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Introduction

Summary

¢ Transcriptome studies of lllumina RNA-Seq datasets of different Arabidopsis thaliana natural
accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which
showed the typical two-segmented genome characteristics of a comovirus.

e This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated
under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1).
Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription
polymerase chain reaction, transmission electron microscopy and mechanical inoculation.
Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct
mosaic symptoms.

¢ A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500
Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in
25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis
latent virus 1 could also be detected in A. thaliana plants collected from the wild.

o Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the
progeny derived from infected A.thaliana plants. This has probably led to a worldwide
distribution in the model plant A. thaliana with as yet unknown effects on plant performancein a
substantial number of studies.

publicly available in 2000 (The Arabidopsis Genome Initia-
tive, 2000). Since then, whole-transcriptome sequencing has

Many plant biology studies involve Arabidopsis thaliana as model
plant. Although community-serving A. thalianastock centers, such
as the Arabidopsis Biological Resource Centre (ABRC) (Scholl &
Anderson, 1994), test for seed-borne diseases, usually only visual
detection methods and germination tests are applied (Rivero
etal.,2014). Moreover, few research laboratories have reported
testing their seed stocks for known virus contaminations before
running experiments. The A. thaliana genome sequence became
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become one of the most common tools for deciphering plant
physiological processes. This untargeted approach can also reveal
the unexpected presence of other biological agents and provides
information about possible unnoted infections and contaminations
(Villamor ez al., 2019).

Viruses, in particular, can be hiding in plants and in seed material
(Cobos etal.,2019). The majority of well-studied viruses cause
disease symptoms in agriculturally important crops with sometimes
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severe effects on plant morphology, physiology and yield (Prasad
etal., 2020). In nature, however, plants are often infected with
viruses that do not cause any apparent disease symptoms, so-called
latent infections (Shates ez al., 2019). Many viruses may even be
beneficial to their hosts in a mutualistic symbiosis (Rooss-
inck, 2011). Extending the knowledge on these latent viruses will
contribute to the beneficial exploitation of viruses in cultivated
crops (Takahashi ez al., 2019).

Here, we describe a comovirus; Arabidopsis latent virus 1
(ArLV1), which we encountered in A. thaliana RNA sequencing
datasets generated in our laboratories and which was found to be
widespread in other datasets obtained from sequence data repos-
itories. We found that plants from several A. thaliana accessions,
including the widely used accession Col-0 (CS60000), tested
positive for ArLV1. We identified different isolates of the virus
across the NCBI Sequence Read Archives (SRAs) and investigated
disease symptoms, infectivity, plant growth and effects on the
A. thaliana transcriptome and on abiotic stress resilience. Regular
screening for the presence of this widely present — but unnoted —
virus and further investigation of its possible effects is highly
relevant for the plant science community working with A. thaliana.

Materials and Methods

ArLV1 identification and genome assembly

The RNA-Seq dataset of Kloth ez a/. (2016) was mapped against the
TAIR10 A. thaliana reference transcriptome (Lamesch eral, 2011)
with ToPHAT v.2.0.13 and intron length 20-2000. The dataset from
Utrecht University was mapped against the Araportl0 reference
transcriptome with Katuisto (Bray eral,2016; Methods S1).
Unmapped reads were de novo assembled in CLC GENoMIC
WORKBENCH v.9 (Qiagen) using standard settings and the resulting
contigs were blasted against the NCBI RefSeq database. Contigs
showing a clear identity to different comoviruses were retained for
further analysis. As per A. thaliana genotype (ALL1-3, Pent-1, Ep-0
and Col-0), we assembled unique contigs, of which the virusisolate in
ALL1-3 from the Wageningen dataset was submitted to GenBank
under accession nos. MH899120.1 (RNA1) and MH899121.1
(RNA2), respectively. This Wageningen isolate is later referred to as
ArLV1_A, the Col-0 isolate from Utrecht as ArLV1_B. To identify
the phylogenetic position of this virus within the genus Comovirus,
RefSeq comovirus sequences were downloaded from NCBI and the
amino acid sequence of the conserved Pro-Pol region from RNA1 was
aligned using MAFFT v.7.475 with the auto option (Katoh &
Standley, 2013). Maximum likelihood (ML) phylogeny was recon-
structed using IQ-TREE v.2.0.3 with MoDELFINDER and 1000
ultrafast bootstrap replicates (Kalyaanamoorthy ez al.,, 2017; Minh
etal., 2020).

Datamining of NCBI SRAs

Hlumina-generated A. thaliana RNA-Seq datasets (SRAs) were
downloaded from the NCBI SRA (https://www.ncbi.nlm.nih.gov/
sra) and searched for the presence of ArLV1 RNAI and RNA2
sequences with the BLASTN_vDB program from the NCBI SRA
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toolkit v.2.9.0 (min. 500 reads per SRA dataset; automatization
script available on Zenodo).

Phylogenetic analysis

From the NCBI SRA output, accessions containing ArLV1 were
selected based on the presence of at least 500 reads of RNA2,
representing full coverage. From these, one SRA each from 38
randomly chosen accessions was selected, from which the consensus
nucleotide sequences of RNAI and RNA2 were retrieved by
reference mapping (CLC GENOMIC WORKBENCH v.20) against the
ArLV1 sequences (MH899120.1 (RNA1) and MH899121.1
(RNA2), respectively) with options ‘low coverage definition
threshold =3’ and ‘insert N-ambiguity symbol’. The ML phylo-
genies were reconstructed using the conserved Pro-Pol region from
RNA1 (Le Gall eral,2008) and ORF2 from RNA2 of these 38
consensus sequences together with four sequences from different
A. thaliana ecotypes from Wageningen and Utrecht (ALLI-
3_Wageningen, Pent-1_Wageningen, Ep-0_Wageningen and
Col-0_Utrecht) using IQ-TREE v.2.0.3 with MODELFINDER and
1000 ultrafast bootstrap replicates (Kalyaanamoorthy ez al., 2017;
Minh et al., 2020). Evidence of recombination was assessed using
the Phi test implemented in SPLITSTREE (Bruen et al., 2006; Huson
& Bryant, 2006). A world map of ArLV1 occurrences, based on
available GPS data (https://1001genomes.org) for 36 accessions
with available latitude and longitude coordinates, was made with
the R package GGPLOT2. Isolation by distance was assessed using the
Mantel test implemented in the R package ADE4, where distance
was calculated as Euclidean distance from the coordinates using the
R package sp and genetic distances were estimated using IQ-TREE.

ArLV1 inoculations

Arabidopsis latent virus 1 inoculum was obtained by harvesting leaf
material from ArLV1-positive A. thaliana plants and grinding it
(1:1, w/v) in an inoculation buffer (0.03 M phosphate buffer, pH
of 7.2). For inoculation, leaves of A. thaliana plants in leaf stage
8-10, or Nicotiana benthamianaplants in leaf stage 5-8 were lightly
dusted with carborundum powder, and inoculum was applied by
gentle rubbing. Plants were rinsed with water 10 min after
inoculation. Virus symptoms were assessed visually at 7-10d
post-inoculation (DPI). Presence of virus in inoculated plants was
checked by SYBR Green quantitative reverse transcription poly-
merase chain reaction (RT-qPCR) and transmission electron
microscopy (TEM) with a JEM1400 Plus (Jeol, Nieuw Vennep,
the Netherlands) using a leaf dip assay according to standard
protocols (Hayat & Miller, 1990).

Virus detection by quantitative RT-PCR (RT-qPCR)

For a detailed step-by-step protocol of how samples were collected
and used in RT-qPCR, refer to Fig. S1. In addition to this protocol,
at least two primer pairs were used per sample: one for RNAI
(RNA1_1; ArLV-RNA1l-Fw: TCTGCCAGTACTGGAGAGG
and ArLVI-RNAI-Rv: GTCATCCAACAAATAGGAAC) and
RNA2 (RNA2; ArLV1-RNA2-Fw: CACCAAT

one for
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AACACCCCAAAA and ArLV1-RNA2-Rv: GCATTTCCACA
GAGTCTCQG). For the seed transmission experiments, an addi-
tional primer pair for RNA1 was used (RNA1_2; ArLV1-RNA1-
Fw: TGTCGTGATAACTGATGG and ArLVI-RNAI-Rv:
CTAACCTCTTTCCTCCCC). AC, values were calculated per
primer pair by subtracting the average control C, values from the
same RT-qPCR run. If multiple primer pairs for RNA1 were used,
the average delta CT of the two was calculated and used in
visualization. K-means clustering was used to separate the positive
samples from the negative samples.

Results

Identification of ArLV1

An analysis of RNA-Seq transcriptome datasets from several
natural A. thalianaaccessions, some of which were part of a study by
Kloth eral (2016), hereafter referred to as the “Wageningen’
dataset, showed for some samples an unexpectedly low mapping
percentage of plant reads (as low as 17.4%) in the alignments to the
TAIR10 A. thalianareference transcriptome (Lamesch ez al., 2011;
Fig. 1a). De novo assembly of the unmapped reads identified two
contigs with lengths of 5953 and 3600 nucleotides, displaying a
segmented genome organization typical for viruses from the genus
Comovirus, family Secoviridae, order Picornavirales (Thompson
etal.,2017; Fig. 1b). To assess the phylogenetic position of this
comovirus, we compared the amino acid sequence of the highly
conserved Pro-Pol region of RNA1 with the Pro-Pol region of other
comoviruses (Le Gall ez 4/, 2008). The highest degree of nucleotide
identity of this comovirus is 68% with Radish mosaic virus(RaMV;
NC_010709). This analysis clearly identified the virus as a distinct
comovirus (Fig. 1¢c). Samples of two A. thaliana accessions con-
tained extremely high numbers of reads from the newly identified
comovirus: accession ALL1-3 (CS76090) up to 88.2% (isolate
ArLV1_A), and accession Pent-1 (CS76209) up to 83.0%. We also
identified an extremely high abundance of similar RNA1 and
RNA2 reads from the same comovirus in some, but not all, RNA-
sequenced samples of accession Col-0 at Utrecht University, with a
mapping percentage of up to 90.08% of viral reads (isolate
ArLV1_B) (Fig. 1d). The occurrence of the virus in samples was not
linked to the applied treatments (neither abiotic stress nor aphids).
As this comovirus does not seem to cause any apparent visible
symptoms in any of the A. thaliana accessions in our studies, we
named the virus Arabidopsis latent virus 1 (ArLV1).

ArLV1 detection, inoculation and transmission

To assess possible plant infections, we developed and validated a
RT-qPCR suitable for plant leaf material (Fig. S1). Arabidopsis
latent virus 1 isolates could be mechanically inoculated from
infected A. thaliana plants, grown from infected seed batches, to
N. benthamiana, known for its susceptibility to many plant viruses
(Goodin ezal.,2008) and healthy A. thaliana plants. Nicotiana
benthamiana plants showed symptoms of leaf mottling and mosaic
patterns at 5—7 DPI (Fig. 2a) and all inoculated plants tested
positive when compared with mock-inoculated plants (Fig. 2b).

© 2022 The Authors
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Fig. 1 Occurrence and identification of Arabidopsis latent virus 1 (ArLV1) in
Arabidopsis thaliana. (a) Mapping percentages of the reads in the
Wageningen RNA-Seq dataset. As this dataset involved leaf material from
both naive and aphid-infested samples (Kloth et al., 2016), reads of Myzus
persicae aphids were included in our analysis as well, but only a few were
identified. Sequence information for further analyses was obtained from
ALL1-3, and the virus isolate was named ArLV1_A. (b) Schematic
representation of RNA1 and RNA2 of a typical comovirus, adapted fromKing
etal. (2012). Co-Pro, proteinase cofactor; CPL and CPS, large and small
capsid proteins; MP, movement protein; NTB, NTP-binding proteins; Pol,
RNA-dependent RNA polymerase; Pro, proteinase; VPg, genome-linked
viral protein. (c) Maximum likelihood tree of the translated Pro-Pol region
from RNA1 of ArLV1_A (theisolate from ALL1-3) and 10 other comoviruses:
APMoV-Lm (Andean potato mottle virus; MN176101), UCoV1 (Ullucus
virus C; MH645163), BBTMV (broad bean true mosaic virus; NC_022004),
RCMoV (red clover mottle virus; NC_003741), CPMV (cowpea mosaic virus;
NC_003549), BPMoV (bean pod mottle virus; NC_003496), SQMV (squash
mosaic virus; NC_003799), CPSMV (cowpea severe mosaic virus; NC_
003545), RaMV (radish mosaic virus; NC_010709) and TuRSV (turnip
ringspot virus; NC_013218). The substitution model LG + G4 was selected
based on the Bayesian information criterion. Branch lengths (scale) represent
amino acid substitutions per site. Note that this is an unrooted tree. (d)
Mapping percentages of the ArLV1_B reads in the Utrecht RNA-Seq dataset
from A. thaliana accession Col-0, involving leaf samples from an abiotic
stress experiment (combinations of mild drought, high temperature and
submergence; see Methods S1 and Morales et al., 2022).

Arabidopsis thaliana plants infected with ArLV1 never showed any
visible symptoms and could not be visually distinguished from
healthy plants. However, transmission electron microscopy of
ArLV1-infected A. thaliana leaf extracts did show typical como-
virus particles (Fig. 2c). We used N. benthamiana leaf tissue to
mechanically inoculate A. thaliana Col-0 with the isolates
ArLV1_A and ArLV1_B, with an efficiency of 88% (79/90)
(Fig. S2). Taken together, we can state that ArLV1 can be
mechanically transferred and has the ability to infect both
N. benthamiana and A. thaliana. As some comoviruses can be
efficiently transmitted via seeds (Gergerich & Scott, 1996), we
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tested the progeny of four different ArLV1-infected A. thaliana
Col-0 parent plants for the presence of ArLV1. In total, 39.1% of
the 46 plants grown from these seed batches tested positive for
ArLV1 (Figs 2d, S3), indicating seed transmission of ArLV1.

Occurrence and phylogeny of ArLV1

To reveal if ArLV1 is also present in A. thaliana datasets other than
the Wageningen and Utrecht datasets, we initiated a search in
publicly available A. thaliana RNA-Seq datasets. Out of a total of
6477 RNA-Seq datasets analyzed, 547 (8.45%) contained at least
500 reads mapping to RNA1 and 500 reads mapping to RNA2 of
ArLV1, indicating a full coverage of the viral genome. Altogether,
ArLV1 was detected in 176 out of 711 accessions (24.75%) in the
public datasets analyzed. Arabidopsis latent virus 1 RNAs could not
be detected through reference mapping in a randomly selected set of
35 SRAs from the related species Arabidopsis lyrara. Therefore, the
precise host range of ArLV1 remains to be determined. To assess the
genetic diversity of ArLV1, nucleotide sequences from the Pro-Pol
regions of RNA1 and from the full open reading frame of RNA2 of
four isolates from different A. thaliana ecotypes from Wageningen
and Utrecht and 38 different NCBI-derived datasets, each with a
full coverage of RNA1 and RNA2, were used for phylogenetic
analyses (Figs3a, S4, S5). The resolved phylogenetic trees
supported a separation of isolates in three distinct clades. Clade 1
was represented by 55% of the isolates and occurred across different
continents, and clades 2 and 3 were represented by 29% and 17% of
the isolates, respectively, and originated from Eurasia, except for
one isolate of clade 2 from the US (Pent-23) (Fig. 3b; Table S1).
The isolates within clades 1 and 2 were highly similar, whereas six
isolates in the third clade were more divergent (Figs S4, S5).
Notably, the phylogenies showed signs of reassortment (e.g.
accessions Fell2-4 and Pent-23 fall in clade 1 for RNALI, and in
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Fig.2 Mechanical inoculation, detection and
seed transmission of Arabidopsis latent virus 1
(ArLV1). (a) Nicotiana benthamiana plants at
2 wk after mechanical inoculation with two
isolates of ArLV1 — ArLV1_A (left photo) and
ArLV1_B (middle photo) — both showing
ArLV1-induced leaf mottling symptoms
(indicated with arrowheads). The right photo
shows a control plant mock inoculated

with buffer. (b) Quantitative reverse
transcription polymerase chain reaction (RT-
gPCR) detection of RNA1 and RNA2. gPCR
detection of ArLV1 in N. benthamiana was
repeated as a positive control every time we
inoculated Arabidopsis thaliana, with
comparable results. (c) ArLV1_A in infected
A. thaliana leaves, visualized by transmission
electron microscopy. Arrowheads indicate the
viral particles (Bar, 100 nm). (d) Percentage of
infected progeny from A. thaliana Col-0
parent plants infected with the isolate
ArLV1_A or ArLV1_B. Infection was detected
by RT-qPCR on leaf material (Figs S1, S2).

P ArLV1_A/B-positive
[JArLV1-negative

A
o
o

N O N
a O O

arel

3

t plant status

clade 3 and clade 2, respectively, for RNA2) (Figs S4, S5). We also
detected recombination within each alignment (Phi test < 0.01
for each alignment). RNAI showed evidence of isolation by
distance (P=0.0083, Mantel test), but not RNA2 (P=0.15,
Mantel test), leaving it inconclusive as to whether limited
geographical dispersal played a role in diversification. To find out
if ArLV1 was also present in wild A. thaliana populations, we
sampled 27 different plants in Arnhem, Wageningen and Woerden
(the Netherlands), where the presence of ArLV1 outside of the
laboratory environment was confirmed in independent RT-PCR
assays for eight out of 27 plants (Fig. S6). In addition, the presence
of ArLV1 in wild A. thaliana plants from Ciruelos de Coca and
Carbonero (Spain) (Pagan ez al., 2010) was confirmed by RT-PCR
and Sanger sequencing confirmation (C. Carrasco-Lépez & F.
Garcia-Arenal, pers. comm.).

Analysis of ArLV1 effects

Although ArLV1 produces no visible symptoms in A. thaliana, we
wanted to study possible effects that ArLV1 infection may have on
the transcriptome responses of A. thaliana plants. To this end, we
compared the transcriptomes of seven samples from the Utrecht
transcriptome analysis (Methods S2). This dataset included four
samples with high numbers of viral reads (a mapping percentage of
78.94-90.08%) and three samples of plants of identical age and
growth conditions, but with low numbers of viral reads (a mapping
percentage of 0.01-9.56%). We did not find any significant
differentially expressed A. thaliana genes between the two groups
(Fig. 4a). However, we did observe a slight but significantly lower
Chl content in plants inoculated with ArLV1 compared with
mock-inoculated plants, regardless of the availability of water
(Fig. 4b; Methods S3). Other morphometric traits, such as leaf
number or leaf surface area, were unaffected by the virus (Fig. S7).
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Fig. 3 Phylogeny and geographicinformation of different Arabidopsis latent
virus 1 (ArLV1) isolates. (a) Collapsed maximum likelihood tree of the
nucleotide sequences of ORF2 on RNA2 of 38 ArLV 1 isolates. Branch lengths
(scale) represent nucleotide substitutions per site. (b) World map with the
coordinates of 36 different ArLV1 isolates, colored according to their RNA2
clade. Forthe ArLV1 isolates collected outside of the laboratory environment
(wild), we do not have clade data available. Genotypes from Arabidopsis
thaliana accessions collected at relatively close proximity are represented by
overlapping dots (brown dots represent sequences from both clade 1 and
clade 2).

When watering was stopped to induce drought conditions, mock-
inoculated plants wilted significantly a few days earlier than ArlV1-
inoculated plants (Fig. 4c). The same phenotype was observed for
N. benthamiana plants subjected to similar drought conditions
(Fig. 4d). Next, we quantified the area of the pectin mucilage layer
present on the external surface of seeds. The presence of this layer is
associated with seed longevity and the size and integrity are known
to be altered by several viruses (Bueso ezal., 2017; Methods S3).
Although the different growing conditions in Wageningen and
Utrecht significantly (2= 0.004) affected the area of the pectin
mucilage layer, ArLV1 infection of the parent plant did not affect
the size of the mucilage layer (P=0.147) (Fig. S8a). Likewise,
A. thaliana Col-0 plants inoculated with the two isolates of ArLV1
or mock-inoculated did not differ from each other in the onset of
flowering (Fig. S8b), suggesting that ArLV1 is not affecting these
fitness parameters. Taken together, these results indicate that while
ArLV1 is mainly a latent virus to A. thaliana, some minor
phenotypic effects can be observed, such as lower Chl content
and improved drought tolerance. The latter effect was observed in
both A. thaliana and N. benthamiana.

Discussion

The advent of high-throughput sequencing technologies has
greatly contributed to the understanding of the concept of

© 2022 The Authors
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holobionts (Nobori ezal.,2018), which includes not only the
study organism itself but also its associated communities (Hassani
et al., 2018). In contrast to the use of microarrays, high-throughput
sequencing can reveal the presence of unexpected and unrevealed
organisms and biological agents in study systems (Vandenkoorn-
huyse ezal.,2015), especially for viruses (Massart ez al., 2014;
Maclot ez al., 2020). As sequencing has become more affordable
and prevalent, opportunities arise to uncover the unknown
metagenomes of our study systems. This may reveal critical
microbial factors that potentially influence plant (physiological)
processes, and therefore encourages us to investigate unexpected
results, such as those illustrated here.

In this study, Ilumina-derived RNA-Seq datasets from
A. thaliana transcriptome studies with exceptionally low numbers
of plant-specific reads revealed the presence of an as yet unchar-
acterized plant virus belonging to the genus Comovirus. Given its
apparent latent nature in A. thaliana, we named this virus
Arabidopsis latent virus 1 (ArLV1). We showed the infectivity of
this newly discovered virus for A. thalianaand N. benthamianaand
its high transmissibility to A. thaliana progeny via seeds from
ArLV1-infected plants. The TEM studies confirmed typical
comovirus particles in infected A. thaliana plants and a RT-
qPCR test was developed that allows detection of the virus in plant
material.

From the nearly 6500 public A. thaliana SRAs that were tested,
8.45% contained evidence of an ArLV1 infection, accounting for
near 25% of the ‘natural’ A. thaliana accessions and some mutant
lines in the dataset. This indicates that ArLV1 is present in the
A. thaliana stocks of laboratories worldwide. We also confirmed its
presence in wild A. thaliana populations, both in the Netherlands
and in Spain. A total of 38 A. thaliana accessions were selected for a
phylogenetic analysis of ArLV1 sequences, including the widely
used accession Col-0. The phylogenetic analysis divided these virus
sequences into three clades with different geographical distribu-
tions, where occasional recombination and re-assortment also
occur. This, in addition to its apparent latent nature, its occurrence
in plants directly collected from the wild and a large number of
laboratory stocks of A. thaliana accessions collected from many
geographical regions, clearly suggests that ArLV1 is a virus that has
been naturally associated with A. thalianafor along period of time.

Our RNA-Seq datasets obtained from different A. thaliana
accessions in independent studies in both Wageningen and Utrecht
show that an ArLV1 infection in A. thaliana can resultin>90% of
virus-specific reads. This is an indication that ArLV1 can
potentially reach very high titers in infected plants. Interestingly,
these large differences in ArLV1-specific read numbers (both
absolute and relative to the total read count) were observed in
datasets from both Wageningen and Utrecht, between individual
plants from the same accession grown and processed in the same
experiment. In addition, RT-qPCR results for individual plants
grown under the same conditions varied between AC, values of
—20 and —6. The two laboratories in Wageningen and Utrecht
used different plant growth conditions (Methods S1), making it
unlikely that specific growing conditions or sampling and/or
sample processing biases are related to these differences. The reason
(s) for the high variation in ArLV1 virus titers remain to be
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Fig. 4 Transcriptomic and phenotypic effects of Arabidopsis latent virus 1 (ArLV1). (a) Arabidopsis thaliana Col-0 transcriptome analysis of four samples with
high ArLV1_B (Utrecht isolate) read mapping (average =81.6%) compared with three samples with low ArLV1_B read mapping (average =4.18%). (b)
Chlorophyll content of the eighth true leaf, following ArLV1 infection in plants subjected to drought (right panel) or keptin well-watered control conditions (left
panel). Inoculation with ArLV1_A (orange), ArLV1_B (yellow) or mock virus (gray) occurred at O d post-inoculation (DPI) and drought was applied at 7 DPI
(vertical dotted bar) (see Methods S1). The experiment was repeated twice with similar results (n > 20). Both repeats were included in the statistical analysis
using mixed linear models with repeats as a random variable. The P-values of ‘inoculum’ or ‘drought’ represent the effect of inoculation with either ArLV1_A,
ArLV1_B or buffer (mock), or the effect of the application of drought. (c) Kaplan—-Meier survival curve of the fraction of plants that maintained turgor after
watering was stopped (at 0 d). The log-rank P-value for the effect of inoculum is given as well as the Cox regression values for the two ArLV1-inoculated groups
vs mock virus. The experiment was repeated twice and results were combined for visualization and analysis. For experiments (b, c) an alpha of 0.05 was used
(different letters (a, b) represent significant differences). (d) Image showing representative Nicotiana benthamiana and A. thaliana plants inoculated with

ArLV1_A, ArLV1_B or mock virus displaying wilting after 4 d (N. benthamiana) or 15 d (A. thaliana) of water deprivation.

elucidated. Although we did not identify public datasets with high
amounts of virus-specific reads, we suspect that unpublished
A. thaliana transcriptome studies possibly also contain comparable
high numbers of ArLV1 reads, but have not been reported and
made available owing to the low number of plant-specific reads.
Although a direct comparison of the transcriptomes of
A. thaliana plants with high and low viral infections did not reveal
differentially expressed genes, ArLV1 does seem to have a small but
significant positive effect on droughtresilience, putatively via virus-
induced reduced stomatal conductance (Pasin ez 4/, 2020; Mana-
corda ez al., 2021). In addition to the obvious negative impacts on
plant morphology, physiology and yield (Prasad etal., 2020),
viruses are also known to affect their host positively in their
tolerance to abiotic (Gorovits etal,2019; Rahman
etal.,2021; Aguilar & Lozano-Duran, 2022). Some viruses even
change from parasitic to mutualistic with a change in environ-
mental conditions (Gonzilez et al., 2021). The protective effect of
plant viruses is mainly observed for drought (Mishra ez al., 2021),
but some studies also report that viruses can have a positive effect on

stress

plant responses to (other) abiotic stresses, such as high temperature
(Anfoka etal.,2016) or salt stress (Sinha ezal,2021). To our
knowledge this is the first example of a comovirus exerting such a
positive effect. Further research is needed to reveal the underlying
molecular mechanisms of how ArLV1 can affect plants’ tolerance to
drought, and to determine if similar effects can be observed for
other abiotic stressors.
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Taken together, we have identified an as yet unknown comovirus
that is widely distributed in A. thaliana in laboratories and in the
wild. The high prevalence in transcriptome datasets and its high
potential for seed transmission make it safe to assume that ArLV1
will be present in research setups with the model species A. thaliana,
with a significant part of the plants within a given experiment
unknowingly infected with ArLV1. This may have unknown
consequences for the interpretation of data obtained from these
studies. Given its mainly latent nature, ArLV1 has probably
remained unnoticed for a long time, and through its efficient seed
transmission has spread worldwide. Its prevalence and lack of
obvious disease symptoms make ArLV1 a plant virus that needs to
be treated with scrutiny. We recommend routine screening to
detect the presence of ArLV1 in seed stocks of A. thaliana and
possibly related species in laboratories and public repositories. The
virus can be easily detected in plant samples via the RT-qPCR-
based method described in Fig. S1. This will permit rapid selection
of ArLV1-free plants and seed batches before proceeding with
experiments, thus preventing potential confounding effects of the
virus.
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Fig. S1 Protocol for ArLV1 detection in plant material.
Fig. 82 Arabidopsis thaliana inoculation efficiency.
Fig. 83 Arabidopsis thaliana seed transmission of ArLV1.

Fig. S4 Phylogenetic tree of the Pro-Pol region from ArLV1
RNAL.
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Fig. S6 ArLV1 RNA2 PCR fragments of wild collected Arabidopsis
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Fig. §8 Seed mucilage layer and flowering time are not affected by
ArLV1.
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