200735) infecting Mycoplasma, where accurately predicted to be blood
infecting. Therefore, we can conclude that tissue classification is to some extent host
specific and to some extent non-host specific.

As can be seen in Figure 20, for isolation-host classification, human and pig-boar
appear to have a higher similarity in their classification while for isolation-tissue,
blood and uri-genital are closest.The gastro-intestinal classification is somewhat
more dissimilar, while classification of the respiratory tract as isolation site is most
dissimilar to the other classes.

5.5.3 Proteins important for predicting host trophism

We further investigated which protein signatures are most important for host and
tissue classification for our classifiers based on the 12 most important protein features.

The Pfam [42] domains PF06418 CTP_synth_N as well as PFoo117 GATase strongly
contribute to predicting human as isolation host class. Surprisingly although very
important for correctly predicting human infecting Mycoplasma species, the protein
is only present in a few human infecting strains such as M. capricolum
(GCA_001005165), Candidatus Mycoplasma girerdii (GCA_002215425), M.
penetrans (GCA_000011225, GCA_004127945) and Candidatus M. haemohominis
(GCA_008326325). From the 128 genomes that contain these proteins, only the 5
were isolated from humans. Among these are the 2 M. capricolum zoonotic strains and
of the four known isolation sites, 4 were isolated from human blood infections. As
such, we postulate this protein complex as a requirement for opportunistic infection
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of humans through the blood stream. Nucleotide synthesis is known to be critical for
growth of bacteria in human blood [448].

PF06418 PF01641

PF00117 PF12008;PF18766
PF01769 PF06646

PF00128 PF13538;PF13604;PF18335

PF01597 PF02151
PF03483 PF04778
PF02775 PF02653
PF04556 PF07672
PF02686 PF01636
PF13396 PF04231

PF04389 PF00268

PF02417 PF00465

ruminant
pig.boar
human

importance
resp
blood
uri.gen
gast_int
importance

Figure 20. Left host isolation-site classifier feature importance and feature contribution scaled per
row. Right tissue isolation-site classifier feature importance and feature contribution scaled per
row.

PF01769, the magnesium transporter MgtE, is the third most important feature for
host classification. This magnesium transporter has a high contribution to predicting
the host class human and to lesser extentcontributes to predicting pig-boar as host
class. Also, this protein is only present in three human infecting Mycoplasma, namely
Candidatus M. haemohominis (GCA_008326325) and M. capricolum subsp.
Capricolum (GCA_001005165) while being abundant in pig-boar and ruminant
infecting Mycoplasmas. Although KO studies associate this protein to be magnesium
transport, it is unknown if this is the primary function of this protein [440]. MgtE is
involved in regulating many virulence factors in Aeromonas hydrophila as well as in
fine tuning regulation of virulence proteins in Pseudomonas aeruginosa [449], [450].
PFo01597, a glycine cleavage system is another important contributor to predicting
human as the isolation host. This protein is however only present in a single human
infecting Mycoplasmas, namely M.capricolum subsp. Capricolum (GCA_001005165)
and was reported by Kaminga et al. [368] as a predictor of ruminant and pig infecting
Mycoplasma. Indeed, PFo1597 is much more common in M. hyopneumoniae but
might contribute to M. capricolum subsp. Capricolum’s ability to opportunistically
infect humans through the blood stream. As can be seen from the above examples,
protein features with a high contribution to predicting a single class are not always the
most commonly occurring within that class. In the case of human infecting
Mycoplasmas, it appears that the most important protein features are those few
proteins that help identify the few zoonotic and opportunistic Mycoplasma strains
that infect the blood stream.
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PFo00128 and PF04389 have the highest contribution to predicting pig-boar as
isolation host. P00128 is an Alpha-amylase while PF04389 is a Peptidase family M28
protein. PF00128 and PF04389 are both present in present in all M. hyosynoviae
strains proteins.

PF03483 and PF02775 have the strongest contribution to predicting Mycoplasma that
infect ruminants. PF03483 is a B3/B4 domain found in tRNA synthetase beta subunits
and other synthetases, while PFo2775 is a thiamine pyrophosphate (vitamin B1)
binding domain. Also, Dpnll restriction endonuclease PFo4556 and
phospholipase_D-nuclease N-terminal PF13396 strongly contribute to predicting
ruminant infecting Mycoplasma.

5.5.4 Proteins important for predicting tissue trophism

We further investigated proteins that are most important for tissue classification. The
tissue classifiers shows that methionine sulfate reductase A (MetA) PFo1641 to be
important for urinary tract and genital infections. MetA is a known virulence
determinant for M. genitalium which infects the urinary tract while being necessary
for proper adhesion [451]. The second most important protein for classification is
PF12008; PF18766, a type I restriction endonuclease, which has the highest
contribution to predicting the class ‘respiratory tract’ as isolation site.

PF06646 MG289, an extra cytoplasmic thiamine binding lipoprotein has the highest
contribution to predicting the gastro-intestinal tract as tissue isolation site, as well as
its high contribution predicting blood as the tissue isolation site. Additionally, it was
shown that MG289 enhances microbial invasion and persistence in Mycoplasma
genitalium [452].

PF02653, a branched-chain amino acid transport system was found to have the
highest contribution to classifying the tissue isolation site blood and the tissue
isolation sites uri-genital. Literature confirms that transport and uptake of branched-
chain amino acids is important for protein synthesis and their requirement for
environmental adaptation [453]. Other obligatory parasites like the intracellular
pathogen Francisella lost all branched-chain amino acid biosynthetic pathways and
rely on dedicated uptake systems for their survival in the host [454]. Branched-chain
amino acids are essential for lymphocyte responsiveness and proper functioning of
other immune cells [455], which puts them at the interface of pathogen-host
interaction.

5.5.5 Strengths and weaknesses of classification

We repeated the host classification, allowing genomes from rarely occurring hosts
isolated from other host to be in the train and testing dataset. Although the accuracy
of the training data remained high at 94%, the accuracy for the test data dropped to
around 75% and the f1_score dropped to 55%. This means that some Mycoplasma
from host classes contain some of the 12 important features, resulting in
misclassification. Classification for strains with rarely occurring hosts is not feasible
since there are too few samples for both test and training data.
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We also tested if combined prediction of host and tissue was possible to find
host _tissue specific features. Unfortunately, too few genomes remain when combining
tissue and host isolation site information and filtering on a minimum of 5 genomes
(Supplementary material 1B). The BioSamples metadata used in our analysis required
a manual normalization, combining different metadata fields and normalizing the
various labels used in these metadata fields. Therefore, we want to emphasize the
importance of 1) sequencing larger numbers of genomes, also for more rare hosts and
2) the importance of well-defined metadata for sequenced genomes to allow for
machine learning approaches to predict strain specific properties such as the host
isolation and tissue isolation site.

The use of these host and tissue classifiers reveals some of the strengths and
weaknesses of classification. For example, those proteins identified as most important
for classifications of human are those which can best predict the few strains that infect
human instead of their normal host. Furthermore, because we minimize the number
of proteins needed for our prediction, we find proteins that best split species over
multiple classes, meaning that many proteins that are identified as important for
classification are present in multiple host or tissue types. This makes the approach
used in this study less suitable for identifying proteins typical for a single host or tissue
type. Furthermore, it should be noted that our classifiers are optimized to predict all
available classes equally optimizing for the f1_score to balance false positives and false
negatives. This is desirable when creating a robust classifier without favouring any
single class as intended in our study. However, for medical purposes, such as
predicting the risk of a zoonotic outbreak, having maximum recall for human infecting
Mycoplasmas would be desirable since false positives would be preferred over false
negatives. Therefore, we advise to train new classifiers when used for such purposes.

5.6 Conclusion

In this study we demonstrated that clustering based on different GO Biological
function categories of proteins for M. pneumoniae, can provide insight in terms of
which functional groups of proteins are most important for pathogenesis. Our study
revealed differences in the functional groups of proteins important for M. pneumoniae
pathogenesis and the pathogenesis of Mycoplasmas in general. The GO functional
group of proteins Interspecies interaction between organisms’ is important for
pathogenesis of Mycoplasmas in general, while ‘Quorum sensing’ and ‘Biofilm
formation’ proteins are important for M. pneumoniae pathogenesis. Furthermore, we
show that a small set of proteins can be used to classify host and tissue specificity of
various Mycoplasmas. Most proteins important for classification were found to have
corroborative evidence for their importance to be available in literature, while some
might provide new insights such as the proteins identified that differentiate human
infecting zoonotic strains from non-zoonotic strains. Finally, our analyses show the
feasibility of predicting species properties such as host and tissue types based on
genomic information, as well as the importance of high-quality sample meta-data to
enable classification through machine learning.
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6.1 Abstract

In this study we explored the adaptability and robustness of glycolysis and pyruvate
metabolism of Mycoplasma pneumoniae (MPN). We used a dual approach; we
analysed metabolomics data collected for a large number of OE and KO mutants and
perturbation samples. Furthermore, we trained a dynamic model of central carbon
metabolism and tested the model’s capacity to predict these mutants and perturbation
samples as well as identify key controlling factors in central carbon metabolism. Our
analysis of metabolite data as well as our model analysis indicate MPN metabolism is
inherently robust against perturbations due to its network structure. Two key control
hubs of central carbon metabolism were identified.

6.2 Introduction

Mycoplasma are gram positive bacteria adapted to an obligatory parasitic lifestyle able
to infect a broad range of hosts [456]. It is estimated by the CDC that 2 million
infections with M. pneumoniae (MPN) occur in the US alone on a yearly basis [457].
These infections lead to conditions ranging from mild to severe respiratory illness
including life threatening conditions such as auto-immune diseases [458]. Therefore,
it imperative to improve our understanding of MPN.

MPN has been established as a model organism for systems biology and large dataset
collections are available informing on its genome, transcriptome [459], proteome
[460], metabolome [461], and transcripcional adaptations [462]. The metabolism and
energetic expenditure of MPN have been thoroughly studied by combining a genome-
scale constraint based model of metabolism with detailed experimental
characterizations [20]. Neither energy production nor uptake of protein building
blocks appear to limit growth of MPN only protein synthesis was found to be growth
limiting [437], [461]. Maintenance requirements are high for MPN, so most of the
energy is devoted to maintenance instead of growth [20].

MPN like other Mycoplasma’s has adopted to its pathogenic lifestyle leading to a
severely reduced genome. Despite their small genome size and limited number of
enzymes and relatively low number of regulators [463], Mycoplasma’s are still able to
adapt to a large number of conditions and still genes can be removed, as they have
been seen not to be essential [435]. Many essential genes are however only present in
some Mycoplasma species, suggesting alternatives to a minimal genome exist [368].
Since there are only few regulatory elements in the genome [463] we hypothesized that
a lot of the adaptability of MPN to adapt to changing growth conditions must be due
to network structure and to allosteric control of its metabolism.

In this study we investigated the metabolism of MPN with a focus on central carbon
metabolism and its allosteric control. Dynamic models were successfully used to
investigate regulation and adaptation of central carbon metabolism to changing
environmental conditions in other organism [464]-[471]. Therefore, in this study we
will combine analysis of metabolomics a large number of samples taken from varying
environmental conditions, OE and KO mutants with a dynamic model of glycolysis and
pyruvate metabolism, to identify key controlling metabolites and enzymes in central
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carbon metabolism. We tested single or combined addition of 1) an ATPase reaction,
2) O: inhibition of Lactate Dehydrogenase and 3) NAD regeneration by NoxE using O-
to this model as potential mechanisms for MPN’s adaptability to various conditions.
We trained and tested the model’s ability to predict a wide range of environmental
conditions, single and double overexpression mutants as well as mutants with single
gene deletions. The model was able to predict these mutants with reasonable accuracy.
In arecent study, local sensitivity analysis on a dynamic model of E. coli central carbon
metabolism identified robustness as one of properties of central carbon metabolism of
E. coli [467]. This robustness is a system property resulting from the many feed-
forward and feed-backward interactions in metabolism, such as allosteric control of
glucose uptake as well as lactate and acetate metabolism. Another study in E. coli
revealed that only three metabolites (FBP, F1P and cAMP) account for about 70% of
the expression variability of central carbon metabolism enzymes through control of
two transcription factors [472]. Similarly, our model predicts the central carbon
metabolism of MPN to be inherently robust to changing conditions and identifies two
main hubs of metabolic control. Clustering of samples of FBA OE and LDH KO
mutants corroborate assumed allosteric control of LDH FBP. Additionally, the analysis
of metabolomics data of MPN indicated that glycolipid metabolism might be linked to
the high energy metabolites needed for growth of MPN. Our findings are in agreement
with recent findings were some key lipids were identified to be needed for MPN growth
on serum free medium [21].

6.3 Materials and methods
Bacterial strains and culture conditions

M. pneumoniae strain M129 (passage 33-34) was grown in modified Hayflick medium
and transformed by electroporation with the pMT85 transposon as previously
described [437]. Briefly, cells were split 1:10, and washed twice with 10 mL and
collected in 300 ul Electroporation buffer (8 mM Hepes-HCI, 272 mM sucrose, pH 7.4)
three days later. Cells (50 ul) were electroporated with 5 ug plasmid in 1 mm gapped
cuvettes at 1.25 kV, 100 Q, 25 uF (Gene Pulser Xcel Electroporator, Bio-Rad). Cells
were recovered in Hayflick for 2 h at 37°C, diluted 1:5 in Hayflick with 200 pg mL*
gentamycin, selected for three days and then maintained with 80 pg mL-* gentamycin.
The cell lines used are detailed in Table 14.

Transposon insertion mutants obtained by haystack mutagenesis

For the isolation of M. pneumoniae mutants, we used a collection of strains carrying
insertions of transposon Tn4001 [473]. The presence of the desired mutant was
assayed by PCR using one primer that hybridizes to the transposon (directed
outwards), and a second primer specific for the gene of interest. Mass spectroscopy is
used to verify absence of the corresponding protein.
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Over Expression mutant construction

Genes to be overexpressed where cloned in the transposon Tn4001 [474] control of
the promoter of the EF-tu gene [474].

Growth curves

To obtain equal amounts of each sample, initial inocula for the growth curves were
quantified. Briefly, cells were grown for 3 days in 25-cm2 flasks, collected in 1 mL
medium and 100 pl was used for quantification using the BCA (bicinchoninic acid)
protein assay kit (Pierce, see below). Same amounts of total protein (1 pg) were
aliquoted per well in a 9g6-multiwell plate in duplicates. Two hundred pl of Hayflick
medium was added per well and the cells were incubated in a Tecan Infinite plate
reader at 37°C. The “growth index” (absorbance 430/560 nm, settle time at 300 msec
and number of flashes equal to 25) was obtained every hour for 5 days as published
[437]. To quantify growth, we determined two slopes of the growth curve. The first one
is based on the time interval from 10 to 30 h (“early slope”) and the second one on the
whole growth curve (“late”). The early slope was determined by considering the
maximum median of the slope between two time points (eq. 1) separated by three time
measurements over successive periods of 30 time points. The late slope was
determined by considering the maximum median value of the slope between two time
points separated by four time measurements (eq. 2) over successive periods of 30 time
points.

Early Slope = (value (time [i]) — value (time[i+3)]) / (time[i]-time[i+3] (eq. 1)
Late Slope = (value (time [i]) — value (time[i+4)]) / (time[i]-time[i+4] (eq. 2)

The early slope is more representative of growth, while the late slope reflects the
metabolic activity.

On the other hand, biomass was quantified at 48 h (early stationary phase) by
inoculating a twin 96-well plates, in the same conditions as above. After incubation for
two days at 37°C under, medium was sucked out, cells were carefully washed twice
with 200 pl PBS and lysed with 100 pl lysis buffer (10 mM Tris-HCl, 6 mM MgCl., 1
mM EDTA, 100 mM NaCl, 0.1% Tx-100, pH 8, and 1x Protease Inhibitor Cocktail,
Roche) at 4°C. In the same first 96-well plate, cell lysates were kept on ice and
extracted protein was quantified by BCA Protein Assay Kit (Pierce, see below).

The protein concentrations at 48 h and early slope are more representatives of growth,
while the late slope and the value of A430/560 at midpoint reflect the metabolic
activity. These four parameters of growth and metabolism were analysed for each
batch of experiments. Outliers (larger than quartile 3, Q3) by at least 1.5 times the
interquartile range (IQR), or smaller than Q1 by at least 1.5 times the IQR) were
removed to calculate the mean and the standard deviation of each of the parameters
for each batch. Values larger or smaller than the mean by at least 2 times the standard
deviation of each parameter were considered to determine fast- and slow-
growing/metabolizing clones, respectively.
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6.3.1 Strain cultivation and growth conditions of mutant and
perturbation samples

A 300 cm? flask was inoculated 1:10 with the lab stock and 100 mL of Hayflick and
grown for 3-4 days at 37C. Then, medium was removed, and cells were scrapped and
resuspended in 12 mL medium. From this inoculum, 75 cm?2 flasks were seeded with 1
mL of inoculum in 20 mL of Hayflick. After 6 hours of incubation (i.e. when cells
reached stationary growth phase) the cells were treated as follows, before the standard
extraction protocol:

Glucose starvation: remove medium and add new Hayflick medium without glucose.
Incubate sample for 5 h at 37C. Long incubation time is required to deplete glucose
from Hayflick medium.

Amino acid starvation: take half of the medium, add 200 mg of DL-serine
hydroxamate (10 mg/mL), mix and add again to the cells; incubate cells with for 15
min at 37C.

Fe2+ depletion: Add directly to the flask the iron chelator 2,2’-Bipyridine at a final
concentration of 3 mM, incubate for 30 min at 37° C.

Oxidative stress: Add directly to the flask H-0O-, to 0.5%, incubate 15 min at 37C.
Glycerol: Add directly to the flask glycerol to 1% -v/v, incubate 30 min at 37C.

6.3.2 Sample preparation for metabolomics

M. pneumoniae cells were grown in 6-well culture dishes as described above until
reaching 80-90% confluency. Culture medium was aspirated, and cells were rapidly
washed twice at 37° C with 1 mL of buffer (75 mM ammonium carbonate at pH 7.4 and
0.1% glucose). After aspiration of washing buffer, plates were immersed in liquid
nitrogen to quench metabolism and stored at -80° C for less than 4 days until further
processing. After aspiration of washing buffer, plates were immersed in liquid nitrogen
to quench metabolism and stored at -80° C for less than 4 days until further
processing.

To extract metabolites, plates were placed on a 75° C heating block and 700 uL of
extraction solution (70%-v/v ethanol in water at 75° C) were added to each well. After
incubating for 3 min, the supernatant was collected and transferred to ice, and the
extraction was repeated once. Pooled extracts were dried under vacuum and stored at
-80° C prior to metabolomics analyses.

6.3.3 Nontargeted metabolomics

All samples were measured in triplicate. Metabolomics samples were analysed by flow-
injection time-of-flight MS with an Agilent 6550 iFunnel QToF instrument (Agilent,
Santa Clara, CA, U.S.A.) operated in negative ionization mode at 4 GHz high-
resolution in a range from 50-1,000 m/z using published settings [475]. The mobile
phase was 60:40 isopropanol:water (v/v) and 1 mM NH4F at pH 9.0 supplemented
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with 10 nM hexakis(1H-, 1H-, 3H-tetrafluoropropoxy)phosphazine and 80 nM
taurocholic acid for online mass correction. Spectral processing and ion annotation
based on accurate mass within 0.001 Da of metabolites in the M. pneumoniae MyMPN
database [7], allowing for [M-H]- and [M+F]- ions and [1x2C->1x13C] neutral gain and
keeping for each metabolite only the ion with lowest m/z in case of multiple matching
ions, was performed using Matlab R2015b (The Mathworks, Nattick, MA, U.S.A.) as
described previously [475]. Metabolomics data were normalized to the summed
abundance of a group of amino acids (Ser, Pro, Ala, Val, Thr, Leu/Ile, Met, Phe, Tyr)
found to strongly correlate in each sample. In Mycoplasma amino acids are not made
but imported and they are fairly constant. Therefore, we could use the summed values
for the less variable amino acids to normalize. A similar approach is used in free label
quantitative proteomics. Subsequently, log--transformed fold-changes and P-values
(two-sided t tests, with g-values computed from raw p-values to enable false discovery
rate adjustment [476]) were calculated to determine relative metabolite abundances
compared to control samples and their statistical significance.

6.3.4 Targeted metabolomics

Samples were injected into a Waters Acquity UPLC with a Waters T3 column (150 mm
X 2.1 mm x 1.8 mm; Waters Corporation, Milford, MA) coupled to a Thermo TSQ
Quantum Ultra triple quadrupole instrument (Thermo Fisher Scientific, Waltham,
MA) with electrospray ionization. Compound separation was achieved by a gradient of
two mobile phases (i) 10 mM tributylamine, 15 mM acetic acid, 5% (v/v) methanol and
(ii) 2-propanol. In total, 138 metabolites covering carbohydrate and energy
metabolism, amino acid metabolism, nucleotide metabolism and other pathways were
targeted. Further details are published elsewhere [477].

6.3.5 Proteomics

Cells were grown in a 25-cm2 flask for 3 days as above, washed with PBS and
lysed/collected in 4% SDS, and 0.1 M Hepes-HCI pH 7.5. Samples were reduced with
dithiothreitol (15 uM, 30 min, 56°C), alkylated in the dark with iodoacetamide (180
nmols, 30 min, 25°C) and digested with 3 ug LysC (Wako) O/N at 37°C and then with
3 pg of trypsin (Promega) for eight hours at 37°C following FASP procedure (Filter-
aided sample preparation 48). After digestion, the peptide mix was acidified with
formic acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior to
LC-MS/MS analysis. The peptide mixes were analysed using a LTQ-Orbitrap Velos Pro
mass spectrometer (Thermo Fisher Scientific) coupled to an EasyLC (Thermo Fisher
Scientific). Peptides were loaded onto the 2-cm Nano Trap column with an inner
diameter of 100 um packed with C18 particles of 5 um particle size (Thermo Fisher
Scientific) and were separated by reversed-phase chromatography using a 25-cm
column with an inner diameter of 75 um, packed with 1.9 um C18 particles (Nikkyo
Technos). Chromatographic gradients started at 93% buffer A and 7% buffer B with a
flow rate of 250 nl min-1 for 5 minutes and gradually increased 65% buffer A and 35%
buffer B in 120 min. After each analysis, the column was washed for 15 min with 10%
buffer A and 90% buffer B. Buffer A: 0.1% formic acid in water. Buffer B: 0.1% formic
acid in acetonitrile.
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The mass spectrometer was operated in DDA mode and full MS scans with 1 micro
scans at resolution of 60.000 were used over a mass range of m/z 350-2,000 with
detection in the Orbitrap. Auto gain control (AGC) was set to 1 E6, dynamic exclusion
(60 seconds) and charge state filtering disqualifying singly charged peptides was
activated. In each cycle of DDA analysis, following each survey scan the top twenty
most intense ions with multiple charged ions above a threshold ion count of 5,000
were selected for fragmentation at normalized collision energy of 35%. Fragment ion
spectra produced via collision-induced dissociation (CID) were acquired in the Ion
Trap, AGC was set to 5e4, isolation window of 2 m/z, activation time of 0.1 ms and
maximum injection time of 100 ms was used. All data were acquired with Xcalibur
software v2.2.

Proteome Discoverer software suite (v2.0, Thermo Fisher Scientific) and the Mascot
search engine (v2.5, Matrix Science were used for peptide identification. Samples were
searched against a M. pneumoniae database with a list of common contaminants and
all the corresponding decoy entries (87,059 entries). Trypsin was chosen as enzyme
and a maximum of three mis-cleavages were allowed. Carbamidomethylation (C) was
set as a fixed modification, whereas oxidation (M) and acetylation (N-terminal) were
used as variable modifications. Searches were performed using a peptide tolerance of
7 ppm, a product ion tolerance of 0.5 Da. Resulting data files were filtered for FDR <
5 %. Protein Top 3 areas were calculated with unique peptides per protein.

6.3.6 Data and model management

All omics data, modelling files as well as a backup of modelling pipeline and simulation
outputs are available via the Seek data and model management platform for maximum
reproducibility (http://doi.org/10.15490/FAIRDOMHUB.1.INVESTIGATION.133.3 )
[41], [478]. SBtab [479], a tabular exchange format was used to add minimal
information compliant with the Minimal Information Requirements In the Annotation
of Models (MIRIAM)[480] compliant annotation and to add Systems Biology
Ontology (SBO) identifiers [481] for metabolites, reactions and parameters in the
model.

6.3.7 Data analysis

Relative metabolite measurements were logio-transformed following the
recommendation of Jauhiainen et al [482]. Pearson correlations between metabolites
were computed using R v3.4.2[430]. To remove batch effects in the metabolites
measurement, values were normalized by dividing them by the median measured
metabolite value per batch [483]. Fold Change (FC) metabolite measurements for the
40 independent samples were analysed through Principal Component analysis using
the prcomp package. Pearson correlation between samples and metabolites were
calculated and used to generate heatmaps of sample correlations and metabolite
correlations. We used the metabolite correlation matrix for [M+F]-ion data and
filtered on correlations with at least p-value cut-off of 0.001. We calculated the
Euclidean distance using the complete linkage method and used Hierarchical
clustering and cut tree to identify 6 clusters in the metabolite correlation data.
Absolute measurements needed for simulations with the model were obtained by
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multiplying relative metabolite values from [M-H]- measurements with quantitative
metabolite measurements at 24 h. Similarly, enzyme concentrations of samples with
overexpression (OE) of enzymes were obtained by multiplying relative measurements
for these mutants with absolute measurements of the wild type at their respective time
point. These computations were performed using Python. Additionally, we calculated
Pearson correlation between metabolite concentration and estimated growth of 24
time-series samples (P-value <0.05) applying Benjamin Hocheman Multiple testing
correction.

6.3.8 Model construction and numerical implementation

A dynamic model was built of glycolysis and pyruvate metabolism. A base model
containing all reactions in glycolysis, pyruvate metabolism from the MyMPN database
[7].Different additions to this model were tested such as individual and combined
additions of 1) an ATPase reaction, 2) LDH inhibition by oxygen and 3) a NoxE
reaction for NAD regeneration using oxygen. The tested models include i) the base
model ii) the base model and the ATPase reaction iii) base model with NoxE reaction
iv) base model with both ATPase and NoxE reaction v) based model with NoxE
reaction and LDH inhibition by oxygen and vi) the base model with all three
modifications. In case intermediate metabolites were not measurable, reactions were
lumped in a single reaction. This was the case for Phosphoglycerate kinase (PGK),
Glycerate phosphomutase (GMP) and enolase (ENO). These three reactions were
combined in reaction reo7 lumping the enzymatic reactions of PGK&GMP&ENO.
Similarly, phosphotransacetylase (PTA) and acetate kinase (ACK) were combined in
reaction re10 which lumps the enzymatic reactions of PTA&ACK.
Allosteric control was assumed to be similar to allosteric control in Lactococcus lactis
as presented in the model by Costa et al. [484] due to the lack of MPN specific
information on allosteric control. Allosteric control includes three activator and five
inhibitor effects. Reactions were modelled using modular rate laws except for
transport reactions for which Hill type kinetics were used. Enzyme concentrations
were included as reaction parameter to allow model predictions at varying protein
concentrations. The base model contains 10 equations and 72 parameters of which 10
represent experimentally determined enzyme concentrations, 5 represent equilibrium
constants (Keq) and 1 is a Hill coefficient. The remaining 56 parameters represent
Michaelis-Menten constants, activation constants and inhibition constants which are
not known for MPN. The model was built using COPASI [485].

6.3.9 Initial parameter values

Proteomics measurements for 6, 24 and 48-hour timepoints were used as estimates
for enzyme concentrations at respective time points. In case of multi-subunit enzymes,
the most abundant single copy subunit was chosen to represent the enzyme
concentration. Many lower abundance subunits are only expressed under specific
conditions and as such are not representative of the abundance of these glycolysis
enzymes. We also tested using the average, but no major differences were found.
Equilibrium constants were gathered from www.equilibrator.org assuming an ionic
strength of 0.1 and a pH of 7 [486]. Initial values for Monod constants and allosteric
control constants were randomly selected between 0.01 and 100-fold of the observed
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metabolite concentrations at 24h. An overview of the six models, reactions and
equations can be found in Supplementary file 1 A.

6.3.10 Model selection and parameter estimation

The base model has 72 parameters of which 56 are unknown while model that includes
ATPase, NoxE and O: inhibition of LDH has 80 parameters of which 63 are unknown.
Parameter estimation was performed training the models on metabolomics steady
state data obtained from growth curve samples for 6h, 24h and 48h time points grown
on medium containing 60 mM of glucose. These samples were selected as training data
due to the completeness of the data available for these three times points. Only for
these three samples, measurements for all 17 metabolites present in the model were
available. In addition, protein copy number, glucose uptake, lactate secretion, and
acetate secretion measurements were available for these three samples. Steady state
concentration for 6h, 24h and 48h grown on a lower glucose concentration of 10 mmol
were used as internal validation data. Internal validation data is used by COPASI to
stop the parameter estimation algorithm from overfitting parameters to the training
data. The large time interval between the samples means that metabolite
concentrations in each sample can be assumed to be independent from the
concentrations of the other samples. Therefore, each sample was treated as an
independent steady state. COPASI’s [485] build in Genetic programming algorithm
was used to estimate parameters using a maximum of 1000 generations with a
population size of 500 models with normalized sum of squares as weights. 100
independent parameter estimations were run per model. Optimal parameters were
searched within a range of 102-102-fold of the observed metabolite concentration at
24h for Monod constants and allosteric control constants while maximum reaction
velocity values were searched within a range of 10-2-103. The performance of the six
models were compared based on the distribution of the mean square error values for
each of the 100 parameter estimations.

6.3.11 Simulations, local and global sensitivity analysis

The model was used to predict steady state concentrations for 40 independent samples
comprised of OE and knock out (KO) mutants, perturbations, and time-series
measurements in different growth conditions measured in triplicate. In these
simulations, the input for the model was concentration data of 11 metabolites: acetyl
coenzyme A (AcCoA), acetate (ACE), adenosine diphosphate (ADP), adenosine
triphosphate (ATP), coenzyme A (CoA), diacylglycerol phosphate (DGP), fructose 6-
phosphate (F6P), fructose-1,6-bisphosphatase (FBP), glucose 6-phosphate (G6P),
glyceraldehyde-3-phosphate (GAP), lactate (LAC), nicotinamide adenine dinucleotide
(NAD), reduced nicotinamide adenine dinucleotide (NADH), phosphoenolpyruvate
(PEP), orthophosphate (Pi_Int), pyruvate (PYR), external glucose (GLC_Ext).
Measurements for NAD and NADH are approximate. For each sample, 1000 steady
state simulations were performed while sampling from the log normal distribution of
metabolite measurements. By comparing sampled measurements and sampled
simulation values, measurement error and its propagation are incorporated in model
predictions.
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Not all metabolites present in the model were measured for all independent samples.
Reference values from measurements taken at 6h, 24h and 48h of growth on high
glucose concentrations used to train the model were used to set the initial
concentration of NAD, NADH and orthophosphate. Reference values were also used
for CoA, Acetyl-CoA, and Lactic Acid (LAC) for some of the independent samples
(Supplementary Material 2).

To compare the error between simulated and measured metabolite concentrations in
a consistent manner, we used the symmetric Mean Absolute Percentage Error
(sMAPE). sMAPE is a measure of prediction accuracy used for forecasting methods.
This method has the advantage of providing an equal error to positive and negative
errors for log normal distributed data such as metabolite measurements and
predictions [487].

We performed global sensitivity analysis for all kcat, Monod constants, activation and
inhibition constants using a 100,000 Latin Hypercube sampling [488], [489]. Samples
were constructed by sampling from the log linear distribution of each parameter’s
respective search range.

The above described operations were performed using Python 3.6.5 with the Tellurium
2.0.18 and Roadrunner 1.4.24 high performance SBML simulation and analysis
libraries [490], [491]. The pyDOE package was used for Latin Hypercube sampling.
Conda version 4.3.21 was used for package management.

6.3.12 Modelling oxygen diffusion

Oxygen concentrations were calculated based on the initial oxygen concentration in
the culture flasks and the acetate production rate which requires NAD to be
regenerated from NADH by the oxygen dependent reaction catalysed by NoxE. The
initial oxygen concentration was calculated with the ideal gas law, using the
temperature used in cultivation (37 degrees Celsius) and atmospheric pressure.
Volumes, surface area height of the medium were calculated based on the medium and
inoculant volume and the specifications of the T300 cell culture flask [492].

Diffusion of oxygen from the head space into the medium was calculated using the
Wilke and Chang correlation [493] while Fick’s law [494] was used to calculate the
diffusion of oxygen to the bottom of the flask at 6h, 24h, 48h and 96 hours of growth.
The calculated oxygen concentrations were added to the metabolomics measurements
for the 95 independent samples.

6.4 Results

Datasets were collected growing MPN in a large number of conditions. M. pneumoniae
was grown in suspension until sedimenting after 6 h of incubation in rich medium in
non-aerated, non-stirred conditions mimicking its host environment. At several time
points during the growth of wild-type MPN, samples were taken for metabolomics,
biomass, pH and acetate concentration measurements. In addition, relative metabolite
concentrations were measured by untargeted metabolomics for 40 different samples
from environmental perturbations, genetic mutations and at 6h, 24h, 48h and 96
hours of growth. The metabolomics data and targeted proteomics data for these
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samples is available in Supplementary file 2. Among these 40 datasets, there were data
corresponding to OE mutants for all glycolysis and pyruvate metabolism enzymes
except for pyruvate dehydrogenase (PDH) of which the complex is large to clone and
OE, as well as for the KO of LDH (Mpn674). The fold change in mRNA and or protein
concentrations for genes targeted in each mutant were measured. Of the 40 datasets,
17 are mutants that target enzymes for which a reaction is present in the model. Of
these mutants 2 are KO mutants and 14 are OE mutants and 1 is a combined KO and
OE mutant (Table 14). Additionally, there are 6 mutants targeting enzymes in in the
pentose phosphate pathway which is connected to the glycolysis via F6P.

Changes in mRNA and protein concentration of enzymes targeted in over expression
(OE) and knock out (KO) mutants were also measured. Table 14 gives an overview of
these conditions and mutants. Unless stated otherwise, relative metabolite
concentrations were measured at steady state in non-aerated conditions. In cases
where different conditions were used, or where additional omics data were measured,
this is indicated in Table 14. Targeted metabolomics were used to measure protein
concentration for all OE mutants targeting central carbon metabolism enzymes.

Table 14. Overview of KO, OE mutants, perturbation and time-series samples.

EXPERIMENT TYPE ENZYME IN
MODEL
24H_TIMECOURSE * Absolute Metabolomics, NA
Proteomics,

Glucose uptake, acetate

lactate secretion rate and

lactate secretion rate
48H_TIMECOURSE * Absolute Metabolomics, NA
Proteomics,

Glucose uptake, acetate

lactate secretion rate and

lactate secretion rate
6H_TIMECOURSE * Absolute Metabolomics, NA
Proteomics,

Glucose uptake, acetate

lactate secretion rate and

lactate secretion rate
24H_TIMECOURSE_4 ** Glucose uptake, acetate NA
lactate secretion rate and

lactate secretion rate
48H_TIMECOURSE_ 4 ** Glucose uptake, acetate NA
lactate secretion rate and

lactate secretion rate

6H_TIMECOURSE_4 ** Glucose uptake, acetate NA
and lactate secretion rate
BLANK_ CONTROL_7 Control NA
WATER_CONTROL_7 Control NA
WT_5 Control NA
WT_PERTURBATION_~ Control NA

KO51_MUTANT_6 mutant, glpD KO NA
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MPNo25-OE_6
MPNo25-OE_7
MPNo051-KO_5
MPNo51-OE_7
MPN250-OE_5
MPN250-OE_7
MPN302-OE_6
MPN302-OE_7
MPN303-OE_5
MPN303-OE_6
MPN303-0OE_7
MPN430-OE_6
MPN606-OE_6
MPN627-OE_7

mutant, tsr OE
mutant, tsr OE
mutant, glpD KO
mutant, glpD KO
mutant, pgi OE
mutant, pgi OE
mutant, pfkA OE
mutant, pfkA OE
mutant, pyk OE
mutant, pyk OE
mutant, py OE
mutant, gap OE
mutant, eno OE
mutant, ptsI OE

FBA
FBA
NA
NA
PGI
PGI
PFK
PFK
PYK
PYK
PYK
GAP
ENO
NA

MPN674-KO, NOXE OE_5 mutant, ldh KO, noxE OE  LDH, NOXE

MPN674-KO_5 mutant, Idh KO LDH
MPN674-KO_6 mutant, Idh KO LDH
MPN674-OE_5 mutant, Idh OE LDH
MPN674-OE_7 mutant, Idh OE LDH
TN674__MUTANT_7 mutant, Idh KO LDH
TNo51_GLY_PERTURBATION_7 mutant, perturbation glpD NA
AA_PERTURBATION_6 Egrturbation NA
FE_PERTURBATION_6 Perturbation NA
GLU_PERTURBATION_6 Perturbation NA
GLUCOSE_STARV_PERTURBATION | Perturbation NA
E}iY_CTRL_PERTURBATION_7 Perturbation NA
GLY_PERTURBATION_ 6 Perturbation NA
OX_PERTURBATION_6 Perturbation NA
WT_NOGLUC_PERTURBATION_7 Perturbation NA
Mi129 TIMECOURSE_24H_ g *** time course, perturbation = NA
Mi129 TIMECOURSE_ 48H_ 3 *** time course, perturbation = NA
Mi129_TIMECOURSE_6H_ g *** time course, perturbation =~ NA
Mi129_ TIMECOURSE_96H_ g *** time course, perturbation =~ NA

* Used to train the model.
** Used to validate the model.
*** M. pneumoniae M129 grown in aerated conditions.

We explored the measurements of metabolite concentrations for the various samples
shown in Table 14. Similar conditions as well as KO of genes in the same pathway
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cluster together. An example of this is the clustering of all M129 samples which are the
only samples grown in aerated conditions (Figure 21).
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Figure 21. Heatmap of mutant and perturbation sample clustering based on their metabolite profile

Two clusters exist of OE mutants targeting glycolysis. The first cluster contains an OE
mutant of FBP, phosphotransferase MPN627 involved in mannitol and mannose
uptake [20] and LDH. This clustering corroborates the assumed allosteric activation
of LDH by FBP. The second cluster contains OE mutants of ENO, GAP, PYK and PFKA.
Another interesting cluster contains MPN perturbation, growth without oxygen and
growth without amino acids which cluster together with both an LDH KO and FBA OE.
These four samples have in common that the conditions are growth inhibiting. The
clustering of FBA OE which degrades FBP together with LDH KO can be explained by
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the positive allosteric control of FBP on LDH. Two annotation techniques were used
to measure metabolite abundance, [M+F]- ion and [M-H]- ion detection [495]. Some
differences are present in the correlations between individual metabolites in the
[M+F] - ion and [M-H] -data, however, clustering of samples for both detection
techniques is highly similar. A heatmap that compares both [M+F] - ion and [M-H] -
data can be found in the Supplementary files 1B.

In addition to clustering of samples based on their relative metabolite concentrations
we studied the clustering of metabolites of these samples. We use the Pearson
correlations between metabolites to build a network of metabolite-metabolite
interactions (Figure 22).
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Figure 22. Metabolite correlation network based the Pearson correlation of metabolite
measurements of the 40 independent samples. The 6 clusters were assigned based on hierarchical
clustering of the correlation data.

We identified a neatly defined cluster structure. The largest cluster contains sn-
glycero-3-phosphocholine, CDP-Choline, folate and methionine cycle metabolites,
orthophosphate, all nucleotide three phosphates (ATP, CTP, UTP) and pentose
phosphate metabolism (PPP) metabolites. This cluster suggest a link between sn-
glycero-3-phosphocholine catabolism, energy production, and nucleobase salvaging
by phosphorylation and de-oxidation. Higher concentrations of PRRP associated with
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these metabolites are needed to convert nucleobases into ribonucleotides, while
increase in ATP is needed for phosphorylation of deoxyribonucleotides:

Nucleobase + PRPP < => Nucleotid — monophosphate + PPi

In humans, phosphatidylcholine (lecithin) is used as main nutritional source for one
carbon metabolism (CHj3) [496] One carbon metabolism and its relation to nucleotide
synthesis in cancer cells has been extensively studied [495]. It has been argued that in
human cancer cells, glycolysis can produce enough energy for growth by diverting its
flux to other metabolic pathways including one-carbon metabolism. Indeed, several
reactions of one-carbon metabolism contribute to ATP and NADPH production.
Similarly, it has been argued that phosphatidyl choline plays a major role in the
nutrition of MPN as it is by far the most abundant available carbon source in the lungs
and for these reasons is also used as carbon and nitrogen source by pathogens like P.
aeruginosa [497], [498] and claimed to be used as carbon source by MPN [499].

The second largest cluster contains alanine, aspartate, glutamate, serine, pyridoxal
phosphate (vitamin B6), S-adenosyl-L-homocysteine, glycine, lipoamide, pyruvate as
well as adenine, guanine, GMP, dATP and dCTP. Pyruvate is positively correlated with
dATP and dCTP which are needed for DNA synthesis. This cluster is strongly
associated to the sub cluster of sn-Glycero-3-phosphocholine and tetrahydrofolate
metabolites from the first cluster.

Based on the observed cluster, there are three main lessons to be learned. Firstly,
clustering of sn-Glycero-3-phosphocholine with ATP, CTP and UTP metabolite
correlation profiles supports the theory [497] that glycerol-3-phosphate derived from
sn-Glycero-3-phosphocholine functions as a carbon and energy source for MPN.
Addition of phosphatidylcholine to a defined minimal medium for MPN indeed
optimizes growth [21]. Secondly, sn-Glycero-3-phosphocholine clusters together with
folate and methionine cycle one carbon metabolites and as such is likely the main one
carbon donor in MPN metabolism. Thirdly, positive correlation between CDP-choline,
3-phospho-D-glyceroyl-phosphate and sedoheptulose-7 phosphate, as well as between
sn-Glycero-3-phosphocholine and the cluster containing PRPP indicate a link between
sn-Glycero-3-phosphocholine and pentose phosphate metabolism.

6.4.1 Over Expression of glycolytic enzymes

To further study the control of different glycolytic enzymes on central carbon
metabolism we, analysed the fold change of enzymes in glycolysis and pyruvate
metabolism when OE single as well as some combinations of glycolytic enzymes
(Table 15).
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Table 15. Log2 Fold change expression values of OE mutants. I: Mutant PTA ACK did not
show any OE of ACK. II: OE are significantly different from the wild type. I1I: OE values
are significant, but the changes are noisy.

PTA PTA PFK PFK PFK LDH
ACK! PTA LDH
MPN42 MPN MPN3 MPN3 MPN3 MPN6
8; 428 02; 02; 02; 74
MPN53 MPN4 MPNG67
28 4
fold fold fold fold fold fold
change chan change change change change
ge
PTS MPN207 0.07 0.18 -0.04 -0.18 -0.07 0.10
PFK MPN302 -0.08 -0.10 2,731 2.661I 2,711 -0.20
PGI MPN250 -0.12 0.09 -0.16 -0.05 -0.04 0.04
FBA MPNo25 0.28 0.54 0.04 0.47 0.75 0.62
GAPD MPN430 -0.22 -0.14 -0.27 -0.31 0.19 0.07
H
PGK MPN429 -0.01 0.04 0.07 0.20 0.05 -0.01
PGM MPN628 0.06 0.21 -0.20 0.03 0.51 0.25
ENO MPN606 0.24 0.30 0.13 0.32 0.41 0.35
PYK MPN303 -0.20 -0.13 -0.11 0.12 0.01 -0.15
LDH MPN674 0.37 0.54 0.01 0.34 1.501 1.69 I
IplA MPN389 0.29 0.18 0.17 0.27 0.35 0.19
pdhD MPN390 0.03 -0.04 0.08 0.19 -0.08 -0.11
pdhC MPN391 0.24 0.12 0.10 0.23 0.15 0.15
pdhB MPN392 0.34 0.19 0.27 0.29 0.37 0.36
pdhA MPN393 0.07 -0.01 -0.11 0.06 -0.08 -0.09
nox MPN394 o0.71 0.50 0.12 0.43 0.80 0.52
pta MPN428 21111 222 0.28 1.931 0.26 0.33
II
ack MPN533 0.36 0.34 0.28 0.43 0.40 0.30
GlpD MPNo51  0.41 0.44 0.19 0.27 0.60 0.49
atpC MPN597 -0.16 0.21 -0.21 -0.11 0.27 0.31
atpD MPN598 0.15 0.29 0.02 0.34 0.53 0.42
atpG MPN599 0.20 0.30 0.20 0.11 0.71 0.32

atpA MPN600 0.00 0.16 -0.01 0.09 0.16 0.27
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atpH MPN601 -0.15 0.18 -0.09 0.05 0.43 0.12
atpFF MPN602 -0.08 0.06 -0.30 -0.49 0.18 0.23
atpE MPN603 -1.53™ -0.52 -0.16 1.23 0.30 -1.76
atpB MPN604 0.20 -0.15 -0.54 -0.60 -0.10 0.19
tkl MPNo82 o0.02 -0.01 0.03 0.18 0.20 0.26
tim MPN629 0.21 0.31 0.13 0.13 0.37 0.47

What we see is that when OE these other enzymes in the pathway don not widely
change. These results suggests that allosteric regulation and circuit topology might
play a great role on the control of central carbon metabolism of MPN.

6.4.2 Exploration of metabolite’s concentration at steady state: study of
associations

We build a dynamic model of central carbon metabolism including glycolysis and
pyruvate metabolism. We trained this model with a limited subset of data and use the
model to identify key regulatory elements in glycolysis. Different additions to this
model were tested such as individual and combined additions of 1) an ATPase reaction
to account for varying ATP demand, 2) LDH inhibition by oxygen and 3) a NoxE
reaction for NAD regeneration using oxygen. The tested models include i) the base
model ii) the base model and the ATPase reaction iii) base model with NoxE reaction
iv) base model with both ATPase and NoxE reaction v) based model with NoxE
reaction and LDH inhibition by oxygen and vi) the base model with all three
modifications.

We found the model with addition of NoxE to have the best fitting in multiple
parameter estimations, therefore we kept the addition of the NoxE to the model we
used for further simulations/

In case intermediate metabolites were not measurable, reactions were lumped in a
single reaction. This was the case for Phosphoglycerate kinase (PGK), Glycerate
phosphomutase (GMP) and enolase (ENO). These three reactions were combined in
reaction reo7 lumping the enzymatic reactions of PGK&GMP&ENO. Similarly,
phosphotransacetylase (PTA) and acetate kinase (ACK) were combined in reaction
re10 which lumps the enzymatic reactions of PTA&ACK.
Allosteric control was assumed to be similar to allosteric control in Lactococcus lactis
as presented in the model by Costa et al [484] due to the lack of MPN specific
information on allosteric control. Allosteric control includes three activator and five
inhibitor effects. Reactions were modelled using modular rate laws except for
transport reactions for which Hill type kinetics were used. Enzyme concentrations
were included as reaction parameter to allow model predictions at varying protein
concentrations. The base model contains 10 equations and 72 parameters of which
10orepresent experimentally determined enzyme concentrations, 5 represent
equilibrium constants (Keq) and 1 is a Hill coefficient. The remaining 56 parameters
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represent Michaelis-Menten constants, activation constants and inhibition constants
which are not known for MPN. The model was built using COPASI [485].

An overview of the model’s reactions can be found in Figure 23, and the reactions,
equations, and the additions tested can be found in Supplementary material 1A.
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Figure 23. Schema of the model. The diagram meets the Systems Biology Graphical Notation

(SBGN) standard [500] with the exception of the LAC and ACE export arrows which in the model are
present as syncs for LAC and ACE: Arrowheads represent reactions (black arrowhead end),
catalysis (open circle end), activation (green) and inhibition (red). Circles indicate metabolites. Half-
filled circles are clone makers to indicate the metabolites appears multiple times in the diagram
(green=adenine nucleotides, yellow=redox equivalents, red=PEP/PYR). Blue filled rectangles
describe macromolecules (enzymes, transporters) that catalyse a reaction. In case the reaction
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stoichiometry is different to 1, the reaction stoichiometry is given as text at the reaction arrow. Blue
empty rectangles indicate reaction identifiers in the model. Metabolite abbreviations: AcCoA =
acetyl coenzyme A, ACE = acetate, ADP = adenosine diphosphate, ATP = adenosine triphosphate,
CoA = coenzyme A, DGP = diacylglycerol phosphate, F6P = fructose 6-phosphate, FBP = fructose-
1,6-bisphosphatase, G6P = glucose 6-phosphate, GAP = glyceraldehyde-3-phosphate, LAC = lactate,
NAD = nicotinamide adenine dinucleotide, NADH = reduced nicotinamide adenine dinucleotide, PEP

= phosphoenolpyruvate, Pi_Int = orthophosphate, PYR = pyruvate (PYR), GLC_Ext = external
glucose.

We compared the mean square error, for all parameter sets (Figure 24). Models that
include ATPase (models 2, 4 and 6) have on average the largest error and took the
most iterations to reach a stable solution. The addition of NoxE was shown to reduce
the error in model predictions (see Figure 24). A zoomed in version of Figure 24 as
well as correlation analysis of parameter sets is available in Supplementary file 1B.
Since the model with addition of NoxE performed best, further analyses were
continued using this model. This model loaded with the best performing parameter set
was deposited in BioModels [501] and assigned the identifier MODEL1911200003.
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Figure 24. Violin plot comparing the mean square error, for all 100 parameter sets for six models.
The red dot indicates the median value.



6.4.3 Simulating perturbations, KO and OE mutants

We used the trained model to predict steady state metabolite concentrations for 40
independent samples. Sample’s metabolite concentration mean and standard
deviation values were determined by measuring samples in triplicate. In addition to
being measured in triplicates, biological replicates were available for all OE targeting
glycolysis and pyruvate metabolism.

For each of the 40 samples, 1000 independent simulations were performed with
slightly different initial concentrations to explore the impact of biological variability
and uncertainty associated to measurement error rates. On average the model
predicted these samples with reasonable accuracy (Figure 25).
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Figure 25. Symmetric Mean Absolute Percentage Error between simulated and measured values using
a 1000x times sampling. sMAPE for all metabolites per sample are combined.

The largest error in predicted metabolite concentrations occur for the samples of
MPN129 growth in aerated conditions. These results were to be expected as these
samples are clearly forming an outlier since the growth conditions are so vastly
different from the other samples. From samples corresponding to perturbations in
growth condition, the oxidative stress perturbation (0.15% H202) had the largest
prediction error.

The relatively simple model here presented reproduces the states attained under a
broad range of perturbations such as glucose concentrations up to a factor 10 lower as
compared to the training data. The use of proteomics data is most likely one of the
main reasons the model simulates OE and KO mutants of enzymes in glycolysis
relatively well. The calculated metabolite concentrations are, on average within a
factor 3 of measured values for all mutants and perturbation samples, which is

M129_timecourse_24h_3

M129_timecourse_48h_3

M129 timecourse_96h_3
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comparable to the accuracy of the training set. An example of measured and simulated
values of sampled simulations can be seen in Figure 26.
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Figure 26. Measured and simulated steady state concentrations at a) 6h of growth, b) 24h of growth
and c) 48h of growth on low glucose concentration. Measurement for DGP, NAD and NADH are
reference values from samples grown on high glucose concentration.

Additionally, concentrations of for most metabolites are predicted within the 95%
confidence interval of the in-vitro data (Supplementary material 1C). Exceptions to
this rule are PYR and ATP and NADH. Simulated concentrations for ATP and NADH
are systematically lower than measured values while PYR is systematically predicted
to have a higher than measured concentration. Pyruvate is hard to quantify since it
easily is degraded causing variation in its measurement due to for example different
times between measurement and sampling. As such we cannot quantify the accuracy
of the predictions for pyruvate. For the metabolites such as DGP, NAD and NADH,
reference values from high glucose conditions were used to set initial concentrations.
As such deviation from these reference values in the simulations in steady state was to
be expected.

6.4.4 Metabolic control

We used two types of metabolic control analysis to understand which enzymes and
metabolites effort the greatest control on glycolysis: Local Sensitivity analysis and
Global Sensitivity analysis. Control coefficients are unit less measures of the relative
steady state change in a system variable, in our case the flux through PFK, in response
to a relative change in a parameters value. Global sensitivity provides information on
parameters that exert control independent of a specific parameter value. We achieved
this by sampling parameter sets uniformly from the parameter search space. These
parameters sets are not specific for MPN since they are not fitted to any MPN data.
Local sensitivity analysis on the other hand is based on control coefficients derived at
the steady state using parameter sets fitted to MPN specific data. As such the
approaches are fundamentally different and complementary in the information they
provide. For our local sensitivity analysis, we use the best performing10 parameter sets
to calculate metabolic control coefficients. Since these parameter sets are independent
of one another, if metabolic control is higher for certain parameters based on multiple
parameter sets, we can conclude the control to be relevant since it is a result of the
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fitting to MPN data. Additionally, we also performed local sensitivity analysis while
sampling from the measurement distribution of metabolites to investigate the effect of
measurement error on control coefficients. The steady state changes for each sampled
simulation, as such we can see how the uncertainty in metabolite concentrations
propagates and creates uncertainty in the control coefficients calculated at these
steady states. An overview of our metabolic control analyses can be found in
Supplementary file 1D. We found two main control hubs PTS_Glc + PFK and LDH +
PDH + PYK. The first control hub consists of parameters associated to PTS_Glc and
PFK and represents metabolism in the upper part of glycolysis, the second hub consists
of parameter associated to LDH, PDH and PYK and part of pyruvate metabolism.

6.4.5 Simulating combined OE and KO mutants

We used the model to simulate the combined effect of genetic perturbations targeting
glycolysis enzymes (OE, KO) combined with a second perturbation, either genetic or
environmental. This analysis can identify bottlenecks in central carbon metabolism
consisting of combinations of enzymes. Such bottlenecks cannot be identified through
local sensitivity analysis or when simulating single over expressions. The expected
variations in the flux through glycolysis is shown in Figure 27. For most of these
combined perturbations, only minor changes were observed. However, simulations of
OE of PFK show greatly increased flux through glycolysis while oxygen stress, iron
limitation and growth of MPN129 in aerated conditions lead to greatly reduced flux.
However, combination of PFK OE with OE of lactate dehydrogenase (LDH) or
phosphotransacetylase (PTA) with acetate kinase (ACK), increase the flux nearly as
much and is realistic to obtain in vivo since OE mutants for each of these enzymes
individually are available. Based on these simulations, combined OE mutants were
suggested for lab validation: PFK+LDH, PFK+NOXE. Growth curves, protein and
metabolite concentrations were measured for the PFK+LDH OE mutant but not for
combined PFK+NOXE OE. Combined PFK+PDH OE did not increase flux through
glycolysis. However, some positive epistasis on the growth for the combined OE of
PFK+LDH was observed, with higher biomass and higher acidification than the
individual mutants. None of the combined OE mutants increased the growth rate of
MPN with respect to the wild type as could eb expected since energy metabolism is not
growth limiting in MPN[437].

The simulation results of the double OE mutants show that glycolysis in robust.
Meaning that the network structure that includes feed forward and feed backward
allosteric control, makes the glycolysis of MPN inherently robust.
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Figure 27. Fold change flux through PFK for combinatorial mutants and perturbations in steady
state, relative to the wild type at 24h. The primary sample, of which only the protein OFE values are
used, are shown on the y-axis while the secondary sample, of which both changes to parameters and
metabolite concentrations are used, are shown on the x-axis. The colour represents the fold change
in flux through glycolysis compared to the wild type.

6.4.6 Discussion

Metabolomics data for a large number of perturbations, OE and KO mutants were
collected. We observe that metabolite concentration of samples in general do not vary
that much and that samples of similar conditions as well samples of enzymes OE and
KO mutants of enzymes close to other in the metabolic network cluster together. In
glycolysis we observed no clear clustering between metabolites. We also see that there
is relatively little difference in the expression of glycolytic enzymes when OE enzymes
in glycolysis and pyruvate metabolism. These results suggest that central carbon
metabolism of MPN is robust against perturbation. Literature research revealed that
glycolysis and pyruvate metabolism in many species is observed to be robust against
perturbations [467], [502], [503]. Arguably robustness is an even more important
property for a minimal organism such as MPN where biological noise can be expected
to have much larger effect than for many organisms with a larger cell volume.

The property of robustness agrees with model results that show only minor changes
occur even when OE multiples glycolysis enzymes in silico. We tested the effect of
adding a reaction for additions of 1) ATPase, 2) O2 inhibition by LDH and 3) a NoxE
reaction. Only the the addition of addition of a NoxE reaction resulted in a much better
fit to the training data. Arguably, addition of NoxE improves parameter identifiability
since the models without this reaction use a fixed reference values for NAD and NADH.
The models that include NoxE allow NAD and NADH concentrations to change, this
added flexibility and improves parameter identifiability since NAD and NADH
associated parameter can now be used to account for differences in metabolite
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concentration opposed to being fixed values based on reference values. Additionally,
NAD/NADH are known to have control over central carbon metabolism in other
organisms such as L. lactis [504], [505] therefore we argue it is likely they also have
control over central carbon metabolism in MPN.

Steady state simulations showed the model to be flexible since it can predict metabolite
concentrations well for all mutant samples. Part of this flexibility is the result of
including parameters representing the enzyme concentration, therefore genetic
perturbations are accounted for in simulations. Similarly, by using measurements of
cofactors from these conditions, the model can approximate the effects of these
simulations on central carbon metabolism. Additionally, we argue the flexibility of the
model might partly be the result of the inherent robustness of central carbon
metabolism in MPN.

6.5 Conclusion

In this study we integrated experimental data and model simulations and analysis to
explore the robustness of central carbon metabolism of MPN in steady state. Firstly,
we analyzed metabolomics data. We observed that samples from similar conditions as
well as samples of OE and KO mutants of enzymes close to each other in the metabolic
network cluster together. Samples from vastly varying conditions, such as aerated
conditions, do not cluster with the other samples. Secondly, we build a model to
simulate samples of various single or combined perturbations. The simple model
presented in this study can predict metabolite concentration with reasonable accuracy
for a wide range of conditions and OE and KO mutants. Two control hubs were
identified using our dynamic model a) upper glycolysis (PTS_Glc + PFK) and b) lower
pyruvate metabolism (LDH+PDH+PYK). No single or combined OE mutant of
glycolysis and pyruvate metabolism enzymes resulted in a higher growth rate although
OE of PFK and LDH resulted in somewhat higher acidification indicating there might
be higher flux through glycolysis. These results are in in agreement with studies that
show that glycolysis and pyruvate metabolism in MPN is not growth limiting. Both the
results from the analysis of our samples as well as the model results, suggest
robustness to be a central property of MPN glycolysis and pyruvate metabolism.
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7.1 Introduction

The objective of this chapter is to reflect on the research performed within this thesis.
Firstly, I briefly discuss key aspects of biology of pathogens, addressing similarities
and differences between pathogens as well as possible directions for future research.
Secondly, I discuss what worked and what did not work well in terms of methodology.

Critical feedback and lessons learned from research are in general underrepresented
in scientific literature [506], [507]. However, failures and bottlenecks encountered in
research are invaluable to shape the direction of future research and to avoid future
researchers repeating the same mistakes their predecessors made. I discuss current
developments in methodology and what I think it would be required to bring Systems
Biology and modelling to the next level. I will try to answer the overarching research
question and sub questions of this thesis:

“What are the patterns in pathogenesis host interaction? “

1. What are the strategies used by different pathogens to cause illness?

2. What are the strategies a model organism like Mycobacterium tuberculosis
deploys to infect the host?

3. How do functional groups of proteins associate to differences in pathogen host
interaction?

4. Which genes confer zoonotic ability to bacteria?

5. which genes determine the host and tissue specificity of bacterial pathogens?

6. What are the properties of Mycoplasma pneumoniae central carbon
metabolism to adapt to different environmental conditions?

7.2 What are the patterns in bacterial pathogen host
interaction?

Before I try to answer the above questions, let us discuss the taxonomy of the various
pathogens discussed in this thesis. I discussed three virulence strategies of
Mycobacterium tuberculosis in Chapter 2, identification of regulatory binding
motifs associated to these three virulence strategies in Chapter 3, pathogenesis of
Staphylococcus & Streptococcus species in Chapter 4, predicted tissue and host
specificity of Mycoplasma species in Chapter 5 and presented a dynamic model of
Mycoplasma pneumonia metabolism in Chapter 6. The taxonomic relation of these
species is visualised in Figure 28. Although all species and species groups discussed
contain pathogenic bacteria, these pathogens are vastly different from a taxonomic
point of view. The closest taxonomic link is that they all belong to the clad of
Terrabacteria, a taxon that contains two thirds of all prokaryotic life forms.
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Figure 28. Taxonomic tree of the pathogens studied within this thesis.

The Terrabacteria are, as the name suggests, adapted to live on the surface of the
Earth. This clad contains bacteria that are resilient against many environmental
stresses. This includes resilience against hostile conditions encountered when

infecting an animal or human host.

From the organisms discussed in this thesis only bacteria belonging to the
Staphylococcus and Streptococcus genus are closely related, and therefore discussed
together in Chapter 4. All other pathogens are very distant relatives. However,
despite these large taxonomic distances, these pathogens share commonalities in
their virulence strategies, the environmental cues that regulated these virulence
strategies, and the pathogenic proteins involved in virulence. In the coming
paragraphs I will highlight some of these similarities as well as some differences.
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7.2.1 Modulation of the host, cell surface and lipid uptake

Staphylococci and Streptococci are Gram positive bacteria. Although they evolved
from Gram positive bacteria, both Mycobacterium and Mycoplasma bacteria do not
have a regular cell wall or cell membrane. M. tuberculosis has a complex cell wall with
an outer capsule containing myco-lipids, glycans, glycol-lipids, trehalose
monomycolate and dimycolate (TMM, TDM), phthiocerol dimycocerosate (PDIM),
pentacyl trehalose (PAT), sulpholipid-1 (SL-1) and diacyl trehalose (DAT) as well as
some ESX-1 secreted proteins [86], [508]. This unusual waxy capsule serves many
purposes such as immune modulation [86] as well as protection against
environmental stresses [509]. Although genetically vastly different, Mycoplasmas also
adapted to a pathogenic lifestyle by adjusting their surface to their human host. M.
pneumonia mimics the host cell membrane by incorporating lipids such as cholesterol,
sphingomyelin, phosphatidylglycerol and phosphatidylcholines [21], [510][511], [512]
from the host and by transferring various sugar groups from the host proteins [513]
and lipids [514] to its own membrane. Without the lipids from its human host, M.
pneumonia cannot survive for long since it lacks the metabolic capacity to produce
these lipids by itself [436], [441]. Like M. pneumonia, M. tuberculosis takes up
cholesterol from its human host [280]. Cholesterol is necessary for M. tuberculosis
survival during long term infection since its degrades cholesterol for building blocks
and energy consumption [515]. In summary, both M. tuberculosis and M. pneumonia
infect the lungs of humans, mimic the hosts cell surface to modulate and evade the
immune response and opt for a slowly growing to keep a low profile. Both bacteria
have adjusted to the nutritional availability in the host and use host lipids for
degradation or as building blocks. Also S. aureus uses lipids from the host for its own
membrane synthesis during infection, although it does not use these lipids to mimic
the host cell surface [516]. Cholesterol being one of the most abundant lipids in human
lung cells, appears to be a preferred target of many pathogens [517], especially lung
pathogens [518] such as M. tuberculosis [97].

7.2.2 Dormancy

Apart from these commonalities, M. tuberculosis and M. pneumonia are completely
different in their infection strategy. M. pneumonia has a minimal genome and survives
mainly through stealth and evasion while M. tuberculosis actively steers towards
uptake by macrophages, escape the phagosome or try to survive by steering the
immune response towards dormancy and granuloma formation, especially foamy
cholesterol rich granulomas [84], [519]. In its dormant state, M. tuberculosis can
survive for decades while being immune to most drugs, making it such a difficult
pathogen to eradicate [9], [11]. Also various Staphylococci species have been
implicated in granuloma formation and dormancy [516]. Similar to M. tuberculosis,
the oxidative stress response from the host immune cells upon phagocytosis can
induce S. aureus species to enter a dormant state [520] from which it can resuscitate
when a milder oxidative stress response is measured [521]. There is even a possible S.
aureus resuscitating infection after 65 years of dormancy [522]. For Streptococcus
species, the marine pathogen S. parauberis has been reported to be able to enter a
dormant state when starving [523]. It should be noted though that this dormant state
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was reported upon starvation conditions outside of the host, not within the host as is
the case for M. tuberculosis and S. aureus. Both S. aureus and M. tuberculosis can
survive in anaerobic conditions which is essential for survival in phagosomes, although
M. tuberculosis must enter a near metabolic inactive dormant state to survive in
anaerobic conditions.

7.2.3 Survival and escape from the phagosome

All pathogens studied in this thesis modulate the immune response of the host in one
way or another. While M. tuberculosis tries to buy time by delaying and downplaying
the macrophage response, it also actively steers towards being take up by
macrophages. S. aureus also steers towards uptake by phagocytes, actively using the
immune cells to hide and replicate until it breaks out and lyses the immune cell [524],
[525]. Various pore forming proteins assist in survival in the phagosome and escape
to the cytosol of various cell types [525]. Especially cystic fibrosis trachea and long
epithelial cells which are rich in cholesterol [526] are vulnerable to S. aureus entry and

escape [527].

S. aureus, S. pneumonia, M. tuberculosis and in lesser extend M. pneumonia utilize
toxins to kill human macrophages. M. tuberculosis produces Necrotizing Toxin (TNT)
secreted by ESX-4, that can induce necrosis in macrophages by depleting NAD [528].
TNT works in concert with pore forming proteins ESX-A and EXB secreted by ESX-1
for permeability of the phagosomal membrane of which the complex regulatory
cascade has been discussed in Chapters 2 and 3. Although at the time of publishing
this information was still relatively controversial, recent studies indeed confirm parts
of this regulatory cascade such as the secretion of EsxA-EsxB, dissociation, and
subsequent pore formation to be important for modulating the macrophages immune
response and subsequent escape of M. tuberculosis from the phagosome to the cytosol
[529]. Recent years have produced unsurmountable evidence that M. marinum, as
well as M. tuberculosis can escape from the phagosome to the cytosol [530]-[532].

Like M. tuberculosis, S. aureus can survive and actively induce phagocytosis by
macrophages. S. aureus produces pore forming toxin called a-hemolysin toxin Hla as
well as leucocidins pore forming toxins [533]. Like M. tuberculosis, S. aureus contains
four Type VII secretion system and secretes EsxA-EsxB toxins that were shown to
mediate pore formation in lipids and contribute to meningitis development [533]. S.
pneumonia also uses a repertoire of toxins such as haemolysins, proteases,
superantigens and other agents [364], [533], [534]. Unlike M. tuberculosis and S.
aureus, Streptococci cannot survive within phagosomes. Streptococci are mostly
facultative anaerobes while some are obligate anaerobes. Some Streptococci like S.
pyogenes, produce toxins that can lead to toxic shock syndrome [412], [535]. In
addition to being used to kill immune cells. Like S. aureus, S. pneumonia secretes a
pore forming toxin, pneumolysin [534]. Both S. pneumonia pneumolysin and EsxA
specifically target cholesterol rich membranes such as the membranes of lung cells,
and phagosomes [234]. Pore formation in Mtb [536], as well as activation of AB-toxins
and other pore forming toxins in general utilise the acidic conditions in the phagosome
as trigger for dissociation and pore formation [537]. Even on a molecular level there
are similarities between S. aureus and M. tuberculosis. Both bacteria use ESX-1
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secreted EsxA-EsxB pore forming proteins to gain cytosolic access, which is need to
modulate the immune response that leads up to escape from the phagosome [196],
[288]. For both bacteria EsxA pore formation was shown to happen at the low pH of
around 4 encountered in a maturing phagosome [234], [536]. Type VII secretion
systems like ESX-1 and secretion of EsxA-EsxB like proteins appear to be a common
pattern in pathogens. Not only is this highly efficient secretion and pore forming
complex important for Mycobacteria and Staphylococci as discussed above, but it also
present in Listeria monocytogenes [538], Streptococcus suis [196] and Streptococcus
gallolyticus [196], Salmonella, and Yersinia pestis. Also similarities exist in their
regulation, such as regulation by PhoP/Q/R like systems in Yersinia pestis [449], M.
tuberculosis [131], [226] and Salmonella [539].

7.2.4 Patterns in bacterial pathogenicity

Multiple bacterial pathogens use the same strategies and same molecular building
blocks, as we can see from the discussion on three virulence strategies a) modulation
of the host b) survival and escape from the phagosome and c¢) dormancy.

These examples are an answer to our main research questions:
“What are the patterns in bacterial pathogenicity?”

More patterns are likely to be found when exploring different aspects of pathogenesis.
For example, in Chapter 6 we identified metabolic enzymes of M. pneumoniae to be
the most important predictors of host and tissue specificity. Although we did not
further explore this angel further, it is likely that similar metabolic adaptations to these
host and tissue types exist in other pathogens.

In Chapters 2 and 3 we answered the question:

“1. What are the strategies a model organism like M. tuberculosis deploys to infect
the host?”

We identified immune modulation, phagosome escape and dormancy as the three
main strategies to infect the human host. As we can see from our discussion, many of
these strategies are deployed by various pathogens. Therefore, we can state that indeed
M. tuberculosis is a great model pathogen since knowledge of these strategies and their
molecular building blocks can in many cases provide insight in the working of other
human pathogens. The regulatory cascade of M. tuberculosis to switch between
virulence strategies is intricately linked with the environmental cues and divalent
metal availability in the host environment. The host reduces availability of divalent
metals as well as uses toxic accumulation to kill bacterial pathogens [540]. Many
bacteria use the restricted availability of iron as a signal to upregulate virulence
proteins [115].

In Chapters 4 and 5 we answer the question:

“2. How do functional groups of proteins associate to differences in pathogen host
interaction?”

We show that by using guilt by association to predict GO Biological functional Groups
of protein annotation, we can find functional groups of proteins that reveal alternative
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clustering of strains that coincides with pathogenic properties such as a) zoonotic
potential and in lesser extend b) associated to host and tissue trophism.

In Chapter 2 we discuss the role of divalent metals in pathogenesis, answering the
question:

“What are the strategies a model organism like M. tuberculosis deploys to infect the
host?”

In Chapters 4 and 5 we identified protein domain fingerprints associated to zoonotic
ability as well as to specific host and tissue types. To answer the research questions:

“Which genes confer zoonotic ability to bacteria?”

For S. suis we identified two cytolysin proteins to be the main two factors’ predictors
of zoonotic ability. For S. agalactiae we found genes coding for proteins involved in
immune evasions such as extracellular nucleases and a protease that breaks down
chemokines, Fibrinogen binding protein and three pilus forming proteins to be the
main predictors of zoonotic ability.

In Chapter 5 we also answer the question:
“Can we predict host and tissue specificity of bacterial pathogens?”

Our results show that we can with a can predict three Mycoplasma host classes with
an F-score of 0.91 while we can predict tissue specificity with an F-score of 0.88. In
summary, it is possible with reasonable precision and recall predicting host and tissue
specificity for Mycoplasma’s. In Chapter 5 we also tried and failed to predict
combined host and tissue specificity. This is not surprising since the number of
samples we have available for these combinations of tissue and host classes is
insufficient.

In Chapter 6 we try to answer the questions:

“What are the properties of M. pneumonia central carbon metabolism to adapt to
different environmental conditions?”

We identified robustness as the main emerging systems property of M. pneumoniae.
Latin-Hypercube sampling of the parameter space shows that robustness is in general
as systems property of central carbon metabolism. To find robustness in a minimal
organism such as M. pneumoniae which has a small volume with few copies of
proteins, and a limited cell surface is not surprising. Two key metabolic hubs in
metabolism were identified. The first control hub consists of parameters associated to
PTS Glc and PFK representing the upper part of glycolysis, the second hub consists of
parameter associated to LDH, PDH and PYK which are part of pyruvate metabolism.
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7.2.5 Systems medicine approaches to target bacterial pathogens using
phages and CRISPR CAS

One interesting angle in research would be to compare similar strategies such as pore
formation in various bacteria that infect humans, not only the molecules that that
create these pores, but the regulatory cascades that precede them as well. There are
vast similarities in their strategies, such as immune modulation, preference for
cholesterol rich membranes, steering towards phagosome uptake, granuloma
formation, cytosolic access using pores, and escape to the cytosol. Similarities in
environmental cues, regulatory cascades and virulence proteins are present across
multiple species. Pooling the knowledge available on various pathogens, should
increase our understanding of the intricate interactions, similarities and differences
between pathogens and their virulence systems and strategies. This might especially
become important with the increased prevalence of drug resistant bacteria. Systems
approach to find weakness in pathogenesis strategies and regulatory cascades can lead
to systems medicine approaches to combat pathogens. Although such approaches are
used, they are still limited and mostly only rely on literature search. Extending such
approaches to multiple omics data, regulatory elements, environmental cues and using
automation, would be a logical next step.

Additionally, I argue that more ‘adaptive medicines’ such as the use of phage
treatments are essential to keep up the arms race with pathogens. I hypothesize that
the combination of phage treatments with the use of CRISPR CAS systems in
pathogens, might facilitate many systems medicine approaches. Phage treatment and
system medicine approaches can be used as an alternative or in complement with
antibiotic treatments [518], [541], [542]. Although CRISPR CAS is normally used by
bacteria to protect against bacteriophages, CRISPR CAS can potentially be hijacked to
fight bacteria by using phages as vector to deliver CRIPR CAS systems with
antimicrobials with bactericidal activity [543]. Phages have been reported as
successful vectors for CRISPR CAS deliveries [543]. Examples of such systems
medicine approaches could be a) to trigger death of pathogenic bacteria by letting it
silence some of its own genes, b) activating dormant M. tuberculosis to make them
susceptible to drugs and clearance by the immune response or c) silencing essential
virulence proteins using the innate CRISPR CAS systems to stop necrotising fasciitis.
The given examples are hypothetical, they might not work or have serious
complications as well as ethical implications. For example, an estimate 13 million US
citizens carry latent Tuberculosis [544], and an estimate 33% of the African population
have latent Tuberculosis [545]. However, using phage therapies might become the
only option to treat extreme drug resistant bacteria. In 2021 there were 9 clinical trials
underway to treat bacterial infections as well as some successful trials with phage
cocktail therapies to treat infections with P. aeruginosa or Acinetobacter baumannii
[543]. Experimental treatment of multi drug resistant M. tuberculosis with single
phage therapy in 2022 showed a favourable clinical outcome in 11 out of 20 patients
with no negative side effects. Although further development of these techniques is
needed, these first results are promising for patients with extreme drug resistant M.
tuberculosis that cannot be treated effectively using available antibiotics.
The adaptive ability to overcome the bacterial immune system makes phages essential
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to supplement the dwindling pool of effective antibiotics. It should be noted that many
obstacles still exist in phage treatment, such as difficulty with regulation and quick
adaptation and clearance of phages by the hosts immune response [542]. Despite these
limitations, the promises of phage therapies due to a) their adaptive nature b) their
specificity, and c) their potential to be used as vector for drug delivery or CRISPR CAS
systems with bactericidal activity, make them an attractive solution to treat multi and
extreme drug resistant bacteria.

7.3 Methodological strengths and limitations

7.3.1 Networks and clustering

Network-based approaches and clustering of omics data is the most extensively used
method within this thesis. It also is, arguable, the most effective and time efficient
methodology. In Chapter 2 I used DIVA[52], a precursor of SyNDI [51], a
synchronous network data integration framework combined with literature research
to create a visual mapping of proteins, environmental signals and regulators that
orchestrate the three virulence strategies in M. tuberculosis. This methodology was
proven to be effective although the use of these tools and methodology might work
best with organisms with an abundance of omics data such as is the case for M.
tuberculosis. The visual model provided in the supplementary file of Chapter 2 would
ideally be a part of a multiple network view opposed to being a non-interactive image.
Multiple omics data are presented to a scientist as unordered networks, either as
aggregated network or as individual networks by tools such as SyNDI [530]. These
unordered networks can be used to create ordered networks/maps to help a scientist
understand the biology. Examples of ordered networks are maps of metabolic
reactions that are visualised in accordance with reference maps of metabolism such as
Escher [546] and MOST-visualization [547] that display model data on well-known
map layouts such as the Roche Applied Science ‘Biochemical Pathway’s wall chart [53],
or modular visualisation as used by Pathway Tools [54]. Model databases such and
BiGG Model database incorporate Escher. By using the same layout, differences
between models can be spotted much more easily. Another example of an order
network is the modular map of the three virulence strategies we presented in Chapter
2 were we ordered proteins and metabolites in modules which in turn were ordered
based on the environmental cues encountered in the phagosome. The initial intent of
our visual model was to provide an ordered network, a map of map of virulence
containing multiple layers of omics data. I made attempts to translate this visual map
into an interactive map using WikiPathway [548], [549] and Pathvisio [294]. This
author believes there to be great merits to such an approach, using direct linkage of
omics data, annotation to multiple network visualities including both unordered
networks for exploration and ordered modular networks maps that best represent the
biology. Ordered modular network maps are maps where nodes such as genes,
proteins or metabolites are ordered in pathways and modules and arranged in
accordance with reference layouts such as we commonly see in maps of metabolism.
Examples would be genome scale metabolic (GEM) models and their maps in Escher
[546] or Gene regulatory network models in WikiPathway [549]. Although in theory
this approach is nice, conversion of the M. tuberculosis virulence map to an interactive
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map was at the time of writing not feasible due to several reasons. Firstly, the available
tools were too limited, time consuming, buggy, and poor in scaling to make such
approaches work for a large manually made model. This is not too surprising since the
graphical virulence map already required 16 GB or RAM for editing without containing
any metadata or links to other omics data. In general, a lot can be improved in linking
data to biological maps. Secondly, building such a map requires well defined standards
in identifiers and data storage which at the time of writing were still rather
undeveloped. I will discuss bottlenecks, current developments and future
developments that might solve these bottlenecks in the section

Breaking the barrier between models and data at the end of this discussion.

Apart from the multiple network visualisations used in Chapters 2 and 3, network
visualisation and clustering were used for discovery and classification of bacterial
traits. In Chapters 4 and 5 I used clustering-based protein presence and absence
belonging to specific GO Biological functional groups [550] retrieved from the GODM
database [551], to identify sub-populations of bacteria associated to specific
phenotypes in  heatmaps, dendrograms, @PCA and t-SNE plots.
Clustering based on a few selected biological functional groups of proteins was shown
to be useful in identifying clusters of strains with different phenotypic traits. This
methodology should be transferable to the study of any bacteria within a short
taxonomic distance where there are different phenotypic properties observed. The GO
functional groups were manually selected based on their suspected importance for the
traits to be classified. Alternatively, it could be possible to automatically scan for
separation of properties in all GO biological functional groups of proteins, although it
should be noted that separation might occasionally occur at random due to the large
number of GO biological functional groups of proteins. Having a) more diverse
genomes and more phenotype metadata available b) restricting the depth of the GO
functional groups searched and c) manual validation of the involvement of a GO
functional group in associated traits, can be used to overcome this problem of
randomly occurring segregation of strains with different phenotypic traits.

In Chapter 6 I used network graphs and heatmaps based on metabolomics data to
find correlations between metabolites over conditions. This analysis led to some
interesting leads into which metabolites might be linked to growth and high energy
state.

In Chapters 4 and 5 clustering led to clearly identifiable sub-groups of strains with
different phenotypes. Clustering based on GO functional groups for Mycoplasmas was
somewhat less clear. Probably because we try to predict multiple tissue and host types,
as well as because of overlap in protein features between classes. Classification of
Mycoplasmas was synergistic in nature and contained many proteins part of core
functionalities such as metabolism. From a biological point of view this is not
surprising since M. pneumonia pathogenesis is an emergent property that
incorporates proteins involved in adherence, immune evasion, inflammation,
cytotoxicity, gliding motility as well as metabolic adaptation to its host [440]. Hence,
any single biological functional groups of proteins do not fully capture the adaptation
to any host or tissue type. Pathology of M. pneumonia includes adhesion damage, toxic
damage, invasive damage, disruption of membrane fusion, nutritional depletion,
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inflammatory damage and damaged caused by the immune system [16]. Furthermore,
in Chapter 5 I predict host and tissue specificity over multiple species opposed to
within a specific specie as was the case in Chapter 4. The results of our study show
that Staphylococci and Streptococci ability to infect humans originate from the
presence of a few toxins and pathogenic proteins unlike Mycoplasma’s and M.
tuberculosis which uses combinations of proteins belonging to various GO functional
groups to adapt to its host. For future studies, it would be interesting to apply the same
methodology of using GO biological functional groups of interest to identify clusters
of strains with different phenotypes for Mycobacterial species. If such future research
would be possible largely depends on the availability of strain phenotype data, such as
the isolation host and tissue type.

7.3.2 Pattern recognition and clustering

Pattern recognition can be loosely defined as the clustering and of patterns.
Classification is the assigning of labels to a to a pattern or cluster. In the case of
supervised learning, the label given to classes are known and machine learning models
is trained to predict these classes for un-classified data or to classify a ‘test data’ set
which was not used in the training of the classifier. In unsupervised learning, classes
are automatically detected and assigned, and classes represent an abstract entity. An
example of unsupervised learning would be automatic detection of clusters. An
example of semi supervised learning is the identification of binding motifs in upstream
binding sites which we deployed in Chapter 3. We start with a seed cluster with the
known label as belonging to DevR, but we allow the cluster of genes to expand and the
pattern predictive of this class to emerge. The approach we used in chapter 3 could be
made unsupervised. I propose the following approach to automated motif searches
and segregation. Currently, there are two manual steps in our approach: a) selection
of genes matching a motif or cluster based on the cut-off p-value for the Fimo motif
search and b) negative selection of genes with a known regulatory binding motif for a
next iteration. The cut-off p-value determines how stringent the iterative approach will
be in adding new genes found by Fimo in the next motif identification round by Meme.
This iterative approach can be continued until he input for motif building by Meme
matches the genes above the cut-off value by Fimo or if a fixed number of iterations
has been performed. The final set of genes can be stored as a group together with the
found motif. Optimal p-values for segregation can be chosen in many ways. There are
many algorithms available to automate cluster selection such as K-means, Spectral,
clustering, DBSCAN, Partitional Clustering Algorithm based on Nearest Neighbours
Heuristics [552], Local Density with Glowworm Swarm Optimization [553], projection
to latent structures discriminant analysis [554], extended Minimum Spanning Tree
[555]. Silhouette score or Rand index combined with hyperparameter searches can
potentially be used to benchmark the performance of different clustering algorithms
with various setting. By no means would the choice and implementation and fine
tuning of automatic clustering algorithms be trivial. However, it would be worthwhile
to automate since it would allow scaling up of the methodology to identify all motifs
and their putative regulons in a network. Showing the overlap in motifs and regulation
can be essential to unravel the complex regulation of genes such as virulence genes in
M. tuberculosis as we show in Chapter 1 and in this chapter. The second manual step
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in our approach is the negative selection of genes with a known regulatory motif. There
are many ways to automate this negative selection. One solution would be to use a
second a less restrictive seed phase where more clusters, and as such small sub-
clusters are detected. These small clusters can be used to identify less frequently
occurring motifs that are present in larger clusters. Another approach would be to
select all genes in a cluster that are below the cut-off p-value of a Fimo motif search
and use these as seed to find new motifs within larger clusters. The last step would be
to store all motif hits and motif patterns and display these different clusters with
different colours in SyNDI. Motifs can be compared to motifs from motif databases
and can be used to select groups of likely co-regulated genes within SyNDI. Upstream
regions of genes can be visualised within SyNDI to show the different putative
regulatory binding site regions and their estimated strength of binding represented by
the p-score for that motif. This in turn can be very useful to build visual models of
overlapping regulation as we presented in Chapter 1, Appendix 1 or detection of
highly regulated operons as we display in Chapter 1.

In Chapters 4 and 5 I used PCA and t-SNE for dimensional reduction followed by
clustering to detect both GO functional groups of interest that showed segregation of
species traits such as host or tissue specificity. We used the GODM database which was
build using inference and a wisdom of the crowds approach [556] in Chapters 4 and
5. Although such transfer of knowledge carries the risks of some false positives, in
general it is better to have some information with a few false positives, opposed to
having no information at all. As such I want to emphasize that data driven approaches
that use inference and wisdom of the crowds’ approaches is very useful for to
complement hypothesis driven research. Currently detection of segregation was done
manually by analysing dendrograms, PCA and t-SNE plots. The approach we deployed
in Chapter 4 was initially unsupervised, leading to detection of non-zoonotic and
non-zoonotic strains in S. suis. After this initial discovery, we switched to a supervised
learning method where we specifically trained Random Forest models to predict
zoonotic and non-zoonotic S. suis and S. agalactiae strains. In Chapter 5 we used a
completely supervised learning approach since we directly trained models to predict
tissue and host specificity of different Mycoplasma’s.

Our approach in both chapters was manual. Large numbers of heatmaps, phylogenetic
trees, PCA plots. t-SNE plots and heatmaps were automatically generated, however
their analysis was still purely manual. In theory, automation can be applied to detect
and segregate patterns or clusters in networks, PCA & t-SNE plots or hierarchical
clustering plots such as dendrograms. Methods to automate quantification of
segregation of clusters are available, such as K-means, Spectral, clustering, DBSCAN,
Partitional Clustering Algorithm based on Nearest Neighbours Heuristics [552], Local
Density with Glowworm Swarm Optimization [553], projection to latent structures
discriminant analysis [554], extended Minimum Spanning Tree [555] to name a few.
Many algorithms for cluster segregation and analysis are present. However, which
algorithm works best depends on the data used as well as the chosen parameters for
the algorithm [553]. Metrics such Silhouette score or Rand index combined with
hyperparameter searches can be used to benchmark the performance of different
clustering algorithms on real and in silico data sets [553].
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No one solution works best in all situations, hence automatic detection of clusters
comes with own set of challenges. Additionally, as we see in Chapter 5, segregation
of classes can be synergistic, meaning that not always one class is segregated perfectly,
sometimes a cluster segregates multiple classes from other classes. Even with these
challenges, there are still many arguments to be made for automated cluster
segregation. Firstly, recognition of groups over multiple dimensions is easier for
algorithms than for humans. This is one of the reasons why t-SNE plots in general
outperformed PCA plots in this thesis, since they project these multiple dimensions on
2D space where with PCA plots we mostly limited ourselves to explore the first two to
three principal components. Secondly, algorithms can scale better than humans. An
algorithm can scan many functional groups of proteins that lead to good segregation
of many phenotypes and only output relevant results to graphs to be presented to a
researcher. An alternative approach to automatic detection of interesting GO
functional groups to segregate phenotypes would be to use the feature importance of
classifiers to identify groups of functional proteins to further explore.

PCA and t-SNE can also be used to reduce dimensionality before proceeding with
classification. Such an approach was not used in this study since it makes the biological
interpretation of the classifier rather challenging. It could however be an interesting
alternative to the iterative feature reduction approach w used in this thesis. Iterative
feature reduction hides the importance of alternative features with the same presence
absence since they are not present in the final set of most important features.
In general, many interesting methodologies can be use that are developed outside of
the field of Bioinformatics and Systems Biology. Machine learning methods are
increasingly applied in systems biology. The software tools and documentation for
machine learning are more mature than most modelling methods such as Genome
Scale Metabolic modelling and dynamic modelling methods used in Systems and
Synthetic Biology. Hence, future researchers might choose to use more general
applicable methodologies such as machine learning models since they generate
reasonable results in fraction of the time required to build fully descriptive models
such as GEM models and Dynamic models. Nonetheless this author believes in the
future of fully descriptive modelling once proper conditions are met, which I will
discuss in the section °

Breaking the barrier between models and data’.

7.3.3 Systems Biology Modelling

In this thesis I applied two GEM models, one dynamic model as well as three simple
Random Forest classifiers. The dynamic model build in this thesis was initially
planned to become part of a whole cell model for M. pneumonia. Various strengths,
weaknesses, bottlenecks, and solutions were identified for the various modelling
approaches. I would like to discuss these various bottlenecks here.
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7.3.3.1 Tools and model standards

Unexpectedly , the use of GEM’s is not as straight forward as one might expect from a
modelling field that exist since 1995 [557]. For example, the CPLEX solver turned out
to completely crash the Python kernel, once in every couple of thousands of
simulations. Although this bug was reported many years ago, it was not fixed years
later at the time of writing Chapter 4. Due to extreme ungracefulness of the crash,
the only solution to run large number of simulations was to switch from the CPLEX
solver to Gurobi [479] solver. Simple parallelisation to scale up simulations were found
to be difficult due to the design decisions made by the developers of Cobrapy. For
example, making a deep copy of a GEM model within a python environment was found
not to result in a deep copy as one would expect. Although these kinds of issues are
surmountable and work arounds exist, it indicates a somewhat surprising lack of
maturity in the GEM modelling field.

Similarly, when working with dynamic models, a lot of practical troubles were
encountered. These troubles included a) the need to manually debug SBML models b)
incompatibility and data loss when using valid SBML models with visualisation tools
such as Cell Designer [558] and Vanted [559], ¢) incompatibilities between dynamic
models stored as SBML models and tabular conversion formats using SBtab [479]. The
above-mentioned incompatibilities force the user to do manual validation and
modification of the SBML models each time a model is converted, annotated, or
visualised. The holy grail of modelling is often described as having model-driven
experimentation. Preferably, multiple iterations of results are there to each time
suggest new experiments. Such iteratively approaches are too time consuming to
achieve due to the above-mentioned issues unless the model accepts the loss of
information at each modelling iteration. Tools such as Copasi PyCoTools [560] and
Tellurium [490], [561] are a great step forwards since they enable upscaling and
parallelization of dynamic model training, sensitivity analysis and simulations. These
software tools are however still in in development with varying build in solvers and as
such varying results per version of the software used. Lack of persistent funding still
plagues the field of Systems Biology, greatly hampering modelling efforts. Especially
modelling efforts that require integration of models, data, and visualisation appears to
be not well developed in the experience of this author. At the time of writing, this
author does not know a single good solution have full integration of data, models,
visualisation. Lack of continuous funding for modelling software results in most
modelling tools out there being obsolete, hard to use, incompatible with new data and
programming standards. Therefore, making model building and simulations for
dynamic models reproducible is near impossible. Although the situation is less dire
than a couple of years ago, lack of continuity in tools and standards is still a great threat
to future of Systems Biology and modelling in general. Standardization and funding
for tools, software and data reuse across difference scientific disciplines as part of the
European Open Science Cloud (EOSC) initiative is a good example of work towards
good reusability and continued development of software and tools [562].
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7.3.3.2 FAIR data management

Having a lot of data, or a great variety of data, does not automatically enable great
science. For one, it is hard to link and integrate various data types. Variations in the
granularity of data, difference in annotation of the data as well as variations in
experimental setup, biological noise, and instrumental noise, can hinder the user of
data in Systems Biology Approaches. One can speak to any researcher in the field of
Systems Biology to hear their woes on data related problems such as lacking data,
lacking metadata, lacking annotation or poor data formats. In fact, studies have shown
most researchers use 70-80% of their time on mundane tasks such as finding,
accessing and formatting data for reuse [563]. Great science is only possible when
using great data. In this author’s opinion the lack of Findability, Accessibility,
Interoperability and Reusability, are an unacceptable waste of public research funds
and a missed opportunity from a scientific point of view since so much data ends up
being used only once.

Therefore, in this thesis, a lot of time was spent to make our modelling efforts in
Chapter 6 Findable, Accessible, Interoperable and Reusable (FAIR). I made as much
the data and model FAIR by annotating, structuring data and storing it in the
FAIRDOM[479] hub and models in the SEEK[478] and BioModels database [564].
Uploading and annotation of most was done long after the generation of this data and
not by data generators themselves. I refer to this as “FAIRified data”, opposed to truly
FAIR data. The data is to “some extend FAIR”, meaning mostly there is a focus on
Findability and Accessibility while Interoperability and Reusability are still rather
lacking due to sparse metadata and limited linking to protocols used to generate the
data. The difference between FAIR by design [70] and FAIRified data is visualised in
Figure 29. While FAIR by design data is a bottom-up approach, FAIRified data is a
top-down approach. The challenges encountered, and the time spend on making our
dynamic model and its linked data FAIRified, illustrate a) the importance of
generating data with standardized annotation and metadata, b) the importance of
using automated experimental setups and c) that it is much more efficient for data
generators themselves to make their data FAIR. In this author’s opinion, FAIR data is
a prerequisite for large modelling approaches such as dynamic models of metabolism
and whole cell modelling. Currently there is not incentive for data generators and
modelers alike to make data and models FAIR. As such, spending time on such a task
might be considered ‘a wasted of time’ since it will not help any researcher to get more
publications or finish their PhD in time. However, long term scientific goals can be
achieved through standardization and FAIR data and model management. FAIR data
management through standardization and large-scale automated data generation is
the only way to achieve truly Interoperable and Reusable data and models. The lack of
incentive for individual researchers, however, remains a problem that can only be
overcome by using automation in experiments and model generation, since that would
save time for modelers and researchers.
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Figure 29. The difference between FAIR by design and FAIRified data.

7.3.3.3 Annotation and metadata

Another problem encountered in modelling is the use of inferior metabolite identifiers
[565] as well as lacking annotation in general. In Chapters 4 and 5, GEM models
were used to map model simulations to determine gene and reaction essentiality with
experimentally determined essentiality based on annotation. In both cases incomplete
mapping of annotation was observed even though the used models were relatively new
and well annotated. Semantic mapping and tools for metabolite mapping are essential
to alleviate these issues. Using highly standardized annotation such as domain-based
annotation in addition to normal genome annotation might improve the
interoperability of models and data. Many improvements have been made in
annotation of models in recent years. Examples of improvements made in this field
are metabolite mapping tools such as MetaNetX [566], databases such as ChemSpider
[567], PubChem [568], Wikidata [569] and automated GEM generation tools with
proper annotation such as PathwayTools [54]. There are many types of metabolite
identifier a modeller could chose to include in their model. SMILEY and InChl
identifiers are however the only identifiers that are uniquely associated to a molecule.
SMILEY identifiers have the additional benefits of a) directly capturing the 3d
structure of chemical compounds in a human readable format, b) being parsable using
regular expressions to identify similar molecules or molecular building groups c¢) being
hierarchical in annotation, allowing models and data with different levels of detail such
as isomer specific and non-isomer specific annotation to be mapped with ease. This
hierarchy is captured and can be queried in databases such as WikiData [569] and
ChEBI [570] which use semantic storage and ontologies to organize the relationships
between chemicals. Let us discuss a few examples of why the properties of SMILEY
identifiers and the hierarchical storage of metabolite identifiers is so important. In a
model instead of using only ATP in a reaction, it could be that other three phosphate
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nucleotides such as ATP, CTP, GTP and UTP are used. Representing such a reaction is
relatively simple when using SMILEY identifiers and regular expressions in rule based
and agent-based modelling. Another example would be to query enzyme Monod
constants for similar metabolites using SMILEY identifiers and regular expression
searches. An example would be the binding of small molecules with phosphate groups,
which is mostly dominated by the nature of the phosphate group and the resonance
stability it provides to molecules. Using SMILEY identifiers and simple regular
expressions, a database can be queries on km values of other small molecule with
similar side groups. Many more examples can be thought of. By providing these
examples I hope to illustrate why choosing the right identifiers for both data and
models can be instrumental to Systems Biology which relies heavily on the integration
of data and models. In this authors opinion, using ‘gold level metabolite identifiers’
such as SMILEY, InChI, InChIKey’s or ChEBI identifiers, should become an obligatory
requirement for funding of research that involves measurements or modelling of
metabolites. Complex molecules such as DNA, RNA and other biopolymers remain
challenging to annotate in a standardized way. Regular expressions based on the
SMILEY or InChIKey identifiers which are synonymous with the structure of the
molecules they represent could provide a solution here. Examples of such an approach
are ClassyFire, a computer program for automated chemical classification in the using
approximately 200 regular expression searches and rules in order to detect structural
features [553]. For their classification they use the SMART molecular pattern
matching language which is related to SMILES molecular language and chemical
classification is stored in the ChemOnt ontology. A regular expression for glycogen
could match branches of different lengths which consists of Glucose residues linked
linearly by a-1,4 glycosidic bonds, as well as branches of different lengths which
branch off via a-1,6 glycosidic linkages. Regular expressions can allow for a range of
lengths in the chain while restricting to long chains to separate glycogen from starch
which is structurally similar, but which has fewer branches and is less compact than
glycogen. Capturing all possible configuration of complex biomolecules as individual
structures might become data intensive, while a pattern that generalizes these
structures takes only a single line. RetroPath 2.0 is an example of a tool that uses
structure based SMART patterns to identify generalized metabolite reactions and
pathways to aid reaction and pathway mapping and metabolic engineering efforts that
exploit enzyme promiscuity [571]. Differences and similarities can be captured in a
SMILEY, SMART or InChiKey based patterns. Automated methods such as ClassyFire
structure molecules in a hierarchical ontology based on patterns in their stucture. An
added benefit of using regular expressions based on the chemical structure, would be
that these patterns are both machine and human readable and can for example be used
in agent-based models with reactions that work with multiple alternative metabolites
in a single reaction. A single reaction can unambiguously represent a whole range of
possible reactions in a compressed and easy to interpret way. If different rates for
different forms of similar molecules is needed, the modeler can break up the large
regular expressions into smaller more restrictive regular expressions or even chemical
identifiers to specify the rates for each variant of the molecule. An example in
modelling would be the use of metabolite patterns to specify the use of different mono-
di- or three-phosphate nucleotides as well as large biomolecules with different possible
structures such as the glycogen example given before. This is also possible using the
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parent child relationship in chemical databases that use hierarchical ontologies to
retrieve all ‘descendants’ in a tree of metabolites. However, regular expressions have
the benefits of being programming agnostic and not requiring interaction with any
database or being specific for any ontology. A last example of where generalised
metabolite patterns might be useful, is for linking and unifying different chemical
ontologies, databases, and identifiers. Structure based patterns can be used to
compare branches of related chemical compounds independent of the structure of a
database and can for example identity metabolites present in one database that can be
included in another database based on fitting a generalised pattern that matches the
ontology. In summary, using structure-based patterns with SMILEY identifiers,
SMART identifiers or InchiKey identifiers, can be used to unambiguously classifying
chemicals as was demonstrated in ClassyFire and RetroPath 2.0 and can be used for
metabolite, reaction, pathway, model, database, and ontology mapping.

7.3.3.4 Robotics to automate, standardize and upscale experimentation

As mentioned in the previous section, there is little incentive for individual researchers
to manually annotate data and models to be FAIR. Improvements in standardization
of annotation of data and models can come most easily from automation since most
models are at least partly automatically generated before gap filling and manual
curation by a modeler. Recent years have shown an increase in projects with
standardized and large-scale data generation. The use of large-scale automated
experiments does not only result in better annotated and FAIR data, but also results
in data with much lower amounts of technical noise. Additionally, when using
automation to generate multiple omics data from a single experiment, sampled at a
single time point, biological noise can also be greatly reduced. Automation and large-
scale data generation might therefore be key to truly make FAIR data management a
standard. Finally, systems biologist might have the quality and quantity in data to
make models live up to their promises. The use of best practices in annotation,
metadata, and modelling formats could make it even easier to build pipelines and
modelling tools that interact with them. Standardization greatly simplifies the work of
linking data and models while greatly reducing the time for scientist to go from a
biological question to biological findings and publications. In the opinion of this
author, standardization in data and model generation is the only way to efficiently
make the iterative modelling cycle work for large quantitative models.

7.3.4 Breaking the barrier between models and data

Systems biology is an integrative study field. Therefore, research stands and falls with
a) the availability and quality of data and b) the availability and quality of annotation
and metadata and c) the ease of interoperability of data and models. As I pointed out
previously, interoperability and reusability rely on standardization in experiments,
data, models, annotation, and tools. From the point of view of this author there should
be no separation between models and data. Genomic data is used to build GEM
models, omics data can be used to generate and impose constraints on models or
provide insight by plotting them on ‘ordered networks’ as discussed in the sub-chapter
‘Network and clustering. The results of models can be compared to experimental data
such as essentiality data or be visualised on ordered maps such as pathway maps. All
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these mentioned operations require interoperability and as such standardization in
annotation. When fully embracing an engineering approach one should take the
perspective of programmers and software engineers. From a software engineering
principal molecules and reactions are simply two types of data objects which can link
to various properties and identifiers. Discrete models and pathway maps use
instantiation with multiple such objects existing at the same time. For example, a map
can show ATP at multiple locations without showing the link to all other instances of
ATP in a reaction map, unless the user choses to see them. Similarly, agent-based
models throw the dice for each instance of a molecule involved in a reaction.
Continuous models on the other hand use single instantiations of objects while
pathway maps allow multiple instances of an object to exist at the same time. In their
essence, all these different modelling types still exist out of two types of objects,
metabolites, and reactions which can have many properties such as identifiers or
reactions modelled at different levels of abstraction. From an engineering or software
engineering perspective, these properties are extremely simple and can be captured
with ease in a single data/object structure with a simple ontology. Petri Nets are an
early effort that shows it can be easy to combine different modelling types by
embracing the graph nature of models of being a) a physical object such as a molecule
or protein or b) being an action/abstract object such as a reaction [572], [573]. Lessons
can be learned from this early attempt such as embracing a most minimal ontology
with extendible properties such as annotation and graphical representation. Being
simple, minimal, and extensible are key properties for any data and modelling
standard. The flexibility of using minimal ontologies is exemplified by PetriNets as
they are used to model many type of systems, biological [574]-[576], automatic Web
service composition using fuzzy logic [577], [578] as well as the fact that PetriNets
themselves were early adopters of semantic web standards and ontologies as is the
case in OPENET[579] or the Petri Net Ontology [572].

Due to the graph nature of models, RDF and semantic data storage would be a logical
choice. Models should not be partly semantic data (BioPAX), or after creation
converted to a hard to read, hard to use and hard to visualize container format such as
SBML. Instead, models should ab-initio be stored in well-defined interoperable
semantic data structures. Switching to semantic data standards as a default can greatly
decrease the woes of incompatibilities encountered in modelling. The advantage of
Semantically storing of model data is that it enables much better machine
interoperability, data validation and downstream development. Data quality of such
models can be checked by using code generators such as EMPUSA which enforce
proper heredity and data types on RDF data similar to how this is enforced in Object
oriented programming [389]. Semantically stored models can be converted into
executable models at any time with very little computation effort since a single model
account only for a very small number of triples and querying RDF is highly optimised.
Through their graph nature, models stored as semantic data are more scalable and
easier to interact with by both users and software alike. Querying or simulating a
thousand models or a single model would roughly cost the same amount of user effort
and would approximately scale linearly [580]. Human time is the most limited
resource; hence we should fully use all technological tricks we can to simply data
analysis and modelling by removing all boundaries between data and models by
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making them both human and machine findable and interoperable by using semantic
data storage and ontologies.

But hey, would switching to RDF not create yet another modelling standard? This
author would argue not. Basically, because I am not defining a new modelling
standard, but I bring down existing modelling and data standards to their minimum
and capturing them in the most minimal data structure possible, namely RDF which
is basically object-property-object. Most successful semantic data ontologies are very
simple in their nature while being fully extendible with link out properties to other
database and other ontologies. While semantically stored models are easy to convert
to SBML, this conversion would probably be loss full. Hence, storing all models as RDF
objects would be desirable since SBML is more limited and has no advantage over
models stored as RDF.

Unifying different modelling types is in a precondition for complex modelling
approaches such as whole cell modelling. The lack of a good standard and formats to
support whole cell modelling and the lack of proper tools to build and validate these
models are mentioned as major bottlenecks as can be seen by a survey among
hundreds of modellers [581]. A lot of progress has been made over the years that are
in line with the data-centric philosophy argued for by this author. RDF conversion of
models from the BioModels database to BioPax was used to query multiple models
visualize the occurrence of reactions over multiple models on a pathway maps and to
cluster models based on their similarity [582]-[586].

Automatic generation of models with tools such as Pathway Tools that uses MetaCyc
annotation [54] or building upon models with standard annotation as found in BiGG
Models [56]that standardized identifiers called BiGG IDs and SEEK [55] model
database where Tools are available for model annotation in accordance with the
MIRIAM guidelines for annotation. Such tools and databases have become the starting
point for most modelers. Semantic annotation stored in Research Description
Framework BIOPAX has become the de facto standard for model annotation, greatly
improving the interoperability and reusability of models [587]. Models within Seek
can be queried via their metadata as part of SysMO-SEEK metadata, however, the
reactions within models themselves cannot yet be queried. To extend these
developments and to switch to a complete semantic framework to store omics data,
model data and pathway maps, is therefore sensible and in line with developments in
recent years. Switching to semantically stored models should allow for a more efficient
workflow when building, querying, and interacting with these models. For example,
the RDF JSON format is much more readable and easier to interact with
programmatically than SBML.

In my opinion the combination of a) moving to completely semantic storage of models,
b) switching to unambiguous human and machine readable identifiers combined with
an ontology to capture the hierarchy in annotation such as SMILEY identifiers, InChI
and ChEBI identifiers, hashed identifiers based on the structure such as InChIKey’s c)
development of scalable modelling tools that allow parallelization such as
libroadrunner [491], Tellurium[490] and PycoTools [560], automated model building,
validation, visualization and d) the use of large-scale automated data generation by
bio-foundries, could lead to a revival of the Systems Biology modelling field and would
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enable the conditions for larger and more complex models such as models of the whole
cell [588]. Using the above best practices in annotation and FAIR data management
will enable easier data integration, data exploration and better modelling of pathogen
host interaction. It is my believe that only using such best practice can we hope to
answer the question What are the patterns in bacterial pathogen host interaction?”.
I believe that enforcing the above suggested best practices, larger and more complex
modelling approaches such as Whole Cell modelling will become attainable.
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Summary

This thesis aims to answer the question “What are the patterns in bacterial pathogen
host interaction?”. Various pathogens are studied using common concepts, methods,
and strategies. In this thesis we studied the pathogenesis of Mycobacterium
tuberculosis, Mycoplasma pneumoniae, Staphylococcus and Streptococcus species
such as Staphylococcus aureus and Streptococcus pneumoniae.

Chapter 1 discusses the bacterial pathogenesis and the pathogens studied within this
thesis. The strategies deployed by these bacterial pathogens are analysed as well as
their impact on society. Zoonotic pathogens, which can infect both humans and
animals, are discussed. There is an abundance of data available on the bacteria studied
in this thesis. This abundance in data makes them particularly suitable for Systems
Biology approaches. Systems Biology involves integration of multiple ‘omics’ data such
as genomics, transcriptomics, proteomics, metabolomics and phenomics as well as
modelling. This chapter discusses the differences between reductionistic approaches,
which study biological parts, and holistic approaches (e.g., Systems Biology), which
study systems at large, such as networks, and the properties that emerge from the
interactions in a system. Within this thesis I use a Systems Biology approach to study
large systems and identify emerging properties. At the same time, I use reductionistic
approach by emphasizing modularity in biological systems, and by imposing structure
on the biology by creating maps. This thesis balances the use of these two different
philosophical approaches since biological systems are chaotic and leaky as well as
ordered and modular. Common Systems Biology methodologies are discussed, as well
as the importance of FAIR data management on scientific research and long term
societal impact of scientific data.

Chapter 2 identifies three major virulence strategies in M. tuberculosis. M.
tuberculosis was responsible for an approximate 1.5 million deaths in non-HIV
patients in 2021. To better understand M. tuberculosis and to find new drug and
vaccine KO candidates, literature and omics data were analysed using synchronous
network visualization. The output of this chapter is a visual and modular overview of
the three virulence strategies, their components, and their regulation. Moreover, this
chapter identifies a single regulatory cascade for these three virulence strategies that
respond to environmental cues like limited availability of divalent metals in the
phagosome.

Chapter 3 provides three examples of how Meme2Fimo and Synchronous Network
Data Integration (SyNDI) framework, were used to detect multiple and related binding
motifs within the DevR regulon, which have not yet been described in the literature,
including a motif that is related to the M. tuberculosis regulator SigE.

Chapter 4 compares 235 Staphylococcus and 315 Streptococcus genomes based on
their protein domain content. This chapter shows the relationships between protein
persistence and essentiality by integrating essentiality predictions from two metabolic
models and essentiality measurements from six large-scale transposon mutagenesis
experiments. Clusters of strains within species were identified based on proteins
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associated to similar biological processes. These two different clusters correspond to
zoonotic and non-zoonotic strains. Two Random Forest classifiers were built that
predicted the zoonotic potential of Streptococcus suis and Streptococcus agalactiae.
Furthermore, this chapter identifies shared attributes between of Staphylococcus
aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis.

Chapter 5 investigates which Mycoplasma proteins are most predictive of tissue and
host trophism and to which functional groups of proteins they belong. I retrieved and
annotated 432 Mycoplasma genomes and combined their genome information with
host and tissue isolation data. I compared clustering of Mycoplasma and M.
pneumoniae strains based on different biological process functional groups of
proteins. This chapter shows that proteins belonging to the Gene Ontology (GO)
Biological process group ‘Interspecies interaction between organisms’ proteins are
most important for predicting the pathogenesis of Mycoplasma strains, while those
belonging to ‘Quorum sensing’ and ‘Biofilm formation’ proteins are most important
for predicting pathogenesis of M. pneumoniae. Two Random Forest Classifiers were
trained to accurately predicts host and tissue specificity based on only 12 proteins. For
Mycoplasma host specificity CTP synthase complex, magnesium transporter MgtE,
and glycine cleavage system are most important for correctly classifying Mycoplasma
strains that infect humans including opportunistic zoonotic strains. For tissue
specificity, this chapter found that a) known virulence and adhesions factor
Methionine sulphate reductase MetA is predictive of urinary tract infecting
Mycoplasmas, b) an extra cytoplasmic thiamine binding lipoprotein is most predictive
of gastro-intestinal infecting Mycoplasmas, c) a type I restriction endonuclease is
most predictive of respiratory infecting Mycoplasmas, and d) a branched-chain amino
acid transport system is most predictive for blood infecting Mycoplasmas.

Chapter 6 explores the adaptability and robustness of glycolysis and pyruvate
metabolism of Mycoplasma pneumoniae (MPN). Dual approaches were used in this
chapter. Firstly, this chapter analysed metabolomics data collected for many OE and
KO mutants and perturbation samples. Secondly, this chapter trained a dynamic
model of central carbon metabolism and tested the model’s capacity to predict these
mutants and perturbation samples as well as identify key controlling factors in central
carbon metabolism. The analysis of metabolite data as well as the dynamic model
analysis indicate MPN metabolism is inherently robust against perturbations due to
its network structure. Two key control hubs of central carbon metabolism were
identified.

Chapter 7 discusses the results of the various chapters and how they answer the
research question of this thesis. The similarities and differences in strategies of the
studied bacterial pathogens are discussed. This chapters concludes that although
pathogenesis might vary between bacterial pathogens, common strategies and
building blocks are used, leading to patterns in pathogenesis. These patterns are to
some extend transferable between bacteria and can be used to elucidate bacterial host
interaction.
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