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Abstract
Efficient food safety monitoring should achieve optimal resource allocation. In this
article, a methodology is presented to optimize the use of resources for food safety mon-
itoring aimed at identifying noncompliant samples and estimating background level of
hazards in food products. A Bayesian network (BN) model and an optimization model
were combined in a single framework. The framework was applied to monitoring diox-
ins and dioxin-like polychlorinated biphenyls (DL-PCBs) in primary animal-derived
food products in the Netherlands. The BN model was built using a national dataset
with monitoring results of dioxins and DL-PCBs in animal-derived food products over
a 10-year period (2008–2017). These data were used to estimate the probability of
detecting suspect samples with dioxins and DL-PCBs levels above preset thresholds,
given certain sample conditions. The results of the BN model were then inserted into
the optimization model to compute an optimal monitoring scheme. Model estimates
showed that the probability of dioxins and DL-PCBs exceeding threshold limits was
higher in laying hen eggs and sheep meat than in other animal-derived food (except
deer meat). Compared with the monitoring scheme used in the Netherlands in 2018,
the optimal monitoring scheme would save around 10,000 EUR per year. This could
be obtained by reallocating monitoring resources from products with lower probability
of dioxin and DL-PCBs exceeding threshold limits (e.g., pig meat) to products with
higher probability (e.g., bovine animal meat), and by shifting sample collection from
the last quarter of the year toward the first three quarters of the year.
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1 INTRODUCTION

Dioxins (polychlorinated dibenzo-p-dioxins and dibenzofu-
rans, PCDD/Fs) and dioxin-like polychlorinated biphenyls
(DL-PCBs) have negative impacts on human health (Hoogen-
boom et al., 2015; Knutsen et al., 2018; Lascano et al., 2011).
These hazards are produced as by-products of industrial pro-
cesses and natural phenomena (Srogi, 2008). The main route
of human exposure to dioxins and DL-PCBs is via con-
sumption of food items of animal origin (Baars et al., 2004;
Hoogenboom et al., 2015).
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To reduce human exposure to dioxins via food consump-
tion and to prevent from food safety incidents, the EU
has set legal limits for the presence of dioxins and DL-
PCBs in food, and has stipulated a control strategy including
recommended sampling and analysis procedures (European
Commission, 2006a, 2014, 2017, 2020). These have resulted
in the implementation of monitoring schemes in various
Member States. These monitoring schemes allow to estimate
the background levels of dioxins and DL-PCBs in food, to
identify noncompliant agricultural products with excessive
dioxins concentrations (e.g., legal limits or limits set by risk
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2 WANG ET AL.

managers) and to trace back to contamination sources (Euro-
pean Commission, 2006a, 2014, 2017; European Food Safety
Authority, 2012). In order to describe the background con-
tamination levels of dioxins and DL-PCBs in food on the EU
market, Member States should perform random monitoring
with a recommended minimum number of samples collected
and analyzed yearly (European Commission, 2006a). EFSA
(European Food Safety Authority) merges all monitoring data
from different countries to evaluate food contamination lev-
els and to estimate the dioxin exposure of the European
population (European Food Safety Authority, 2012).

Financial resources for food safety monitoring are gen-
erally limited and the analytical methods to detect dioxins
and DL-PCBs are costly and time consuming (Lavric et al.,
2005; Powell, 2014). In order to allocate financial resources
for monitoring in an optimal way, several modeling stud-
ies have explored ways to improve the cost-effectiveness of
food safety monitoring. Focker et al. (2018) reviewed meth-
ods of determining the cost-effectiveness of monitoring plans
for chemical and biological hazards in the life sciences. Their
results showed that most studies in food safety monitoring
were based on optimization models and simulation models.
For instance, Alban et al. (2016) used stochastic scenario
tree modeling approach to simulate two sampling strategies
in the monitoring of antimicrobial residues in Danish finish-
ing pigs. Lascano-Alcoser et al. (2013) and Lascano-Alcoser
et al. (2014) optimized monitoring schemes in milk and
pork supply chains, focusing on maximizing the probability
of identifying dioxins contamination given preset financial
resources for sampling and analysis. Recently, some new
models have been developed to optimize food safety monitor-
ing from cost-effectiveness perspective: Focker et al. (2019b)
optimized the costs and accuracy of aflatoxin monitoring in
the maize supply chain by using nonlinear programming,
and Wang et al. (2020) optimized the monitoring of multi-
ple chemical hazards along the dairy supply chain to reduce
potential public health impacts. Wang et al. (2021) optimized
spatial sampling strategies of dioxins monitoring along the
Dutch dairy supply chain by combing stochastic simulation
and linear programming. However, most optimization models
of food safety monitoring were developed based on simu-
lated input data with an assumption, an approximation, or
a calculation, which may not reflect reality of the historical
data (Focker et al., 2018). In addition, interactions among
different risk factors should be considered when optimizing
food safety monitoring. The Bayesian network (BN) demon-
strates a good prediction accuracy with fast response and
can account for interactions of uncertainty by using causal
relationships between different random variables (Namazian
et al., 2019; Uusitalo, 2007). Previous studies showed the
power of BN modeling in predicting types and occurrence of
food safety hazards under different conditions using historical
monitoring data and expert opinions (Bouzembrak & Marvin,
2019; Bouzembrak & van der Fels-Klerx, 2017). However, so
far, BN modeling has rarely been applied with a mathemat-
ical programming model to solve the resource optimization
problem in food safety monitoring.

The objective of this study was to develop a framework
for optimizing food safety monitoring schemes to reduce
monitoring costs while guaranteeing the identification of non-
compliant samples. The proposed framework was illustrated
using the case of the monitoring schemes for dioxins and
DL-PCBs in animal-derived food products.

2 METHODOLOGY

2.1 The design of framework combing BN
and IP models

2.1.1 Bayesian network

The BN is a graphical model based on Bayesian statistics,
decision theory, and graphical theory, which consists of nodes
(i.e., random variables) connected by directed arcs. The BN
can estimate causal relationships (reflected by directed arcs)
between nodes or events as qualitative parameters, and infer-
ence conditional probability values between nodes or events
as quantitative parameters. The Bayesian formula presents
the probability of event Xi under the condition that event Xj
occurs (posterior probability, P(Xi|Xj)):

P
(
Xi|Xj

)
=

P (Xi) P(Xj|Xi)

P
(
Xj
) , (1)

where P(Xi) is the prior probability of event Xi, P(Xj|Xi) is the
conditional probability of Xj under the condition of a known
event Xi, and P(Xj) is the probability ofXj. A BN model con-
tains (1) a set of variables (nodes) U = {Xi …Xn} and a set of
directed arcs between variables; (2) a finite set of states for
each discrete variable; and (3) a set of conditional and uncon-
ditional probabilities. If there is an arc from node Xi to node
Xj, the node Xi is called the parent of node Xj and the node Xj
is called the child of node Xi.

Equation 2 presents the BN formula, which is the
joint probability distribution of all variables, P(U) =
P(Xi, …… ,Xn), given by the product of all conditional
probability tables specified in BN:

P (U) = Πn
(i=1) P (Xi|pa (Xi)) , (2)

where P(Xi|pa(Xi)) is the probability of event Xi under the
condition of a known parent pa(Xi) of variable Xi.

2.1.2 Food safety monitoring costs minimized
by mathematical programming

Optimization of food safety monitoring from cost-
effectiveness perspective is a relevant topic of food safety
economics. These problems aim to minimize monitoring
costs or maximize effectiveness given some constraints and
can be formulated by mathematical programming (Focker
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MONITORING DIOXINS AND DL-PCBS 3

et al., 2019b; Lascano-Alcoser et al., 2013; Lascano-Alcoser
et al., 2014; Wang et al., 2020). In this study, we use integer
programming (IP) to minimize food safety monitoring costs
by given certain constraints, and generally IP problem could
be expressed as follows:

Objective function Min : f (x1 …… xn) , (3)

ConstraintsG (x1 …… xn)≤b, (4)

xmin ≤ x1 …… xn ≤ xmax, (5)

x1 …… xn ∈ Zn, (6)

where f (x1 …… xn) : Rn → R is the objective function to be
optimized; x1 …… xn are decision variables and x1 …… xn ∈

Zn means x1 …… xn are integer variables; G(x1 …… xn): Rm →

R are linear or nonlinear functions and constraints vector; b:
Rm → R is a rational vector; xmin, xmax ∈ Rn are the lower and
the upper bound of decision variables. The optimal results of
IP model highly depend on the reliability of parameters in
f (x1 …… xn), G(x1 …… xn), xmin and xmax. These parameters
are most of time subjected to uncertainties and provided by
simulated data and historical data.

We combined a BN model and an IP model into a frame-
work with the aim of minimizing monitoring costs under a
set of constraints. The BN has the ability to integrate dif-
ferent types of data, such as expert knowledge, analytical
results, and feedback of previous experiences, and to build the
conditional dependencies (casual relationships) among differ-
ent random variables (Buriticá & Tesfamariam, 2015; Yazdi
& Kabir, 2017). The inferred results of BN would be used
for parameters in IP, and IP model would be applied to the
monitoring costs optimization problem. The BN could not
only capture the priori probability distribution of uncertain-
ties of parameters in IP model, but also take into account
possible occurrence of some events whose observation may
give new information of actual values of parameters in IP
model. Figure 1 presents the proposed modeling framework
in which BN and IP models are combined to optimize food
safety monitoring schemes.

2.2 Empirical application of the monitoring
of dioxins and DL-PCBs

2.2.1 Monitoring scheme of dioxins and
DL-PCBs

The modeling framework was applied to 10 years of histori-
cal data (2008–2017) on dioxins and DL-PCBs in agricultural
products in the Netherlands (WFSR, 2019). Table 1 presents
an example record from the dataset with results of the
national monitoring program of dioxins and DL-PCBs. In the
monitoring scheme, samples were randomly collected each
quarter at the primary production or processing stage (e.g.,

at farms or in slaughterhouses). We assumed that all indi-
vidual samples were first screened with the DR CALUX®

method without pooling and compared with threshold limits
(Adamse et al, 2017). Threshold limits were set by responsi-
ble bodies and they were lower than the corresponding EC
legal limits. In practice, the concentration of the reference
sample was used for comparison and as threshold limit for
example, 0.9 pg TEQWHO1998 g−1 for ruminant and poul-
try meat, 0.5 pg TEQWHO1998 g−1 for pork meat and 1.9
pg TEQWHO1998 g−1 for milk and eggs (upper bound lev-
els) (Adamse et al., 2017). Samples suspected (samples with
dioxins and DL-PCBs contamination levels exceeding thresh-
old limits) of dioxins or DL-PCBs contamination were further
examined using Gas Chromatography/High-Resolution Mass
Spectrometry (GC/HRMS) to determine the concentration
with high accuracy (European Commission, 2006b, 2014,
2020). If GC/HRMS results exceeded the corresponding
legal limits, samples were regarded as positive samples,
and if GC/HRMS results did not exceed the correspond-
ing legal limits, samples were regarded as negative samples.
Additionally, within the framework of the EU monitoring
of background levels of dioxins and DL-PCBs in different
food products, a certain number of samples were randomly
extracted each year from all Dutch individual samples and
analyzed with GC/HRMS.

2.2.2 Bayesian network

In this study, a BN model was developed based on histori-
cal data of the monitoring schemes of dioxins and DL-PCBs
to predict the conational probability of suspect samples, that
is, samples with dioxins and DL-PCBs contamination lev-
els exceeding threshold limits, under different conditions.
The BN model also estimated how many samples should
be analyzed yearly for each food product according to EU
monitoring. The BN model could analyze the relationships
between the test results on the one hand and the sample
conditions on the other hand. Sample conditions considered
were food product type, animal species, control point, quar-
ter of the year, and the total number of samples collected
each year. Table 2 presents the names, descriptions, and states
of these variables defined in the BN. Then, the structure of
the BN was established by estimating the causal relation-
ships and probabilities between the various variables from
historical monitoring data (example in the Appendix B). The
probability (P (sc = 1|a, p, q)) of suspect samples given dif-
ferent conditions was estimated by using the BN structure
and Equations (1) and (2) (Table 3). The BN model was
developed using 80% of the records of the dataset, randomly
selected, and it was validated using the remaining 20% of the
dataset. In this (internal) model validation step, the variables
of each record were used as input in the BN model to pre-
dict the screening results as retrieved from the dataset. We
assumed that the prediction was correct when the screening
result class, as predicted by the BN model, was similar to the
screening result (suspect vs. nonsuspect) as recorded in the
dataset.
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4 WANG ET AL.

F I G U R E 1 The framework combing Bayesian network and integer programming models to optimize food safety monitoring schemes

TA B L E 1 Example records of the past monitoring schemes of dioxins and DL-PCBsa used for building Bayesian network

Year Quarter b Animal species c Product Control point
Screening
results d Sample size e Sample sizeSf

2008 1 Hen Egg Farm Nonsuspect 226 25

2009 1 Bovine animal Milk Farm Nonsuspect 254 32

2010 1 Hen Egg Farm Suspect 196 27

2011 3 Bovine animal Meat Slaughterhouse Nonsuspect 352 34

2012 1 Broiler Meat Slaughterhouse Nonsuspect 366 48

2013 1 Sheep Meat Slaughterhouse Nonsuspect 425 56

2014 1 Sheep Meat Slaughterhouse Suspect 340 42

f2015 3 Sheep Meat Slaughterhouse Nonsuspect 358 20

2016 3 Pig Meat Slaughterhouse Nonsuspect 379 28

2017 1 Sheep Meat Slaughterhouse Suspect 365 18

2018 3 Poultry (other)g Meat Slaughterhouse Nonsuspect 365 31

2018 1 Bovine animal Meat Slaughterhouse Nonsuspect 365 31

aRaw data from (WFSR, 2019); processed data in Appendix B.
bQuarter: the quarter of the year (1 (January–March), 2 (April–June), 3 (July–September), 4 (October–December).
cAnimal species in this study include hen, bovine animal, broiler, sheep, pig, deer and poultry (other).
dScreening Results: The results of samples analyzed by DR CALUX® method; “suspect” means the contamination exceeded the threshold limit and “nonsuspect” means the
contamination in samples did not exceed the threshold limit.
eSampleSize: Total number of randomly collected samples annually.
fSamplesizeS: Number of annually collected samples with dioxins and DL-PCBs concentrations exceeding threshold limits.
gPoultry (other): poultry excluding hen and broiler.

2.2.3 Integer programming

The objective of the IP model was to minimize the monitor-
ing costs for dioxins and DL-PCBs in primary animal-derived
food products in the Netherlands, subject to a set of con-
straints reflecting the required probability of the monitoring
scheme identifying noncompliant samples, and the need for
background level analysis over a monitoring period of 1 year.
The P (sc = 1 |a,p,q) and the number of samples needed to
determine the dioxin background level (estimated from BN)
were used as inputs for this optimization step. The moni-

toring costs during the monitoring period, as expressed in
Equation (7), were the sum of costs for identifying non-
compliant samples (CNSapq) and costs for estimating the
background level of contamination (CBLap) in animal species
a and food product type p during 1 year of EU monitoring.
The decision variable was the number of samples collected
in animal species a and food product type p, at quarter q of
the year (nsapq). Equation (8) presents the model constraint
for the identification of noncompliant samples, estimated as
the probability of the monitoring scheme to identify the non-
compliant sample in animal species a and food product type
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MONITORING DIOXINS AND DL-PCBS 5

TA B L E 2 Names, descriptions, and states of nodes (random variables) used in Bayesian network model

Nodes Description States

Year The monitoring year [2008, 2009, …,2018]

Quarter The quarter of the year [1 (January–March), 2 (April–June), 3
(July–September), 4 (October–December)]

Place The control points [farm, slaughterhouse]

Product The food product type [milk, meat, egg, liver]

SampleSize The number of samples collected during the
monitoring period

[100−200, 200−300, 300−400, 400−500]

AnimalSpecies The animal species monitored [bovine animal, hen, …, poultry (other)]

ScreeningResults The results from the screening DR CALUX®
method

[suspect, nonsuspect]

GCResults The results from the GC/MS method [above legal limit, below legal limit]a

SampleSizeEU The number of samples analyzed for EU
monitoring to estimate background
contamination in different products

[0, 1, …, 31]

aSamples with positive results were classified as above legal limit, and samples with negative and N.A. results were classified as below legal limit.

TA B L E 3 Conditional probability for suspect screening results according to the conditions of the product (P (ScreeningResults = 1| AnimalSpecies = a,
Product = p, Quarter = q, Place = c)) as inferenced by the Bayesian network

Place (c)
Animal Species
(a)

Food product
types (p)

Quarter (q)

1 2 3 4

Conditional probabilities

Farm Bovineb Milk 3% 4% 2% 1%

Slaughterhouse Bovine Meat 10% 11% 9% 8%

Slaughterhouse Broiler Meat 3% 2% 2% 0%

Slaughterhouse Calfb Meat 2% 1% 1% 1%

Slaughterhouse Deer Meat 93% 97% 100% 100%

Slaughterhouse Pig Meat 2% 2% 4% 1%

Slaughterhouse Sheep Meat 42% 50% 40% 29%

Farm Hen Egg 26% 28% 26% 22%

Slaughterhouse Poultry (other) Meat 0% 0% 0% 0%

aScreeningResults: the results of screening method, the suspect results with the sign of 1; AnimalSpecies: certain animal species, a; Product: certain food prod-
uct type, p; Quarter: the certain quarter of the year, q; Place: certain control point, c. According to Equation 1 and 2 and casual relationships between
variables, the conditional probability could be calculated as: P(ScreeningResults = 1| AnimalSpecies = a, Product = p, Quarter = q, Place = c)) =
P(AnimalSpecies=a,|ScreeningResults=1)∗(Product=p|ScreeningResults=1,AnimalSpecies=a)∗P(Quarter=q|ScreeningResults=1)∗P(Place=c,|ScreeningResults=1)∗P(ScreeningResults=1)

P(AnimalSpecies=a,Product=p,Quarter=q,Place=c)
The detailed calculation process was

presented with R codes in Appendix B. These probability values pertain to DL-PCBs.
bBovine: bovine animal; Calf: calf for fattening.

p. This probability was set to be larger than or equal to the
required value, which was estimated from the probability of
the 2018 monitoring scheme (estimated in Equations (15) and
(16)) to identify corresponding noncompliant samples. Equa-
tion (9) presents the model constraint that a sufficient number
of samples needs to analyzed to estimate the background level
of dioxins and DL-PCBs contamination in animal species a
and food product type p. The total number of samples col-
lected during 1 year for animal species a and food product
type p was set as smaller than or equal to the number of
samples collected in the actual 2018 monitoring and larger
than or equal to the minimum number of yearly required
samples (Ns_minap). The BN estimated the probability dis-

tribution of the number of samples analyzed for estimating
the background level of contamination in animal species a
and food product type p (Ns_BLap) (Appendix A Table A1),
and we used the most likely values of Ns_BLap as the input of
Ns_minap (Appendix Table A1). Equation (10) presents the
model constraint that the value of nsapq should be larger than
or equal to 0, and smaller than or equal to the maximum value
(Ns_maxap). Equations (11) and (12) present costs for iden-
tifying noncompliant samples and costs for estimating the
background levels of contamination in animal species a and
food product type p during 1 year of EU monitoring. Equa-
tions (13) and (14) are used for estimating the probability of
monitoring scheme identifying the noncompliant sample in
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6 WANG ET AL.

animal species a and food product type p. Equations (15) and
(16) are used for estimating the probability of the 2018 moni-
toring scheme identifying the noncompliant sample in animal
species a and food product type p.

Objective function:

Min : TMC
(
nsapq

)
=
∑
apq

(
CNSapq + CBLap

)
apq

(7)

Constraints:

PIap ≥ P
(
ns_2018apq

)
ap2018

(8)

Sum
(
nsap2018

)
ap2018

≥

∑
q

nsapq ≥ Ns_minap (9)

Ns_maxap ≥ nsapq ≥ 0 (10)

Decision variable:
nsapq, integer.
With

CNSapq = nsapq ∗ Cs + nsapq ∗ Csc

+nsapq ∗ Cgc ∗ P(sc = 1|a, p, q) (11)

CBLap = ns_BLap ∗ Cgc (12)

PIap =

(
1 −

∏q = 4

q = 1
P
(
0, nsapq, P (sc = 1|a, p, q)

)
apq

)
∗ Sen_dio (13)

P
(
0, nsapq, P (sc = 1|a, p, q)

)
apq

=

(
nsapq

0

)

∗ P(sc = 1|a, p, q)0
∗ (1 − P (sc = 1|a, p, q))nsapq (14)

P
(
nsapq2018

)
ap2018

= 1 −

(∏q = 4

q = 1
P
(
0, nsapq,2018,

P (sc = 1|a, p, q, 2018))apq2018

)
∗ Sen_dio (15)

P
(
0, nsapq2018, P (sc = 1|a, p, s, 2018)

)
apq2018

=

(
nsapq2018

0

)
∗ P(sc = 1|a, p, q, 2018)0

∗

(1 − P (sc = 1|a, p, q, 2018))nsapq2018 (16)

where TMC (nsapq) are the yearly total monitoring costs; a is
animal species; p represents the food product type; q is the
quarter of the year (1, 2, 3 or 4); nsapq is the number of sam-

ples collected from animal species a and food product type
p, during quarter q; nsapq2018 is the number of samples col-
lected from animal species a and food product type p, during
quarter q of 2018; ns_BLap is the number of samples analyzed
for estimating the background level of contamination in ani-
mal species a and food product type p during the monitoring
period (refers to Appendix Table A1); PIap is the probability
that the monitoring scheme can identify at least one noncom-
pliant sample in 1 year in animal species a and food product
type p.

P(0,nsapq, P(sc = 1|a,p,s))apq is the probability that
the monitoring scheme cannot identify the suspect sample
in animal species a and food product type p in quar-
ter q, following a binomial distribution; P(sc = 1|a,p,q)
is the conditional probability of a suspect sample col-
lected in animal species a and food product type p in
quarter q, computed by the BN; P(nsapq2018)ap2018 is the
probability of identifying at least one non-compliant sam-
ple in the whole year using the current sampling plan;
P(0, nsapq2018, P(sc = 1|a, p, q, 2018))

apq2018
is the proba-

bility of the 2018 monitoring scheme identifying no suspect
sample in animal species a and food product type p, at quar-
ter q of 2018, following a binomial distribution; Ns_maxap
is the maximum number of samples collected for animal
species a and food product type p during the monitoring
period, estimated from 2018 monitoring results; Ns_minap
is the minimum number of samples collected estimated by
the BN, equal to ns_BLap; Cs are the costs of collecting one
sample; Csc are the costs of screening one sample with DR
CALUX; Cgc are the costs of analyzing one sample with
GC/MS; CNSapq are the costs of identifying a noncompliant
sample in animal species a and food product type p, at quarter
q of the year; CBLap are the costs of estimating background
contamination levels in animal species a and food product
type p during the monitoring period; Sen_dio is the assumed
sensitivity of DR CALUX® combined with GC/HRMS for
the identification of non-compliant samples (Table 4).

2.3 Computing tool

The BN model was developed to obtain the parameter val-
ues for the optimization model using the program R, version
3.5.2(R Development Core Team, 2018) with the R pack-
age “bnlearn” (Scutari, 2009). The correponding R codes are
displayed in Appendix B. The integer programming model
was developed in Lingo software, version 17.0×64(Lindo
Systems Inc, 2017). The respective codes are attached as
Supporting Information.

3 RESULTS

3.1 Results of the BN model

After computing the best fitting BN model (network struc-
ture in the Appendix B), it is composed of (i) a set of nine
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MONITORING DIOXINS AND DL-PCBS 7

TA B L E 4 Input variables in integer programming model to estimate the costs of the monitoring scheme of dioxins and DL-PCBs

Description Variable Value Unit Explanation

Costs of collecting one sample CS 10 EUR Reference value a

Costs of analyzing one sample by
screening method

CsC 100 EUR DR CALUX® b

Costs of analyzing one sample by
confirmatory method

Cgc 350 EUR GC/HRMS b

Sensitivity of dioxin analysis by combined
method

Sen_dio 100 % Assumed sensitivity of DR CALUX®
combined with GC/HRMS in identifying
positive samples c

aSource: (Focker et al., 2019a).
bSource: (Lascano-Alcoser et al., 2014).
CIn reality the sensitivity is a bit lower than 100%, and we assumed it as 100% which could make the results give insight into the influence of sample allocation on budgets saving.
The model is flexible in that this parameter can be adapted according to the requirements of different reference laboratories.

variables, namely: animal species, food product type, control
point, year, quarter of the year, screening (DR CALUX®)
results, confirmation (GC/MS) results, number of samples
analyzed for estimating dioxin and DL-PCB background lev-
els, and total sample size; (ii) a set of states for each variable
(e.g., the node screening results has the following states: sus-
pect and nonsuspect); and (iii) a set of direct links between
the variables and an assigned conditional probability for each
variable.

The BN model predicts the likelihood of excessive dioxins
and DL-PCBs levels in different products given predefined
conditions. Table 3 presents the conditional probabilities of
positive screening results given the specific animal species,
food product type, quarter of the year, preset number of
samples, and control point (computed by Equation (1)). The
results showed that dioxins and DL-PCBs in sheep meat and
hen eggs are more likely to exceed their threshold limits
than in other food product type–animal species combination
(except deer meat with limited sample size) at each quarter
of the year. All (other) poultry meat screening results were
negative at every condition. Excessive levels of dioxins and
DL-PCBs were more likely to be found in meat than in dairy
milk. Except for deer meat, dioxins and DL-PCBs in most
products were most likely to exceed threshold limits within
the first three quarters of the year, as compared with the fourth
quarter of the year.

3.2 Results of the optimal monitoring
scheme

Table 5 presents the samples collected under the 2018
monitoring scheme and applying the calculated optimal mon-
itoring scheme, for different animal species and food product
types at each quarter of the year, with their corresponding
PIs. The PI2018 was estimated by the model and the optimal
results were computed to minimize the total monitoring costs
with the constraint that its PIs were larger than or equal to
PI2018. In total, to reach the same monitoring performance,
the total number of samples collected (274) using the opti-
mal monitoring scheme was much smaller than the number

actually collected (365) in the 2018 monitoring scheme. In
practice, the majority of the samples (103) collected during
the first quarter of 2018 and most of the samples collected
in 2018 were from pig meat (98 samples in total); its PI2018
reached 91%. Even though 2 and 12 samples were collected
for deer meat and sheep meat, respectively, in 2018, their
PI2018 could reach 100%. Only a few samples were col-
lected in the 2018 monitoring scheme from (other) poultry
meat with four samples in total, and all of them contained
subthreshold levels of dioxins and DL-PCBs. In the esti-
mated optimal situation, most samples should be collected for
bovine animal meat with 60 samples in total, thus eight sam-
ples less than with the 2018 monitoring scheme. Furthermore,
more samples should be collected during the second quar-
ter of the year, as compared to the 2018 monitoring scheme.
The optimal monitoring scheme proposed to collect in total
58 samples of pig meat during the third quarter of the year,
which are 40 samples fewer than with the 2018 monitoring
scheme. The total number of samples for background level
analysis in 2018(121) was similar to the estimated optimal
number (116). However, with the optimized results, fewer
samples are needed to estimate background contamination
levels in bovine meat and pig meat, but more samples should
be analyzed to estimate background contamination levels in
milk.

Figure 2 presents the optimal allocation of monitoring
costs and the estimated monitoring costs in 2018 in terms
of animal species and food product types during each quar-
ter of the year. It would require fewer resources to reach the
same performance as the 2018 monitoring scheme. More than
10,000 EUR could be saved each year by implementing the
optimized monitoring schemes. In the optimal situation, bud-
get should be allocated to collect more samples in the first
three quarters of the year to identify noncompliant samples.
In accordance with Table 5, costs could mostly be saved in
sampling pig meat as in the optimal monitoring compared
with the 2018 monitoring scheme. Except deer meat, the
optimal monitoring costs for each food products were
allocated at earlier quarters (1, 2, and 3) of the
year as compared with the monitoring costs spent in
2018.
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MONITORING DIOXINS AND DL-PCBS 9

F I G U R E 2 The optimal monitoring costs compared with monitoring costs in four quarters of the year 2018 with equal food safety monitoring
performance

4 DISCUSSION

This article presents a modeling approach to design opti-
mal food safety monitoring schemes. With our approach,
noncompliant food products from animal origin can be identi-
fied, given required conditions, while minimizing monitoring

costs. The framework consists of a BN model and an IP
model. The BN model estimates the states of each vari-
able and the conditional probability of suspect samples given
the required conditions. The optimization model uses the
results of the BN as input to compute optimal monitoring
schemes.
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10 WANG ET AL.

The optimization showed that it is possible to reduce
the total monitoring costs by monitoring samples differently
between food products and at different quarters of the year.
For example, in the 2018 monitoring scheme, most samples
were collected from pig meat, but in the optimal scheme most
samples should be collected from bovine meat. For pig meat
monitoring, collecting all 58 samples during the third quarter
of the year would be more cost-effective (Table 5). The prob-
ability of a pig meat sample being suspect was 4% during the
third quarter of the year, which is twice as high as during the
first quarter of the year and four times higher than during
the fourth quarter of the year. Thus, suspect pig samples
could be more easily identified during the third quarter of the
year.

Humans are exposed to dioxins and DL-PCBs mainly
through food consumption of animal derived products with
potential health effects (Baars et al., 2004; Hoogenboom
et al., 2015), but the potency of the congeners among these
two classes of chemicals are different. The International
Agency for Research on Cancer (IARC) considered that
DL-PCBs (e.g., PCB 126) and some dioxins (e.g., 2,3,7,8-
TCDD) are carcinogenic to humans (Group 1) (Knutsen et
al., 2018). Acute exposure of humans to high levels of dioxins
may result into skin lesions and may damage liver func-
tions, and chronic exposure is associated with impairment
of the immune system, the endocrine system, and reproduc-
tive functions (Marinković et al., 2010). In order to compare
the toxicity of a mixture of dioxins and DL-PCBs in facilitat-
ing risk assessment, the concept of toxic equivalents (TEQs)
based on different toxic equivalency factors (TEFs) for the
different dioxin and DL-PCB congeners was introduced, with
TEFs expressing the toxicity of individual dioxins and DL-
PCB congeners relative to the most toxic dioxin congener
(being2,3,7,8-TCDD) (EFSA Panel on Contaminants in the
Food Chain (CONTAM), 2012). The WHO foodborne dis-
ease burden epidemiology reference group (FERG) estimated
the global burden of foodborne diseases, and in this con-
text, the disease burden (with symptoms like hypothyroidism
and male infertility) related to dioxins and DL-PCBs expo-
sure was measured as long-time exposure for chronic toxicity
risk (WHO, 2015). According to FERG reports, the South-
east Asia Region had the highest foodborne disease burden
caused by dioxins with 10–41 DALYs (disability-adjusted life
years)/100,000 population, and 0.9–19 DALYs/100,000 pop-
ulation were estimated for western Europe countries (Gibb
et al., 2015). Although the background dietary exposure to
dioxins in the Netherland currently does not pose risks to pub-
lic health (Boon et al., 2014), elevated dioxin levels should be
prevented to protect human health and to prevent from eco-
nomic losses. In order to guarantee the safety of the food
supply and protect human health, many national authorities
monitor dioxins and DL-PCBs to estimate their background
levels in food, and to identify noncompliant agricultural and
food products with excessive dioxins concentrations. Consis-
tent with these monitoring tasks, we set these two monitoring
functions as main constraints in our optimization model with
the objective to minimize related monitoring costs.

Mathematical programming models can solve optimiza-
tion problems of food safety monitoring from the cost-
effectiveness perspective (Focker et al., 2019b; Wang et al.,
2020), but the model parameters are subject to uncertainties
of some random events (e.g., the positive rate of sam-
ples, collecting places, product types, and so on). Combing
a stochastic simulation process or using stochastic pro-
gramming may deal with the randomness of (some) model
parameters (Powell, 2013; Rijpkema et al., 2016; Wang et al.,
2021); however, these methods depend on a prior probabil-
ity distribution for each of the random parameters without
considering possible new evidence that can provide other
information on these parameters. Compared with the above-
mentioned methods, BN is able to translate uncertainties into
numerical values, combing new evidence to estimate poste-
rior probabilities of certain events and, also to show good
prediction accuracy with fast response. Regarding monitoring
dioxins in agricultural production chains, Lascano-Alcoser
et al. (2013, 2014) and Wang et al. (2021) optimized dioxin
monitoring schemes in a specific food product type to iden-
tify noncompliant samples. Our study did not only identify
noncompliant samples among different food products, but
also guaranteed sufficient sample collection to estimate back-
ground levels of dioxins and DL-PCBs in these food products,
which is consistent with the objective of the current EU
dioxin monitoring recommendation (European Food Safety
Authority, 2012; European Commission, 2017). For instance,
four samples were collected for (other) poultry meat in the
2018 monitoring scheme and two in the optimal monitor-
ing scheme, although the probability of a suspect sample is
zero. These samples need to be collected and analyzed to
estimate background dioxin levels in this type of meat. There-
fore, in the case of dioxin monitoring, the BN model is able
to capture the interaction of uncertainty in historical moni-
toring data, and to estimate the number of samples required
to get a reliable estimate of the background contamination
level, described by a distribution of possible results, and
the probability of detecting suspect samples under different
conditions.

This study shows that the modeling framework, combin-
ing a BN model and an optimization model, is useful for
selection of the optimal monitoring scheme. This model-
ing framework, has previously been used to build real-time
decision-making systems in other domains (Efe et al., 2018;
Tchangani, 2004), but rarely been applied to the domain
of food safety monitoring. Monitoring data collected going
forward can be used to update the occurrence of contam-
ination over time. The methodology could be extended to
any food safety hazard for which historical monitoring data
is available on different conditions. However, the results of
this study cannot directly be applied as optimal monitoring
scheme by industry or Food Safety Authorities to monitoring
food safety hazards, because when food producers apply new
technologies to reduce risk or unpredictable climate happens,
the proposed framework cannot capture these uncertainties.
Therefore, food safety risk managers should also take into
account any other potential risk factor and use the proposed
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MONITORING DIOXINS AND DL-PCBS 11

framework as a basis to optimize the final food safety
monitoring scheme.

The BN model correctly predicted 93% of the validation
cases (Appendix Table A2), which showed a high accuracy of
the predictions of parameters in the IP model compared with
deterministically assumed parameters and simulated parame-
ters only based on their prior probabilities. It should be noted
that the remaining 7% of the cases is wrongly predicted and
would cause economic losses and negative impacts on pub-
lic health. Even though the current level and human exposure
of dioxin decrease, the health impacts of monitoring dioxin
are still important when risk managers design monitoring
schemes (Adams et al., 2017; Ali et al., 2022). The economic
impacts of dioxin monitoring in this study only covered costs
for sampling and analysis procedures, but the loss costs due to
wrong decisions were not included in the model, because the
focus of the study was on how to allocate monitoring budgets
in monitoring procedures. An optimal design from a social
welfare point of view should also include the negative pub-
lic health effects and other economic losses due to prediction
errors. Future research could expand the current framework
along the lines sketched above by addressing the wider eco-
nomic losses and public health consequences. For instance,
experts could weight different hazards based on their disease
burdens and economics losses, and the model could allo-
cate monitoring resources more accurately to the target food
product to reduce adverse impacts due to prediction errors.

The framework was built based on monitoring results
from the Dutch official control program for dioxins and
DL-PCBs in foods of animal origin and its results were there-
fore limited by the information available in these reports.
For instance, geographical information was only reported for
2008 in the historical dataset. With more relevant informa-
tion, the accuracy of the BN results and the performance of
the optimal monitoring scheme could be further improved.
For future studies, we also recommend collecting and storing
all possible relevant information (for instance geographical
information, frequency of monitoring, types of hazards, etc.).
In addition, a larger input database, such as the monitoring
results collected by EFSA, would help to further optimize
monitoring schemes for multiple food safety hazards across
Europe.

5 CONCLUSION

We combined BN and IP models into a single framework
to optimize the use of resources for food safety monitoring
aimed at identifying noncompliant samples and estimating
background level of hazards in food products. The methodol-
ogy was applied to dioxins and DL-PCBs in primary animal
derived food products in the Netherlands. The optimization
results were compared to the monitoring scheme used in
2018 in the Netherlands. By estimating the prevalence of sus-
pect samples, sampling pig meat could be done in a more
cost-effective manner. In addition, conducting sample col-
lection earlier in the year could increase the performance

of the dioxin monitoring program. This framework can help
risk managers from both the government and the industry
to design and implement resource efficient food monitoring
schemes.
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